vllm-cpu-avx512vnni 0.13.0__cp313-cp313-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vllm-cpu-avx512vnni might be problematic. Click here for more details.

Files changed (1641) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +225 -0
  3. vllm/_aiter_ops.py +1260 -0
  4. vllm/_bc_linter.py +54 -0
  5. vllm/_custom_ops.py +3080 -0
  6. vllm/_ipex_ops.py +457 -0
  7. vllm/_version.py +34 -0
  8. vllm/assets/__init__.py +0 -0
  9. vllm/assets/audio.py +43 -0
  10. vllm/assets/base.py +40 -0
  11. vllm/assets/image.py +59 -0
  12. vllm/assets/video.py +149 -0
  13. vllm/attention/__init__.py +0 -0
  14. vllm/attention/backends/__init__.py +0 -0
  15. vllm/attention/backends/abstract.py +443 -0
  16. vllm/attention/backends/registry.py +254 -0
  17. vllm/attention/backends/utils.py +33 -0
  18. vllm/attention/layer.py +969 -0
  19. vllm/attention/layers/__init__.py +0 -0
  20. vllm/attention/layers/chunked_local_attention.py +120 -0
  21. vllm/attention/layers/cross_attention.py +178 -0
  22. vllm/attention/layers/encoder_only_attention.py +103 -0
  23. vllm/attention/layers/mm_encoder_attention.py +284 -0
  24. vllm/attention/ops/__init__.py +0 -0
  25. vllm/attention/ops/chunked_prefill_paged_decode.py +401 -0
  26. vllm/attention/ops/common.py +469 -0
  27. vllm/attention/ops/flashmla.py +251 -0
  28. vllm/attention/ops/merge_attn_states.py +47 -0
  29. vllm/attention/ops/paged_attn.py +51 -0
  30. vllm/attention/ops/pallas_kv_cache_update.py +130 -0
  31. vllm/attention/ops/prefix_prefill.py +814 -0
  32. vllm/attention/ops/rocm_aiter_mla_sparse.py +210 -0
  33. vllm/attention/ops/triton_decode_attention.py +712 -0
  34. vllm/attention/ops/triton_merge_attn_states.py +116 -0
  35. vllm/attention/ops/triton_reshape_and_cache_flash.py +184 -0
  36. vllm/attention/ops/triton_unified_attention.py +1047 -0
  37. vllm/attention/ops/vit_attn_wrappers.py +139 -0
  38. vllm/attention/selector.py +145 -0
  39. vllm/attention/utils/__init__.py +0 -0
  40. vllm/attention/utils/fa_utils.py +118 -0
  41. vllm/attention/utils/kv_sharing_utils.py +33 -0
  42. vllm/attention/utils/kv_transfer_utils.py +60 -0
  43. vllm/beam_search.py +88 -0
  44. vllm/benchmarks/__init__.py +0 -0
  45. vllm/benchmarks/datasets.py +3228 -0
  46. vllm/benchmarks/latency.py +170 -0
  47. vllm/benchmarks/lib/__init__.py +3 -0
  48. vllm/benchmarks/lib/endpoint_request_func.py +777 -0
  49. vllm/benchmarks/lib/ready_checker.py +72 -0
  50. vllm/benchmarks/lib/utils.py +79 -0
  51. vllm/benchmarks/serve.py +1538 -0
  52. vllm/benchmarks/startup.py +326 -0
  53. vllm/benchmarks/sweep/__init__.py +0 -0
  54. vllm/benchmarks/sweep/cli.py +41 -0
  55. vllm/benchmarks/sweep/param_sweep.py +158 -0
  56. vllm/benchmarks/sweep/plot.py +675 -0
  57. vllm/benchmarks/sweep/plot_pareto.py +393 -0
  58. vllm/benchmarks/sweep/serve.py +450 -0
  59. vllm/benchmarks/sweep/serve_sla.py +492 -0
  60. vllm/benchmarks/sweep/server.py +114 -0
  61. vllm/benchmarks/sweep/sla_sweep.py +132 -0
  62. vllm/benchmarks/sweep/utils.py +4 -0
  63. vllm/benchmarks/throughput.py +808 -0
  64. vllm/collect_env.py +857 -0
  65. vllm/compilation/__init__.py +0 -0
  66. vllm/compilation/activation_quant_fusion.py +209 -0
  67. vllm/compilation/backends.py +839 -0
  68. vllm/compilation/base_static_graph.py +57 -0
  69. vllm/compilation/caching.py +180 -0
  70. vllm/compilation/collective_fusion.py +1215 -0
  71. vllm/compilation/compiler_interface.py +639 -0
  72. vllm/compilation/counter.py +48 -0
  73. vllm/compilation/cuda_graph.py +302 -0
  74. vllm/compilation/decorators.py +626 -0
  75. vllm/compilation/fix_functionalization.py +266 -0
  76. vllm/compilation/fusion.py +550 -0
  77. vllm/compilation/fusion_attn.py +359 -0
  78. vllm/compilation/fx_utils.py +91 -0
  79. vllm/compilation/inductor_pass.py +138 -0
  80. vllm/compilation/matcher_utils.py +361 -0
  81. vllm/compilation/monitor.py +62 -0
  82. vllm/compilation/noop_elimination.py +130 -0
  83. vllm/compilation/partition_rules.py +72 -0
  84. vllm/compilation/pass_manager.py +155 -0
  85. vllm/compilation/piecewise_backend.py +178 -0
  86. vllm/compilation/post_cleanup.py +21 -0
  87. vllm/compilation/qk_norm_rope_fusion.py +238 -0
  88. vllm/compilation/rocm_aiter_fusion.py +242 -0
  89. vllm/compilation/sequence_parallelism.py +364 -0
  90. vllm/compilation/torch25_custom_graph_pass.py +44 -0
  91. vllm/compilation/vllm_inductor_pass.py +173 -0
  92. vllm/compilation/wrapper.py +319 -0
  93. vllm/config/__init__.py +108 -0
  94. vllm/config/attention.py +114 -0
  95. vllm/config/cache.py +232 -0
  96. vllm/config/compilation.py +1140 -0
  97. vllm/config/device.py +75 -0
  98. vllm/config/ec_transfer.py +110 -0
  99. vllm/config/kv_events.py +56 -0
  100. vllm/config/kv_transfer.py +119 -0
  101. vllm/config/load.py +124 -0
  102. vllm/config/lora.py +96 -0
  103. vllm/config/model.py +2190 -0
  104. vllm/config/multimodal.py +247 -0
  105. vllm/config/observability.py +140 -0
  106. vllm/config/parallel.py +660 -0
  107. vllm/config/pooler.py +126 -0
  108. vllm/config/profiler.py +199 -0
  109. vllm/config/scheduler.py +299 -0
  110. vllm/config/speculative.py +644 -0
  111. vllm/config/speech_to_text.py +38 -0
  112. vllm/config/structured_outputs.py +78 -0
  113. vllm/config/utils.py +370 -0
  114. vllm/config/vllm.py +1434 -0
  115. vllm/connections.py +189 -0
  116. vllm/device_allocator/__init__.py +0 -0
  117. vllm/device_allocator/cumem.py +327 -0
  118. vllm/distributed/__init__.py +6 -0
  119. vllm/distributed/communication_op.py +43 -0
  120. vllm/distributed/device_communicators/__init__.py +0 -0
  121. vllm/distributed/device_communicators/all2all.py +490 -0
  122. vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
  123. vllm/distributed/device_communicators/base_device_communicator.py +297 -0
  124. vllm/distributed/device_communicators/cpu_communicator.py +209 -0
  125. vllm/distributed/device_communicators/cuda_communicator.py +340 -0
  126. vllm/distributed/device_communicators/cuda_wrapper.py +216 -0
  127. vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
  128. vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
  129. vllm/distributed/device_communicators/pynccl.py +386 -0
  130. vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
  131. vllm/distributed/device_communicators/pynccl_wrapper.py +564 -0
  132. vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
  133. vllm/distributed/device_communicators/ray_communicator.py +259 -0
  134. vllm/distributed/device_communicators/shm_broadcast.py +778 -0
  135. vllm/distributed/device_communicators/shm_object_storage.py +697 -0
  136. vllm/distributed/device_communicators/symm_mem.py +156 -0
  137. vllm/distributed/device_communicators/tpu_communicator.py +99 -0
  138. vllm/distributed/device_communicators/xpu_communicator.py +95 -0
  139. vllm/distributed/ec_transfer/__init__.py +14 -0
  140. vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
  141. vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
  142. vllm/distributed/ec_transfer/ec_connector/example_connector.py +201 -0
  143. vllm/distributed/ec_transfer/ec_connector/factory.py +85 -0
  144. vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
  145. vllm/distributed/eplb/__init__.py +3 -0
  146. vllm/distributed/eplb/async_worker.py +115 -0
  147. vllm/distributed/eplb/eplb_state.py +1164 -0
  148. vllm/distributed/eplb/policy/__init__.py +19 -0
  149. vllm/distributed/eplb/policy/abstract.py +40 -0
  150. vllm/distributed/eplb/policy/default.py +267 -0
  151. vllm/distributed/eplb/rebalance_execute.py +529 -0
  152. vllm/distributed/kv_events.py +499 -0
  153. vllm/distributed/kv_transfer/README.md +29 -0
  154. vllm/distributed/kv_transfer/__init__.py +20 -0
  155. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  156. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  157. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  158. vllm/distributed/kv_transfer/kv_connector/factory.py +197 -0
  159. vllm/distributed/kv_transfer/kv_connector/utils.py +322 -0
  160. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
  161. vllm/distributed/kv_transfer/kv_connector/v1/base.py +597 -0
  162. vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
  163. vllm/distributed/kv_transfer/kv_connector/v1/example_connector.py +450 -0
  164. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +327 -0
  165. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
  166. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +378 -0
  167. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +221 -0
  168. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1418 -0
  169. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +895 -0
  170. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +186 -0
  171. vllm/distributed/kv_transfer/kv_connector/v1/mooncake_connector.py +914 -0
  172. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +464 -0
  173. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2526 -0
  174. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +538 -0
  175. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  176. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
  177. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
  178. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
  179. vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
  180. vllm/distributed/parallel_state.py +1795 -0
  181. vllm/distributed/tpu_distributed_utils.py +188 -0
  182. vllm/distributed/utils.py +545 -0
  183. vllm/engine/__init__.py +0 -0
  184. vllm/engine/arg_utils.py +2068 -0
  185. vllm/engine/async_llm_engine.py +6 -0
  186. vllm/engine/llm_engine.py +6 -0
  187. vllm/engine/protocol.py +190 -0
  188. vllm/entrypoints/__init__.py +0 -0
  189. vllm/entrypoints/anthropic/__init__.py +0 -0
  190. vllm/entrypoints/anthropic/protocol.py +162 -0
  191. vllm/entrypoints/anthropic/serving_messages.py +468 -0
  192. vllm/entrypoints/api_server.py +185 -0
  193. vllm/entrypoints/chat_utils.py +1903 -0
  194. vllm/entrypoints/cli/__init__.py +15 -0
  195. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  196. vllm/entrypoints/cli/benchmark/base.py +25 -0
  197. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  198. vllm/entrypoints/cli/benchmark/main.py +56 -0
  199. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  200. vllm/entrypoints/cli/benchmark/startup.py +21 -0
  201. vllm/entrypoints/cli/benchmark/sweep.py +21 -0
  202. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  203. vllm/entrypoints/cli/collect_env.py +38 -0
  204. vllm/entrypoints/cli/main.py +79 -0
  205. vllm/entrypoints/cli/openai.py +260 -0
  206. vllm/entrypoints/cli/run_batch.py +68 -0
  207. vllm/entrypoints/cli/serve.py +249 -0
  208. vllm/entrypoints/cli/types.py +29 -0
  209. vllm/entrypoints/constants.py +12 -0
  210. vllm/entrypoints/context.py +835 -0
  211. vllm/entrypoints/launcher.py +175 -0
  212. vllm/entrypoints/llm.py +1790 -0
  213. vllm/entrypoints/logger.py +84 -0
  214. vllm/entrypoints/openai/__init__.py +0 -0
  215. vllm/entrypoints/openai/api_server.py +1469 -0
  216. vllm/entrypoints/openai/cli_args.py +302 -0
  217. vllm/entrypoints/openai/orca_metrics.py +120 -0
  218. vllm/entrypoints/openai/parser/__init__.py +0 -0
  219. vllm/entrypoints/openai/parser/harmony_utils.py +825 -0
  220. vllm/entrypoints/openai/parser/responses_parser.py +135 -0
  221. vllm/entrypoints/openai/protocol.py +2496 -0
  222. vllm/entrypoints/openai/run_batch.py +631 -0
  223. vllm/entrypoints/openai/serving_chat.py +1822 -0
  224. vllm/entrypoints/openai/serving_completion.py +729 -0
  225. vllm/entrypoints/openai/serving_engine.py +1542 -0
  226. vllm/entrypoints/openai/serving_models.py +304 -0
  227. vllm/entrypoints/openai/serving_responses.py +2080 -0
  228. vllm/entrypoints/openai/serving_transcription.py +168 -0
  229. vllm/entrypoints/openai/speech_to_text.py +559 -0
  230. vllm/entrypoints/openai/tool_parsers/__init__.py +33 -0
  231. vllm/entrypoints/openai/utils.py +49 -0
  232. vllm/entrypoints/pooling/__init__.py +16 -0
  233. vllm/entrypoints/pooling/classify/__init__.py +0 -0
  234. vllm/entrypoints/pooling/classify/api_router.py +50 -0
  235. vllm/entrypoints/pooling/classify/protocol.py +181 -0
  236. vllm/entrypoints/pooling/classify/serving.py +233 -0
  237. vllm/entrypoints/pooling/embed/__init__.py +0 -0
  238. vllm/entrypoints/pooling/embed/api_router.py +67 -0
  239. vllm/entrypoints/pooling/embed/protocol.py +208 -0
  240. vllm/entrypoints/pooling/embed/serving.py +684 -0
  241. vllm/entrypoints/pooling/pooling/__init__.py +0 -0
  242. vllm/entrypoints/pooling/pooling/api_router.py +63 -0
  243. vllm/entrypoints/pooling/pooling/protocol.py +148 -0
  244. vllm/entrypoints/pooling/pooling/serving.py +354 -0
  245. vllm/entrypoints/pooling/score/__init__.py +0 -0
  246. vllm/entrypoints/pooling/score/api_router.py +149 -0
  247. vllm/entrypoints/pooling/score/protocol.py +146 -0
  248. vllm/entrypoints/pooling/score/serving.py +508 -0
  249. vllm/entrypoints/renderer.py +410 -0
  250. vllm/entrypoints/responses_utils.py +249 -0
  251. vllm/entrypoints/sagemaker/__init__.py +4 -0
  252. vllm/entrypoints/sagemaker/routes.py +118 -0
  253. vllm/entrypoints/score_utils.py +237 -0
  254. vllm/entrypoints/serve/__init__.py +60 -0
  255. vllm/entrypoints/serve/disagg/__init__.py +0 -0
  256. vllm/entrypoints/serve/disagg/api_router.py +110 -0
  257. vllm/entrypoints/serve/disagg/protocol.py +90 -0
  258. vllm/entrypoints/serve/disagg/serving.py +285 -0
  259. vllm/entrypoints/serve/elastic_ep/__init__.py +0 -0
  260. vllm/entrypoints/serve/elastic_ep/api_router.py +96 -0
  261. vllm/entrypoints/serve/elastic_ep/middleware.py +49 -0
  262. vllm/entrypoints/serve/instrumentator/__init__.py +0 -0
  263. vllm/entrypoints/serve/instrumentator/health.py +33 -0
  264. vllm/entrypoints/serve/instrumentator/metrics.py +45 -0
  265. vllm/entrypoints/serve/lora/__init__.py +0 -0
  266. vllm/entrypoints/serve/lora/api_router.py +70 -0
  267. vllm/entrypoints/serve/profile/__init__.py +0 -0
  268. vllm/entrypoints/serve/profile/api_router.py +46 -0
  269. vllm/entrypoints/serve/rlhf/__init__.py +0 -0
  270. vllm/entrypoints/serve/rlhf/api_router.py +102 -0
  271. vllm/entrypoints/serve/sleep/__init__.py +0 -0
  272. vllm/entrypoints/serve/sleep/api_router.py +60 -0
  273. vllm/entrypoints/serve/tokenize/__init__.py +0 -0
  274. vllm/entrypoints/serve/tokenize/api_router.py +118 -0
  275. vllm/entrypoints/serve/tokenize/serving.py +204 -0
  276. vllm/entrypoints/ssl.py +78 -0
  277. vllm/entrypoints/tool.py +187 -0
  278. vllm/entrypoints/tool_server.py +234 -0
  279. vllm/entrypoints/utils.py +319 -0
  280. vllm/env_override.py +378 -0
  281. vllm/envs.py +1744 -0
  282. vllm/forward_context.py +358 -0
  283. vllm/inputs/__init__.py +44 -0
  284. vllm/inputs/data.py +359 -0
  285. vllm/inputs/parse.py +146 -0
  286. vllm/inputs/preprocess.py +717 -0
  287. vllm/logger.py +303 -0
  288. vllm/logging_utils/__init__.py +13 -0
  289. vllm/logging_utils/dump_input.py +83 -0
  290. vllm/logging_utils/formatter.py +127 -0
  291. vllm/logging_utils/lazy.py +20 -0
  292. vllm/logging_utils/log_time.py +34 -0
  293. vllm/logits_process.py +121 -0
  294. vllm/logprobs.py +206 -0
  295. vllm/lora/__init__.py +0 -0
  296. vllm/lora/layers/__init__.py +42 -0
  297. vllm/lora/layers/base.py +66 -0
  298. vllm/lora/layers/base_linear.py +165 -0
  299. vllm/lora/layers/column_parallel_linear.py +577 -0
  300. vllm/lora/layers/fused_moe.py +747 -0
  301. vllm/lora/layers/logits_processor.py +203 -0
  302. vllm/lora/layers/replicated_linear.py +70 -0
  303. vllm/lora/layers/row_parallel_linear.py +176 -0
  304. vllm/lora/layers/utils.py +74 -0
  305. vllm/lora/layers/vocal_parallel_embedding.py +140 -0
  306. vllm/lora/lora_model.py +246 -0
  307. vllm/lora/lora_weights.py +227 -0
  308. vllm/lora/model_manager.py +690 -0
  309. vllm/lora/ops/__init__.py +0 -0
  310. vllm/lora/ops/ipex_ops/__init__.py +6 -0
  311. vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
  312. vllm/lora/ops/torch_ops/__init__.py +20 -0
  313. vllm/lora/ops/torch_ops/lora_ops.py +128 -0
  314. vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
  315. vllm/lora/ops/triton_ops/__init__.py +21 -0
  316. vllm/lora/ops/triton_ops/fused_moe_lora_op.py +665 -0
  317. vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
  318. vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
  319. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
  320. vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
  321. vllm/lora/ops/triton_ops/utils.py +295 -0
  322. vllm/lora/ops/xla_ops/__init__.py +6 -0
  323. vllm/lora/ops/xla_ops/lora_ops.py +141 -0
  324. vllm/lora/peft_helper.py +128 -0
  325. vllm/lora/punica_wrapper/__init__.py +10 -0
  326. vllm/lora/punica_wrapper/punica_base.py +493 -0
  327. vllm/lora/punica_wrapper/punica_cpu.py +351 -0
  328. vllm/lora/punica_wrapper/punica_gpu.py +412 -0
  329. vllm/lora/punica_wrapper/punica_selector.py +21 -0
  330. vllm/lora/punica_wrapper/punica_tpu.py +358 -0
  331. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  332. vllm/lora/punica_wrapper/utils.py +150 -0
  333. vllm/lora/request.py +100 -0
  334. vllm/lora/resolver.py +88 -0
  335. vllm/lora/utils.py +315 -0
  336. vllm/lora/worker_manager.py +268 -0
  337. vllm/model_executor/__init__.py +11 -0
  338. vllm/model_executor/custom_op.py +199 -0
  339. vllm/model_executor/layers/__init__.py +0 -0
  340. vllm/model_executor/layers/activation.py +595 -0
  341. vllm/model_executor/layers/attention_layer_base.py +32 -0
  342. vllm/model_executor/layers/batch_invariant.py +1067 -0
  343. vllm/model_executor/layers/conv.py +256 -0
  344. vllm/model_executor/layers/fla/__init__.py +8 -0
  345. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  346. vllm/model_executor/layers/fla/ops/chunk.py +240 -0
  347. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
  348. vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
  349. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
  350. vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
  351. vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
  352. vllm/model_executor/layers/fla/ops/index.py +41 -0
  353. vllm/model_executor/layers/fla/ops/kda.py +1351 -0
  354. vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
  355. vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
  356. vllm/model_executor/layers/fla/ops/op.py +60 -0
  357. vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
  358. vllm/model_executor/layers/fla/ops/utils.py +194 -0
  359. vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
  360. vllm/model_executor/layers/fused_moe/__init__.py +114 -0
  361. vllm/model_executor/layers/fused_moe/all2all_utils.py +171 -0
  362. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +409 -0
  363. vllm/model_executor/layers/fused_moe/config.py +1043 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +147 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=20,N=1536,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Server_Edition,dtype=fp8_w8a8.json +147 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  559. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  560. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  561. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  562. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  563. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  564. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  565. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  566. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  567. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  568. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  569. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  570. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  571. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  572. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  573. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  574. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  575. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  576. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  577. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  578. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  579. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  580. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  581. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  582. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  583. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  584. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  585. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  586. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  587. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  588. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  589. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  590. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  591. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  592. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  593. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  594. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  595. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  596. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  597. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  598. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  599. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  600. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  601. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  602. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  603. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  604. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  605. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  606. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  607. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  608. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  609. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  610. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  611. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  612. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  613. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  614. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  615. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  616. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  617. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  618. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  619. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  620. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  621. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  622. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  623. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  624. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  625. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  626. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  627. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  628. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  629. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  630. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  631. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  632. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  633. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  634. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  635. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  636. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  637. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  638. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  639. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +292 -0
  640. vllm/model_executor/layers/fused_moe/cutlass_moe.py +1453 -0
  641. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +358 -0
  642. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +427 -0
  643. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
  644. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +434 -0
  645. vllm/model_executor/layers/fused_moe/flashinfer_cutedsl_moe.py +376 -0
  646. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +307 -0
  647. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +362 -0
  648. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
  649. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1012 -0
  650. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +825 -0
  651. vllm/model_executor/layers/fused_moe/fused_moe.py +2223 -0
  652. vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +103 -0
  653. vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +119 -0
  654. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +524 -0
  655. vllm/model_executor/layers/fused_moe/layer.py +2133 -0
  656. vllm/model_executor/layers/fused_moe/modular_kernel.py +1302 -0
  657. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +192 -0
  658. vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
  659. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
  660. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  661. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
  662. vllm/model_executor/layers/fused_moe/prepare_finalize.py +78 -0
  663. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +265 -0
  664. vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
  665. vllm/model_executor/layers/fused_moe/shared_fused_moe.py +96 -0
  666. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
  667. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +163 -0
  668. vllm/model_executor/layers/fused_moe/trtllm_moe.py +143 -0
  669. vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +455 -0
  670. vllm/model_executor/layers/fused_moe/utils.py +332 -0
  671. vllm/model_executor/layers/kda.py +442 -0
  672. vllm/model_executor/layers/layernorm.py +442 -0
  673. vllm/model_executor/layers/lightning_attn.py +735 -0
  674. vllm/model_executor/layers/linear.py +1424 -0
  675. vllm/model_executor/layers/logits_processor.py +106 -0
  676. vllm/model_executor/layers/mamba/__init__.py +0 -0
  677. vllm/model_executor/layers/mamba/abstract.py +68 -0
  678. vllm/model_executor/layers/mamba/linear_attn.py +388 -0
  679. vllm/model_executor/layers/mamba/mamba_mixer.py +526 -0
  680. vllm/model_executor/layers/mamba/mamba_mixer2.py +930 -0
  681. vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
  682. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  683. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
  684. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
  685. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +586 -0
  686. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
  687. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
  688. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
  689. vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
  690. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
  691. vllm/model_executor/layers/mamba/short_conv.py +255 -0
  692. vllm/model_executor/layers/mla.py +176 -0
  693. vllm/model_executor/layers/pooler.py +830 -0
  694. vllm/model_executor/layers/quantization/__init__.py +179 -0
  695. vllm/model_executor/layers/quantization/auto_round.py +454 -0
  696. vllm/model_executor/layers/quantization/awq.py +277 -0
  697. vllm/model_executor/layers/quantization/awq_marlin.py +793 -0
  698. vllm/model_executor/layers/quantization/awq_triton.py +337 -0
  699. vllm/model_executor/layers/quantization/base_config.py +170 -0
  700. vllm/model_executor/layers/quantization/bitblas.py +502 -0
  701. vllm/model_executor/layers/quantization/bitsandbytes.py +626 -0
  702. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
  703. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +986 -0
  704. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2645 -0
  705. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +35 -0
  706. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
  707. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  708. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
  709. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
  710. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
  711. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +176 -0
  712. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
  713. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
  714. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +200 -0
  715. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
  716. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +230 -0
  717. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  718. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
  719. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
  720. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  721. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
  722. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  723. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
  724. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  725. vllm/model_executor/layers/quantization/cpu_wna16.py +625 -0
  726. vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
  727. vllm/model_executor/layers/quantization/experts_int8.py +207 -0
  728. vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
  729. vllm/model_executor/layers/quantization/fp8.py +1461 -0
  730. vllm/model_executor/layers/quantization/fp_quant.py +420 -0
  731. vllm/model_executor/layers/quantization/gguf.py +677 -0
  732. vllm/model_executor/layers/quantization/gptq.py +393 -0
  733. vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
  734. vllm/model_executor/layers/quantization/gptq_marlin.py +932 -0
  735. vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
  736. vllm/model_executor/layers/quantization/hqq_marlin.py +372 -0
  737. vllm/model_executor/layers/quantization/inc.py +65 -0
  738. vllm/model_executor/layers/quantization/input_quant_fp8.py +202 -0
  739. vllm/model_executor/layers/quantization/ipex_quant.py +487 -0
  740. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  741. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
  742. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +109 -0
  743. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  744. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
  745. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
  746. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +130 -0
  747. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
  748. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +161 -0
  749. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
  750. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +200 -0
  751. vllm/model_executor/layers/quantization/kernels/mixed_precision/xpu.py +97 -0
  752. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +76 -0
  753. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +81 -0
  754. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +128 -0
  755. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +220 -0
  756. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +147 -0
  757. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +71 -0
  758. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +106 -0
  759. vllm/model_executor/layers/quantization/kv_cache.py +153 -0
  760. vllm/model_executor/layers/quantization/modelopt.py +1684 -0
  761. vllm/model_executor/layers/quantization/moe_wna16.py +516 -0
  762. vllm/model_executor/layers/quantization/mxfp4.py +1140 -0
  763. vllm/model_executor/layers/quantization/petit.py +319 -0
  764. vllm/model_executor/layers/quantization/ptpc_fp8.py +136 -0
  765. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  766. vllm/model_executor/layers/quantization/quark/quark.py +527 -0
  767. vllm/model_executor/layers/quantization/quark/quark_moe.py +622 -0
  768. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  769. vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +343 -0
  770. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  771. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
  772. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
  773. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  774. vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
  775. vllm/model_executor/layers/quantization/rtn.py +621 -0
  776. vllm/model_executor/layers/quantization/schema.py +90 -0
  777. vllm/model_executor/layers/quantization/torchao.py +380 -0
  778. vllm/model_executor/layers/quantization/tpu_int8.py +139 -0
  779. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  780. vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
  781. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=10240,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  902. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=25600,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  903. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=8192,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  904. vllm/model_executor/layers/quantization/utils/configs/N=51200,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  905. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  906. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  907. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  908. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  909. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  910. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  911. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  912. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  913. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  914. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  915. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  916. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  917. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  918. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  919. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  920. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  921. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  922. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  923. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  924. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  925. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  926. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  927. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  928. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  929. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  930. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  931. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  932. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  933. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  934. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  935. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  936. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  937. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  938. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  939. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  940. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  941. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  942. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  943. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  944. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  945. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  946. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  947. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  948. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  949. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  950. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  951. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  952. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  953. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  954. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  955. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  956. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  957. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  958. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  959. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  960. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  961. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  962. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  963. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  964. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  965. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  966. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  967. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  968. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  969. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  970. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  971. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  972. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  973. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  974. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  975. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  976. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  977. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  978. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  979. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  980. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  981. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  982. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  983. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  984. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  985. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  986. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  987. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  988. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  989. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  990. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  991. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  992. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  993. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  994. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  995. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  996. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  997. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +412 -0
  998. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +312 -0
  999. vllm/model_executor/layers/quantization/utils/fp8_utils.py +1453 -0
  1000. vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
  1001. vllm/model_executor/layers/quantization/utils/int8_utils.py +474 -0
  1002. vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
  1003. vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
  1004. vllm/model_executor/layers/quantization/utils/marlin_utils.py +678 -0
  1005. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +452 -0
  1006. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +381 -0
  1007. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +219 -0
  1008. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
  1009. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +189 -0
  1010. vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
  1011. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
  1012. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
  1013. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +67 -0
  1014. vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
  1015. vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
  1016. vllm/model_executor/layers/quantization/utils/quant_utils.py +741 -0
  1017. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +519 -0
  1018. vllm/model_executor/layers/resampler.py +283 -0
  1019. vllm/model_executor/layers/rotary_embedding/__init__.py +289 -0
  1020. vllm/model_executor/layers/rotary_embedding/base.py +254 -0
  1021. vllm/model_executor/layers/rotary_embedding/common.py +279 -0
  1022. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +165 -0
  1023. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +215 -0
  1024. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
  1025. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
  1026. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +82 -0
  1027. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  1028. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  1029. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +80 -0
  1030. vllm/model_executor/layers/rotary_embedding/mrope.py +412 -0
  1031. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
  1032. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
  1033. vllm/model_executor/layers/rotary_embedding/xdrope.py +160 -0
  1034. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +84 -0
  1035. vllm/model_executor/layers/utils.py +251 -0
  1036. vllm/model_executor/layers/vocab_parallel_embedding.py +558 -0
  1037. vllm/model_executor/model_loader/__init__.py +150 -0
  1038. vllm/model_executor/model_loader/base_loader.py +57 -0
  1039. vllm/model_executor/model_loader/bitsandbytes_loader.py +822 -0
  1040. vllm/model_executor/model_loader/default_loader.py +321 -0
  1041. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  1042. vllm/model_executor/model_loader/gguf_loader.py +371 -0
  1043. vllm/model_executor/model_loader/online_quantization.py +275 -0
  1044. vllm/model_executor/model_loader/runai_streamer_loader.py +116 -0
  1045. vllm/model_executor/model_loader/sharded_state_loader.py +214 -0
  1046. vllm/model_executor/model_loader/tensorizer.py +790 -0
  1047. vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
  1048. vllm/model_executor/model_loader/tpu.py +118 -0
  1049. vllm/model_executor/model_loader/utils.py +292 -0
  1050. vllm/model_executor/model_loader/weight_utils.py +1157 -0
  1051. vllm/model_executor/models/__init__.py +44 -0
  1052. vllm/model_executor/models/adapters.py +522 -0
  1053. vllm/model_executor/models/afmoe.py +696 -0
  1054. vllm/model_executor/models/aimv2.py +248 -0
  1055. vllm/model_executor/models/apertus.py +565 -0
  1056. vllm/model_executor/models/arcee.py +428 -0
  1057. vllm/model_executor/models/arctic.py +633 -0
  1058. vllm/model_executor/models/aria.py +653 -0
  1059. vllm/model_executor/models/audioflamingo3.py +639 -0
  1060. vllm/model_executor/models/aya_vision.py +448 -0
  1061. vllm/model_executor/models/bagel.py +584 -0
  1062. vllm/model_executor/models/baichuan.py +493 -0
  1063. vllm/model_executor/models/bailing_moe.py +642 -0
  1064. vllm/model_executor/models/bamba.py +511 -0
  1065. vllm/model_executor/models/bee.py +157 -0
  1066. vllm/model_executor/models/bert.py +925 -0
  1067. vllm/model_executor/models/bert_with_rope.py +732 -0
  1068. vllm/model_executor/models/blip.py +350 -0
  1069. vllm/model_executor/models/blip2.py +693 -0
  1070. vllm/model_executor/models/bloom.py +390 -0
  1071. vllm/model_executor/models/chameleon.py +1095 -0
  1072. vllm/model_executor/models/chatglm.py +502 -0
  1073. vllm/model_executor/models/clip.py +1004 -0
  1074. vllm/model_executor/models/cohere2_vision.py +470 -0
  1075. vllm/model_executor/models/commandr.py +469 -0
  1076. vllm/model_executor/models/config.py +531 -0
  1077. vllm/model_executor/models/dbrx.py +484 -0
  1078. vllm/model_executor/models/deepencoder.py +676 -0
  1079. vllm/model_executor/models/deepseek_eagle.py +252 -0
  1080. vllm/model_executor/models/deepseek_mtp.py +446 -0
  1081. vllm/model_executor/models/deepseek_ocr.py +591 -0
  1082. vllm/model_executor/models/deepseek_v2.py +1710 -0
  1083. vllm/model_executor/models/deepseek_vl2.py +642 -0
  1084. vllm/model_executor/models/dots1.py +565 -0
  1085. vllm/model_executor/models/dots_ocr.py +821 -0
  1086. vllm/model_executor/models/ernie45.py +53 -0
  1087. vllm/model_executor/models/ernie45_moe.py +754 -0
  1088. vllm/model_executor/models/ernie45_vl.py +1621 -0
  1089. vllm/model_executor/models/ernie45_vl_moe.py +800 -0
  1090. vllm/model_executor/models/ernie_mtp.py +279 -0
  1091. vllm/model_executor/models/exaone.py +524 -0
  1092. vllm/model_executor/models/exaone4.py +516 -0
  1093. vllm/model_executor/models/fairseq2_llama.py +154 -0
  1094. vllm/model_executor/models/falcon.py +543 -0
  1095. vllm/model_executor/models/falcon_h1.py +675 -0
  1096. vllm/model_executor/models/flex_olmo.py +155 -0
  1097. vllm/model_executor/models/fuyu.py +371 -0
  1098. vllm/model_executor/models/gemma.py +425 -0
  1099. vllm/model_executor/models/gemma2.py +435 -0
  1100. vllm/model_executor/models/gemma3.py +507 -0
  1101. vllm/model_executor/models/gemma3_mm.py +664 -0
  1102. vllm/model_executor/models/gemma3n.py +1166 -0
  1103. vllm/model_executor/models/gemma3n_mm.py +810 -0
  1104. vllm/model_executor/models/glm.py +24 -0
  1105. vllm/model_executor/models/glm4.py +295 -0
  1106. vllm/model_executor/models/glm4_1v.py +1808 -0
  1107. vllm/model_executor/models/glm4_moe.py +736 -0
  1108. vllm/model_executor/models/glm4_moe_mtp.py +359 -0
  1109. vllm/model_executor/models/glm4v.py +783 -0
  1110. vllm/model_executor/models/gpt2.py +397 -0
  1111. vllm/model_executor/models/gpt_bigcode.py +339 -0
  1112. vllm/model_executor/models/gpt_j.py +346 -0
  1113. vllm/model_executor/models/gpt_neox.py +340 -0
  1114. vllm/model_executor/models/gpt_oss.py +744 -0
  1115. vllm/model_executor/models/granite.py +475 -0
  1116. vllm/model_executor/models/granite_speech.py +912 -0
  1117. vllm/model_executor/models/granitemoe.py +560 -0
  1118. vllm/model_executor/models/granitemoehybrid.py +703 -0
  1119. vllm/model_executor/models/granitemoeshared.py +328 -0
  1120. vllm/model_executor/models/gritlm.py +243 -0
  1121. vllm/model_executor/models/grok1.py +554 -0
  1122. vllm/model_executor/models/h2ovl.py +554 -0
  1123. vllm/model_executor/models/hunyuan_v1.py +1040 -0
  1124. vllm/model_executor/models/hunyuan_vision.py +1034 -0
  1125. vllm/model_executor/models/hyperclovax_vision.py +1164 -0
  1126. vllm/model_executor/models/idefics2_vision_model.py +427 -0
  1127. vllm/model_executor/models/idefics3.py +716 -0
  1128. vllm/model_executor/models/interfaces.py +1179 -0
  1129. vllm/model_executor/models/interfaces_base.py +228 -0
  1130. vllm/model_executor/models/intern_vit.py +454 -0
  1131. vllm/model_executor/models/internlm2.py +453 -0
  1132. vllm/model_executor/models/internlm2_ve.py +139 -0
  1133. vllm/model_executor/models/interns1.py +828 -0
  1134. vllm/model_executor/models/interns1_vit.py +433 -0
  1135. vllm/model_executor/models/internvl.py +1450 -0
  1136. vllm/model_executor/models/jais.py +397 -0
  1137. vllm/model_executor/models/jais2.py +529 -0
  1138. vllm/model_executor/models/jamba.py +609 -0
  1139. vllm/model_executor/models/jina_vl.py +147 -0
  1140. vllm/model_executor/models/keye.py +1706 -0
  1141. vllm/model_executor/models/keye_vl1_5.py +726 -0
  1142. vllm/model_executor/models/kimi_linear.py +658 -0
  1143. vllm/model_executor/models/kimi_vl.py +576 -0
  1144. vllm/model_executor/models/lfm2.py +515 -0
  1145. vllm/model_executor/models/lfm2_moe.py +745 -0
  1146. vllm/model_executor/models/lightonocr.py +195 -0
  1147. vllm/model_executor/models/llama.py +700 -0
  1148. vllm/model_executor/models/llama4.py +856 -0
  1149. vllm/model_executor/models/llama4_eagle.py +225 -0
  1150. vllm/model_executor/models/llama_eagle.py +213 -0
  1151. vllm/model_executor/models/llama_eagle3.py +375 -0
  1152. vllm/model_executor/models/llava.py +840 -0
  1153. vllm/model_executor/models/llava_next.py +581 -0
  1154. vllm/model_executor/models/llava_next_video.py +465 -0
  1155. vllm/model_executor/models/llava_onevision.py +921 -0
  1156. vllm/model_executor/models/longcat_flash.py +743 -0
  1157. vllm/model_executor/models/longcat_flash_mtp.py +349 -0
  1158. vllm/model_executor/models/mamba.py +276 -0
  1159. vllm/model_executor/models/mamba2.py +288 -0
  1160. vllm/model_executor/models/medusa.py +179 -0
  1161. vllm/model_executor/models/midashenglm.py +826 -0
  1162. vllm/model_executor/models/mimo.py +188 -0
  1163. vllm/model_executor/models/mimo_mtp.py +294 -0
  1164. vllm/model_executor/models/minicpm.py +656 -0
  1165. vllm/model_executor/models/minicpm3.py +233 -0
  1166. vllm/model_executor/models/minicpm_eagle.py +385 -0
  1167. vllm/model_executor/models/minicpmo.py +768 -0
  1168. vllm/model_executor/models/minicpmv.py +1742 -0
  1169. vllm/model_executor/models/minimax_m2.py +550 -0
  1170. vllm/model_executor/models/minimax_text_01.py +1007 -0
  1171. vllm/model_executor/models/minimax_vl_01.py +394 -0
  1172. vllm/model_executor/models/mistral3.py +635 -0
  1173. vllm/model_executor/models/mistral_large_3.py +63 -0
  1174. vllm/model_executor/models/mistral_large_3_eagle.py +136 -0
  1175. vllm/model_executor/models/mixtral.py +598 -0
  1176. vllm/model_executor/models/mllama4.py +1149 -0
  1177. vllm/model_executor/models/mlp_speculator.py +235 -0
  1178. vllm/model_executor/models/modernbert.py +451 -0
  1179. vllm/model_executor/models/module_mapping.py +74 -0
  1180. vllm/model_executor/models/molmo.py +1550 -0
  1181. vllm/model_executor/models/moonvit.py +686 -0
  1182. vllm/model_executor/models/mpt.py +335 -0
  1183. vllm/model_executor/models/nano_nemotron_vl.py +1730 -0
  1184. vllm/model_executor/models/nemotron.py +499 -0
  1185. vllm/model_executor/models/nemotron_h.py +900 -0
  1186. vllm/model_executor/models/nemotron_nas.py +471 -0
  1187. vllm/model_executor/models/nemotron_vl.py +651 -0
  1188. vllm/model_executor/models/nvlm_d.py +216 -0
  1189. vllm/model_executor/models/olmo.py +412 -0
  1190. vllm/model_executor/models/olmo2.py +454 -0
  1191. vllm/model_executor/models/olmoe.py +493 -0
  1192. vllm/model_executor/models/opencua.py +262 -0
  1193. vllm/model_executor/models/openpangu.py +1049 -0
  1194. vllm/model_executor/models/openpangu_mtp.py +265 -0
  1195. vllm/model_executor/models/opt.py +426 -0
  1196. vllm/model_executor/models/orion.py +365 -0
  1197. vllm/model_executor/models/ouro.py +507 -0
  1198. vllm/model_executor/models/ovis.py +557 -0
  1199. vllm/model_executor/models/ovis2_5.py +661 -0
  1200. vllm/model_executor/models/paddleocr_vl.py +1300 -0
  1201. vllm/model_executor/models/paligemma.py +408 -0
  1202. vllm/model_executor/models/persimmon.py +373 -0
  1203. vllm/model_executor/models/phi.py +363 -0
  1204. vllm/model_executor/models/phi3.py +18 -0
  1205. vllm/model_executor/models/phi3v.py +729 -0
  1206. vllm/model_executor/models/phi4mm.py +1251 -0
  1207. vllm/model_executor/models/phi4mm_audio.py +1296 -0
  1208. vllm/model_executor/models/phi4mm_utils.py +1907 -0
  1209. vllm/model_executor/models/phimoe.py +669 -0
  1210. vllm/model_executor/models/pixtral.py +1379 -0
  1211. vllm/model_executor/models/plamo2.py +965 -0
  1212. vllm/model_executor/models/plamo3.py +440 -0
  1213. vllm/model_executor/models/qwen.py +365 -0
  1214. vllm/model_executor/models/qwen2.py +600 -0
  1215. vllm/model_executor/models/qwen2_5_omni_thinker.py +1219 -0
  1216. vllm/model_executor/models/qwen2_5_vl.py +1569 -0
  1217. vllm/model_executor/models/qwen2_audio.py +471 -0
  1218. vllm/model_executor/models/qwen2_moe.py +597 -0
  1219. vllm/model_executor/models/qwen2_rm.py +123 -0
  1220. vllm/model_executor/models/qwen2_vl.py +1568 -0
  1221. vllm/model_executor/models/qwen3.py +331 -0
  1222. vllm/model_executor/models/qwen3_moe.py +751 -0
  1223. vllm/model_executor/models/qwen3_next.py +1395 -0
  1224. vllm/model_executor/models/qwen3_next_mtp.py +296 -0
  1225. vllm/model_executor/models/qwen3_omni_moe_thinker.py +1793 -0
  1226. vllm/model_executor/models/qwen3_vl.py +2092 -0
  1227. vllm/model_executor/models/qwen3_vl_moe.py +474 -0
  1228. vllm/model_executor/models/qwen_vl.py +801 -0
  1229. vllm/model_executor/models/radio.py +555 -0
  1230. vllm/model_executor/models/registry.py +1189 -0
  1231. vllm/model_executor/models/roberta.py +259 -0
  1232. vllm/model_executor/models/rvl.py +107 -0
  1233. vllm/model_executor/models/seed_oss.py +492 -0
  1234. vllm/model_executor/models/siglip.py +1244 -0
  1235. vllm/model_executor/models/siglip2navit.py +658 -0
  1236. vllm/model_executor/models/skyworkr1v.py +951 -0
  1237. vllm/model_executor/models/smolvlm.py +38 -0
  1238. vllm/model_executor/models/solar.py +484 -0
  1239. vllm/model_executor/models/stablelm.py +354 -0
  1240. vllm/model_executor/models/starcoder2.py +365 -0
  1241. vllm/model_executor/models/step3_text.py +554 -0
  1242. vllm/model_executor/models/step3_vl.py +1147 -0
  1243. vllm/model_executor/models/swin.py +514 -0
  1244. vllm/model_executor/models/tarsier.py +617 -0
  1245. vllm/model_executor/models/telechat2.py +153 -0
  1246. vllm/model_executor/models/teleflm.py +78 -0
  1247. vllm/model_executor/models/terratorch.py +318 -0
  1248. vllm/model_executor/models/transformers/__init__.py +127 -0
  1249. vllm/model_executor/models/transformers/base.py +518 -0
  1250. vllm/model_executor/models/transformers/causal.py +65 -0
  1251. vllm/model_executor/models/transformers/legacy.py +90 -0
  1252. vllm/model_executor/models/transformers/moe.py +325 -0
  1253. vllm/model_executor/models/transformers/multimodal.py +411 -0
  1254. vllm/model_executor/models/transformers/pooling.py +119 -0
  1255. vllm/model_executor/models/transformers/utils.py +213 -0
  1256. vllm/model_executor/models/ultravox.py +766 -0
  1257. vllm/model_executor/models/utils.py +832 -0
  1258. vllm/model_executor/models/vision.py +546 -0
  1259. vllm/model_executor/models/voxtral.py +841 -0
  1260. vllm/model_executor/models/whisper.py +971 -0
  1261. vllm/model_executor/models/zamba2.py +979 -0
  1262. vllm/model_executor/parameter.py +642 -0
  1263. vllm/model_executor/utils.py +119 -0
  1264. vllm/model_executor/warmup/__init__.py +0 -0
  1265. vllm/model_executor/warmup/deep_gemm_warmup.py +314 -0
  1266. vllm/model_executor/warmup/kernel_warmup.py +98 -0
  1267. vllm/multimodal/__init__.py +40 -0
  1268. vllm/multimodal/audio.py +147 -0
  1269. vllm/multimodal/base.py +56 -0
  1270. vllm/multimodal/cache.py +823 -0
  1271. vllm/multimodal/evs.py +294 -0
  1272. vllm/multimodal/hasher.py +120 -0
  1273. vllm/multimodal/image.py +142 -0
  1274. vllm/multimodal/inputs.py +1089 -0
  1275. vllm/multimodal/parse.py +565 -0
  1276. vllm/multimodal/processing.py +2240 -0
  1277. vllm/multimodal/profiling.py +351 -0
  1278. vllm/multimodal/registry.py +357 -0
  1279. vllm/multimodal/utils.py +513 -0
  1280. vllm/multimodal/video.py +340 -0
  1281. vllm/outputs.py +345 -0
  1282. vllm/platforms/__init__.py +277 -0
  1283. vllm/platforms/cpu.py +421 -0
  1284. vllm/platforms/cuda.py +618 -0
  1285. vllm/platforms/interface.py +695 -0
  1286. vllm/platforms/rocm.py +564 -0
  1287. vllm/platforms/tpu.py +295 -0
  1288. vllm/platforms/xpu.py +277 -0
  1289. vllm/plugins/__init__.py +81 -0
  1290. vllm/plugins/io_processors/__init__.py +68 -0
  1291. vllm/plugins/io_processors/interface.py +77 -0
  1292. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1293. vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
  1294. vllm/pooling_params.py +230 -0
  1295. vllm/profiler/__init__.py +0 -0
  1296. vllm/profiler/layerwise_profile.py +392 -0
  1297. vllm/profiler/utils.py +151 -0
  1298. vllm/profiler/wrapper.py +241 -0
  1299. vllm/py.typed +2 -0
  1300. vllm/ray/__init__.py +0 -0
  1301. vllm/ray/lazy_utils.py +30 -0
  1302. vllm/ray/ray_env.py +79 -0
  1303. vllm/reasoning/__init__.py +96 -0
  1304. vllm/reasoning/abs_reasoning_parsers.py +318 -0
  1305. vllm/reasoning/basic_parsers.py +175 -0
  1306. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1307. vllm/reasoning/deepseek_v3_reasoning_parser.py +67 -0
  1308. vllm/reasoning/ernie45_reasoning_parser.py +165 -0
  1309. vllm/reasoning/glm4_moe_reasoning_parser.py +171 -0
  1310. vllm/reasoning/gptoss_reasoning_parser.py +173 -0
  1311. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1312. vllm/reasoning/holo2_reasoning_parser.py +88 -0
  1313. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
  1314. vllm/reasoning/identity_reasoning_parser.py +63 -0
  1315. vllm/reasoning/minimax_m2_reasoning_parser.py +110 -0
  1316. vllm/reasoning/mistral_reasoning_parser.py +154 -0
  1317. vllm/reasoning/olmo3_reasoning_parser.py +302 -0
  1318. vllm/reasoning/qwen3_reasoning_parser.py +67 -0
  1319. vllm/reasoning/seedoss_reasoning_parser.py +27 -0
  1320. vllm/reasoning/step3_reasoning_parser.py +107 -0
  1321. vllm/sampling_params.py +597 -0
  1322. vllm/scalar_type.py +355 -0
  1323. vllm/scripts.py +17 -0
  1324. vllm/sequence.py +98 -0
  1325. vllm/tasks.py +13 -0
  1326. vllm/third_party/__init__.py +0 -0
  1327. vllm/third_party/pynvml.py +6140 -0
  1328. vllm/tokenizers/__init__.py +20 -0
  1329. vllm/tokenizers/deepseek_v32.py +175 -0
  1330. vllm/tokenizers/deepseek_v32_encoding.py +459 -0
  1331. vllm/tokenizers/detokenizer_utils.py +198 -0
  1332. vllm/tokenizers/hf.py +119 -0
  1333. vllm/tokenizers/mistral.py +567 -0
  1334. vllm/tokenizers/protocol.py +114 -0
  1335. vllm/tokenizers/registry.py +233 -0
  1336. vllm/tool_parsers/__init__.py +150 -0
  1337. vllm/tool_parsers/abstract_tool_parser.py +273 -0
  1338. vllm/tool_parsers/deepseekv31_tool_parser.py +388 -0
  1339. vllm/tool_parsers/deepseekv32_tool_parser.py +591 -0
  1340. vllm/tool_parsers/deepseekv3_tool_parser.py +390 -0
  1341. vllm/tool_parsers/ernie45_tool_parser.py +210 -0
  1342. vllm/tool_parsers/gigachat3_tool_parser.py +190 -0
  1343. vllm/tool_parsers/glm4_moe_tool_parser.py +200 -0
  1344. vllm/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
  1345. vllm/tool_parsers/granite_tool_parser.py +253 -0
  1346. vllm/tool_parsers/hermes_tool_parser.py +495 -0
  1347. vllm/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
  1348. vllm/tool_parsers/internlm2_tool_parser.py +227 -0
  1349. vllm/tool_parsers/jamba_tool_parser.py +323 -0
  1350. vllm/tool_parsers/kimi_k2_tool_parser.py +590 -0
  1351. vllm/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
  1352. vllm/tool_parsers/llama_tool_parser.py +324 -0
  1353. vllm/tool_parsers/longcat_tool_parser.py +37 -0
  1354. vllm/tool_parsers/minimax_m2_tool_parser.py +643 -0
  1355. vllm/tool_parsers/minimax_tool_parser.py +849 -0
  1356. vllm/tool_parsers/mistral_tool_parser.py +585 -0
  1357. vllm/tool_parsers/olmo3_tool_parser.py +366 -0
  1358. vllm/tool_parsers/openai_tool_parser.py +102 -0
  1359. vllm/tool_parsers/phi4mini_tool_parser.py +120 -0
  1360. vllm/tool_parsers/pythonic_tool_parser.py +332 -0
  1361. vllm/tool_parsers/qwen3coder_tool_parser.py +781 -0
  1362. vllm/tool_parsers/qwen3xml_tool_parser.py +1316 -0
  1363. vllm/tool_parsers/seed_oss_tool_parser.py +744 -0
  1364. vllm/tool_parsers/step3_tool_parser.py +303 -0
  1365. vllm/tool_parsers/utils.py +229 -0
  1366. vllm/tool_parsers/xlam_tool_parser.py +556 -0
  1367. vllm/tracing.py +135 -0
  1368. vllm/transformers_utils/__init__.py +26 -0
  1369. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1370. vllm/transformers_utils/chat_templates/registry.py +73 -0
  1371. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1372. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1373. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1374. vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
  1375. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1376. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1377. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1378. vllm/transformers_utils/config.py +1144 -0
  1379. vllm/transformers_utils/config_parser_base.py +20 -0
  1380. vllm/transformers_utils/configs/__init__.py +102 -0
  1381. vllm/transformers_utils/configs/afmoe.py +87 -0
  1382. vllm/transformers_utils/configs/arctic.py +216 -0
  1383. vllm/transformers_utils/configs/bagel.py +53 -0
  1384. vllm/transformers_utils/configs/chatglm.py +75 -0
  1385. vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
  1386. vllm/transformers_utils/configs/dotsocr.py +71 -0
  1387. vllm/transformers_utils/configs/eagle.py +90 -0
  1388. vllm/transformers_utils/configs/falcon.py +89 -0
  1389. vllm/transformers_utils/configs/flex_olmo.py +82 -0
  1390. vllm/transformers_utils/configs/hunyuan_vl.py +322 -0
  1391. vllm/transformers_utils/configs/jais.py +243 -0
  1392. vllm/transformers_utils/configs/kimi_linear.py +148 -0
  1393. vllm/transformers_utils/configs/kimi_vl.py +38 -0
  1394. vllm/transformers_utils/configs/lfm2_moe.py +163 -0
  1395. vllm/transformers_utils/configs/medusa.py +65 -0
  1396. vllm/transformers_utils/configs/midashenglm.py +103 -0
  1397. vllm/transformers_utils/configs/mistral.py +235 -0
  1398. vllm/transformers_utils/configs/mlp_speculator.py +69 -0
  1399. vllm/transformers_utils/configs/moonvit.py +33 -0
  1400. vllm/transformers_utils/configs/nemotron.py +220 -0
  1401. vllm/transformers_utils/configs/nemotron_h.py +284 -0
  1402. vllm/transformers_utils/configs/olmo3.py +83 -0
  1403. vllm/transformers_utils/configs/ovis.py +182 -0
  1404. vllm/transformers_utils/configs/qwen3_next.py +277 -0
  1405. vllm/transformers_utils/configs/radio.py +89 -0
  1406. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1407. vllm/transformers_utils/configs/speculators/algos.py +38 -0
  1408. vllm/transformers_utils/configs/speculators/base.py +114 -0
  1409. vllm/transformers_utils/configs/step3_vl.py +178 -0
  1410. vllm/transformers_utils/configs/tarsier2.py +24 -0
  1411. vllm/transformers_utils/configs/ultravox.py +120 -0
  1412. vllm/transformers_utils/dynamic_module.py +59 -0
  1413. vllm/transformers_utils/gguf_utils.py +280 -0
  1414. vllm/transformers_utils/processor.py +424 -0
  1415. vllm/transformers_utils/processors/__init__.py +25 -0
  1416. vllm/transformers_utils/processors/bagel.py +73 -0
  1417. vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
  1418. vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
  1419. vllm/transformers_utils/processors/hunyuan_vl.py +233 -0
  1420. vllm/transformers_utils/processors/hunyuan_vl_image.py +477 -0
  1421. vllm/transformers_utils/processors/ovis.py +453 -0
  1422. vllm/transformers_utils/processors/ovis2_5.py +468 -0
  1423. vllm/transformers_utils/repo_utils.py +287 -0
  1424. vllm/transformers_utils/runai_utils.py +102 -0
  1425. vllm/transformers_utils/s3_utils.py +95 -0
  1426. vllm/transformers_utils/tokenizer.py +127 -0
  1427. vllm/transformers_utils/tokenizer_base.py +33 -0
  1428. vllm/transformers_utils/utils.py +112 -0
  1429. vllm/triton_utils/__init__.py +20 -0
  1430. vllm/triton_utils/importing.py +103 -0
  1431. vllm/usage/__init__.py +0 -0
  1432. vllm/usage/usage_lib.py +294 -0
  1433. vllm/utils/__init__.py +66 -0
  1434. vllm/utils/argparse_utils.py +492 -0
  1435. vllm/utils/async_utils.py +310 -0
  1436. vllm/utils/cache.py +214 -0
  1437. vllm/utils/collection_utils.py +112 -0
  1438. vllm/utils/counter.py +45 -0
  1439. vllm/utils/deep_gemm.py +400 -0
  1440. vllm/utils/flashinfer.py +528 -0
  1441. vllm/utils/func_utils.py +236 -0
  1442. vllm/utils/gc_utils.py +151 -0
  1443. vllm/utils/hashing.py +117 -0
  1444. vllm/utils/import_utils.py +449 -0
  1445. vllm/utils/jsontree.py +158 -0
  1446. vllm/utils/math_utils.py +32 -0
  1447. vllm/utils/mem_constants.py +13 -0
  1448. vllm/utils/mem_utils.py +232 -0
  1449. vllm/utils/nccl.py +64 -0
  1450. vllm/utils/network_utils.py +331 -0
  1451. vllm/utils/nvtx_pytorch_hooks.py +286 -0
  1452. vllm/utils/platform_utils.py +59 -0
  1453. vllm/utils/profiling.py +56 -0
  1454. vllm/utils/registry.py +51 -0
  1455. vllm/utils/serial_utils.py +214 -0
  1456. vllm/utils/system_utils.py +269 -0
  1457. vllm/utils/tensor_schema.py +255 -0
  1458. vllm/utils/torch_utils.py +648 -0
  1459. vllm/v1/__init__.py +0 -0
  1460. vllm/v1/attention/__init__.py +0 -0
  1461. vllm/v1/attention/backends/__init__.py +0 -0
  1462. vllm/v1/attention/backends/cpu_attn.py +497 -0
  1463. vllm/v1/attention/backends/flash_attn.py +1051 -0
  1464. vllm/v1/attention/backends/flashinfer.py +1575 -0
  1465. vllm/v1/attention/backends/flex_attention.py +1028 -0
  1466. vllm/v1/attention/backends/gdn_attn.py +375 -0
  1467. vllm/v1/attention/backends/linear_attn.py +77 -0
  1468. vllm/v1/attention/backends/mamba1_attn.py +159 -0
  1469. vllm/v1/attention/backends/mamba2_attn.py +348 -0
  1470. vllm/v1/attention/backends/mamba_attn.py +117 -0
  1471. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1472. vllm/v1/attention/backends/mla/aiter_triton_mla.py +74 -0
  1473. vllm/v1/attention/backends/mla/common.py +2114 -0
  1474. vllm/v1/attention/backends/mla/cutlass_mla.py +278 -0
  1475. vllm/v1/attention/backends/mla/flashattn_mla.py +342 -0
  1476. vllm/v1/attention/backends/mla/flashinfer_mla.py +174 -0
  1477. vllm/v1/attention/backends/mla/flashmla.py +317 -0
  1478. vllm/v1/attention/backends/mla/flashmla_sparse.py +1020 -0
  1479. vllm/v1/attention/backends/mla/indexer.py +345 -0
  1480. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +275 -0
  1481. vllm/v1/attention/backends/mla/rocm_aiter_mla_sparse.py +325 -0
  1482. vllm/v1/attention/backends/mla/triton_mla.py +171 -0
  1483. vllm/v1/attention/backends/pallas.py +436 -0
  1484. vllm/v1/attention/backends/rocm_aiter_fa.py +1000 -0
  1485. vllm/v1/attention/backends/rocm_aiter_unified_attn.py +206 -0
  1486. vllm/v1/attention/backends/rocm_attn.py +359 -0
  1487. vllm/v1/attention/backends/short_conv_attn.py +104 -0
  1488. vllm/v1/attention/backends/tree_attn.py +428 -0
  1489. vllm/v1/attention/backends/triton_attn.py +497 -0
  1490. vllm/v1/attention/backends/utils.py +1212 -0
  1491. vllm/v1/core/__init__.py +0 -0
  1492. vllm/v1/core/block_pool.py +485 -0
  1493. vllm/v1/core/encoder_cache_manager.py +402 -0
  1494. vllm/v1/core/kv_cache_coordinator.py +570 -0
  1495. vllm/v1/core/kv_cache_manager.py +419 -0
  1496. vllm/v1/core/kv_cache_metrics.py +96 -0
  1497. vllm/v1/core/kv_cache_utils.py +1476 -0
  1498. vllm/v1/core/sched/__init__.py +0 -0
  1499. vllm/v1/core/sched/async_scheduler.py +68 -0
  1500. vllm/v1/core/sched/interface.py +189 -0
  1501. vllm/v1/core/sched/output.py +230 -0
  1502. vllm/v1/core/sched/request_queue.py +217 -0
  1503. vllm/v1/core/sched/scheduler.py +1826 -0
  1504. vllm/v1/core/sched/utils.py +64 -0
  1505. vllm/v1/core/single_type_kv_cache_manager.py +801 -0
  1506. vllm/v1/cudagraph_dispatcher.py +183 -0
  1507. vllm/v1/engine/__init__.py +217 -0
  1508. vllm/v1/engine/async_llm.py +866 -0
  1509. vllm/v1/engine/coordinator.py +377 -0
  1510. vllm/v1/engine/core.py +1455 -0
  1511. vllm/v1/engine/core_client.py +1416 -0
  1512. vllm/v1/engine/detokenizer.py +351 -0
  1513. vllm/v1/engine/exceptions.py +18 -0
  1514. vllm/v1/engine/input_processor.py +643 -0
  1515. vllm/v1/engine/llm_engine.py +414 -0
  1516. vllm/v1/engine/logprobs.py +189 -0
  1517. vllm/v1/engine/output_processor.py +659 -0
  1518. vllm/v1/engine/parallel_sampling.py +145 -0
  1519. vllm/v1/engine/processor.py +20 -0
  1520. vllm/v1/engine/utils.py +1068 -0
  1521. vllm/v1/executor/__init__.py +6 -0
  1522. vllm/v1/executor/abstract.py +352 -0
  1523. vllm/v1/executor/multiproc_executor.py +890 -0
  1524. vllm/v1/executor/ray_distributed_executor.py +8 -0
  1525. vllm/v1/executor/ray_executor.py +626 -0
  1526. vllm/v1/executor/ray_utils.py +465 -0
  1527. vllm/v1/executor/uniproc_executor.py +186 -0
  1528. vllm/v1/kv_cache_interface.py +404 -0
  1529. vllm/v1/kv_offload/__init__.py +0 -0
  1530. vllm/v1/kv_offload/abstract.py +161 -0
  1531. vllm/v1/kv_offload/arc_manager.py +237 -0
  1532. vllm/v1/kv_offload/backend.py +97 -0
  1533. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1534. vllm/v1/kv_offload/backends/cpu.py +62 -0
  1535. vllm/v1/kv_offload/cpu.py +86 -0
  1536. vllm/v1/kv_offload/factory.py +56 -0
  1537. vllm/v1/kv_offload/lru_manager.py +139 -0
  1538. vllm/v1/kv_offload/mediums.py +39 -0
  1539. vllm/v1/kv_offload/spec.py +66 -0
  1540. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1541. vllm/v1/kv_offload/worker/cpu_gpu.py +280 -0
  1542. vllm/v1/kv_offload/worker/worker.py +144 -0
  1543. vllm/v1/metrics/__init__.py +0 -0
  1544. vllm/v1/metrics/loggers.py +1305 -0
  1545. vllm/v1/metrics/prometheus.py +82 -0
  1546. vllm/v1/metrics/ray_wrappers.py +194 -0
  1547. vllm/v1/metrics/reader.py +257 -0
  1548. vllm/v1/metrics/stats.py +437 -0
  1549. vllm/v1/outputs.py +245 -0
  1550. vllm/v1/pool/__init__.py +0 -0
  1551. vllm/v1/pool/metadata.py +126 -0
  1552. vllm/v1/request.py +282 -0
  1553. vllm/v1/sample/__init__.py +0 -0
  1554. vllm/v1/sample/logits_processor/__init__.py +352 -0
  1555. vllm/v1/sample/logits_processor/builtin.py +278 -0
  1556. vllm/v1/sample/logits_processor/interface.py +106 -0
  1557. vllm/v1/sample/logits_processor/state.py +165 -0
  1558. vllm/v1/sample/metadata.py +44 -0
  1559. vllm/v1/sample/ops/__init__.py +0 -0
  1560. vllm/v1/sample/ops/bad_words.py +52 -0
  1561. vllm/v1/sample/ops/logprobs.py +25 -0
  1562. vllm/v1/sample/ops/penalties.py +57 -0
  1563. vllm/v1/sample/ops/topk_topp_sampler.py +384 -0
  1564. vllm/v1/sample/rejection_sampler.py +805 -0
  1565. vllm/v1/sample/sampler.py +319 -0
  1566. vllm/v1/sample/tpu/__init__.py +0 -0
  1567. vllm/v1/sample/tpu/metadata.py +120 -0
  1568. vllm/v1/sample/tpu/sampler.py +215 -0
  1569. vllm/v1/serial_utils.py +514 -0
  1570. vllm/v1/spec_decode/__init__.py +0 -0
  1571. vllm/v1/spec_decode/eagle.py +1331 -0
  1572. vllm/v1/spec_decode/medusa.py +73 -0
  1573. vllm/v1/spec_decode/metadata.py +66 -0
  1574. vllm/v1/spec_decode/metrics.py +225 -0
  1575. vllm/v1/spec_decode/ngram_proposer.py +291 -0
  1576. vllm/v1/spec_decode/suffix_decoding.py +101 -0
  1577. vllm/v1/spec_decode/utils.py +121 -0
  1578. vllm/v1/structured_output/__init__.py +353 -0
  1579. vllm/v1/structured_output/backend_guidance.py +265 -0
  1580. vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
  1581. vllm/v1/structured_output/backend_outlines.py +324 -0
  1582. vllm/v1/structured_output/backend_types.py +136 -0
  1583. vllm/v1/structured_output/backend_xgrammar.py +378 -0
  1584. vllm/v1/structured_output/request.py +94 -0
  1585. vllm/v1/structured_output/utils.py +469 -0
  1586. vllm/v1/utils.py +414 -0
  1587. vllm/v1/worker/__init__.py +0 -0
  1588. vllm/v1/worker/block_table.py +343 -0
  1589. vllm/v1/worker/cp_utils.py +42 -0
  1590. vllm/v1/worker/cpu_model_runner.py +122 -0
  1591. vllm/v1/worker/cpu_worker.py +192 -0
  1592. vllm/v1/worker/dp_utils.py +240 -0
  1593. vllm/v1/worker/ec_connector_model_runner_mixin.py +87 -0
  1594. vllm/v1/worker/gpu/README.md +4 -0
  1595. vllm/v1/worker/gpu/__init__.py +0 -0
  1596. vllm/v1/worker/gpu/async_utils.py +98 -0
  1597. vllm/v1/worker/gpu/attn_utils.py +189 -0
  1598. vllm/v1/worker/gpu/block_table.py +314 -0
  1599. vllm/v1/worker/gpu/cudagraph_utils.py +259 -0
  1600. vllm/v1/worker/gpu/dp_utils.py +31 -0
  1601. vllm/v1/worker/gpu/input_batch.py +479 -0
  1602. vllm/v1/worker/gpu/metrics/__init__.py +0 -0
  1603. vllm/v1/worker/gpu/metrics/logits.py +42 -0
  1604. vllm/v1/worker/gpu/model_runner.py +1006 -0
  1605. vllm/v1/worker/gpu/sample/__init__.py +0 -0
  1606. vllm/v1/worker/gpu/sample/gumbel.py +101 -0
  1607. vllm/v1/worker/gpu/sample/logprob.py +167 -0
  1608. vllm/v1/worker/gpu/sample/metadata.py +192 -0
  1609. vllm/v1/worker/gpu/sample/min_p.py +51 -0
  1610. vllm/v1/worker/gpu/sample/output.py +14 -0
  1611. vllm/v1/worker/gpu/sample/penalties.py +155 -0
  1612. vllm/v1/worker/gpu/sample/sampler.py +87 -0
  1613. vllm/v1/worker/gpu/spec_decode/__init__.py +18 -0
  1614. vllm/v1/worker/gpu/spec_decode/eagle.py +565 -0
  1615. vllm/v1/worker/gpu/spec_decode/eagle_cudagraph.py +115 -0
  1616. vllm/v1/worker/gpu/spec_decode/rejection_sample.py +71 -0
  1617. vllm/v1/worker/gpu/states.py +316 -0
  1618. vllm/v1/worker/gpu/structured_outputs.py +76 -0
  1619. vllm/v1/worker/gpu_input_batch.py +990 -0
  1620. vllm/v1/worker/gpu_model_runner.py +5470 -0
  1621. vllm/v1/worker/gpu_ubatch_wrapper.py +472 -0
  1622. vllm/v1/worker/gpu_worker.py +955 -0
  1623. vllm/v1/worker/kv_connector_model_runner_mixin.py +302 -0
  1624. vllm/v1/worker/lora_model_runner_mixin.py +212 -0
  1625. vllm/v1/worker/tpu_input_batch.py +583 -0
  1626. vllm/v1/worker/tpu_model_runner.py +2191 -0
  1627. vllm/v1/worker/tpu_worker.py +352 -0
  1628. vllm/v1/worker/ubatch_utils.py +109 -0
  1629. vllm/v1/worker/ubatching.py +231 -0
  1630. vllm/v1/worker/utils.py +375 -0
  1631. vllm/v1/worker/worker_base.py +377 -0
  1632. vllm/v1/worker/workspace.py +253 -0
  1633. vllm/v1/worker/xpu_model_runner.py +48 -0
  1634. vllm/v1/worker/xpu_worker.py +174 -0
  1635. vllm/version.py +39 -0
  1636. vllm/vllm_flash_attn/.gitkeep +0 -0
  1637. vllm_cpu_avx512vnni-0.13.0.dist-info/METADATA +339 -0
  1638. vllm_cpu_avx512vnni-0.13.0.dist-info/RECORD +1641 -0
  1639. vllm_cpu_avx512vnni-0.13.0.dist-info/WHEEL +5 -0
  1640. vllm_cpu_avx512vnni-0.13.0.dist-info/entry_points.txt +5 -0
  1641. vllm_cpu_avx512vnni-0.13.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1379 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ import math
5
+ from collections.abc import Iterable, Mapping, Sequence
6
+ from dataclasses import dataclass, fields
7
+ from functools import cached_property
8
+ from typing import Annotated, Literal
9
+
10
+ import torch
11
+ import torch.nn as nn
12
+ import torch.nn.functional as F
13
+ from mistral_common.protocol.instruct.chunk import ImageChunk, TextChunk
14
+ from mistral_common.protocol.instruct.messages import UserMessage
15
+ from mistral_common.protocol.instruct.request import ChatCompletionRequest
16
+ from mistral_common.tokens.tokenizers.multimodal import ImageEncoder
17
+ from PIL import Image
18
+ from transformers import BatchFeature, PixtralVisionConfig, TensorType
19
+ from transformers.image_utils import ImageInput
20
+ from transformers.models.pixtral.image_processing_pixtral import (
21
+ _num_image_tokens as _get_pixtral_hf_num_image_tokens,
22
+ )
23
+ from transformers.models.pixtral.modeling_pixtral import (
24
+ PixtralRotaryEmbedding,
25
+ apply_rotary_pos_emb,
26
+ position_ids_in_meshgrid,
27
+ )
28
+ from transformers.tokenization_utils_base import TextInput
29
+
30
+ from vllm.config import VllmConfig
31
+ from vllm.config.multimodal import BaseDummyOptions
32
+ from vllm.distributed import divide, get_tensor_model_parallel_world_size
33
+ from vllm.model_executor.layers.activation import get_act_and_mul_fn
34
+ from vllm.model_executor.layers.conv import Conv2dLayer
35
+ from vllm.model_executor.layers.layernorm import RMSNorm
36
+ from vllm.model_executor.layers.linear import (
37
+ MergedColumnParallelLinear,
38
+ QKVParallelLinear,
39
+ RowParallelLinear,
40
+ )
41
+ from vllm.model_executor.layers.quantization import QuantizationConfig
42
+ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
43
+ from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalKwargsItems
44
+ from vllm.multimodal.inputs import (
45
+ MultiModalDataDict,
46
+ MultiModalFieldConfig,
47
+ MultiModalUUIDDict,
48
+ NestedTensors,
49
+ )
50
+ from vllm.multimodal.parse import ImageProcessorItems, ImageSize, MultiModalDataItems
51
+ from vllm.multimodal.processing import (
52
+ BaseMultiModalProcessor,
53
+ BaseProcessingInfo,
54
+ MultiModalProcessingInfo,
55
+ PromptReplacement,
56
+ PromptUpdate,
57
+ PromptUpdateDetails,
58
+ )
59
+ from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
60
+ from vllm.platforms import current_platform
61
+ from vllm.sequence import IntermediateTensors
62
+ from vllm.tokenizers import cached_tokenizer_from_config
63
+ from vllm.tokenizers.mistral import MistralTokenizer
64
+ from vllm.utils.tensor_schema import TensorSchema, TensorShape
65
+
66
+ from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP
67
+ from .utils import init_vllm_registered_model, maybe_prefix
68
+ from .vision import (
69
+ VisionEncoderInfo,
70
+ VisionFeatureSelectStrategy,
71
+ resolve_visual_encoder_outputs,
72
+ )
73
+
74
+ try:
75
+ # Note: vLLM does not install xformers by default.
76
+ from xformers import ops as xops
77
+
78
+ if current_platform.is_cuda() and current_platform.has_device_capability(100):
79
+ # Xformers FA is not compatible with B200
80
+ USE_XFORMERS_OPS = False
81
+ else:
82
+ USE_XFORMERS_OPS = True
83
+ except ImportError:
84
+ USE_XFORMERS_OPS = False
85
+
86
+ PATCH_MERGE = "patch_merge"
87
+
88
+
89
+ class PixtralImagePixelInputs(TensorSchema):
90
+ """
91
+ Dimensions:
92
+ - bn: Batch size * number of images
93
+ - c: Number of channels (3)
94
+ - h: Height of each image
95
+ - w: Width of each image
96
+
97
+ The result of stacking `ImageEncoding.tokens` from each prompt.
98
+ """
99
+
100
+ type: Literal["pixel_values"] = "pixel_values"
101
+
102
+ images: Annotated[
103
+ torch.Tensor | list[torch.Tensor],
104
+ TensorShape("bn", 3, "h", "w", dynamic_dims={"h", "w"}),
105
+ ]
106
+
107
+
108
+ class PixtralProcessorAdapter:
109
+ """
110
+ Provide a HF-compatible interface for
111
+ `mistral_common.tokens.tokenizers.multimodal.ImageEncoder`.
112
+ """
113
+
114
+ def __init__(self, tokenizer: MistralTokenizer) -> None:
115
+ super().__init__()
116
+
117
+ self.tokenizer = tokenizer
118
+
119
+ @property
120
+ def image_processor(self) -> ImageEncoder:
121
+ image_encoder = self.tokenizer.instruct.mm_encoder
122
+ assert isinstance(image_encoder, ImageEncoder)
123
+ return image_encoder
124
+
125
+ @cached_property
126
+ def image_break_id(self) -> int:
127
+ return self.image_processor.special_ids.img_break
128
+
129
+ @cached_property
130
+ def image_token_id(self) -> int:
131
+ return self.image_processor.special_ids.img
132
+
133
+ @cached_property
134
+ def image_end_id(self) -> int:
135
+ return self.image_processor.special_ids.img_end
136
+
137
+ @cached_property
138
+ def image_size(self) -> int:
139
+ return self.image_processor.mm_config.max_image_size
140
+
141
+ @cached_property
142
+ def patch_size(self) -> int:
143
+ return self.image_processor.mm_config.image_patch_size
144
+
145
+ def __call__(
146
+ self,
147
+ text: TextInput | list[TextInput] | None = None,
148
+ images: ImageInput | list[ImageInput] | None = None,
149
+ return_tensors: str | TensorType | None = None,
150
+ **kwargs,
151
+ ) -> Mapping[str, NestedTensors]:
152
+ if text is None:
153
+ text = []
154
+ if not isinstance(text, list):
155
+ text = [text]
156
+ if images is None:
157
+ images = []
158
+ if not isinstance(images, list):
159
+ images = [images]
160
+
161
+ if not images:
162
+ input_ids = self.tokenizer(text).input_ids
163
+
164
+ return {"input_ids": torch.tensor(input_ids)}
165
+
166
+ # Allow dummy text, which is used for profiling as well as token inputs
167
+ if any(len(t) > 0 for t in text):
168
+ raise ValueError(
169
+ "You've passed text inputs instead of token inputs. "
170
+ "Make sure to process your input via `mistral_common`'s "
171
+ "tokenizer or pass a chat completion request. "
172
+ "For more info, see: "
173
+ "https://github.com/vllm-project/vllm/issues/8411."
174
+ )
175
+
176
+ images_processed = list[torch.Tensor]()
177
+ images_tokens = list[torch.Tensor]()
178
+
179
+ for image in images:
180
+ image_inputs = self.image_processor(ImageChunk(image=image))
181
+ image_processed = torch.tensor(image_inputs.image)
182
+ image_tokens = torch.tensor(image_inputs.tokens)
183
+
184
+ images_processed.append(image_processed)
185
+ images_tokens.append(image_tokens)
186
+
187
+ return BatchFeature(
188
+ {
189
+ "input_ids": torch.cat(images_tokens)[None].expand(len(text), -1),
190
+ "images": images_processed,
191
+ }
192
+ )
193
+
194
+
195
+ class PixtralProcessingInfo(BaseProcessingInfo):
196
+ def get_tokenizer(self) -> MistralTokenizer:
197
+ tokenizer = cached_tokenizer_from_config(self.ctx.model_config)
198
+ if not isinstance(tokenizer, MistralTokenizer):
199
+ raise ValueError("This model requires `--tokenizer-mode mistral`")
200
+
201
+ return tokenizer
202
+
203
+ def get_hf_processor(self) -> PixtralProcessorAdapter:
204
+ return PixtralProcessorAdapter(self.get_tokenizer())
205
+
206
+ def get_supported_mm_limits(self) -> Mapping[str, int | None]:
207
+ return {"image": None}
208
+
209
+ def get_vision_config(
210
+ self,
211
+ processor: PixtralProcessorAdapter | None = None,
212
+ ):
213
+ if processor is None:
214
+ processor = self.get_hf_processor()
215
+
216
+ return PixtralVisionConfig(
217
+ image_size=processor.image_size,
218
+ patch_size=processor.patch_size,
219
+ )
220
+
221
+ def get_num_image_tokens(
222
+ self,
223
+ *,
224
+ image_width: int,
225
+ image_height: int,
226
+ processor: PixtralProcessorAdapter | None = None,
227
+ ) -> int:
228
+ if processor is None:
229
+ processor = self.get_hf_processor()
230
+
231
+ ncols, nrows = processor.image_processor._image_to_num_tokens(
232
+ Image.new("RGB", (image_width, image_height))
233
+ )
234
+
235
+ return ncols * nrows
236
+
237
+ def get_image_size_with_most_features(self) -> ImageSize:
238
+ image_processor = self.get_hf_processor().image_processor
239
+ max_image_size = image_processor.mm_config.max_image_size
240
+
241
+ return ImageSize(width=max_image_size, height=max_image_size)
242
+
243
+
244
+ class PixtralDummyInputsBuilder(BaseDummyInputsBuilder[PixtralProcessingInfo]):
245
+ def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
246
+ return ""
247
+
248
+ def get_dummy_mm_data(
249
+ self,
250
+ seq_len: int,
251
+ mm_counts: Mapping[str, int],
252
+ mm_options: Mapping[str, BaseDummyOptions] | None = None,
253
+ ) -> MultiModalDataDict:
254
+ num_images = mm_counts.get("image", 0)
255
+
256
+ target_width, target_height = self.info.get_image_size_with_most_features()
257
+
258
+ image_overrides = mm_options.get("image") if mm_options else None
259
+
260
+ return {
261
+ "image": self._get_dummy_images(
262
+ width=target_width,
263
+ height=target_height,
264
+ num_images=num_images,
265
+ overrides=image_overrides,
266
+ )
267
+ }
268
+
269
+ def get_dummy_processor_inputs(
270
+ self,
271
+ seq_len: int,
272
+ mm_counts: Mapping[str, int],
273
+ mm_options: Mapping[str, BaseDummyOptions] | None = None,
274
+ ) -> ProcessorInputs:
275
+ tokenizer = self.info.get_tokenizer()
276
+
277
+ dummy_text = self.get_dummy_text(mm_counts)
278
+ dummy_mm_data = self.get_dummy_mm_data(seq_len, mm_counts, mm_options)
279
+ dummy_images = dummy_mm_data.get("image", [])
280
+ tokenization_kwargs = {"truncation": False}
281
+
282
+ request = ChatCompletionRequest(
283
+ messages=[
284
+ UserMessage(
285
+ content=[
286
+ TextChunk(text=dummy_text),
287
+ *(ImageChunk(image=image) for image in dummy_images),
288
+ ]
289
+ ),
290
+ ]
291
+ )
292
+ res = tokenizer.mistral.encode_chat_completion(request)
293
+ dummy_tokens = res.tokens
294
+
295
+ return ProcessorInputs(
296
+ prompt=dummy_tokens,
297
+ mm_data=dummy_mm_data,
298
+ tokenization_kwargs=tokenization_kwargs,
299
+ )
300
+
301
+
302
+ class PixtralMultiModalProcessor(BaseMultiModalProcessor[PixtralProcessingInfo]):
303
+ def _get_mm_fields_config(
304
+ self,
305
+ hf_inputs: Mapping[str, NestedTensors],
306
+ hf_processor_mm_kwargs: Mapping[str, object],
307
+ ) -> Mapping[str, MultiModalFieldConfig]:
308
+ return dict(images=MultiModalFieldConfig.batched("image"))
309
+
310
+ def _get_prompt_updates(
311
+ self,
312
+ mm_items: MultiModalDataItems,
313
+ hf_processor_mm_kwargs: Mapping[str, object],
314
+ out_mm_kwargs: MultiModalKwargsItems,
315
+ ) -> Sequence[PromptUpdate]:
316
+ processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
317
+
318
+ image_break_id = processor.image_break_id
319
+ image_token_id = processor.image_token_id
320
+ image_end_id = processor.image_end_id
321
+
322
+ def get_replacement(item_idx: int):
323
+ images = mm_items.get_items("image", ImageProcessorItems)
324
+ image_size = images.get_image_size(item_idx)
325
+
326
+ ncols, nrows = processor.image_processor._image_to_num_tokens(
327
+ Image.new("RGB", (image_size.width, image_size.height))
328
+ )
329
+
330
+ tokens = ([image_token_id] * ncols + [image_break_id]) * nrows
331
+ tokens[-1] = image_end_id
332
+
333
+ return PromptUpdateDetails.select_token_id(tokens, image_token_id)
334
+
335
+ return [
336
+ PromptReplacement(
337
+ modality="image",
338
+ target="", # Never match the prompt (see below note)
339
+ replacement=get_replacement,
340
+ ),
341
+ ]
342
+
343
+ def _cached_apply_hf_processor(
344
+ self,
345
+ prompt: str | list[int],
346
+ mm_data_items: MultiModalDataItems,
347
+ hf_processor_mm_kwargs: Mapping[str, object],
348
+ tokenization_kwargs: Mapping[str, object],
349
+ mm_uuids: MultiModalUUIDDict | None = None,
350
+ ) -> tuple[list[int], MultiModalProcessingInfo, bool]:
351
+ prompt_ids, mm_info, _ = super()._cached_apply_hf_processor(
352
+ prompt=prompt,
353
+ mm_data_items=mm_data_items,
354
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
355
+ tokenization_kwargs=tokenization_kwargs,
356
+ mm_uuids=mm_uuids,
357
+ )
358
+
359
+ # NOTE: The tokens are already inserted by the chat template
360
+ return prompt_ids, mm_info, True
361
+
362
+
363
+ @MULTIMODAL_REGISTRY.register_processor(
364
+ PixtralMultiModalProcessor,
365
+ info=PixtralProcessingInfo,
366
+ dummy_inputs=PixtralDummyInputsBuilder,
367
+ )
368
+ class PixtralForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP):
369
+ @classmethod
370
+ def get_placeholder_str(cls, modality: str, i: int) -> str | None:
371
+ if modality.startswith("image"):
372
+ return None
373
+
374
+ raise ValueError("Only image modality is supported")
375
+
376
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
377
+ super().__init__()
378
+ config = vllm_config.model_config.hf_config
379
+ multimodal_config = vllm_config.model_config.multimodal_config
380
+ self.config = config
381
+ self.multimodal_config = multimodal_config
382
+
383
+ dataclass_fields = {field.name for field in fields(VisionEncoderArgs)}
384
+ vision_args = {
385
+ key: value
386
+ for key, value in self.config.vision_config.to_dict().items()
387
+ if key in dataclass_fields
388
+ }
389
+
390
+ self.vision_args = VisionEncoderArgs(**vision_args)
391
+
392
+ # init MistralForCausalLM
393
+ self.language_model = init_vllm_registered_model(
394
+ vllm_config=vllm_config,
395
+ hf_config=config.text_config,
396
+ prefix=maybe_prefix(prefix, "language_model"),
397
+ )
398
+
399
+ if multimodal_config.get_limit_per_prompt("image"):
400
+ self.vision_encoder = VisionTransformer(self.vision_args)
401
+ self.pre_mm_projector_norm = (
402
+ RMSNorm(self.vision_args.hidden_size, eps=1e-5)
403
+ if self.vision_args.add_pre_mm_projector_layer_norm
404
+ else None
405
+ )
406
+ self.patch_merger = (
407
+ PatchMerger(
408
+ vision_encoder_dim=self.vision_args.hidden_size,
409
+ spatial_merge_size=self.vision_args.spatial_merge_size,
410
+ use_mlp_bias=False,
411
+ )
412
+ if self.vision_args.mm_projector_id == PATCH_MERGE
413
+ else None
414
+ )
415
+ self.vision_language_adapter = VisionLanguageAdapter(
416
+ self.vision_args, dim=config.text_config.hidden_size
417
+ )
418
+ else:
419
+ self.vision_encoder = None
420
+ self.pre_mm_projector_norm = None
421
+ self.patch_merger = None
422
+ self.vision_language_adapter = None
423
+
424
+ self.make_empty_intermediate_tensors = (
425
+ self.language_model.make_empty_intermediate_tensors
426
+ )
427
+
428
+ def _parse_and_validate_image_input(
429
+ self, **kwargs: object
430
+ ) -> PixtralImagePixelInputs | None:
431
+ images = kwargs.pop("images", None)
432
+ if images is None:
433
+ return None
434
+
435
+ return PixtralImagePixelInputs(
436
+ type="pixel_values",
437
+ images=images,
438
+ )
439
+
440
+ def _process_image_input(
441
+ self,
442
+ image_input: PixtralImagePixelInputs,
443
+ ) -> tuple[torch.Tensor, ...]:
444
+ assert (
445
+ self.vision_encoder is not None and self.vision_language_adapter is not None
446
+ )
447
+
448
+ images = image_input["images"]
449
+ image_features = self.vision_encoder(images)
450
+ feature_sizes = [image_feature.shape[0] for image_feature in image_features]
451
+ image_features = torch.cat(image_features)
452
+ if self.pre_mm_projector_norm is not None:
453
+ image_features = self.pre_mm_projector_norm(image_features)
454
+ if self.patch_merger is not None:
455
+ patch_size = self.vision_args.patch_size
456
+ spatial_merge_size_square = self.vision_args.spatial_merge_size**2
457
+ img_patch_dims = [
458
+ (img.shape[1] // patch_size, img.shape[2] // patch_size)
459
+ for img in images
460
+ ]
461
+ feature_sizes = [
462
+ feature_size // spatial_merge_size_square
463
+ for feature_size in feature_sizes
464
+ ]
465
+ image_features = self.patch_merger(
466
+ image_features, image_sizes=img_patch_dims
467
+ )
468
+ image_embeds = self.vision_language_adapter(image_features)
469
+ image_embeds = torch.split(image_embeds, feature_sizes)
470
+ return image_embeds
471
+
472
+ def get_language_model(self) -> torch.nn.Module:
473
+ return self.language_model
474
+
475
+ def embed_multimodal(self, **kwargs: object) -> MultiModalEmbeddings:
476
+ image_input = self._parse_and_validate_image_input(**kwargs)
477
+ if image_input is None:
478
+ return []
479
+
480
+ return self._process_image_input(image_input)
481
+
482
+ def forward(
483
+ self,
484
+ input_ids: torch.Tensor,
485
+ positions: torch.Tensor,
486
+ intermediate_tensors: IntermediateTensors | None = None,
487
+ inputs_embeds: torch.Tensor | None = None,
488
+ **kwargs: object,
489
+ ) -> torch.Tensor | IntermediateTensors:
490
+ """Run forward pass for pixtral."""
491
+ if intermediate_tensors is not None:
492
+ inputs_embeds = None
493
+
494
+ hidden_states = self.language_model.model(
495
+ input_ids, positions, intermediate_tensors, inputs_embeds=inputs_embeds
496
+ )
497
+
498
+ return hidden_states
499
+
500
+ def compute_logits(
501
+ self,
502
+ hidden_states: torch.Tensor,
503
+ ) -> torch.Tensor | None:
504
+ return self.language_model.compute_logits(hidden_states)
505
+
506
+ def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
507
+ def is_vision_encoder_weights(weight: tuple[str, torch.Tensor]):
508
+ return weight[0].startswith("vision_encoder")
509
+
510
+ def is_vision_lang_adapter_weights(weight: tuple[str, torch.Tensor]):
511
+ return weight[0].startswith("vision_language_adapter")
512
+
513
+ def is_patch_merger(weight: tuple[str, torch.Tensor]):
514
+ return weight[0].startswith("patch_merger")
515
+
516
+ def is_pre_mm_projector_norm(weight: tuple[str, torch.Tensor]):
517
+ return weight[0].startswith("pre_mm_projector_norm")
518
+
519
+ # Get references to parameters for direct loading
520
+ vision_encoder_dict = (
521
+ dict(self.vision_encoder.named_parameters())
522
+ if self.vision_encoder is not None
523
+ else {}
524
+ )
525
+ patch_merger_dict = (
526
+ dict(self.patch_merger.named_parameters())
527
+ if self.patch_merger is not None
528
+ else {}
529
+ )
530
+ pre_mm_projector_norm_dict = (
531
+ dict(self.pre_mm_projector_norm.named_parameters())
532
+ if self.pre_mm_projector_norm is not None
533
+ else {}
534
+ )
535
+ vision_lang_adapter_dict = (
536
+ dict(self.vision_language_adapter.named_parameters())
537
+ if self.vision_language_adapter is not None
538
+ else {}
539
+ )
540
+
541
+ def llm_weights_generator():
542
+ # Single pass over weights
543
+ for name, w in weights:
544
+ if is_vision_encoder_weights((name, w)):
545
+ if self.vision_encoder is None:
546
+ continue
547
+ # Load vision encoder weights directly
548
+ trimmed_name = ".".join(name.split(".")[1:])
549
+ param = vision_encoder_dict[trimmed_name]
550
+ with torch.no_grad():
551
+ default_weight_loader(param, w)
552
+ elif is_patch_merger((name, w)):
553
+ if self.patch_merger is None:
554
+ continue
555
+ # Load vision patch merger weights directly
556
+ trimmed_name = ".".join(name.split(".")[1:])
557
+ param = patch_merger_dict[trimmed_name]
558
+ with torch.no_grad():
559
+ default_weight_loader(param, w)
560
+ elif is_pre_mm_projector_norm((name, w)):
561
+ if self.pre_mm_projector_norm is None:
562
+ continue
563
+ # Load vision pre_mm_projector_norm weights directly
564
+ trimmed_name = ".".join(name.split(".")[1:])
565
+ param = pre_mm_projector_norm_dict[trimmed_name]
566
+ with torch.no_grad():
567
+ default_weight_loader(param, w)
568
+ elif is_vision_lang_adapter_weights((name, w)):
569
+ if self.vision_language_adapter is None:
570
+ continue
571
+ # Load vision-language adapter weights directly
572
+ trimmed_name = ".".join(name.split(".")[1:])
573
+ param = vision_lang_adapter_dict[trimmed_name]
574
+ with torch.no_grad():
575
+ default_weight_loader(param, w)
576
+ else:
577
+ # LLM weights: yield them to be loaded
578
+ # by language_model.load_weights
579
+ yield (name, w)
580
+
581
+ # Now we call the language model load with the generator
582
+ self.language_model.load_weights(llm_weights_generator())
583
+
584
+
585
+ # Vision encoder
586
+ @dataclass
587
+ class VisionEncoderArgs:
588
+ hidden_size: int
589
+ num_channels: int
590
+ image_size: int
591
+ patch_size: int
592
+ intermediate_size: int
593
+ num_hidden_layers: int
594
+ num_attention_heads: int
595
+ rope_theta: float # for rope-2D
596
+ image_token_id: int
597
+ adapter_bias: bool = True
598
+ spatial_merge_size: int = 1
599
+ add_pre_mm_projector_layer_norm: bool = False
600
+ mm_projector_id: str = ""
601
+
602
+
603
+ def _reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
604
+ """
605
+ freqs_cis: complex - (seq_len, head_dim / 2)
606
+ x: complex - (bsz, seq_len, head_dim / 2)
607
+ """
608
+ ndim = x.ndim
609
+ assert ndim > 1
610
+ assert freqs_cis.shape == (x.shape[1], x.shape[-1]), (
611
+ freqs_cis.shape,
612
+ (x.shape[1], x.shape[-1]),
613
+ )
614
+ shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
615
+ return freqs_cis.view(*shape)
616
+
617
+
618
+ def precompute_freqs_cis_2d(
619
+ dim: int,
620
+ height: int,
621
+ width: int,
622
+ theta: float,
623
+ ) -> torch.Tensor:
624
+ """
625
+ freqs_cis: 2D complex tensor of shape (height, width, dim // 2)
626
+ to be indexed by (height, width) position tuples
627
+ """
628
+ # (dim / 2) frequency bases
629
+ freqs = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim))
630
+
631
+ h = torch.arange(height, device=freqs.device)
632
+ w = torch.arange(width, device=freqs.device)
633
+
634
+ freqs_h = torch.outer(h, freqs[::2]).float()
635
+ freqs_w = torch.outer(w, freqs[1::2]).float()
636
+ freqs_2d = torch.cat(
637
+ [
638
+ freqs_h[:, None, :].repeat(1, width, 1),
639
+ freqs_w[None, :, :].repeat(height, 1, 1),
640
+ ],
641
+ dim=-1,
642
+ )
643
+ return torch.polar(torch.ones_like(freqs_2d), freqs_2d)
644
+
645
+
646
+ def apply_rotary_emb_vit(
647
+ xq: torch.Tensor,
648
+ xk: torch.Tensor,
649
+ freqs_cis: torch.Tensor,
650
+ ) -> tuple[torch.Tensor, torch.Tensor]:
651
+ xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
652
+ xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
653
+ assert freqs_cis.dtype == torch.complex64
654
+ freqs_cis = _reshape_for_broadcast(freqs_cis, xq_)
655
+ xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
656
+ xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
657
+ return xq_out.type_as(xq), xk_out.type_as(xk)
658
+
659
+
660
+ class FeedForward(nn.Module):
661
+ def __init__(self, args: VisionEncoderArgs):
662
+ super().__init__()
663
+ assert args.intermediate_size is not None
664
+ self.w1 = nn.Linear(args.hidden_size, args.intermediate_size, bias=False)
665
+ self.w2 = nn.Linear(args.intermediate_size, args.hidden_size, bias=False)
666
+ self.w3 = nn.Linear(args.hidden_size, args.intermediate_size, bias=False)
667
+
668
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
669
+ return self.w2(F.silu(self.w1(x)) * self.w3(x))
670
+
671
+
672
+ class Attention(nn.Module):
673
+ def __init__(self, args: VisionEncoderArgs):
674
+ super().__init__()
675
+ self.args = args
676
+ assert not args.hidden_size % args.num_attention_heads
677
+ self.n_heads = args.num_attention_heads
678
+ self.head_dim = args.hidden_size // args.num_attention_heads
679
+
680
+ self.wq = nn.Linear(args.hidden_size, args.hidden_size, bias=False)
681
+ self.wk = nn.Linear(args.hidden_size, args.hidden_size, bias=False)
682
+ self.wv = nn.Linear(args.hidden_size, args.hidden_size, bias=False)
683
+ self.wo = nn.Linear(args.hidden_size, args.hidden_size, bias=False)
684
+
685
+ def forward(
686
+ self,
687
+ x: torch.Tensor,
688
+ mask: torch.Tensor,
689
+ freqs_cis: torch.Tensor,
690
+ ) -> torch.Tensor:
691
+ batch, patches, _ = x.shape
692
+
693
+ q, k, v = self.wq(x), self.wk(x), self.wv(x)
694
+ q = q.reshape(batch, patches, self.n_heads, self.head_dim)
695
+ k = k.reshape(batch, patches, self.n_heads, self.head_dim)
696
+ v = v.reshape(batch, patches, self.n_heads, self.head_dim)
697
+
698
+ q, k = apply_rotary_emb_vit(q, k, freqs_cis=freqs_cis)
699
+
700
+ if USE_XFORMERS_OPS:
701
+ out = xops.memory_efficient_attention(q, k, v, attn_bias=mask)
702
+ else:
703
+ q = q.transpose(1, 2)
704
+ k = k.transpose(1, 2)
705
+ v = v.transpose(1, 2)
706
+ out = nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask)
707
+ out = out.transpose(1, 2)
708
+
709
+ out = out.reshape(batch, patches, self.n_heads * self.head_dim)
710
+ return self.wo(out)
711
+
712
+
713
+ class TransformerBlock(nn.Module):
714
+ def __init__(self, args: VisionEncoderArgs):
715
+ super().__init__()
716
+ self.attention = Attention(args)
717
+ self.feed_forward = FeedForward(args)
718
+ self.attention_norm = RMSNorm(args.hidden_size, eps=1e-5)
719
+ self.ffn_norm = RMSNorm(args.hidden_size, eps=1e-5)
720
+
721
+ def forward(
722
+ self,
723
+ x: torch.Tensor,
724
+ mask: torch.Tensor,
725
+ freqs_cis: torch.Tensor,
726
+ ) -> torch.Tensor:
727
+ r = self.attention.forward(
728
+ self.attention_norm(x), mask=mask, freqs_cis=freqs_cis
729
+ )
730
+ h = x + r
731
+ r = self.feed_forward.forward(self.ffn_norm(h))
732
+ out = h + r
733
+ return out
734
+
735
+
736
+ class Transformer(nn.Module):
737
+ def __init__(self, args: VisionEncoderArgs):
738
+ super().__init__()
739
+ self.layers = torch.nn.ModuleList()
740
+ for _ in range(args.num_hidden_layers):
741
+ self.layers.append(TransformerBlock(args))
742
+
743
+ def forward(
744
+ self,
745
+ x: torch.Tensor,
746
+ mask: torch.Tensor,
747
+ freqs_cis: torch.Tensor | None,
748
+ ) -> torch.Tensor:
749
+ for layer in self.layers:
750
+ x = layer(x, mask=mask, freqs_cis=freqs_cis)
751
+ return x
752
+
753
+
754
+ def position_meshgrid(
755
+ patch_embeds_list: list[torch.Tensor],
756
+ ) -> torch.Tensor:
757
+ positions = torch.cat(
758
+ [
759
+ torch.stack(
760
+ torch.meshgrid(
761
+ torch.arange(p.shape[-2]),
762
+ torch.arange(p.shape[-1]),
763
+ indexing="ij",
764
+ ),
765
+ dim=-1,
766
+ ).reshape(-1, 2)
767
+ for p in patch_embeds_list
768
+ ]
769
+ )
770
+ return positions
771
+
772
+
773
+ class VisionTransformer(nn.Module):
774
+ def __init__(self, args: VisionEncoderArgs):
775
+ super().__init__()
776
+ self.args = args
777
+ self.patch_conv = Conv2dLayer(
778
+ in_channels=args.num_channels,
779
+ out_channels=args.hidden_size,
780
+ kernel_size=args.patch_size,
781
+ stride=args.patch_size,
782
+ bias=False,
783
+ )
784
+ self.ln_pre = RMSNorm(args.hidden_size, eps=1e-5)
785
+ self.transformer = Transformer(args)
786
+
787
+ head_dim = self.args.hidden_size // self.args.num_attention_heads
788
+ assert head_dim % 2 == 0, "ROPE requires even head_dim"
789
+ self._freqs_cis: torch.Tensor | None = None
790
+
791
+ @property
792
+ def max_patches_per_side(self) -> int:
793
+ return self.args.image_size // self.args.patch_size
794
+
795
+ @property
796
+ def device(self) -> torch.types.Device:
797
+ return next(self.parameters()).device
798
+
799
+ @property
800
+ def dtype(self) -> torch.dtype:
801
+ return next(self.parameters()).dtype
802
+
803
+ @property
804
+ def freqs_cis(self) -> torch.Tensor:
805
+ if self._freqs_cis is None:
806
+ self._freqs_cis = precompute_freqs_cis_2d(
807
+ dim=self.args.hidden_size // self.args.num_attention_heads,
808
+ height=self.max_patches_per_side,
809
+ width=self.max_patches_per_side,
810
+ theta=self.args.rope_theta,
811
+ )
812
+
813
+ if self._freqs_cis.device != self.device:
814
+ self._freqs_cis = self._freqs_cis.to(device=self.device)
815
+
816
+ return self._freqs_cis
817
+
818
+ def forward(
819
+ self,
820
+ images: list[torch.Tensor],
821
+ ) -> torch.Tensor:
822
+ """
823
+ Args:
824
+ images: list of N_img images of variable sizes,
825
+ each of shape (C, H, W)
826
+ Returns:
827
+ image_features: tensor of token features for
828
+ all tokens of all images of shape (N_toks, D)
829
+ """
830
+ # pass images through initial convolution independently
831
+ patch_embeds_list = [
832
+ self.patch_conv(img.unsqueeze(0).to(self.dtype)) for img in images
833
+ ]
834
+
835
+ patch_embeds = [p.flatten(2).permute(0, 2, 1) for p in patch_embeds_list]
836
+ embed_sizes = [p.shape[1] for p in patch_embeds]
837
+
838
+ # flatten to a single sequence
839
+ patch_embeds = torch.cat(patch_embeds, dim=1)
840
+ patch_embeds = self.ln_pre(patch_embeds)
841
+
842
+ # positional embeddings
843
+ positions = position_meshgrid(patch_embeds_list).to(self.device)
844
+ freqs_cis = self.freqs_cis[positions[:, 0], positions[:, 1]]
845
+
846
+ # pass through Transformer with a block diagonal mask delimiting images
847
+ if USE_XFORMERS_OPS:
848
+ mask = xops.fmha.attn_bias.BlockDiagonalMask.from_seqlens(
849
+ [p.shape[-2] * p.shape[-1] for p in patch_embeds_list],
850
+ )
851
+ else:
852
+ from transformers.models.pixtral.modeling_pixtral import (
853
+ generate_block_attention_mask,
854
+ )
855
+
856
+ mask = generate_block_attention_mask(
857
+ [p.shape[-2] * p.shape[-1] for p in patch_embeds_list], patch_embeds
858
+ )
859
+ out = self.transformer(patch_embeds, mask=mask, freqs_cis=freqs_cis)
860
+
861
+ # squeeze dim 0 and split into separate tensors for each image
862
+ return torch.split(out.squeeze(0), embed_sizes)
863
+
864
+
865
+ class VisionLanguageAdapter(nn.Module):
866
+ def __init__(self, args: VisionEncoderArgs, dim: int):
867
+ super().__init__()
868
+ assert isinstance(args, VisionEncoderArgs)
869
+ self.w_in = nn.Linear(
870
+ args.hidden_size,
871
+ dim,
872
+ bias=args.adapter_bias,
873
+ )
874
+ self.gelu = nn.GELU()
875
+ self.w_out = nn.Linear(dim, dim, bias=args.adapter_bias)
876
+
877
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
878
+ return self.w_out(self.gelu(self.w_in(x)))
879
+
880
+
881
+ class PatchMerger(nn.Module):
882
+ """
883
+ Learned merging of spatial_merge_size ** 2 patches
884
+ """
885
+
886
+ def __init__(
887
+ self,
888
+ vision_encoder_dim: int,
889
+ spatial_merge_size: int,
890
+ use_mlp_bias: bool = False,
891
+ ) -> None:
892
+ super().__init__()
893
+
894
+ mlp_input_dim = vision_encoder_dim * (spatial_merge_size**2)
895
+
896
+ self.spatial_merge_size = spatial_merge_size
897
+ self.mlp_input_dim = mlp_input_dim
898
+
899
+ self.merging_layer = nn.Linear(
900
+ mlp_input_dim,
901
+ vision_encoder_dim,
902
+ bias=use_mlp_bias,
903
+ )
904
+
905
+ def forward(
906
+ self, x: torch.Tensor, image_sizes: list[tuple[int, int]]
907
+ ) -> torch.Tensor:
908
+ # image_sizes specified in tokens
909
+ assert sum([h * w for h, w in image_sizes]) == len(x)
910
+
911
+ # x is (N, vision_encoder_dim)
912
+ x = self.permute(x, image_sizes)
913
+
914
+ # x is (N / spatial_merge_size ** 2,
915
+ # vision_encoder_dim * spatial_merge_size ** 2)
916
+ x = self.merging_layer(x)
917
+
918
+ # x is (N / spatial_merge_size ** 2, vision_encoder_dim)
919
+ return x
920
+
921
+ def permute(
922
+ self,
923
+ x: torch.Tensor,
924
+ image_sizes: list[tuple[int, int]],
925
+ ) -> torch.Tensor:
926
+ """
927
+ Args:
928
+ x: (N, D) where N is flattened and concatenated patch tokens
929
+ for all images
930
+ image_sizes: list of tuple of (height, width) in tokens for
931
+ each image
932
+ Returns:
933
+ image_features: reorders patch tokens so each grid of
934
+ (spatial_merge_size, spatial_merge_size) is contiguous.
935
+ now (N / spatial_merge_size ** 2, D * spatial_merge_size ** 2)
936
+ """
937
+
938
+ sub_grids = get_sub_grids(
939
+ x=x, image_sizes=image_sizes, spatial_merge_size=self.spatial_merge_size
940
+ ) # list of [d x sub_grid_size x sub_grid_size x n_patches]
941
+ permuted_tensor: list[torch.Tensor] = []
942
+ for grid in sub_grids:
943
+ n_patches = grid.shape[-1]
944
+ permuted_tensor.append(
945
+ grid.view(-1, n_patches).t()
946
+ ) # n_patches x d * sub_grid_size * sub_grid_size
947
+ return torch.cat(
948
+ permuted_tensor, dim=0
949
+ ) # (N / spatial_merge_size ** 2, d * spatial_merge_size ** 2)
950
+
951
+
952
+ def get_sub_grids(
953
+ x: torch.Tensor,
954
+ image_sizes: list[tuple[int, int]],
955
+ spatial_merge_size: int,
956
+ ) -> list[torch.Tensor]:
957
+ # image_sizes specified in tokens
958
+ tokens_per_image = [h * w for h, w in image_sizes]
959
+ d = x.shape[-1]
960
+ all_img_sub_grids: list[torch.Tensor] = []
961
+ sub_grid_size = spatial_merge_size
962
+
963
+ for image_index, image_tokens in enumerate(x.split(tokens_per_image)):
964
+ # Reshape image_tokens into a 2D grid
965
+ h, w = image_sizes[image_index]
966
+ image_grid = image_tokens.view(h, w, d).permute(2, 0, 1)[
967
+ None, :, :, :
968
+ ] # 1 x d x h x w
969
+ sub_grids = torch.nn.functional.unfold(
970
+ image_grid, kernel_size=sub_grid_size, stride=sub_grid_size
971
+ )
972
+ sub_grids = sub_grids.view(
973
+ 1, d, sub_grid_size, sub_grid_size, -1
974
+ ) # 1 x d x sub_grid_size x sub_grid_size x n_patches
975
+
976
+ all_img_sub_grids.append(sub_grids[0])
977
+
978
+ return all_img_sub_grids
979
+
980
+
981
+ #### HF Transformers version of Pixtral ####
982
+ # Based off https://github.com/huggingface/transformers/blob/d7950bff82b18c823193d17d72188c5e46d06c83/src/transformers/models/pixtral/modeling_pixtral.py
983
+ # This model follows the Llava family, meaning image embeddings are placed
984
+ # instead of the `[IMG]` token placeholders.
985
+ # The model uses [`PixtralVisionModel`] for its vision encoder,
986
+ # and [`MistralForCausalLM`] for its language decoder.
987
+
988
+
989
+ class PixtralHFEncoderInfo(VisionEncoderInfo[PixtralVisionConfig]):
990
+ def get_num_image_tokens(
991
+ self,
992
+ *,
993
+ image_width: int,
994
+ image_height: int,
995
+ ) -> int:
996
+ ncols, nrows = self.get_patch_grid_size(
997
+ image_width=image_width,
998
+ image_height=image_height,
999
+ )
1000
+ return ncols * nrows
1001
+
1002
+ def get_image_size(self) -> int:
1003
+ return self.vision_config.image_size
1004
+
1005
+ def get_patch_size(self) -> int:
1006
+ # spatial_merge_size is needed for Mistral3
1007
+ spatial_merge_size = getattr(self.hf_config, "spatial_merge_size", 1)
1008
+ return self.vision_config.patch_size * spatial_merge_size
1009
+
1010
+ def get_patch_grid_length(self) -> int:
1011
+ image_size, patch_size = self.get_image_size(), self.get_patch_size()
1012
+
1013
+ # Since interpolation is applied, the image size need not be divisible
1014
+ # assert image_size % patch_size == 0
1015
+ return image_size // patch_size
1016
+
1017
+ # Adapted from: https://github.com/huggingface/transformers/blob/v4.49.0/src/transformers/models/pixtral/image_processing_pixtral.py#L99
1018
+ def get_patch_grid_size(
1019
+ self,
1020
+ *,
1021
+ image_width: int,
1022
+ image_height: int,
1023
+ ) -> tuple[int, int]:
1024
+ max_width = max_height = self.get_image_size()
1025
+ patch_width = patch_height = self.get_patch_size()
1026
+
1027
+ ratio = max(image_width / max_width, image_height / max_height)
1028
+
1029
+ if ratio > 1:
1030
+ image_width = int(math.floor(image_width / ratio))
1031
+ image_height = int(math.floor(image_height / ratio))
1032
+
1033
+ nrows, ncols = _get_pixtral_hf_num_image_tokens(
1034
+ (image_height, image_width),
1035
+ (patch_height, patch_width),
1036
+ ) # type: ignore
1037
+
1038
+ return ncols, nrows
1039
+
1040
+
1041
+ class PixtralHFMLP(nn.Module):
1042
+ def __init__(
1043
+ self,
1044
+ config: PixtralVisionConfig,
1045
+ quant_config: QuantizationConfig | None = None,
1046
+ *,
1047
+ prefix: str = "",
1048
+ ) -> None:
1049
+ super().__init__()
1050
+
1051
+ assert config.intermediate_size is not None
1052
+ self.gate_up_proj = MergedColumnParallelLinear(
1053
+ input_size=config.hidden_size,
1054
+ output_sizes=[config.intermediate_size] * 2,
1055
+ bias=False,
1056
+ quant_config=quant_config,
1057
+ prefix=f"{prefix}.gate_up_proj",
1058
+ )
1059
+ self.down_proj = RowParallelLinear(
1060
+ input_size=config.intermediate_size,
1061
+ output_size=config.hidden_size,
1062
+ bias=False,
1063
+ quant_config=quant_config,
1064
+ prefix=f"{prefix}.down_proj",
1065
+ )
1066
+ self.act_and_mul = get_act_and_mul_fn(config.hidden_act)
1067
+
1068
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
1069
+ gate_up, _ = self.gate_up_proj(x)
1070
+ x = self.act_and_mul(gate_up)
1071
+ x, _ = self.down_proj(x)
1072
+ return x
1073
+
1074
+
1075
+ class PixtralHFAttention(nn.Module):
1076
+ def __init__(
1077
+ self,
1078
+ config: PixtralVisionConfig,
1079
+ quant_config: QuantizationConfig | None = None,
1080
+ *,
1081
+ prefix: str = "",
1082
+ ) -> None:
1083
+ super().__init__()
1084
+
1085
+ self.config = config
1086
+ assert not config.hidden_size % config.num_attention_heads
1087
+ self.total_num_heads = config.num_attention_heads
1088
+ tp_size = get_tensor_model_parallel_world_size()
1089
+ self.n_heads = divide(config.num_attention_heads, tp_size)
1090
+ self.head_dim = config.hidden_size // config.num_attention_heads
1091
+
1092
+ self.qkv_proj = QKVParallelLinear(
1093
+ hidden_size=config.hidden_size,
1094
+ head_size=self.head_dim,
1095
+ total_num_heads=self.total_num_heads,
1096
+ bias=False,
1097
+ quant_config=quant_config,
1098
+ prefix=f"{prefix}.qkv_proj",
1099
+ )
1100
+ assert self.total_num_heads * self.head_dim == config.hidden_size
1101
+ self.o_proj = RowParallelLinear(
1102
+ input_size=config.hidden_size,
1103
+ output_size=config.hidden_size,
1104
+ bias=False,
1105
+ quant_config=quant_config,
1106
+ prefix=f"{prefix}.o_proj",
1107
+ )
1108
+
1109
+ def forward(
1110
+ self,
1111
+ hidden_states: torch.Tensor,
1112
+ attention_mask: torch.Tensor,
1113
+ position_embeddings: torch.Tensor,
1114
+ ) -> tuple[torch.Tensor, torch.Tensor | None]:
1115
+ batch, patches, _ = hidden_states.size()
1116
+
1117
+ qkv_states, _ = self.qkv_proj(hidden_states)
1118
+ q, k, v = qkv_states.chunk(3, dim=-1)
1119
+
1120
+ # Transpose q and k to apply HF's Rotary Position Embedding
1121
+ q = q.view(batch, patches, self.n_heads, self.head_dim).transpose(1, 2)
1122
+ k = k.view(batch, patches, self.n_heads, self.head_dim).transpose(1, 2)
1123
+ v = v.view(batch, patches, self.n_heads, self.head_dim)
1124
+ cos, sin = position_embeddings
1125
+ q, k = apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=0)
1126
+
1127
+ if USE_XFORMERS_OPS:
1128
+ # Transpose q and k back for attention
1129
+ q = q.transpose(1, 2).contiguous()
1130
+ k = k.transpose(1, 2).contiguous()
1131
+ out = xops.memory_efficient_attention(q, k, v, attn_bias=attention_mask)
1132
+ else:
1133
+ v = v.transpose(1, 2)
1134
+ out = nn.functional.scaled_dot_product_attention(
1135
+ q, k, v, attn_mask=attention_mask
1136
+ )
1137
+ out = out.transpose(1, 2)
1138
+
1139
+ out = out.reshape(batch, patches, self.n_heads * self.head_dim)
1140
+ attn_output, _ = self.o_proj(out)
1141
+
1142
+ return attn_output, None
1143
+
1144
+
1145
+ class PixtralHFTransformerBlock(nn.Module):
1146
+ def __init__(
1147
+ self,
1148
+ config: PixtralVisionConfig,
1149
+ quant_config: QuantizationConfig | None = None,
1150
+ *,
1151
+ prefix: str = "",
1152
+ ) -> None:
1153
+ super().__init__()
1154
+
1155
+ self.attention_norm = RMSNorm(config.hidden_size, eps=1e-5)
1156
+ self.attention = PixtralHFAttention(
1157
+ config, quant_config=quant_config, prefix=f"{prefix}.attention"
1158
+ )
1159
+ self.feed_forward = PixtralHFMLP(
1160
+ config, quant_config=quant_config, prefix=f"{prefix}.feed_forward"
1161
+ )
1162
+ self.ffn_norm = RMSNorm(config.hidden_size, eps=1e-5)
1163
+
1164
+ def forward(
1165
+ self,
1166
+ hidden_states: torch.Tensor,
1167
+ attention_mask: torch.Tensor,
1168
+ position_embeddings: torch.Tensor,
1169
+ ) -> torch.Tensor:
1170
+ r, _ = self.attention.forward(
1171
+ self.attention_norm(hidden_states),
1172
+ attention_mask=attention_mask,
1173
+ position_embeddings=position_embeddings,
1174
+ )
1175
+ h = hidden_states + r
1176
+ r = self.feed_forward.forward(self.ffn_norm(h))
1177
+ out = h + r
1178
+ return out
1179
+
1180
+
1181
+ class PixtralHFTransformer(nn.Module):
1182
+ def __init__(
1183
+ self,
1184
+ config: PixtralVisionConfig,
1185
+ quant_config: QuantizationConfig | None = None,
1186
+ *,
1187
+ num_hidden_layers_override: int | None = None,
1188
+ prefix: str = "",
1189
+ ) -> None:
1190
+ super().__init__()
1191
+
1192
+ if num_hidden_layers_override is None:
1193
+ num_hidden_layers = config.num_hidden_layers
1194
+ else:
1195
+ num_hidden_layers = num_hidden_layers_override
1196
+
1197
+ self.layers = nn.ModuleList(
1198
+ [
1199
+ PixtralHFTransformerBlock(
1200
+ config=config,
1201
+ quant_config=quant_config,
1202
+ prefix=f"{prefix}.layers.{layer_idx}",
1203
+ )
1204
+ for layer_idx in range(num_hidden_layers)
1205
+ ]
1206
+ )
1207
+
1208
+ def forward(
1209
+ self,
1210
+ x: torch.Tensor,
1211
+ attention_mask: torch.Tensor,
1212
+ position_embeddings: torch.Tensor,
1213
+ return_all_hidden_states: bool,
1214
+ ) -> torch.Tensor:
1215
+ hidden_states_pool = [x]
1216
+
1217
+ for layer in self.layers:
1218
+ x = layer(x, attention_mask, position_embeddings)
1219
+ if return_all_hidden_states:
1220
+ hidden_states_pool.append(x)
1221
+ # If we have multiple feature sample layers, we return all hidden
1222
+ # states in order and grab the ones we need by index.
1223
+ if return_all_hidden_states:
1224
+ return hidden_states_pool
1225
+ return x
1226
+
1227
+
1228
+ class PixtralHFVisionModel(nn.Module):
1229
+ def __init__(
1230
+ self,
1231
+ config: PixtralVisionConfig,
1232
+ quant_config: QuantizationConfig | None = None,
1233
+ *,
1234
+ num_hidden_layers_override: int | None = None,
1235
+ require_post_norm: bool | None = None,
1236
+ prefix: str = "",
1237
+ ) -> None:
1238
+ super().__init__()
1239
+
1240
+ self.config = config
1241
+
1242
+ self.patch_conv = Conv2dLayer(
1243
+ in_channels=config.num_channels,
1244
+ out_channels=config.hidden_size,
1245
+ kernel_size=config.patch_size,
1246
+ stride=config.patch_size,
1247
+ bias=False,
1248
+ )
1249
+ self.ln_pre = RMSNorm(config.hidden_size, eps=1e-5)
1250
+ self.transformer = PixtralHFTransformer(
1251
+ config,
1252
+ quant_config,
1253
+ num_hidden_layers_override=num_hidden_layers_override,
1254
+ prefix=f"{prefix}.transformer",
1255
+ )
1256
+
1257
+ num_hidden_layers = config.num_hidden_layers
1258
+ if len(self.transformer.layers) > config.num_hidden_layers:
1259
+ raise ValueError(
1260
+ f"The original encoder only has {num_hidden_layers} "
1261
+ f"layers, but you requested {len(self.transformer.layers)} "
1262
+ "layers."
1263
+ )
1264
+
1265
+ if require_post_norm is True:
1266
+ msg = "PixtralHFVisionModel does not have post-layernorm"
1267
+ raise ValueError(msg)
1268
+
1269
+ self.dtype = next(self.parameters()).dtype
1270
+ self.device = next(self.parameters()).device
1271
+ self.patch_positional_embedding = PixtralRotaryEmbedding(config, self.device)
1272
+
1273
+ def forward(
1274
+ self,
1275
+ pixel_values: list[torch.Tensor],
1276
+ *,
1277
+ select_layers: list[int] | None = None,
1278
+ feature_select_strategy: VisionFeatureSelectStrategy | None = None,
1279
+ ) -> tuple[torch.Tensor, ...]:
1280
+ """
1281
+ Args:
1282
+ pixel_values: Each image to be processed will be a separate tensor
1283
+ in pixel_values. This means it will be a list of tensors
1284
+ because multiple requests batched can have multiple images,
1285
+ each with their own shape potentially
1286
+ select_layers: Layer indices whose features should be
1287
+ concatenated and used as the visual encoder output. If none
1288
+ are provided, the last layer is used.
1289
+
1290
+ Returns:
1291
+ image_features: tensor of token features for
1292
+ all tokens of all images of shape (N_toks, D)
1293
+ """
1294
+ # pass images through initial convolution independently
1295
+ patch_embeds_list = [
1296
+ self.patch_conv(img.unsqueeze(0).to(self.dtype)) for img in pixel_values
1297
+ ]
1298
+
1299
+ patch_embeds = [p.flatten(2).permute(0, 2, 1) for p in patch_embeds_list]
1300
+ embed_sizes = [p.shape[1] for p in patch_embeds]
1301
+
1302
+ # flatten to a single sequence
1303
+ patch_embeds = torch.cat(patch_embeds, dim=1)
1304
+ patch_embeds = self.ln_pre(patch_embeds)
1305
+
1306
+ # positional embeddings
1307
+ position_ids = position_ids_in_meshgrid(
1308
+ patch_embeds_list,
1309
+ max_width=self.config.image_size // self.config.patch_size,
1310
+ ).to(self.device)
1311
+ position_embedding = self.patch_positional_embedding(patch_embeds, position_ids)
1312
+
1313
+ if USE_XFORMERS_OPS:
1314
+ attention_mask = xops.fmha.attn_bias.BlockDiagonalMask.from_seqlens(
1315
+ [p.shape[-2] * p.shape[-1] for p in patch_embeds_list],
1316
+ )
1317
+ else:
1318
+ from transformers.models.pixtral.modeling_pixtral import (
1319
+ generate_block_attention_mask,
1320
+ )
1321
+
1322
+ attention_mask = generate_block_attention_mask(
1323
+ [p.shape[-2] * p.shape[-1] for p in patch_embeds_list], patch_embeds
1324
+ )
1325
+
1326
+ out = self.transformer(
1327
+ patch_embeds,
1328
+ attention_mask,
1329
+ position_embedding,
1330
+ return_all_hidden_states=select_layers is not None,
1331
+ )
1332
+
1333
+ out = resolve_visual_encoder_outputs(
1334
+ out,
1335
+ None,
1336
+ select_layers=select_layers,
1337
+ max_possible_layers=self.config.num_hidden_layers,
1338
+ feature_select_strategy=feature_select_strategy,
1339
+ )
1340
+
1341
+ # squeeze dim 0 and split into separate tensors for each image
1342
+ return torch.split(out.squeeze(0), embed_sizes)
1343
+
1344
+ # (TODO) Add prefix argument for filtering out weights to be loaded
1345
+ # ref: https://github.com/vllm-project/vllm/pull/7186#discussion_r1734163986
1346
+ def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
1347
+ stacked_params_mapping = [
1348
+ # (param_name, shard_name, shard_id)
1349
+ (".qkv_proj", ".q_proj", "q"),
1350
+ (".qkv_proj", ".k_proj", "k"),
1351
+ (".qkv_proj", ".v_proj", "v"),
1352
+ (".gate_up_proj", ".gate_proj", 0),
1353
+ (".gate_up_proj", ".up_proj", 1),
1354
+ ]
1355
+ params_dict = dict(self.named_parameters())
1356
+ loaded_params: set[str] = set()
1357
+ layer_count = len(self.transformer.layers)
1358
+
1359
+ for name, loaded_weight in weights:
1360
+ # omit layers when num_hidden_layers_override is set
1361
+ if name.startswith("transformer.layers"):
1362
+ layer_idx = int(name.split(".")[2])
1363
+ if layer_idx >= layer_count:
1364
+ continue
1365
+
1366
+ for param_name, weight_name, shard_id in stacked_params_mapping:
1367
+ if weight_name not in name:
1368
+ continue
1369
+ name = name.replace(weight_name, param_name)
1370
+ param = params_dict[name]
1371
+ weight_loader = param.weight_loader
1372
+ weight_loader(param, loaded_weight, shard_id)
1373
+ break
1374
+ else:
1375
+ param = params_dict[name]
1376
+ weight_loader = getattr(param, "weight_loader", default_weight_loader)
1377
+ weight_loader(param, loaded_weight)
1378
+ loaded_params.add(name)
1379
+ return loaded_params