vllm-cpu-avx512vnni 0.13.0__cp313-cp313-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vllm-cpu-avx512vnni might be problematic. Click here for more details.

Files changed (1641) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +225 -0
  3. vllm/_aiter_ops.py +1260 -0
  4. vllm/_bc_linter.py +54 -0
  5. vllm/_custom_ops.py +3080 -0
  6. vllm/_ipex_ops.py +457 -0
  7. vllm/_version.py +34 -0
  8. vllm/assets/__init__.py +0 -0
  9. vllm/assets/audio.py +43 -0
  10. vllm/assets/base.py +40 -0
  11. vllm/assets/image.py +59 -0
  12. vllm/assets/video.py +149 -0
  13. vllm/attention/__init__.py +0 -0
  14. vllm/attention/backends/__init__.py +0 -0
  15. vllm/attention/backends/abstract.py +443 -0
  16. vllm/attention/backends/registry.py +254 -0
  17. vllm/attention/backends/utils.py +33 -0
  18. vllm/attention/layer.py +969 -0
  19. vllm/attention/layers/__init__.py +0 -0
  20. vllm/attention/layers/chunked_local_attention.py +120 -0
  21. vllm/attention/layers/cross_attention.py +178 -0
  22. vllm/attention/layers/encoder_only_attention.py +103 -0
  23. vllm/attention/layers/mm_encoder_attention.py +284 -0
  24. vllm/attention/ops/__init__.py +0 -0
  25. vllm/attention/ops/chunked_prefill_paged_decode.py +401 -0
  26. vllm/attention/ops/common.py +469 -0
  27. vllm/attention/ops/flashmla.py +251 -0
  28. vllm/attention/ops/merge_attn_states.py +47 -0
  29. vllm/attention/ops/paged_attn.py +51 -0
  30. vllm/attention/ops/pallas_kv_cache_update.py +130 -0
  31. vllm/attention/ops/prefix_prefill.py +814 -0
  32. vllm/attention/ops/rocm_aiter_mla_sparse.py +210 -0
  33. vllm/attention/ops/triton_decode_attention.py +712 -0
  34. vllm/attention/ops/triton_merge_attn_states.py +116 -0
  35. vllm/attention/ops/triton_reshape_and_cache_flash.py +184 -0
  36. vllm/attention/ops/triton_unified_attention.py +1047 -0
  37. vllm/attention/ops/vit_attn_wrappers.py +139 -0
  38. vllm/attention/selector.py +145 -0
  39. vllm/attention/utils/__init__.py +0 -0
  40. vllm/attention/utils/fa_utils.py +118 -0
  41. vllm/attention/utils/kv_sharing_utils.py +33 -0
  42. vllm/attention/utils/kv_transfer_utils.py +60 -0
  43. vllm/beam_search.py +88 -0
  44. vllm/benchmarks/__init__.py +0 -0
  45. vllm/benchmarks/datasets.py +3228 -0
  46. vllm/benchmarks/latency.py +170 -0
  47. vllm/benchmarks/lib/__init__.py +3 -0
  48. vllm/benchmarks/lib/endpoint_request_func.py +777 -0
  49. vllm/benchmarks/lib/ready_checker.py +72 -0
  50. vllm/benchmarks/lib/utils.py +79 -0
  51. vllm/benchmarks/serve.py +1538 -0
  52. vllm/benchmarks/startup.py +326 -0
  53. vllm/benchmarks/sweep/__init__.py +0 -0
  54. vllm/benchmarks/sweep/cli.py +41 -0
  55. vllm/benchmarks/sweep/param_sweep.py +158 -0
  56. vllm/benchmarks/sweep/plot.py +675 -0
  57. vllm/benchmarks/sweep/plot_pareto.py +393 -0
  58. vllm/benchmarks/sweep/serve.py +450 -0
  59. vllm/benchmarks/sweep/serve_sla.py +492 -0
  60. vllm/benchmarks/sweep/server.py +114 -0
  61. vllm/benchmarks/sweep/sla_sweep.py +132 -0
  62. vllm/benchmarks/sweep/utils.py +4 -0
  63. vllm/benchmarks/throughput.py +808 -0
  64. vllm/collect_env.py +857 -0
  65. vllm/compilation/__init__.py +0 -0
  66. vllm/compilation/activation_quant_fusion.py +209 -0
  67. vllm/compilation/backends.py +839 -0
  68. vllm/compilation/base_static_graph.py +57 -0
  69. vllm/compilation/caching.py +180 -0
  70. vllm/compilation/collective_fusion.py +1215 -0
  71. vllm/compilation/compiler_interface.py +639 -0
  72. vllm/compilation/counter.py +48 -0
  73. vllm/compilation/cuda_graph.py +302 -0
  74. vllm/compilation/decorators.py +626 -0
  75. vllm/compilation/fix_functionalization.py +266 -0
  76. vllm/compilation/fusion.py +550 -0
  77. vllm/compilation/fusion_attn.py +359 -0
  78. vllm/compilation/fx_utils.py +91 -0
  79. vllm/compilation/inductor_pass.py +138 -0
  80. vllm/compilation/matcher_utils.py +361 -0
  81. vllm/compilation/monitor.py +62 -0
  82. vllm/compilation/noop_elimination.py +130 -0
  83. vllm/compilation/partition_rules.py +72 -0
  84. vllm/compilation/pass_manager.py +155 -0
  85. vllm/compilation/piecewise_backend.py +178 -0
  86. vllm/compilation/post_cleanup.py +21 -0
  87. vllm/compilation/qk_norm_rope_fusion.py +238 -0
  88. vllm/compilation/rocm_aiter_fusion.py +242 -0
  89. vllm/compilation/sequence_parallelism.py +364 -0
  90. vllm/compilation/torch25_custom_graph_pass.py +44 -0
  91. vllm/compilation/vllm_inductor_pass.py +173 -0
  92. vllm/compilation/wrapper.py +319 -0
  93. vllm/config/__init__.py +108 -0
  94. vllm/config/attention.py +114 -0
  95. vllm/config/cache.py +232 -0
  96. vllm/config/compilation.py +1140 -0
  97. vllm/config/device.py +75 -0
  98. vllm/config/ec_transfer.py +110 -0
  99. vllm/config/kv_events.py +56 -0
  100. vllm/config/kv_transfer.py +119 -0
  101. vllm/config/load.py +124 -0
  102. vllm/config/lora.py +96 -0
  103. vllm/config/model.py +2190 -0
  104. vllm/config/multimodal.py +247 -0
  105. vllm/config/observability.py +140 -0
  106. vllm/config/parallel.py +660 -0
  107. vllm/config/pooler.py +126 -0
  108. vllm/config/profiler.py +199 -0
  109. vllm/config/scheduler.py +299 -0
  110. vllm/config/speculative.py +644 -0
  111. vllm/config/speech_to_text.py +38 -0
  112. vllm/config/structured_outputs.py +78 -0
  113. vllm/config/utils.py +370 -0
  114. vllm/config/vllm.py +1434 -0
  115. vllm/connections.py +189 -0
  116. vllm/device_allocator/__init__.py +0 -0
  117. vllm/device_allocator/cumem.py +327 -0
  118. vllm/distributed/__init__.py +6 -0
  119. vllm/distributed/communication_op.py +43 -0
  120. vllm/distributed/device_communicators/__init__.py +0 -0
  121. vllm/distributed/device_communicators/all2all.py +490 -0
  122. vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
  123. vllm/distributed/device_communicators/base_device_communicator.py +297 -0
  124. vllm/distributed/device_communicators/cpu_communicator.py +209 -0
  125. vllm/distributed/device_communicators/cuda_communicator.py +340 -0
  126. vllm/distributed/device_communicators/cuda_wrapper.py +216 -0
  127. vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
  128. vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
  129. vllm/distributed/device_communicators/pynccl.py +386 -0
  130. vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
  131. vllm/distributed/device_communicators/pynccl_wrapper.py +564 -0
  132. vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
  133. vllm/distributed/device_communicators/ray_communicator.py +259 -0
  134. vllm/distributed/device_communicators/shm_broadcast.py +778 -0
  135. vllm/distributed/device_communicators/shm_object_storage.py +697 -0
  136. vllm/distributed/device_communicators/symm_mem.py +156 -0
  137. vllm/distributed/device_communicators/tpu_communicator.py +99 -0
  138. vllm/distributed/device_communicators/xpu_communicator.py +95 -0
  139. vllm/distributed/ec_transfer/__init__.py +14 -0
  140. vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
  141. vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
  142. vllm/distributed/ec_transfer/ec_connector/example_connector.py +201 -0
  143. vllm/distributed/ec_transfer/ec_connector/factory.py +85 -0
  144. vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
  145. vllm/distributed/eplb/__init__.py +3 -0
  146. vllm/distributed/eplb/async_worker.py +115 -0
  147. vllm/distributed/eplb/eplb_state.py +1164 -0
  148. vllm/distributed/eplb/policy/__init__.py +19 -0
  149. vllm/distributed/eplb/policy/abstract.py +40 -0
  150. vllm/distributed/eplb/policy/default.py +267 -0
  151. vllm/distributed/eplb/rebalance_execute.py +529 -0
  152. vllm/distributed/kv_events.py +499 -0
  153. vllm/distributed/kv_transfer/README.md +29 -0
  154. vllm/distributed/kv_transfer/__init__.py +20 -0
  155. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  156. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  157. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  158. vllm/distributed/kv_transfer/kv_connector/factory.py +197 -0
  159. vllm/distributed/kv_transfer/kv_connector/utils.py +322 -0
  160. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
  161. vllm/distributed/kv_transfer/kv_connector/v1/base.py +597 -0
  162. vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
  163. vllm/distributed/kv_transfer/kv_connector/v1/example_connector.py +450 -0
  164. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +327 -0
  165. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
  166. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +378 -0
  167. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +221 -0
  168. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1418 -0
  169. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +895 -0
  170. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +186 -0
  171. vllm/distributed/kv_transfer/kv_connector/v1/mooncake_connector.py +914 -0
  172. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +464 -0
  173. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2526 -0
  174. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +538 -0
  175. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  176. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
  177. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
  178. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
  179. vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
  180. vllm/distributed/parallel_state.py +1795 -0
  181. vllm/distributed/tpu_distributed_utils.py +188 -0
  182. vllm/distributed/utils.py +545 -0
  183. vllm/engine/__init__.py +0 -0
  184. vllm/engine/arg_utils.py +2068 -0
  185. vllm/engine/async_llm_engine.py +6 -0
  186. vllm/engine/llm_engine.py +6 -0
  187. vllm/engine/protocol.py +190 -0
  188. vllm/entrypoints/__init__.py +0 -0
  189. vllm/entrypoints/anthropic/__init__.py +0 -0
  190. vllm/entrypoints/anthropic/protocol.py +162 -0
  191. vllm/entrypoints/anthropic/serving_messages.py +468 -0
  192. vllm/entrypoints/api_server.py +185 -0
  193. vllm/entrypoints/chat_utils.py +1903 -0
  194. vllm/entrypoints/cli/__init__.py +15 -0
  195. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  196. vllm/entrypoints/cli/benchmark/base.py +25 -0
  197. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  198. vllm/entrypoints/cli/benchmark/main.py +56 -0
  199. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  200. vllm/entrypoints/cli/benchmark/startup.py +21 -0
  201. vllm/entrypoints/cli/benchmark/sweep.py +21 -0
  202. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  203. vllm/entrypoints/cli/collect_env.py +38 -0
  204. vllm/entrypoints/cli/main.py +79 -0
  205. vllm/entrypoints/cli/openai.py +260 -0
  206. vllm/entrypoints/cli/run_batch.py +68 -0
  207. vllm/entrypoints/cli/serve.py +249 -0
  208. vllm/entrypoints/cli/types.py +29 -0
  209. vllm/entrypoints/constants.py +12 -0
  210. vllm/entrypoints/context.py +835 -0
  211. vllm/entrypoints/launcher.py +175 -0
  212. vllm/entrypoints/llm.py +1790 -0
  213. vllm/entrypoints/logger.py +84 -0
  214. vllm/entrypoints/openai/__init__.py +0 -0
  215. vllm/entrypoints/openai/api_server.py +1469 -0
  216. vllm/entrypoints/openai/cli_args.py +302 -0
  217. vllm/entrypoints/openai/orca_metrics.py +120 -0
  218. vllm/entrypoints/openai/parser/__init__.py +0 -0
  219. vllm/entrypoints/openai/parser/harmony_utils.py +825 -0
  220. vllm/entrypoints/openai/parser/responses_parser.py +135 -0
  221. vllm/entrypoints/openai/protocol.py +2496 -0
  222. vllm/entrypoints/openai/run_batch.py +631 -0
  223. vllm/entrypoints/openai/serving_chat.py +1822 -0
  224. vllm/entrypoints/openai/serving_completion.py +729 -0
  225. vllm/entrypoints/openai/serving_engine.py +1542 -0
  226. vllm/entrypoints/openai/serving_models.py +304 -0
  227. vllm/entrypoints/openai/serving_responses.py +2080 -0
  228. vllm/entrypoints/openai/serving_transcription.py +168 -0
  229. vllm/entrypoints/openai/speech_to_text.py +559 -0
  230. vllm/entrypoints/openai/tool_parsers/__init__.py +33 -0
  231. vllm/entrypoints/openai/utils.py +49 -0
  232. vllm/entrypoints/pooling/__init__.py +16 -0
  233. vllm/entrypoints/pooling/classify/__init__.py +0 -0
  234. vllm/entrypoints/pooling/classify/api_router.py +50 -0
  235. vllm/entrypoints/pooling/classify/protocol.py +181 -0
  236. vllm/entrypoints/pooling/classify/serving.py +233 -0
  237. vllm/entrypoints/pooling/embed/__init__.py +0 -0
  238. vllm/entrypoints/pooling/embed/api_router.py +67 -0
  239. vllm/entrypoints/pooling/embed/protocol.py +208 -0
  240. vllm/entrypoints/pooling/embed/serving.py +684 -0
  241. vllm/entrypoints/pooling/pooling/__init__.py +0 -0
  242. vllm/entrypoints/pooling/pooling/api_router.py +63 -0
  243. vllm/entrypoints/pooling/pooling/protocol.py +148 -0
  244. vllm/entrypoints/pooling/pooling/serving.py +354 -0
  245. vllm/entrypoints/pooling/score/__init__.py +0 -0
  246. vllm/entrypoints/pooling/score/api_router.py +149 -0
  247. vllm/entrypoints/pooling/score/protocol.py +146 -0
  248. vllm/entrypoints/pooling/score/serving.py +508 -0
  249. vllm/entrypoints/renderer.py +410 -0
  250. vllm/entrypoints/responses_utils.py +249 -0
  251. vllm/entrypoints/sagemaker/__init__.py +4 -0
  252. vllm/entrypoints/sagemaker/routes.py +118 -0
  253. vllm/entrypoints/score_utils.py +237 -0
  254. vllm/entrypoints/serve/__init__.py +60 -0
  255. vllm/entrypoints/serve/disagg/__init__.py +0 -0
  256. vllm/entrypoints/serve/disagg/api_router.py +110 -0
  257. vllm/entrypoints/serve/disagg/protocol.py +90 -0
  258. vllm/entrypoints/serve/disagg/serving.py +285 -0
  259. vllm/entrypoints/serve/elastic_ep/__init__.py +0 -0
  260. vllm/entrypoints/serve/elastic_ep/api_router.py +96 -0
  261. vllm/entrypoints/serve/elastic_ep/middleware.py +49 -0
  262. vllm/entrypoints/serve/instrumentator/__init__.py +0 -0
  263. vllm/entrypoints/serve/instrumentator/health.py +33 -0
  264. vllm/entrypoints/serve/instrumentator/metrics.py +45 -0
  265. vllm/entrypoints/serve/lora/__init__.py +0 -0
  266. vllm/entrypoints/serve/lora/api_router.py +70 -0
  267. vllm/entrypoints/serve/profile/__init__.py +0 -0
  268. vllm/entrypoints/serve/profile/api_router.py +46 -0
  269. vllm/entrypoints/serve/rlhf/__init__.py +0 -0
  270. vllm/entrypoints/serve/rlhf/api_router.py +102 -0
  271. vllm/entrypoints/serve/sleep/__init__.py +0 -0
  272. vllm/entrypoints/serve/sleep/api_router.py +60 -0
  273. vllm/entrypoints/serve/tokenize/__init__.py +0 -0
  274. vllm/entrypoints/serve/tokenize/api_router.py +118 -0
  275. vllm/entrypoints/serve/tokenize/serving.py +204 -0
  276. vllm/entrypoints/ssl.py +78 -0
  277. vllm/entrypoints/tool.py +187 -0
  278. vllm/entrypoints/tool_server.py +234 -0
  279. vllm/entrypoints/utils.py +319 -0
  280. vllm/env_override.py +378 -0
  281. vllm/envs.py +1744 -0
  282. vllm/forward_context.py +358 -0
  283. vllm/inputs/__init__.py +44 -0
  284. vllm/inputs/data.py +359 -0
  285. vllm/inputs/parse.py +146 -0
  286. vllm/inputs/preprocess.py +717 -0
  287. vllm/logger.py +303 -0
  288. vllm/logging_utils/__init__.py +13 -0
  289. vllm/logging_utils/dump_input.py +83 -0
  290. vllm/logging_utils/formatter.py +127 -0
  291. vllm/logging_utils/lazy.py +20 -0
  292. vllm/logging_utils/log_time.py +34 -0
  293. vllm/logits_process.py +121 -0
  294. vllm/logprobs.py +206 -0
  295. vllm/lora/__init__.py +0 -0
  296. vllm/lora/layers/__init__.py +42 -0
  297. vllm/lora/layers/base.py +66 -0
  298. vllm/lora/layers/base_linear.py +165 -0
  299. vllm/lora/layers/column_parallel_linear.py +577 -0
  300. vllm/lora/layers/fused_moe.py +747 -0
  301. vllm/lora/layers/logits_processor.py +203 -0
  302. vllm/lora/layers/replicated_linear.py +70 -0
  303. vllm/lora/layers/row_parallel_linear.py +176 -0
  304. vllm/lora/layers/utils.py +74 -0
  305. vllm/lora/layers/vocal_parallel_embedding.py +140 -0
  306. vllm/lora/lora_model.py +246 -0
  307. vllm/lora/lora_weights.py +227 -0
  308. vllm/lora/model_manager.py +690 -0
  309. vllm/lora/ops/__init__.py +0 -0
  310. vllm/lora/ops/ipex_ops/__init__.py +6 -0
  311. vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
  312. vllm/lora/ops/torch_ops/__init__.py +20 -0
  313. vllm/lora/ops/torch_ops/lora_ops.py +128 -0
  314. vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
  315. vllm/lora/ops/triton_ops/__init__.py +21 -0
  316. vllm/lora/ops/triton_ops/fused_moe_lora_op.py +665 -0
  317. vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
  318. vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
  319. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
  320. vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
  321. vllm/lora/ops/triton_ops/utils.py +295 -0
  322. vllm/lora/ops/xla_ops/__init__.py +6 -0
  323. vllm/lora/ops/xla_ops/lora_ops.py +141 -0
  324. vllm/lora/peft_helper.py +128 -0
  325. vllm/lora/punica_wrapper/__init__.py +10 -0
  326. vllm/lora/punica_wrapper/punica_base.py +493 -0
  327. vllm/lora/punica_wrapper/punica_cpu.py +351 -0
  328. vllm/lora/punica_wrapper/punica_gpu.py +412 -0
  329. vllm/lora/punica_wrapper/punica_selector.py +21 -0
  330. vllm/lora/punica_wrapper/punica_tpu.py +358 -0
  331. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  332. vllm/lora/punica_wrapper/utils.py +150 -0
  333. vllm/lora/request.py +100 -0
  334. vllm/lora/resolver.py +88 -0
  335. vllm/lora/utils.py +315 -0
  336. vllm/lora/worker_manager.py +268 -0
  337. vllm/model_executor/__init__.py +11 -0
  338. vllm/model_executor/custom_op.py +199 -0
  339. vllm/model_executor/layers/__init__.py +0 -0
  340. vllm/model_executor/layers/activation.py +595 -0
  341. vllm/model_executor/layers/attention_layer_base.py +32 -0
  342. vllm/model_executor/layers/batch_invariant.py +1067 -0
  343. vllm/model_executor/layers/conv.py +256 -0
  344. vllm/model_executor/layers/fla/__init__.py +8 -0
  345. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  346. vllm/model_executor/layers/fla/ops/chunk.py +240 -0
  347. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
  348. vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
  349. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
  350. vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
  351. vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
  352. vllm/model_executor/layers/fla/ops/index.py +41 -0
  353. vllm/model_executor/layers/fla/ops/kda.py +1351 -0
  354. vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
  355. vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
  356. vllm/model_executor/layers/fla/ops/op.py +60 -0
  357. vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
  358. vllm/model_executor/layers/fla/ops/utils.py +194 -0
  359. vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
  360. vllm/model_executor/layers/fused_moe/__init__.py +114 -0
  361. vllm/model_executor/layers/fused_moe/all2all_utils.py +171 -0
  362. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +409 -0
  363. vllm/model_executor/layers/fused_moe/config.py +1043 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +147 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=20,N=1536,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Server_Edition,dtype=fp8_w8a8.json +147 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  559. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  560. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  561. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  562. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  563. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  564. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  565. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  566. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  567. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  568. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  569. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  570. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  571. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  572. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  573. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  574. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  575. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  576. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  577. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  578. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  579. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  580. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  581. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  582. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  583. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  584. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  585. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  586. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  587. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  588. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  589. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  590. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  591. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  592. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  593. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  594. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  595. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  596. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  597. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  598. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  599. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  600. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  601. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  602. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  603. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  604. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  605. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  606. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  607. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  608. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  609. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  610. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  611. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  612. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  613. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  614. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  615. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  616. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  617. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  618. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  619. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  620. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  621. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  622. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  623. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  624. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  625. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  626. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  627. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  628. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  629. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  630. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  631. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  632. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  633. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  634. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  635. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  636. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  637. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  638. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  639. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +292 -0
  640. vllm/model_executor/layers/fused_moe/cutlass_moe.py +1453 -0
  641. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +358 -0
  642. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +427 -0
  643. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
  644. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +434 -0
  645. vllm/model_executor/layers/fused_moe/flashinfer_cutedsl_moe.py +376 -0
  646. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +307 -0
  647. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +362 -0
  648. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
  649. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1012 -0
  650. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +825 -0
  651. vllm/model_executor/layers/fused_moe/fused_moe.py +2223 -0
  652. vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +103 -0
  653. vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +119 -0
  654. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +524 -0
  655. vllm/model_executor/layers/fused_moe/layer.py +2133 -0
  656. vllm/model_executor/layers/fused_moe/modular_kernel.py +1302 -0
  657. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +192 -0
  658. vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
  659. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
  660. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  661. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
  662. vllm/model_executor/layers/fused_moe/prepare_finalize.py +78 -0
  663. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +265 -0
  664. vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
  665. vllm/model_executor/layers/fused_moe/shared_fused_moe.py +96 -0
  666. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
  667. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +163 -0
  668. vllm/model_executor/layers/fused_moe/trtllm_moe.py +143 -0
  669. vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +455 -0
  670. vllm/model_executor/layers/fused_moe/utils.py +332 -0
  671. vllm/model_executor/layers/kda.py +442 -0
  672. vllm/model_executor/layers/layernorm.py +442 -0
  673. vllm/model_executor/layers/lightning_attn.py +735 -0
  674. vllm/model_executor/layers/linear.py +1424 -0
  675. vllm/model_executor/layers/logits_processor.py +106 -0
  676. vllm/model_executor/layers/mamba/__init__.py +0 -0
  677. vllm/model_executor/layers/mamba/abstract.py +68 -0
  678. vllm/model_executor/layers/mamba/linear_attn.py +388 -0
  679. vllm/model_executor/layers/mamba/mamba_mixer.py +526 -0
  680. vllm/model_executor/layers/mamba/mamba_mixer2.py +930 -0
  681. vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
  682. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  683. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
  684. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
  685. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +586 -0
  686. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
  687. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
  688. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
  689. vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
  690. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
  691. vllm/model_executor/layers/mamba/short_conv.py +255 -0
  692. vllm/model_executor/layers/mla.py +176 -0
  693. vllm/model_executor/layers/pooler.py +830 -0
  694. vllm/model_executor/layers/quantization/__init__.py +179 -0
  695. vllm/model_executor/layers/quantization/auto_round.py +454 -0
  696. vllm/model_executor/layers/quantization/awq.py +277 -0
  697. vllm/model_executor/layers/quantization/awq_marlin.py +793 -0
  698. vllm/model_executor/layers/quantization/awq_triton.py +337 -0
  699. vllm/model_executor/layers/quantization/base_config.py +170 -0
  700. vllm/model_executor/layers/quantization/bitblas.py +502 -0
  701. vllm/model_executor/layers/quantization/bitsandbytes.py +626 -0
  702. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
  703. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +986 -0
  704. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2645 -0
  705. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +35 -0
  706. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
  707. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  708. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
  709. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
  710. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
  711. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +176 -0
  712. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
  713. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
  714. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +200 -0
  715. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
  716. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +230 -0
  717. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  718. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
  719. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
  720. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  721. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
  722. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  723. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
  724. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  725. vllm/model_executor/layers/quantization/cpu_wna16.py +625 -0
  726. vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
  727. vllm/model_executor/layers/quantization/experts_int8.py +207 -0
  728. vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
  729. vllm/model_executor/layers/quantization/fp8.py +1461 -0
  730. vllm/model_executor/layers/quantization/fp_quant.py +420 -0
  731. vllm/model_executor/layers/quantization/gguf.py +677 -0
  732. vllm/model_executor/layers/quantization/gptq.py +393 -0
  733. vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
  734. vllm/model_executor/layers/quantization/gptq_marlin.py +932 -0
  735. vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
  736. vllm/model_executor/layers/quantization/hqq_marlin.py +372 -0
  737. vllm/model_executor/layers/quantization/inc.py +65 -0
  738. vllm/model_executor/layers/quantization/input_quant_fp8.py +202 -0
  739. vllm/model_executor/layers/quantization/ipex_quant.py +487 -0
  740. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  741. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
  742. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +109 -0
  743. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  744. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
  745. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
  746. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +130 -0
  747. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
  748. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +161 -0
  749. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
  750. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +200 -0
  751. vllm/model_executor/layers/quantization/kernels/mixed_precision/xpu.py +97 -0
  752. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +76 -0
  753. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +81 -0
  754. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +128 -0
  755. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +220 -0
  756. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +147 -0
  757. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +71 -0
  758. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +106 -0
  759. vllm/model_executor/layers/quantization/kv_cache.py +153 -0
  760. vllm/model_executor/layers/quantization/modelopt.py +1684 -0
  761. vllm/model_executor/layers/quantization/moe_wna16.py +516 -0
  762. vllm/model_executor/layers/quantization/mxfp4.py +1140 -0
  763. vllm/model_executor/layers/quantization/petit.py +319 -0
  764. vllm/model_executor/layers/quantization/ptpc_fp8.py +136 -0
  765. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  766. vllm/model_executor/layers/quantization/quark/quark.py +527 -0
  767. vllm/model_executor/layers/quantization/quark/quark_moe.py +622 -0
  768. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  769. vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +343 -0
  770. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  771. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
  772. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
  773. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  774. vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
  775. vllm/model_executor/layers/quantization/rtn.py +621 -0
  776. vllm/model_executor/layers/quantization/schema.py +90 -0
  777. vllm/model_executor/layers/quantization/torchao.py +380 -0
  778. vllm/model_executor/layers/quantization/tpu_int8.py +139 -0
  779. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  780. vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
  781. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=10240,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  902. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=25600,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  903. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=8192,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  904. vllm/model_executor/layers/quantization/utils/configs/N=51200,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  905. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  906. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  907. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  908. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  909. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  910. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  911. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  912. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  913. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  914. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  915. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  916. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  917. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  918. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  919. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  920. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  921. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  922. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  923. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  924. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  925. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  926. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  927. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  928. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  929. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  930. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  931. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  932. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  933. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  934. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  935. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  936. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  937. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  938. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  939. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  940. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  941. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  942. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  943. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  944. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  945. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  946. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  947. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  948. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  949. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  950. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  951. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  952. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  953. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  954. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  955. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  956. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  957. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  958. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  959. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  960. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  961. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  962. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  963. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  964. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  965. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  966. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  967. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  968. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  969. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  970. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  971. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  972. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  973. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  974. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  975. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  976. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  977. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  978. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  979. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  980. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  981. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  982. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  983. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  984. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  985. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  986. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  987. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  988. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  989. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  990. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  991. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  992. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  993. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  994. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  995. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  996. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  997. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +412 -0
  998. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +312 -0
  999. vllm/model_executor/layers/quantization/utils/fp8_utils.py +1453 -0
  1000. vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
  1001. vllm/model_executor/layers/quantization/utils/int8_utils.py +474 -0
  1002. vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
  1003. vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
  1004. vllm/model_executor/layers/quantization/utils/marlin_utils.py +678 -0
  1005. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +452 -0
  1006. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +381 -0
  1007. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +219 -0
  1008. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
  1009. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +189 -0
  1010. vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
  1011. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
  1012. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
  1013. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +67 -0
  1014. vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
  1015. vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
  1016. vllm/model_executor/layers/quantization/utils/quant_utils.py +741 -0
  1017. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +519 -0
  1018. vllm/model_executor/layers/resampler.py +283 -0
  1019. vllm/model_executor/layers/rotary_embedding/__init__.py +289 -0
  1020. vllm/model_executor/layers/rotary_embedding/base.py +254 -0
  1021. vllm/model_executor/layers/rotary_embedding/common.py +279 -0
  1022. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +165 -0
  1023. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +215 -0
  1024. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
  1025. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
  1026. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +82 -0
  1027. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  1028. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  1029. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +80 -0
  1030. vllm/model_executor/layers/rotary_embedding/mrope.py +412 -0
  1031. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
  1032. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
  1033. vllm/model_executor/layers/rotary_embedding/xdrope.py +160 -0
  1034. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +84 -0
  1035. vllm/model_executor/layers/utils.py +251 -0
  1036. vllm/model_executor/layers/vocab_parallel_embedding.py +558 -0
  1037. vllm/model_executor/model_loader/__init__.py +150 -0
  1038. vllm/model_executor/model_loader/base_loader.py +57 -0
  1039. vllm/model_executor/model_loader/bitsandbytes_loader.py +822 -0
  1040. vllm/model_executor/model_loader/default_loader.py +321 -0
  1041. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  1042. vllm/model_executor/model_loader/gguf_loader.py +371 -0
  1043. vllm/model_executor/model_loader/online_quantization.py +275 -0
  1044. vllm/model_executor/model_loader/runai_streamer_loader.py +116 -0
  1045. vllm/model_executor/model_loader/sharded_state_loader.py +214 -0
  1046. vllm/model_executor/model_loader/tensorizer.py +790 -0
  1047. vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
  1048. vllm/model_executor/model_loader/tpu.py +118 -0
  1049. vllm/model_executor/model_loader/utils.py +292 -0
  1050. vllm/model_executor/model_loader/weight_utils.py +1157 -0
  1051. vllm/model_executor/models/__init__.py +44 -0
  1052. vllm/model_executor/models/adapters.py +522 -0
  1053. vllm/model_executor/models/afmoe.py +696 -0
  1054. vllm/model_executor/models/aimv2.py +248 -0
  1055. vllm/model_executor/models/apertus.py +565 -0
  1056. vllm/model_executor/models/arcee.py +428 -0
  1057. vllm/model_executor/models/arctic.py +633 -0
  1058. vllm/model_executor/models/aria.py +653 -0
  1059. vllm/model_executor/models/audioflamingo3.py +639 -0
  1060. vllm/model_executor/models/aya_vision.py +448 -0
  1061. vllm/model_executor/models/bagel.py +584 -0
  1062. vllm/model_executor/models/baichuan.py +493 -0
  1063. vllm/model_executor/models/bailing_moe.py +642 -0
  1064. vllm/model_executor/models/bamba.py +511 -0
  1065. vllm/model_executor/models/bee.py +157 -0
  1066. vllm/model_executor/models/bert.py +925 -0
  1067. vllm/model_executor/models/bert_with_rope.py +732 -0
  1068. vllm/model_executor/models/blip.py +350 -0
  1069. vllm/model_executor/models/blip2.py +693 -0
  1070. vllm/model_executor/models/bloom.py +390 -0
  1071. vllm/model_executor/models/chameleon.py +1095 -0
  1072. vllm/model_executor/models/chatglm.py +502 -0
  1073. vllm/model_executor/models/clip.py +1004 -0
  1074. vllm/model_executor/models/cohere2_vision.py +470 -0
  1075. vllm/model_executor/models/commandr.py +469 -0
  1076. vllm/model_executor/models/config.py +531 -0
  1077. vllm/model_executor/models/dbrx.py +484 -0
  1078. vllm/model_executor/models/deepencoder.py +676 -0
  1079. vllm/model_executor/models/deepseek_eagle.py +252 -0
  1080. vllm/model_executor/models/deepseek_mtp.py +446 -0
  1081. vllm/model_executor/models/deepseek_ocr.py +591 -0
  1082. vllm/model_executor/models/deepseek_v2.py +1710 -0
  1083. vllm/model_executor/models/deepseek_vl2.py +642 -0
  1084. vllm/model_executor/models/dots1.py +565 -0
  1085. vllm/model_executor/models/dots_ocr.py +821 -0
  1086. vllm/model_executor/models/ernie45.py +53 -0
  1087. vllm/model_executor/models/ernie45_moe.py +754 -0
  1088. vllm/model_executor/models/ernie45_vl.py +1621 -0
  1089. vllm/model_executor/models/ernie45_vl_moe.py +800 -0
  1090. vllm/model_executor/models/ernie_mtp.py +279 -0
  1091. vllm/model_executor/models/exaone.py +524 -0
  1092. vllm/model_executor/models/exaone4.py +516 -0
  1093. vllm/model_executor/models/fairseq2_llama.py +154 -0
  1094. vllm/model_executor/models/falcon.py +543 -0
  1095. vllm/model_executor/models/falcon_h1.py +675 -0
  1096. vllm/model_executor/models/flex_olmo.py +155 -0
  1097. vllm/model_executor/models/fuyu.py +371 -0
  1098. vllm/model_executor/models/gemma.py +425 -0
  1099. vllm/model_executor/models/gemma2.py +435 -0
  1100. vllm/model_executor/models/gemma3.py +507 -0
  1101. vllm/model_executor/models/gemma3_mm.py +664 -0
  1102. vllm/model_executor/models/gemma3n.py +1166 -0
  1103. vllm/model_executor/models/gemma3n_mm.py +810 -0
  1104. vllm/model_executor/models/glm.py +24 -0
  1105. vllm/model_executor/models/glm4.py +295 -0
  1106. vllm/model_executor/models/glm4_1v.py +1808 -0
  1107. vllm/model_executor/models/glm4_moe.py +736 -0
  1108. vllm/model_executor/models/glm4_moe_mtp.py +359 -0
  1109. vllm/model_executor/models/glm4v.py +783 -0
  1110. vllm/model_executor/models/gpt2.py +397 -0
  1111. vllm/model_executor/models/gpt_bigcode.py +339 -0
  1112. vllm/model_executor/models/gpt_j.py +346 -0
  1113. vllm/model_executor/models/gpt_neox.py +340 -0
  1114. vllm/model_executor/models/gpt_oss.py +744 -0
  1115. vllm/model_executor/models/granite.py +475 -0
  1116. vllm/model_executor/models/granite_speech.py +912 -0
  1117. vllm/model_executor/models/granitemoe.py +560 -0
  1118. vllm/model_executor/models/granitemoehybrid.py +703 -0
  1119. vllm/model_executor/models/granitemoeshared.py +328 -0
  1120. vllm/model_executor/models/gritlm.py +243 -0
  1121. vllm/model_executor/models/grok1.py +554 -0
  1122. vllm/model_executor/models/h2ovl.py +554 -0
  1123. vllm/model_executor/models/hunyuan_v1.py +1040 -0
  1124. vllm/model_executor/models/hunyuan_vision.py +1034 -0
  1125. vllm/model_executor/models/hyperclovax_vision.py +1164 -0
  1126. vllm/model_executor/models/idefics2_vision_model.py +427 -0
  1127. vllm/model_executor/models/idefics3.py +716 -0
  1128. vllm/model_executor/models/interfaces.py +1179 -0
  1129. vllm/model_executor/models/interfaces_base.py +228 -0
  1130. vllm/model_executor/models/intern_vit.py +454 -0
  1131. vllm/model_executor/models/internlm2.py +453 -0
  1132. vllm/model_executor/models/internlm2_ve.py +139 -0
  1133. vllm/model_executor/models/interns1.py +828 -0
  1134. vllm/model_executor/models/interns1_vit.py +433 -0
  1135. vllm/model_executor/models/internvl.py +1450 -0
  1136. vllm/model_executor/models/jais.py +397 -0
  1137. vllm/model_executor/models/jais2.py +529 -0
  1138. vllm/model_executor/models/jamba.py +609 -0
  1139. vllm/model_executor/models/jina_vl.py +147 -0
  1140. vllm/model_executor/models/keye.py +1706 -0
  1141. vllm/model_executor/models/keye_vl1_5.py +726 -0
  1142. vllm/model_executor/models/kimi_linear.py +658 -0
  1143. vllm/model_executor/models/kimi_vl.py +576 -0
  1144. vllm/model_executor/models/lfm2.py +515 -0
  1145. vllm/model_executor/models/lfm2_moe.py +745 -0
  1146. vllm/model_executor/models/lightonocr.py +195 -0
  1147. vllm/model_executor/models/llama.py +700 -0
  1148. vllm/model_executor/models/llama4.py +856 -0
  1149. vllm/model_executor/models/llama4_eagle.py +225 -0
  1150. vllm/model_executor/models/llama_eagle.py +213 -0
  1151. vllm/model_executor/models/llama_eagle3.py +375 -0
  1152. vllm/model_executor/models/llava.py +840 -0
  1153. vllm/model_executor/models/llava_next.py +581 -0
  1154. vllm/model_executor/models/llava_next_video.py +465 -0
  1155. vllm/model_executor/models/llava_onevision.py +921 -0
  1156. vllm/model_executor/models/longcat_flash.py +743 -0
  1157. vllm/model_executor/models/longcat_flash_mtp.py +349 -0
  1158. vllm/model_executor/models/mamba.py +276 -0
  1159. vllm/model_executor/models/mamba2.py +288 -0
  1160. vllm/model_executor/models/medusa.py +179 -0
  1161. vllm/model_executor/models/midashenglm.py +826 -0
  1162. vllm/model_executor/models/mimo.py +188 -0
  1163. vllm/model_executor/models/mimo_mtp.py +294 -0
  1164. vllm/model_executor/models/minicpm.py +656 -0
  1165. vllm/model_executor/models/minicpm3.py +233 -0
  1166. vllm/model_executor/models/minicpm_eagle.py +385 -0
  1167. vllm/model_executor/models/minicpmo.py +768 -0
  1168. vllm/model_executor/models/minicpmv.py +1742 -0
  1169. vllm/model_executor/models/minimax_m2.py +550 -0
  1170. vllm/model_executor/models/minimax_text_01.py +1007 -0
  1171. vllm/model_executor/models/minimax_vl_01.py +394 -0
  1172. vllm/model_executor/models/mistral3.py +635 -0
  1173. vllm/model_executor/models/mistral_large_3.py +63 -0
  1174. vllm/model_executor/models/mistral_large_3_eagle.py +136 -0
  1175. vllm/model_executor/models/mixtral.py +598 -0
  1176. vllm/model_executor/models/mllama4.py +1149 -0
  1177. vllm/model_executor/models/mlp_speculator.py +235 -0
  1178. vllm/model_executor/models/modernbert.py +451 -0
  1179. vllm/model_executor/models/module_mapping.py +74 -0
  1180. vllm/model_executor/models/molmo.py +1550 -0
  1181. vllm/model_executor/models/moonvit.py +686 -0
  1182. vllm/model_executor/models/mpt.py +335 -0
  1183. vllm/model_executor/models/nano_nemotron_vl.py +1730 -0
  1184. vllm/model_executor/models/nemotron.py +499 -0
  1185. vllm/model_executor/models/nemotron_h.py +900 -0
  1186. vllm/model_executor/models/nemotron_nas.py +471 -0
  1187. vllm/model_executor/models/nemotron_vl.py +651 -0
  1188. vllm/model_executor/models/nvlm_d.py +216 -0
  1189. vllm/model_executor/models/olmo.py +412 -0
  1190. vllm/model_executor/models/olmo2.py +454 -0
  1191. vllm/model_executor/models/olmoe.py +493 -0
  1192. vllm/model_executor/models/opencua.py +262 -0
  1193. vllm/model_executor/models/openpangu.py +1049 -0
  1194. vllm/model_executor/models/openpangu_mtp.py +265 -0
  1195. vllm/model_executor/models/opt.py +426 -0
  1196. vllm/model_executor/models/orion.py +365 -0
  1197. vllm/model_executor/models/ouro.py +507 -0
  1198. vllm/model_executor/models/ovis.py +557 -0
  1199. vllm/model_executor/models/ovis2_5.py +661 -0
  1200. vllm/model_executor/models/paddleocr_vl.py +1300 -0
  1201. vllm/model_executor/models/paligemma.py +408 -0
  1202. vllm/model_executor/models/persimmon.py +373 -0
  1203. vllm/model_executor/models/phi.py +363 -0
  1204. vllm/model_executor/models/phi3.py +18 -0
  1205. vllm/model_executor/models/phi3v.py +729 -0
  1206. vllm/model_executor/models/phi4mm.py +1251 -0
  1207. vllm/model_executor/models/phi4mm_audio.py +1296 -0
  1208. vllm/model_executor/models/phi4mm_utils.py +1907 -0
  1209. vllm/model_executor/models/phimoe.py +669 -0
  1210. vllm/model_executor/models/pixtral.py +1379 -0
  1211. vllm/model_executor/models/plamo2.py +965 -0
  1212. vllm/model_executor/models/plamo3.py +440 -0
  1213. vllm/model_executor/models/qwen.py +365 -0
  1214. vllm/model_executor/models/qwen2.py +600 -0
  1215. vllm/model_executor/models/qwen2_5_omni_thinker.py +1219 -0
  1216. vllm/model_executor/models/qwen2_5_vl.py +1569 -0
  1217. vllm/model_executor/models/qwen2_audio.py +471 -0
  1218. vllm/model_executor/models/qwen2_moe.py +597 -0
  1219. vllm/model_executor/models/qwen2_rm.py +123 -0
  1220. vllm/model_executor/models/qwen2_vl.py +1568 -0
  1221. vllm/model_executor/models/qwen3.py +331 -0
  1222. vllm/model_executor/models/qwen3_moe.py +751 -0
  1223. vllm/model_executor/models/qwen3_next.py +1395 -0
  1224. vllm/model_executor/models/qwen3_next_mtp.py +296 -0
  1225. vllm/model_executor/models/qwen3_omni_moe_thinker.py +1793 -0
  1226. vllm/model_executor/models/qwen3_vl.py +2092 -0
  1227. vllm/model_executor/models/qwen3_vl_moe.py +474 -0
  1228. vllm/model_executor/models/qwen_vl.py +801 -0
  1229. vllm/model_executor/models/radio.py +555 -0
  1230. vllm/model_executor/models/registry.py +1189 -0
  1231. vllm/model_executor/models/roberta.py +259 -0
  1232. vllm/model_executor/models/rvl.py +107 -0
  1233. vllm/model_executor/models/seed_oss.py +492 -0
  1234. vllm/model_executor/models/siglip.py +1244 -0
  1235. vllm/model_executor/models/siglip2navit.py +658 -0
  1236. vllm/model_executor/models/skyworkr1v.py +951 -0
  1237. vllm/model_executor/models/smolvlm.py +38 -0
  1238. vllm/model_executor/models/solar.py +484 -0
  1239. vllm/model_executor/models/stablelm.py +354 -0
  1240. vllm/model_executor/models/starcoder2.py +365 -0
  1241. vllm/model_executor/models/step3_text.py +554 -0
  1242. vllm/model_executor/models/step3_vl.py +1147 -0
  1243. vllm/model_executor/models/swin.py +514 -0
  1244. vllm/model_executor/models/tarsier.py +617 -0
  1245. vllm/model_executor/models/telechat2.py +153 -0
  1246. vllm/model_executor/models/teleflm.py +78 -0
  1247. vllm/model_executor/models/terratorch.py +318 -0
  1248. vllm/model_executor/models/transformers/__init__.py +127 -0
  1249. vllm/model_executor/models/transformers/base.py +518 -0
  1250. vllm/model_executor/models/transformers/causal.py +65 -0
  1251. vllm/model_executor/models/transformers/legacy.py +90 -0
  1252. vllm/model_executor/models/transformers/moe.py +325 -0
  1253. vllm/model_executor/models/transformers/multimodal.py +411 -0
  1254. vllm/model_executor/models/transformers/pooling.py +119 -0
  1255. vllm/model_executor/models/transformers/utils.py +213 -0
  1256. vllm/model_executor/models/ultravox.py +766 -0
  1257. vllm/model_executor/models/utils.py +832 -0
  1258. vllm/model_executor/models/vision.py +546 -0
  1259. vllm/model_executor/models/voxtral.py +841 -0
  1260. vllm/model_executor/models/whisper.py +971 -0
  1261. vllm/model_executor/models/zamba2.py +979 -0
  1262. vllm/model_executor/parameter.py +642 -0
  1263. vllm/model_executor/utils.py +119 -0
  1264. vllm/model_executor/warmup/__init__.py +0 -0
  1265. vllm/model_executor/warmup/deep_gemm_warmup.py +314 -0
  1266. vllm/model_executor/warmup/kernel_warmup.py +98 -0
  1267. vllm/multimodal/__init__.py +40 -0
  1268. vllm/multimodal/audio.py +147 -0
  1269. vllm/multimodal/base.py +56 -0
  1270. vllm/multimodal/cache.py +823 -0
  1271. vllm/multimodal/evs.py +294 -0
  1272. vllm/multimodal/hasher.py +120 -0
  1273. vllm/multimodal/image.py +142 -0
  1274. vllm/multimodal/inputs.py +1089 -0
  1275. vllm/multimodal/parse.py +565 -0
  1276. vllm/multimodal/processing.py +2240 -0
  1277. vllm/multimodal/profiling.py +351 -0
  1278. vllm/multimodal/registry.py +357 -0
  1279. vllm/multimodal/utils.py +513 -0
  1280. vllm/multimodal/video.py +340 -0
  1281. vllm/outputs.py +345 -0
  1282. vllm/platforms/__init__.py +277 -0
  1283. vllm/platforms/cpu.py +421 -0
  1284. vllm/platforms/cuda.py +618 -0
  1285. vllm/platforms/interface.py +695 -0
  1286. vllm/platforms/rocm.py +564 -0
  1287. vllm/platforms/tpu.py +295 -0
  1288. vllm/platforms/xpu.py +277 -0
  1289. vllm/plugins/__init__.py +81 -0
  1290. vllm/plugins/io_processors/__init__.py +68 -0
  1291. vllm/plugins/io_processors/interface.py +77 -0
  1292. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1293. vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
  1294. vllm/pooling_params.py +230 -0
  1295. vllm/profiler/__init__.py +0 -0
  1296. vllm/profiler/layerwise_profile.py +392 -0
  1297. vllm/profiler/utils.py +151 -0
  1298. vllm/profiler/wrapper.py +241 -0
  1299. vllm/py.typed +2 -0
  1300. vllm/ray/__init__.py +0 -0
  1301. vllm/ray/lazy_utils.py +30 -0
  1302. vllm/ray/ray_env.py +79 -0
  1303. vllm/reasoning/__init__.py +96 -0
  1304. vllm/reasoning/abs_reasoning_parsers.py +318 -0
  1305. vllm/reasoning/basic_parsers.py +175 -0
  1306. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1307. vllm/reasoning/deepseek_v3_reasoning_parser.py +67 -0
  1308. vllm/reasoning/ernie45_reasoning_parser.py +165 -0
  1309. vllm/reasoning/glm4_moe_reasoning_parser.py +171 -0
  1310. vllm/reasoning/gptoss_reasoning_parser.py +173 -0
  1311. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1312. vllm/reasoning/holo2_reasoning_parser.py +88 -0
  1313. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
  1314. vllm/reasoning/identity_reasoning_parser.py +63 -0
  1315. vllm/reasoning/minimax_m2_reasoning_parser.py +110 -0
  1316. vllm/reasoning/mistral_reasoning_parser.py +154 -0
  1317. vllm/reasoning/olmo3_reasoning_parser.py +302 -0
  1318. vllm/reasoning/qwen3_reasoning_parser.py +67 -0
  1319. vllm/reasoning/seedoss_reasoning_parser.py +27 -0
  1320. vllm/reasoning/step3_reasoning_parser.py +107 -0
  1321. vllm/sampling_params.py +597 -0
  1322. vllm/scalar_type.py +355 -0
  1323. vllm/scripts.py +17 -0
  1324. vllm/sequence.py +98 -0
  1325. vllm/tasks.py +13 -0
  1326. vllm/third_party/__init__.py +0 -0
  1327. vllm/third_party/pynvml.py +6140 -0
  1328. vllm/tokenizers/__init__.py +20 -0
  1329. vllm/tokenizers/deepseek_v32.py +175 -0
  1330. vllm/tokenizers/deepseek_v32_encoding.py +459 -0
  1331. vllm/tokenizers/detokenizer_utils.py +198 -0
  1332. vllm/tokenizers/hf.py +119 -0
  1333. vllm/tokenizers/mistral.py +567 -0
  1334. vllm/tokenizers/protocol.py +114 -0
  1335. vllm/tokenizers/registry.py +233 -0
  1336. vllm/tool_parsers/__init__.py +150 -0
  1337. vllm/tool_parsers/abstract_tool_parser.py +273 -0
  1338. vllm/tool_parsers/deepseekv31_tool_parser.py +388 -0
  1339. vllm/tool_parsers/deepseekv32_tool_parser.py +591 -0
  1340. vllm/tool_parsers/deepseekv3_tool_parser.py +390 -0
  1341. vllm/tool_parsers/ernie45_tool_parser.py +210 -0
  1342. vllm/tool_parsers/gigachat3_tool_parser.py +190 -0
  1343. vllm/tool_parsers/glm4_moe_tool_parser.py +200 -0
  1344. vllm/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
  1345. vllm/tool_parsers/granite_tool_parser.py +253 -0
  1346. vllm/tool_parsers/hermes_tool_parser.py +495 -0
  1347. vllm/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
  1348. vllm/tool_parsers/internlm2_tool_parser.py +227 -0
  1349. vllm/tool_parsers/jamba_tool_parser.py +323 -0
  1350. vllm/tool_parsers/kimi_k2_tool_parser.py +590 -0
  1351. vllm/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
  1352. vllm/tool_parsers/llama_tool_parser.py +324 -0
  1353. vllm/tool_parsers/longcat_tool_parser.py +37 -0
  1354. vllm/tool_parsers/minimax_m2_tool_parser.py +643 -0
  1355. vllm/tool_parsers/minimax_tool_parser.py +849 -0
  1356. vllm/tool_parsers/mistral_tool_parser.py +585 -0
  1357. vllm/tool_parsers/olmo3_tool_parser.py +366 -0
  1358. vllm/tool_parsers/openai_tool_parser.py +102 -0
  1359. vllm/tool_parsers/phi4mini_tool_parser.py +120 -0
  1360. vllm/tool_parsers/pythonic_tool_parser.py +332 -0
  1361. vllm/tool_parsers/qwen3coder_tool_parser.py +781 -0
  1362. vllm/tool_parsers/qwen3xml_tool_parser.py +1316 -0
  1363. vllm/tool_parsers/seed_oss_tool_parser.py +744 -0
  1364. vllm/tool_parsers/step3_tool_parser.py +303 -0
  1365. vllm/tool_parsers/utils.py +229 -0
  1366. vllm/tool_parsers/xlam_tool_parser.py +556 -0
  1367. vllm/tracing.py +135 -0
  1368. vllm/transformers_utils/__init__.py +26 -0
  1369. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1370. vllm/transformers_utils/chat_templates/registry.py +73 -0
  1371. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1372. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1373. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1374. vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
  1375. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1376. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1377. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1378. vllm/transformers_utils/config.py +1144 -0
  1379. vllm/transformers_utils/config_parser_base.py +20 -0
  1380. vllm/transformers_utils/configs/__init__.py +102 -0
  1381. vllm/transformers_utils/configs/afmoe.py +87 -0
  1382. vllm/transformers_utils/configs/arctic.py +216 -0
  1383. vllm/transformers_utils/configs/bagel.py +53 -0
  1384. vllm/transformers_utils/configs/chatglm.py +75 -0
  1385. vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
  1386. vllm/transformers_utils/configs/dotsocr.py +71 -0
  1387. vllm/transformers_utils/configs/eagle.py +90 -0
  1388. vllm/transformers_utils/configs/falcon.py +89 -0
  1389. vllm/transformers_utils/configs/flex_olmo.py +82 -0
  1390. vllm/transformers_utils/configs/hunyuan_vl.py +322 -0
  1391. vllm/transformers_utils/configs/jais.py +243 -0
  1392. vllm/transformers_utils/configs/kimi_linear.py +148 -0
  1393. vllm/transformers_utils/configs/kimi_vl.py +38 -0
  1394. vllm/transformers_utils/configs/lfm2_moe.py +163 -0
  1395. vllm/transformers_utils/configs/medusa.py +65 -0
  1396. vllm/transformers_utils/configs/midashenglm.py +103 -0
  1397. vllm/transformers_utils/configs/mistral.py +235 -0
  1398. vllm/transformers_utils/configs/mlp_speculator.py +69 -0
  1399. vllm/transformers_utils/configs/moonvit.py +33 -0
  1400. vllm/transformers_utils/configs/nemotron.py +220 -0
  1401. vllm/transformers_utils/configs/nemotron_h.py +284 -0
  1402. vllm/transformers_utils/configs/olmo3.py +83 -0
  1403. vllm/transformers_utils/configs/ovis.py +182 -0
  1404. vllm/transformers_utils/configs/qwen3_next.py +277 -0
  1405. vllm/transformers_utils/configs/radio.py +89 -0
  1406. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1407. vllm/transformers_utils/configs/speculators/algos.py +38 -0
  1408. vllm/transformers_utils/configs/speculators/base.py +114 -0
  1409. vllm/transformers_utils/configs/step3_vl.py +178 -0
  1410. vllm/transformers_utils/configs/tarsier2.py +24 -0
  1411. vllm/transformers_utils/configs/ultravox.py +120 -0
  1412. vllm/transformers_utils/dynamic_module.py +59 -0
  1413. vllm/transformers_utils/gguf_utils.py +280 -0
  1414. vllm/transformers_utils/processor.py +424 -0
  1415. vllm/transformers_utils/processors/__init__.py +25 -0
  1416. vllm/transformers_utils/processors/bagel.py +73 -0
  1417. vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
  1418. vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
  1419. vllm/transformers_utils/processors/hunyuan_vl.py +233 -0
  1420. vllm/transformers_utils/processors/hunyuan_vl_image.py +477 -0
  1421. vllm/transformers_utils/processors/ovis.py +453 -0
  1422. vllm/transformers_utils/processors/ovis2_5.py +468 -0
  1423. vllm/transformers_utils/repo_utils.py +287 -0
  1424. vllm/transformers_utils/runai_utils.py +102 -0
  1425. vllm/transformers_utils/s3_utils.py +95 -0
  1426. vllm/transformers_utils/tokenizer.py +127 -0
  1427. vllm/transformers_utils/tokenizer_base.py +33 -0
  1428. vllm/transformers_utils/utils.py +112 -0
  1429. vllm/triton_utils/__init__.py +20 -0
  1430. vllm/triton_utils/importing.py +103 -0
  1431. vllm/usage/__init__.py +0 -0
  1432. vllm/usage/usage_lib.py +294 -0
  1433. vllm/utils/__init__.py +66 -0
  1434. vllm/utils/argparse_utils.py +492 -0
  1435. vllm/utils/async_utils.py +310 -0
  1436. vllm/utils/cache.py +214 -0
  1437. vllm/utils/collection_utils.py +112 -0
  1438. vllm/utils/counter.py +45 -0
  1439. vllm/utils/deep_gemm.py +400 -0
  1440. vllm/utils/flashinfer.py +528 -0
  1441. vllm/utils/func_utils.py +236 -0
  1442. vllm/utils/gc_utils.py +151 -0
  1443. vllm/utils/hashing.py +117 -0
  1444. vllm/utils/import_utils.py +449 -0
  1445. vllm/utils/jsontree.py +158 -0
  1446. vllm/utils/math_utils.py +32 -0
  1447. vllm/utils/mem_constants.py +13 -0
  1448. vllm/utils/mem_utils.py +232 -0
  1449. vllm/utils/nccl.py +64 -0
  1450. vllm/utils/network_utils.py +331 -0
  1451. vllm/utils/nvtx_pytorch_hooks.py +286 -0
  1452. vllm/utils/platform_utils.py +59 -0
  1453. vllm/utils/profiling.py +56 -0
  1454. vllm/utils/registry.py +51 -0
  1455. vllm/utils/serial_utils.py +214 -0
  1456. vllm/utils/system_utils.py +269 -0
  1457. vllm/utils/tensor_schema.py +255 -0
  1458. vllm/utils/torch_utils.py +648 -0
  1459. vllm/v1/__init__.py +0 -0
  1460. vllm/v1/attention/__init__.py +0 -0
  1461. vllm/v1/attention/backends/__init__.py +0 -0
  1462. vllm/v1/attention/backends/cpu_attn.py +497 -0
  1463. vllm/v1/attention/backends/flash_attn.py +1051 -0
  1464. vllm/v1/attention/backends/flashinfer.py +1575 -0
  1465. vllm/v1/attention/backends/flex_attention.py +1028 -0
  1466. vllm/v1/attention/backends/gdn_attn.py +375 -0
  1467. vllm/v1/attention/backends/linear_attn.py +77 -0
  1468. vllm/v1/attention/backends/mamba1_attn.py +159 -0
  1469. vllm/v1/attention/backends/mamba2_attn.py +348 -0
  1470. vllm/v1/attention/backends/mamba_attn.py +117 -0
  1471. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1472. vllm/v1/attention/backends/mla/aiter_triton_mla.py +74 -0
  1473. vllm/v1/attention/backends/mla/common.py +2114 -0
  1474. vllm/v1/attention/backends/mla/cutlass_mla.py +278 -0
  1475. vllm/v1/attention/backends/mla/flashattn_mla.py +342 -0
  1476. vllm/v1/attention/backends/mla/flashinfer_mla.py +174 -0
  1477. vllm/v1/attention/backends/mla/flashmla.py +317 -0
  1478. vllm/v1/attention/backends/mla/flashmla_sparse.py +1020 -0
  1479. vllm/v1/attention/backends/mla/indexer.py +345 -0
  1480. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +275 -0
  1481. vllm/v1/attention/backends/mla/rocm_aiter_mla_sparse.py +325 -0
  1482. vllm/v1/attention/backends/mla/triton_mla.py +171 -0
  1483. vllm/v1/attention/backends/pallas.py +436 -0
  1484. vllm/v1/attention/backends/rocm_aiter_fa.py +1000 -0
  1485. vllm/v1/attention/backends/rocm_aiter_unified_attn.py +206 -0
  1486. vllm/v1/attention/backends/rocm_attn.py +359 -0
  1487. vllm/v1/attention/backends/short_conv_attn.py +104 -0
  1488. vllm/v1/attention/backends/tree_attn.py +428 -0
  1489. vllm/v1/attention/backends/triton_attn.py +497 -0
  1490. vllm/v1/attention/backends/utils.py +1212 -0
  1491. vllm/v1/core/__init__.py +0 -0
  1492. vllm/v1/core/block_pool.py +485 -0
  1493. vllm/v1/core/encoder_cache_manager.py +402 -0
  1494. vllm/v1/core/kv_cache_coordinator.py +570 -0
  1495. vllm/v1/core/kv_cache_manager.py +419 -0
  1496. vllm/v1/core/kv_cache_metrics.py +96 -0
  1497. vllm/v1/core/kv_cache_utils.py +1476 -0
  1498. vllm/v1/core/sched/__init__.py +0 -0
  1499. vllm/v1/core/sched/async_scheduler.py +68 -0
  1500. vllm/v1/core/sched/interface.py +189 -0
  1501. vllm/v1/core/sched/output.py +230 -0
  1502. vllm/v1/core/sched/request_queue.py +217 -0
  1503. vllm/v1/core/sched/scheduler.py +1826 -0
  1504. vllm/v1/core/sched/utils.py +64 -0
  1505. vllm/v1/core/single_type_kv_cache_manager.py +801 -0
  1506. vllm/v1/cudagraph_dispatcher.py +183 -0
  1507. vllm/v1/engine/__init__.py +217 -0
  1508. vllm/v1/engine/async_llm.py +866 -0
  1509. vllm/v1/engine/coordinator.py +377 -0
  1510. vllm/v1/engine/core.py +1455 -0
  1511. vllm/v1/engine/core_client.py +1416 -0
  1512. vllm/v1/engine/detokenizer.py +351 -0
  1513. vllm/v1/engine/exceptions.py +18 -0
  1514. vllm/v1/engine/input_processor.py +643 -0
  1515. vllm/v1/engine/llm_engine.py +414 -0
  1516. vllm/v1/engine/logprobs.py +189 -0
  1517. vllm/v1/engine/output_processor.py +659 -0
  1518. vllm/v1/engine/parallel_sampling.py +145 -0
  1519. vllm/v1/engine/processor.py +20 -0
  1520. vllm/v1/engine/utils.py +1068 -0
  1521. vllm/v1/executor/__init__.py +6 -0
  1522. vllm/v1/executor/abstract.py +352 -0
  1523. vllm/v1/executor/multiproc_executor.py +890 -0
  1524. vllm/v1/executor/ray_distributed_executor.py +8 -0
  1525. vllm/v1/executor/ray_executor.py +626 -0
  1526. vllm/v1/executor/ray_utils.py +465 -0
  1527. vllm/v1/executor/uniproc_executor.py +186 -0
  1528. vllm/v1/kv_cache_interface.py +404 -0
  1529. vllm/v1/kv_offload/__init__.py +0 -0
  1530. vllm/v1/kv_offload/abstract.py +161 -0
  1531. vllm/v1/kv_offload/arc_manager.py +237 -0
  1532. vllm/v1/kv_offload/backend.py +97 -0
  1533. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1534. vllm/v1/kv_offload/backends/cpu.py +62 -0
  1535. vllm/v1/kv_offload/cpu.py +86 -0
  1536. vllm/v1/kv_offload/factory.py +56 -0
  1537. vllm/v1/kv_offload/lru_manager.py +139 -0
  1538. vllm/v1/kv_offload/mediums.py +39 -0
  1539. vllm/v1/kv_offload/spec.py +66 -0
  1540. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1541. vllm/v1/kv_offload/worker/cpu_gpu.py +280 -0
  1542. vllm/v1/kv_offload/worker/worker.py +144 -0
  1543. vllm/v1/metrics/__init__.py +0 -0
  1544. vllm/v1/metrics/loggers.py +1305 -0
  1545. vllm/v1/metrics/prometheus.py +82 -0
  1546. vllm/v1/metrics/ray_wrappers.py +194 -0
  1547. vllm/v1/metrics/reader.py +257 -0
  1548. vllm/v1/metrics/stats.py +437 -0
  1549. vllm/v1/outputs.py +245 -0
  1550. vllm/v1/pool/__init__.py +0 -0
  1551. vllm/v1/pool/metadata.py +126 -0
  1552. vllm/v1/request.py +282 -0
  1553. vllm/v1/sample/__init__.py +0 -0
  1554. vllm/v1/sample/logits_processor/__init__.py +352 -0
  1555. vllm/v1/sample/logits_processor/builtin.py +278 -0
  1556. vllm/v1/sample/logits_processor/interface.py +106 -0
  1557. vllm/v1/sample/logits_processor/state.py +165 -0
  1558. vllm/v1/sample/metadata.py +44 -0
  1559. vllm/v1/sample/ops/__init__.py +0 -0
  1560. vllm/v1/sample/ops/bad_words.py +52 -0
  1561. vllm/v1/sample/ops/logprobs.py +25 -0
  1562. vllm/v1/sample/ops/penalties.py +57 -0
  1563. vllm/v1/sample/ops/topk_topp_sampler.py +384 -0
  1564. vllm/v1/sample/rejection_sampler.py +805 -0
  1565. vllm/v1/sample/sampler.py +319 -0
  1566. vllm/v1/sample/tpu/__init__.py +0 -0
  1567. vllm/v1/sample/tpu/metadata.py +120 -0
  1568. vllm/v1/sample/tpu/sampler.py +215 -0
  1569. vllm/v1/serial_utils.py +514 -0
  1570. vllm/v1/spec_decode/__init__.py +0 -0
  1571. vllm/v1/spec_decode/eagle.py +1331 -0
  1572. vllm/v1/spec_decode/medusa.py +73 -0
  1573. vllm/v1/spec_decode/metadata.py +66 -0
  1574. vllm/v1/spec_decode/metrics.py +225 -0
  1575. vllm/v1/spec_decode/ngram_proposer.py +291 -0
  1576. vllm/v1/spec_decode/suffix_decoding.py +101 -0
  1577. vllm/v1/spec_decode/utils.py +121 -0
  1578. vllm/v1/structured_output/__init__.py +353 -0
  1579. vllm/v1/structured_output/backend_guidance.py +265 -0
  1580. vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
  1581. vllm/v1/structured_output/backend_outlines.py +324 -0
  1582. vllm/v1/structured_output/backend_types.py +136 -0
  1583. vllm/v1/structured_output/backend_xgrammar.py +378 -0
  1584. vllm/v1/structured_output/request.py +94 -0
  1585. vllm/v1/structured_output/utils.py +469 -0
  1586. vllm/v1/utils.py +414 -0
  1587. vllm/v1/worker/__init__.py +0 -0
  1588. vllm/v1/worker/block_table.py +343 -0
  1589. vllm/v1/worker/cp_utils.py +42 -0
  1590. vllm/v1/worker/cpu_model_runner.py +122 -0
  1591. vllm/v1/worker/cpu_worker.py +192 -0
  1592. vllm/v1/worker/dp_utils.py +240 -0
  1593. vllm/v1/worker/ec_connector_model_runner_mixin.py +87 -0
  1594. vllm/v1/worker/gpu/README.md +4 -0
  1595. vllm/v1/worker/gpu/__init__.py +0 -0
  1596. vllm/v1/worker/gpu/async_utils.py +98 -0
  1597. vllm/v1/worker/gpu/attn_utils.py +189 -0
  1598. vllm/v1/worker/gpu/block_table.py +314 -0
  1599. vllm/v1/worker/gpu/cudagraph_utils.py +259 -0
  1600. vllm/v1/worker/gpu/dp_utils.py +31 -0
  1601. vllm/v1/worker/gpu/input_batch.py +479 -0
  1602. vllm/v1/worker/gpu/metrics/__init__.py +0 -0
  1603. vllm/v1/worker/gpu/metrics/logits.py +42 -0
  1604. vllm/v1/worker/gpu/model_runner.py +1006 -0
  1605. vllm/v1/worker/gpu/sample/__init__.py +0 -0
  1606. vllm/v1/worker/gpu/sample/gumbel.py +101 -0
  1607. vllm/v1/worker/gpu/sample/logprob.py +167 -0
  1608. vllm/v1/worker/gpu/sample/metadata.py +192 -0
  1609. vllm/v1/worker/gpu/sample/min_p.py +51 -0
  1610. vllm/v1/worker/gpu/sample/output.py +14 -0
  1611. vllm/v1/worker/gpu/sample/penalties.py +155 -0
  1612. vllm/v1/worker/gpu/sample/sampler.py +87 -0
  1613. vllm/v1/worker/gpu/spec_decode/__init__.py +18 -0
  1614. vllm/v1/worker/gpu/spec_decode/eagle.py +565 -0
  1615. vllm/v1/worker/gpu/spec_decode/eagle_cudagraph.py +115 -0
  1616. vllm/v1/worker/gpu/spec_decode/rejection_sample.py +71 -0
  1617. vllm/v1/worker/gpu/states.py +316 -0
  1618. vllm/v1/worker/gpu/structured_outputs.py +76 -0
  1619. vllm/v1/worker/gpu_input_batch.py +990 -0
  1620. vllm/v1/worker/gpu_model_runner.py +5470 -0
  1621. vllm/v1/worker/gpu_ubatch_wrapper.py +472 -0
  1622. vllm/v1/worker/gpu_worker.py +955 -0
  1623. vllm/v1/worker/kv_connector_model_runner_mixin.py +302 -0
  1624. vllm/v1/worker/lora_model_runner_mixin.py +212 -0
  1625. vllm/v1/worker/tpu_input_batch.py +583 -0
  1626. vllm/v1/worker/tpu_model_runner.py +2191 -0
  1627. vllm/v1/worker/tpu_worker.py +352 -0
  1628. vllm/v1/worker/ubatch_utils.py +109 -0
  1629. vllm/v1/worker/ubatching.py +231 -0
  1630. vllm/v1/worker/utils.py +375 -0
  1631. vllm/v1/worker/worker_base.py +377 -0
  1632. vllm/v1/worker/workspace.py +253 -0
  1633. vllm/v1/worker/xpu_model_runner.py +48 -0
  1634. vllm/v1/worker/xpu_worker.py +174 -0
  1635. vllm/version.py +39 -0
  1636. vllm/vllm_flash_attn/.gitkeep +0 -0
  1637. vllm_cpu_avx512vnni-0.13.0.dist-info/METADATA +339 -0
  1638. vllm_cpu_avx512vnni-0.13.0.dist-info/RECORD +1641 -0
  1639. vllm_cpu_avx512vnni-0.13.0.dist-info/WHEEL +5 -0
  1640. vllm_cpu_avx512vnni-0.13.0.dist-info/entry_points.txt +5 -0
  1641. vllm_cpu_avx512vnni-0.13.0.dist-info/top_level.txt +1 -0
vllm/envs.py ADDED
@@ -0,0 +1,1744 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ import functools
5
+ import json
6
+ import logging
7
+ import os
8
+ import sys
9
+ import tempfile
10
+ from collections.abc import Callable
11
+ from typing import TYPE_CHECKING, Any, Literal
12
+
13
+ if TYPE_CHECKING:
14
+ VLLM_HOST_IP: str = ""
15
+ VLLM_PORT: int | None = None
16
+ VLLM_RPC_BASE_PATH: str = tempfile.gettempdir()
17
+ VLLM_USE_MODELSCOPE: bool = False
18
+ VLLM_RINGBUFFER_WARNING_INTERVAL: int = 60
19
+ VLLM_NCCL_SO_PATH: str | None = None
20
+ LD_LIBRARY_PATH: str | None = None
21
+ VLLM_ROCM_SLEEP_MEM_CHUNK_SIZE: int = 256
22
+ VLLM_V1_USE_PREFILL_DECODE_ATTENTION: bool = False
23
+ VLLM_FLASH_ATTN_VERSION: int | None = None
24
+ LOCAL_RANK: int = 0
25
+ CUDA_VISIBLE_DEVICES: str | None = None
26
+ VLLM_ENGINE_ITERATION_TIMEOUT_S: int = 60
27
+ VLLM_API_KEY: str | None = None
28
+ VLLM_DEBUG_LOG_API_SERVER_RESPONSE: bool = False
29
+ S3_ACCESS_KEY_ID: str | None = None
30
+ S3_SECRET_ACCESS_KEY: str | None = None
31
+ S3_ENDPOINT_URL: str | None = None
32
+ VLLM_MODEL_REDIRECT_PATH: str | None = None
33
+ VLLM_CACHE_ROOT: str = os.path.expanduser("~/.cache/vllm")
34
+ VLLM_CONFIG_ROOT: str = os.path.expanduser("~/.config/vllm")
35
+ VLLM_USAGE_STATS_SERVER: str = "https://stats.vllm.ai"
36
+ VLLM_NO_USAGE_STATS: bool = False
37
+ VLLM_DISABLE_FLASHINFER_PREFILL: bool = False
38
+ VLLM_DO_NOT_TRACK: bool = False
39
+ VLLM_USAGE_SOURCE: str = ""
40
+ VLLM_CONFIGURE_LOGGING: bool = True
41
+ VLLM_LOGGING_LEVEL: str = "INFO"
42
+ VLLM_LOGGING_PREFIX: str = ""
43
+ VLLM_LOGGING_STREAM: str = "ext://sys.stdout"
44
+ VLLM_LOGGING_CONFIG_PATH: str | None = None
45
+ VLLM_LOGGING_COLOR: str = "auto"
46
+ NO_COLOR: bool = False
47
+ VLLM_LOG_STATS_INTERVAL: float = 10.0
48
+ VLLM_TRACE_FUNCTION: int = 0
49
+ VLLM_ATTENTION_BACKEND: str | None = None
50
+ VLLM_USE_FLASHINFER_SAMPLER: bool | None = None
51
+ VLLM_PP_LAYER_PARTITION: str | None = None
52
+ VLLM_CPU_KVCACHE_SPACE: int | None = 0
53
+ VLLM_CPU_OMP_THREADS_BIND: str = ""
54
+ VLLM_CPU_NUM_OF_RESERVED_CPU: int | None = None
55
+ VLLM_CPU_SGL_KERNEL: bool = False
56
+ VLLM_XLA_CACHE_PATH: str = os.path.join(VLLM_CACHE_ROOT, "xla_cache")
57
+ VLLM_XLA_CHECK_RECOMPILATION: bool = False
58
+ VLLM_FUSED_MOE_CHUNK_SIZE: int = 16 * 1024
59
+ VLLM_ENABLE_FUSED_MOE_ACTIVATION_CHUNKING: bool = True
60
+ VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE: Literal["auto", "nccl", "shm"] = "auto"
61
+ VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM: bool = False
62
+ VLLM_USE_RAY_WRAPPED_PP_COMM: bool = True
63
+ VLLM_XLA_USE_SPMD: bool = False
64
+ VLLM_WORKER_MULTIPROC_METHOD: Literal["fork", "spawn"] = "fork"
65
+ VLLM_ASSETS_CACHE: str = os.path.join(VLLM_CACHE_ROOT, "assets")
66
+ VLLM_ASSETS_CACHE_MODEL_CLEAN: bool = False
67
+ VLLM_IMAGE_FETCH_TIMEOUT: int = 5
68
+ VLLM_VIDEO_FETCH_TIMEOUT: int = 30
69
+ VLLM_AUDIO_FETCH_TIMEOUT: int = 10
70
+ VLLM_MEDIA_URL_ALLOW_REDIRECTS: bool = True
71
+ VLLM_MEDIA_LOADING_THREAD_COUNT: int = 8
72
+ VLLM_MAX_AUDIO_CLIP_FILESIZE_MB: int = 25
73
+ VLLM_VIDEO_LOADER_BACKEND: str = "opencv"
74
+ VLLM_MEDIA_CONNECTOR: str = "http"
75
+ VLLM_TARGET_DEVICE: str = "cuda"
76
+ VLLM_MAIN_CUDA_VERSION: str = "12.9"
77
+ VLLM_FLOAT32_MATMUL_PRECISION: Literal["ieee", "tf32"] = "ieee"
78
+ MAX_JOBS: str | None = None
79
+ NVCC_THREADS: str | None = None
80
+ VLLM_USE_PRECOMPILED: bool = False
81
+ VLLM_SKIP_PRECOMPILED_VERSION_SUFFIX: bool = False
82
+ VLLM_DOCKER_BUILD_CONTEXT: bool = False
83
+ VLLM_KEEP_ALIVE_ON_ENGINE_DEATH: bool = False
84
+ CMAKE_BUILD_TYPE: Literal["Debug", "Release", "RelWithDebInfo"] | None = None
85
+ VERBOSE: bool = False
86
+ VLLM_ALLOW_LONG_MAX_MODEL_LEN: bool = False
87
+ VLLM_RPC_TIMEOUT: int = 10000 # ms
88
+ VLLM_HTTP_TIMEOUT_KEEP_ALIVE: int = 5 # seconds
89
+ VLLM_PLUGINS: list[str] | None = None
90
+ VLLM_LORA_RESOLVER_CACHE_DIR: str | None = None
91
+ # Deprecated env variables for profiling, kept for backward compatibility
92
+ # See also vllm/config/profiler.py and `--profiler-config` argument
93
+ VLLM_TORCH_CUDA_PROFILE: str | None = None
94
+ VLLM_TORCH_PROFILER_DIR: str | None = None
95
+ VLLM_TORCH_PROFILER_RECORD_SHAPES: str | None = None
96
+ VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY: str | None = None
97
+ VLLM_TORCH_PROFILER_DISABLE_ASYNC_LLM: str | None = None
98
+ VLLM_TORCH_PROFILER_WITH_STACK: str | None = None
99
+ VLLM_TORCH_PROFILER_WITH_FLOPS: str | None = None
100
+ VLLM_TORCH_PROFILER_USE_GZIP: str | None = None
101
+ VLLM_TORCH_PROFILER_DUMP_CUDA_TIME_TOTAL: str | None = None
102
+ VLLM_PROFILER_DELAY_ITERS: str | None = None
103
+ VLLM_PROFILER_MAX_ITERS: str | None = None
104
+ # End of deprecated env variables for profiling
105
+ VLLM_USE_AOT_COMPILE: bool = False
106
+ VLLM_USE_BYTECODE_HOOK: bool = False
107
+ VLLM_FORCE_AOT_LOAD: bool = False
108
+ VLLM_USE_TRITON_AWQ: bool = False
109
+ VLLM_ALLOW_RUNTIME_LORA_UPDATING: bool = False
110
+ VLLM_SKIP_P2P_CHECK: bool = False
111
+ VLLM_DISABLED_KERNELS: list[str] = []
112
+ VLLM_DISABLE_PYNCCL: bool = False
113
+ VLLM_ROCM_USE_AITER: bool = False
114
+ VLLM_ROCM_USE_AITER_PAGED_ATTN: bool = False
115
+ VLLM_ROCM_USE_AITER_LINEAR: bool = True
116
+ VLLM_ROCM_USE_AITER_MOE: bool = True
117
+ VLLM_ROCM_USE_AITER_RMSNORM: bool = True
118
+ VLLM_ROCM_USE_AITER_MLA: bool = True
119
+ VLLM_ROCM_USE_AITER_MHA: bool = True
120
+ VLLM_ROCM_USE_AITER_FP4_ASM_GEMM: bool = False
121
+ VLLM_ROCM_USE_AITER_TRITON_ROPE: bool = False
122
+ VLLM_ROCM_USE_AITER_FP8BMM: bool = True
123
+ VLLM_ROCM_USE_AITER_UNIFIED_ATTENTION: bool = False
124
+ VLLM_ROCM_USE_AITER_FUSION_SHARED_EXPERTS: bool = False
125
+ VLLM_ROCM_USE_AITER_TRITON_GEMM: bool = True
126
+ VLLM_ROCM_USE_SKINNY_GEMM: bool = True
127
+ VLLM_ROCM_FP8_PADDING: bool = True
128
+ VLLM_ROCM_MOE_PADDING: bool = True
129
+ VLLM_ROCM_CUSTOM_PAGED_ATTN: bool = True
130
+ VLLM_ENABLE_V1_MULTIPROCESSING: bool = True
131
+ VLLM_LOG_BATCHSIZE_INTERVAL: float = -1
132
+ VLLM_DISABLE_COMPILE_CACHE: bool = False
133
+ Q_SCALE_CONSTANT: int = 200
134
+ K_SCALE_CONSTANT: int = 200
135
+ V_SCALE_CONSTANT: int = 100
136
+ VLLM_SERVER_DEV_MODE: bool = False
137
+ VLLM_V1_OUTPUT_PROC_CHUNK_SIZE: int = 128
138
+ VLLM_MLA_DISABLE: bool = False
139
+ VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH: int = 32
140
+ VLLM_RAY_PER_WORKER_GPUS: float = 1.0
141
+ VLLM_RAY_BUNDLE_INDICES: str = ""
142
+ VLLM_CUDART_SO_PATH: str | None = None
143
+ VLLM_DP_RANK: int = 0
144
+ VLLM_DP_RANK_LOCAL: int = -1
145
+ VLLM_DP_SIZE: int = 1
146
+ VLLM_USE_STANDALONE_COMPILE: bool = True
147
+ VLLM_DP_MASTER_IP: str = ""
148
+ VLLM_DP_MASTER_PORT: int = 0
149
+ VLLM_MOE_DP_CHUNK_SIZE: int = 256
150
+ VLLM_ENABLE_MOE_DP_CHUNK: bool = True
151
+ VLLM_RANDOMIZE_DP_DUMMY_INPUTS: bool = False
152
+ VLLM_RAY_DP_PACK_STRATEGY: Literal["strict", "fill", "span"] = "strict"
153
+ VLLM_MARLIN_USE_ATOMIC_ADD: bool = False
154
+ VLLM_MARLIN_INPUT_DTYPE: Literal["int8", "fp8"] | None = None
155
+ VLLM_MXFP4_USE_MARLIN: bool | None = None
156
+ VLLM_DEEPEPLL_NVFP4_DISPATCH: bool = False
157
+ VLLM_V1_USE_OUTLINES_CACHE: bool = False
158
+ VLLM_TPU_BUCKET_PADDING_GAP: int = 0
159
+ VLLM_TPU_MOST_MODEL_LEN: int | None = None
160
+ VLLM_TPU_USING_PATHWAYS: bool = False
161
+ VLLM_USE_DEEP_GEMM: bool = True
162
+ VLLM_MOE_USE_DEEP_GEMM: bool = True
163
+ VLLM_USE_DEEP_GEMM_E8M0: bool = True
164
+ VLLM_DEEP_GEMM_WARMUP: Literal[
165
+ "skip",
166
+ "full",
167
+ "relax",
168
+ ] = "relax"
169
+ VLLM_USE_FUSED_MOE_GROUPED_TOPK: bool = True
170
+ VLLM_USE_FLASHINFER_MOE_FP16: bool = False
171
+ VLLM_USE_FLASHINFER_MOE_FP8: bool = False
172
+ VLLM_USE_FLASHINFER_MOE_FP4: bool = False
173
+ VLLM_FLASHINFER_MOE_BACKEND: Literal["throughput", "latency", "masked_gemm"] = (
174
+ "latency"
175
+ )
176
+ VLLM_FLASHINFER_WORKSPACE_BUFFER_SIZE: int = 394 * 1024 * 1024
177
+ VLLM_XGRAMMAR_CACHE_MB: int = 0
178
+ VLLM_MSGPACK_ZERO_COPY_THRESHOLD: int = 256
179
+ VLLM_ALLOW_INSECURE_SERIALIZATION: bool = False
180
+ VLLM_NIXL_SIDE_CHANNEL_HOST: str = "localhost"
181
+ VLLM_NIXL_SIDE_CHANNEL_PORT: int = 5600
182
+ VLLM_MOONCAKE_BOOTSTRAP_PORT: int = 8998
183
+ VLLM_ALL2ALL_BACKEND: Literal[
184
+ "naive",
185
+ "pplx",
186
+ "deepep_high_throughput",
187
+ "deepep_low_latency",
188
+ "allgather_reducescatter",
189
+ "flashinfer_all2allv",
190
+ ] = "allgather_reducescatter"
191
+ VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE: int = 163840
192
+ VLLM_TOOL_PARSE_REGEX_TIMEOUT_SECONDS: int = 1
193
+ VLLM_SLEEP_WHEN_IDLE: bool = False
194
+ VLLM_MQ_MAX_CHUNK_BYTES_MB: int = 16
195
+ VLLM_EXECUTE_MODEL_TIMEOUT_SECONDS: int = 300
196
+ VLLM_KV_CACHE_LAYOUT: Literal["NHD", "HND"] | None = None
197
+ VLLM_COMPUTE_NANS_IN_LOGITS: bool = False
198
+ VLLM_USE_NVFP4_CT_EMULATIONS: bool = False
199
+ VLLM_ROCM_QUICK_REDUCE_QUANTIZATION: Literal[
200
+ "FP", "INT8", "INT6", "INT4", "NONE"
201
+ ] = "NONE"
202
+ VLLM_ROCM_QUICK_REDUCE_CAST_BF16_TO_FP16: bool = True
203
+ VLLM_ROCM_QUICK_REDUCE_MAX_SIZE_BYTES_MB: int | None = None
204
+ VLLM_NIXL_ABORT_REQUEST_TIMEOUT: int = 480
205
+ VLLM_MOONCAKE_ABORT_REQUEST_TIMEOUT: int = 480
206
+ VLLM_USE_CUDNN_PREFILL: bool = False
207
+ VLLM_USE_TRTLLM_RAGGED_DEEPSEEK_PREFILL: bool = False
208
+ VLLM_ENABLE_CUDAGRAPH_GC: bool = False
209
+ VLLM_LOOPBACK_IP: str = ""
210
+ VLLM_ALLOW_CHUNKED_LOCAL_ATTN_WITH_HYBRID_KV_CACHE: bool = False
211
+ VLLM_ENABLE_RESPONSES_API_STORE: bool = False
212
+ VLLM_USE_TRTLLM_ATTENTION: str | None = None
213
+ VLLM_NVFP4_GEMM_BACKEND: str | None = None
214
+ VLLM_FLASHINFER_DISABLE_Q_QUANTIZATION: bool = False
215
+ VLLM_HAS_FLASHINFER_CUBIN: bool = False
216
+ VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8: bool = False
217
+ VLLM_USE_FLASHINFER_MOE_MXFP4_BF16: bool = False
218
+ VLLM_ROCM_FP8_MFMA_PAGE_ATTN: bool = False
219
+ VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8_CUTLASS: bool = False
220
+ VLLM_ALLREDUCE_USE_SYMM_MEM: bool = True
221
+ VLLM_TUNED_CONFIG_FOLDER: str | None = None
222
+ VLLM_GPT_OSS_SYSTEM_TOOL_MCP_LABELS: set[str] = set()
223
+ VLLM_USE_EXPERIMENTAL_PARSER_CONTEXT: bool = False
224
+ VLLM_GPT_OSS_HARMONY_SYSTEM_INSTRUCTIONS: bool = False
225
+ VLLM_TOOL_JSON_ERROR_AUTOMATIC_RETRY: bool = False
226
+ VLLM_CUSTOM_SCOPES_FOR_PROFILING: bool = False
227
+ VLLM_NVTX_SCOPES_FOR_PROFILING: bool = False
228
+ VLLM_KV_EVENTS_USE_INT_BLOCK_HASHES: bool = True
229
+ VLLM_OBJECT_STORAGE_SHM_BUFFER_NAME: str = "VLLM_OBJECT_STORAGE_SHM_BUFFER"
230
+ VLLM_DEEPEP_BUFFER_SIZE_MB: int = 1024
231
+ VLLM_DEEPEP_HIGH_THROUGHPUT_FORCE_INTRA_NODE: bool = False
232
+ VLLM_DEEPEP_LOW_LATENCY_USE_MNNVL: bool = False
233
+ VLLM_DBO_COMM_SMS: int = 20
234
+ VLLM_PATTERN_MATCH_DEBUG: str | None = None
235
+ VLLM_DEBUG_DUMP_PATH: str | None = None
236
+ VLLM_ENABLE_INDUCTOR_MAX_AUTOTUNE: bool = True
237
+ VLLM_ENABLE_INDUCTOR_COORDINATE_DESCENT_TUNING: bool = True
238
+ VLLM_USE_NCCL_SYMM_MEM: bool = False
239
+ VLLM_NCCL_INCLUDE_PATH: str | None = None
240
+ VLLM_USE_FBGEMM: bool = False
241
+ VLLM_GC_DEBUG: str = ""
242
+ VLLM_DEBUG_WORKSPACE: bool = False
243
+ VLLM_DISABLE_SHARED_EXPERTS_STREAM: bool = False
244
+ VLLM_SHARED_EXPERTS_STREAM_TOKEN_THRESHOLD: int = 256
245
+ VLLM_COMPILE_CACHE_SAVE_FORMAT: Literal["binary", "unpacked"] = "binary"
246
+ VLLM_USE_V2_MODEL_RUNNER: bool = False
247
+
248
+
249
+ def get_default_cache_root():
250
+ return os.getenv(
251
+ "XDG_CACHE_HOME",
252
+ os.path.join(os.path.expanduser("~"), ".cache"),
253
+ )
254
+
255
+
256
+ def get_default_config_root():
257
+ return os.getenv(
258
+ "XDG_CONFIG_HOME",
259
+ os.path.join(os.path.expanduser("~"), ".config"),
260
+ )
261
+
262
+
263
+ def maybe_convert_int(value: str | None) -> int | None:
264
+ if value is None:
265
+ return None
266
+ return int(value)
267
+
268
+
269
+ def maybe_convert_bool(value: str | None) -> bool | None:
270
+ if value is None:
271
+ return None
272
+ return bool(int(value))
273
+
274
+
275
+ def disable_compile_cache() -> bool:
276
+ return bool(int(os.getenv("VLLM_DISABLE_COMPILE_CACHE", "0")))
277
+
278
+
279
+ def use_aot_compile() -> bool:
280
+ from vllm.model_executor.layers.batch_invariant import (
281
+ vllm_is_batch_invariant,
282
+ )
283
+ from vllm.utils.torch_utils import is_torch_equal_or_newer
284
+
285
+ default_value = (
286
+ "1"
287
+ if is_torch_equal_or_newer("2.10.0.dev") and not disable_compile_cache()
288
+ else "0"
289
+ )
290
+
291
+ return (
292
+ not vllm_is_batch_invariant()
293
+ and os.environ.get("VLLM_USE_AOT_COMPILE", default_value) == "1"
294
+ )
295
+
296
+
297
+ def env_with_choices(
298
+ env_name: str,
299
+ default: str | None,
300
+ choices: list[str] | Callable[[], list[str]],
301
+ case_sensitive: bool = True,
302
+ ) -> Callable[[], str | None]:
303
+ """
304
+ Create a lambda that validates environment variable against allowed choices
305
+
306
+ Args:
307
+ env_name: Name of the environment variable
308
+ default: Default value if not set (can be None)
309
+ choices: List of valid string options or callable that returns list
310
+ case_sensitive: Whether validation should be case sensitive
311
+
312
+ Returns:
313
+ Lambda function for environment_variables dict
314
+ """
315
+
316
+ def _get_validated_env() -> str | None:
317
+ value = os.getenv(env_name)
318
+ if value is None:
319
+ return default
320
+
321
+ # Resolve choices if it's a callable (for lazy loading)
322
+ actual_choices = choices() if callable(choices) else choices
323
+
324
+ if not case_sensitive:
325
+ check_value = value.lower()
326
+ check_choices = [choice.lower() for choice in actual_choices]
327
+ else:
328
+ check_value = value
329
+ check_choices = actual_choices
330
+
331
+ if check_value not in check_choices:
332
+ raise ValueError(
333
+ f"Invalid value '{value}' for {env_name}. "
334
+ f"Valid options: {actual_choices}."
335
+ )
336
+
337
+ return value
338
+
339
+ return _get_validated_env
340
+
341
+
342
+ def env_list_with_choices(
343
+ env_name: str,
344
+ default: list[str],
345
+ choices: list[str] | Callable[[], list[str]],
346
+ case_sensitive: bool = True,
347
+ ) -> Callable[[], list[str]]:
348
+ """
349
+ Create a lambda that validates environment variable
350
+ containing comma-separated values against allowed choices
351
+
352
+ Args:
353
+ env_name: Name of the environment variable
354
+ default: Default list of values if not set
355
+ choices: List of valid string options or callable that returns list
356
+ case_sensitive: Whether validation should be case sensitive
357
+
358
+ Returns:
359
+ Lambda function for environment_variables
360
+ dict that returns list of strings
361
+ """
362
+
363
+ def _get_validated_env_list() -> list[str]:
364
+ value = os.getenv(env_name)
365
+ if value is None:
366
+ return default
367
+
368
+ # Split comma-separated values and strip whitespace
369
+ values = [v.strip() for v in value.split(",") if v.strip()]
370
+
371
+ if not values:
372
+ return default
373
+
374
+ # Resolve choices if it's a callable (for lazy loading)
375
+ actual_choices = choices() if callable(choices) else choices
376
+
377
+ # Validate each value
378
+ for val in values:
379
+ if not case_sensitive:
380
+ check_value = val.lower()
381
+ check_choices = [choice.lower() for choice in actual_choices]
382
+ else:
383
+ check_value = val
384
+ check_choices = actual_choices
385
+
386
+ if check_value not in check_choices:
387
+ raise ValueError(
388
+ f"Invalid value '{val}' in {env_name}. "
389
+ f"Valid options: {actual_choices}."
390
+ )
391
+
392
+ return values
393
+
394
+ return _get_validated_env_list
395
+
396
+
397
+ def env_set_with_choices(
398
+ env_name: str,
399
+ default: list[str],
400
+ choices: list[str] | Callable[[], list[str]],
401
+ case_sensitive: bool = True,
402
+ ) -> Callable[[], set[str]]:
403
+ """
404
+ Creates a lambda which that validates environment variable
405
+ containing comma-separated values against allowed choices which
406
+ returns choices as a set.
407
+ """
408
+
409
+ def _get_validated_env_set() -> set[str]:
410
+ return set(env_list_with_choices(env_name, default, choices, case_sensitive)())
411
+
412
+ return _get_validated_env_set
413
+
414
+
415
+ def get_vllm_port() -> int | None:
416
+ """Get the port from VLLM_PORT environment variable.
417
+
418
+ Returns:
419
+ The port number as an integer if VLLM_PORT is set, None otherwise.
420
+
421
+ Raises:
422
+ ValueError: If VLLM_PORT is a URI, suggest k8s service discovery issue.
423
+ """
424
+ if "VLLM_PORT" not in os.environ:
425
+ return None
426
+
427
+ port = os.getenv("VLLM_PORT", "0")
428
+
429
+ try:
430
+ return int(port)
431
+ except ValueError as err:
432
+ from urllib.parse import urlparse
433
+
434
+ parsed = urlparse(port)
435
+ if parsed.scheme:
436
+ raise ValueError(
437
+ f"VLLM_PORT '{port}' appears to be a URI. "
438
+ "This may be caused by a Kubernetes service discovery issue,"
439
+ "check the warning in: https://docs.vllm.ai/en/stable/serving/env_vars.html"
440
+ ) from None
441
+ raise ValueError(f"VLLM_PORT '{port}' must be a valid integer") from err
442
+
443
+
444
+ # The start-* and end* here are used by the documentation generator
445
+ # to extract the used env vars.
446
+
447
+ # --8<-- [start:env-vars-definition]
448
+
449
+ logger = logging.getLogger(__name__)
450
+
451
+ environment_variables: dict[str, Callable[[], Any]] = {
452
+ # ================== Installation Time Env Vars ==================
453
+ # Target device of vLLM, supporting [cuda (by default),
454
+ # rocm, cpu]
455
+ "VLLM_TARGET_DEVICE": lambda: os.getenv("VLLM_TARGET_DEVICE", "cuda").lower(),
456
+ # Main CUDA version of vLLM. This follows PyTorch but can be overridden.
457
+ "VLLM_MAIN_CUDA_VERSION": lambda: os.getenv("VLLM_MAIN_CUDA_VERSION", "").lower()
458
+ or "12.9",
459
+ # Controls PyTorch float32 matmul precision mode within vLLM workers.
460
+ # Accepted values:
461
+ # - "ieee" (default): force full IEEE FP32 matmul precision.
462
+ # - "tf32": enable TensorFloat32-based fast matmul.
463
+ "VLLM_FLOAT32_MATMUL_PRECISION": env_with_choices(
464
+ "VLLM_FLOAT32_MATMUL_PRECISION",
465
+ "ieee",
466
+ ["ieee", "tf32"],
467
+ case_sensitive=False,
468
+ ),
469
+ # Maximum number of compilation jobs to run in parallel.
470
+ # By default this is the number of CPUs
471
+ "MAX_JOBS": lambda: os.getenv("MAX_JOBS", None),
472
+ # Number of threads to use for nvcc
473
+ # By default this is 1.
474
+ # If set, `MAX_JOBS` will be reduced to avoid oversubscribing the CPU.
475
+ "NVCC_THREADS": lambda: os.getenv("NVCC_THREADS", None),
476
+ # If set, vllm will use precompiled binaries (*.so)
477
+ "VLLM_USE_PRECOMPILED": lambda: os.environ.get("VLLM_USE_PRECOMPILED", "")
478
+ .strip()
479
+ .lower()
480
+ in ("1", "true")
481
+ or bool(os.environ.get("VLLM_PRECOMPILED_WHEEL_LOCATION")),
482
+ # If set, skip adding +precompiled suffix to version string
483
+ "VLLM_SKIP_PRECOMPILED_VERSION_SUFFIX": lambda: bool(
484
+ int(os.environ.get("VLLM_SKIP_PRECOMPILED_VERSION_SUFFIX", "0"))
485
+ ),
486
+ # Used to mark that setup.py is running in a Docker build context,
487
+ # in order to force the use of precompiled binaries.
488
+ "VLLM_DOCKER_BUILD_CONTEXT": lambda: os.environ.get("VLLM_DOCKER_BUILD_CONTEXT", "")
489
+ .strip()
490
+ .lower()
491
+ in ("1", "true"),
492
+ # CMake build type
493
+ # If not set, defaults to "Debug" or "RelWithDebInfo"
494
+ # Available options: "Debug", "Release", "RelWithDebInfo"
495
+ "CMAKE_BUILD_TYPE": env_with_choices(
496
+ "CMAKE_BUILD_TYPE", None, ["Debug", "Release", "RelWithDebInfo"]
497
+ ),
498
+ # If set, vllm will print verbose logs during installation
499
+ "VERBOSE": lambda: bool(int(os.getenv("VERBOSE", "0"))),
500
+ # Root directory for vLLM configuration files
501
+ # Defaults to `~/.config/vllm` unless `XDG_CONFIG_HOME` is set
502
+ # Note that this not only affects how vllm finds its configuration files
503
+ # during runtime, but also affects how vllm installs its configuration
504
+ # files during **installation**.
505
+ "VLLM_CONFIG_ROOT": lambda: os.path.expanduser(
506
+ os.getenv(
507
+ "VLLM_CONFIG_ROOT",
508
+ os.path.join(get_default_config_root(), "vllm"),
509
+ )
510
+ ),
511
+ # ================== Runtime Env Vars ==================
512
+ # Root directory for vLLM cache files
513
+ # Defaults to `~/.cache/vllm` unless `XDG_CACHE_HOME` is set
514
+ "VLLM_CACHE_ROOT": lambda: os.path.expanduser(
515
+ os.getenv(
516
+ "VLLM_CACHE_ROOT",
517
+ os.path.join(get_default_cache_root(), "vllm"),
518
+ )
519
+ ),
520
+ # used in distributed environment to determine the ip address
521
+ # of the current node, when the node has multiple network interfaces.
522
+ # If you are using multi-node inference, you should set this differently
523
+ # on each node.
524
+ "VLLM_HOST_IP": lambda: os.getenv("VLLM_HOST_IP", ""),
525
+ # used in distributed environment to manually set the communication port
526
+ # Note: if VLLM_PORT is set, and some code asks for multiple ports, the
527
+ # VLLM_PORT will be used as the first port, and the rest will be generated
528
+ # by incrementing the VLLM_PORT value.
529
+ "VLLM_PORT": get_vllm_port,
530
+ # path used for ipc when the frontend api server is running in
531
+ # multi-processing mode to communicate with the backend engine process.
532
+ "VLLM_RPC_BASE_PATH": lambda: os.getenv(
533
+ "VLLM_RPC_BASE_PATH", tempfile.gettempdir()
534
+ ),
535
+ # If true, will load models from ModelScope instead of Hugging Face Hub.
536
+ # note that the value is true or false, not numbers
537
+ "VLLM_USE_MODELSCOPE": lambda: os.environ.get(
538
+ "VLLM_USE_MODELSCOPE", "False"
539
+ ).lower()
540
+ == "true",
541
+ # Interval in seconds to log a warning message when the ring buffer is full
542
+ "VLLM_RINGBUFFER_WARNING_INTERVAL": lambda: int(
543
+ os.environ.get("VLLM_RINGBUFFER_WARNING_INTERVAL", "60")
544
+ ),
545
+ # path to cudatoolkit home directory, under which should be bin, include,
546
+ # and lib directories.
547
+ "CUDA_HOME": lambda: os.environ.get("CUDA_HOME", None),
548
+ # Path to the NCCL library file. It is needed because nccl>=2.19 brought
549
+ # by PyTorch contains a bug: https://github.com/NVIDIA/nccl/issues/1234
550
+ "VLLM_NCCL_SO_PATH": lambda: os.environ.get("VLLM_NCCL_SO_PATH", None),
551
+ # when `VLLM_NCCL_SO_PATH` is not set, vllm will try to find the nccl
552
+ # library file in the locations specified by `LD_LIBRARY_PATH`
553
+ "LD_LIBRARY_PATH": lambda: os.environ.get("LD_LIBRARY_PATH", None),
554
+ # flag to control the chunk size (in MB) for sleeping memory allocations under ROCm
555
+ "VLLM_ROCM_SLEEP_MEM_CHUNK_SIZE": lambda: int(
556
+ os.environ.get("VLLM_ROCM_SLEEP_MEM_CHUNK_SIZE", "256")
557
+ ),
558
+ # Use separate prefill and decode kernels for V1 attention instead of
559
+ # the unified triton kernel.
560
+ "VLLM_V1_USE_PREFILL_DECODE_ATTENTION": lambda: (
561
+ os.getenv("VLLM_V1_USE_PREFILL_DECODE_ATTENTION", "False").lower()
562
+ in ("true", "1")
563
+ ),
564
+ # Force vllm to use a specific flash-attention version (2 or 3), only valid
565
+ # when using the flash-attention backend.
566
+ "VLLM_FLASH_ATTN_VERSION": lambda: maybe_convert_int(
567
+ os.environ.get("VLLM_FLASH_ATTN_VERSION", None)
568
+ ),
569
+ # Feature flag to enable/disable Inductor standalone compile.
570
+ # In torch <= 2.7 we ignore this flag; in torch >= 2.9 this is
571
+ # enabled by default.
572
+ "VLLM_USE_STANDALONE_COMPILE": lambda: os.environ.get(
573
+ "VLLM_USE_STANDALONE_COMPILE", "1"
574
+ )
575
+ == "1",
576
+ # Debug pattern matching inside custom passes.
577
+ # Should be set to the fx.Node name (e.g. 'getitem_34' or 'scaled_mm_3').
578
+ "VLLM_PATTERN_MATCH_DEBUG": lambda: os.environ.get(
579
+ "VLLM_PATTERN_MATCH_DEBUG", None
580
+ ),
581
+ # Dump fx graphs to the given directory.
582
+ # It will override CompilationConfig.debug_dump_path if set.
583
+ "VLLM_DEBUG_DUMP_PATH": lambda: os.environ.get("VLLM_DEBUG_DUMP_PATH", None),
584
+ # Feature flag to enable/disable AOT compilation. This will ensure
585
+ # compilation is done in warmup phase and the compilation will be
586
+ # reused in subsequent calls.
587
+ "VLLM_USE_AOT_COMPILE": use_aot_compile,
588
+ # Feature flag to enable/disable bytecode in
589
+ # TorchCompileWithNoGuardsWrapper.
590
+ "VLLM_USE_BYTECODE_HOOK": lambda: bool(
591
+ int(os.environ.get("VLLM_USE_BYTECODE_HOOK", "1"))
592
+ ),
593
+ # Force vllm to always load AOT compiled models from disk. Failure
594
+ # to load will result in a hard error when this is enabled.
595
+ # Will be ignored when VLLM_USE_AOT_COMPILE is disabled.
596
+ "VLLM_FORCE_AOT_LOAD": lambda: os.environ.get("VLLM_FORCE_AOT_LOAD", "0") == "1",
597
+ # local rank of the process in the distributed setting, used to determine
598
+ # the GPU device id
599
+ "LOCAL_RANK": lambda: int(os.environ.get("LOCAL_RANK", "0")),
600
+ # used to control the visible devices in the distributed setting
601
+ "CUDA_VISIBLE_DEVICES": lambda: os.environ.get("CUDA_VISIBLE_DEVICES", None),
602
+ # timeout for each iteration in the engine
603
+ "VLLM_ENGINE_ITERATION_TIMEOUT_S": lambda: int(
604
+ os.environ.get("VLLM_ENGINE_ITERATION_TIMEOUT_S", "60")
605
+ ),
606
+ # API key for vLLM API server
607
+ "VLLM_API_KEY": lambda: os.environ.get("VLLM_API_KEY", None),
608
+ # Whether to log responses from API Server for debugging
609
+ "VLLM_DEBUG_LOG_API_SERVER_RESPONSE": lambda: os.environ.get(
610
+ "VLLM_DEBUG_LOG_API_SERVER_RESPONSE", "False"
611
+ ).lower()
612
+ == "true",
613
+ # S3 access information, used for tensorizer to load model from S3
614
+ "S3_ACCESS_KEY_ID": lambda: os.environ.get("S3_ACCESS_KEY_ID", None),
615
+ "S3_SECRET_ACCESS_KEY": lambda: os.environ.get("S3_SECRET_ACCESS_KEY", None),
616
+ "S3_ENDPOINT_URL": lambda: os.environ.get("S3_ENDPOINT_URL", None),
617
+ # Usage stats collection
618
+ "VLLM_USAGE_STATS_SERVER": lambda: os.environ.get(
619
+ "VLLM_USAGE_STATS_SERVER", "https://stats.vllm.ai"
620
+ ),
621
+ "VLLM_NO_USAGE_STATS": lambda: os.environ.get("VLLM_NO_USAGE_STATS", "0") == "1",
622
+ "VLLM_DISABLE_FLASHINFER_PREFILL": lambda: os.environ.get(
623
+ "VLLM_DISABLE_FLASHINFER_PREFILL", "0"
624
+ )
625
+ == "1",
626
+ "VLLM_DO_NOT_TRACK": lambda: (
627
+ os.environ.get("VLLM_DO_NOT_TRACK", None)
628
+ or os.environ.get("DO_NOT_TRACK", None)
629
+ or "0"
630
+ )
631
+ == "1",
632
+ "VLLM_USAGE_SOURCE": lambda: os.environ.get("VLLM_USAGE_SOURCE", "production"),
633
+ # Logging configuration
634
+ # If set to 0, vllm will not configure logging
635
+ # If set to 1, vllm will configure logging using the default configuration
636
+ # or the configuration file specified by VLLM_LOGGING_CONFIG_PATH
637
+ "VLLM_CONFIGURE_LOGGING": lambda: bool(
638
+ int(os.getenv("VLLM_CONFIGURE_LOGGING", "1"))
639
+ ),
640
+ "VLLM_LOGGING_CONFIG_PATH": lambda: os.getenv("VLLM_LOGGING_CONFIG_PATH"),
641
+ # this is used for configuring the default logging level
642
+ "VLLM_LOGGING_LEVEL": lambda: os.getenv("VLLM_LOGGING_LEVEL", "INFO").upper(),
643
+ # this is used for configuring the default logging stream
644
+ "VLLM_LOGGING_STREAM": lambda: os.getenv("VLLM_LOGGING_STREAM", "ext://sys.stdout"),
645
+ # if set, VLLM_LOGGING_PREFIX will be prepended to all log messages
646
+ "VLLM_LOGGING_PREFIX": lambda: os.getenv("VLLM_LOGGING_PREFIX", ""),
647
+ # Controls colored logging output. Options: "auto" (default, colors when terminal),
648
+ # "1" (always use colors), "0" (never use colors)
649
+ "VLLM_LOGGING_COLOR": lambda: os.getenv("VLLM_LOGGING_COLOR", "auto"),
650
+ # Standard unix flag for disabling ANSI color codes
651
+ "NO_COLOR": lambda: os.getenv("NO_COLOR", "0") != "0",
652
+ # If set, vllm will log stats at this interval in seconds
653
+ # If not set, vllm will log stats every 10 seconds.
654
+ "VLLM_LOG_STATS_INTERVAL": lambda: val
655
+ if (val := float(os.getenv("VLLM_LOG_STATS_INTERVAL", "10."))) > 0.0
656
+ else 10.0,
657
+ # Trace function calls
658
+ # If set to 1, vllm will trace function calls
659
+ # Useful for debugging
660
+ "VLLM_TRACE_FUNCTION": lambda: int(os.getenv("VLLM_TRACE_FUNCTION", "0")),
661
+ # Backend for attention computation
662
+ # Example options:
663
+ # - "TORCH_SDPA": use torch.nn.MultiheadAttention
664
+ # - "FLASH_ATTN": use FlashAttention
665
+ # - "FLASHINFER": use flashinfer
666
+ # - "FLASHMLA": use FlashMLA
667
+ # - "FLASH_ATTN_MLA": use FlashAttention for MLA
668
+ # - "FLASHINFER_MLA": use FlashInfer for MLA
669
+ # - "CUTLASS_MLA": use CUTLASS for MLA
670
+ # All possible options loaded dynamically from AttentionBackendEnum
671
+ "VLLM_ATTENTION_BACKEND": env_with_choices(
672
+ "VLLM_ATTENTION_BACKEND",
673
+ None,
674
+ lambda: list(
675
+ __import__(
676
+ "vllm.attention.backends.registry", fromlist=["AttentionBackendEnum"]
677
+ ).AttentionBackendEnum.__members__.keys()
678
+ ),
679
+ ),
680
+ # If set, vllm will use flashinfer sampler
681
+ "VLLM_USE_FLASHINFER_SAMPLER": lambda: bool(
682
+ int(os.environ["VLLM_USE_FLASHINFER_SAMPLER"])
683
+ )
684
+ if "VLLM_USE_FLASHINFER_SAMPLER" in os.environ
685
+ else None,
686
+ # Pipeline stage partition strategy
687
+ "VLLM_PP_LAYER_PARTITION": lambda: os.getenv("VLLM_PP_LAYER_PARTITION", None),
688
+ # (CPU backend only) CPU key-value cache space.
689
+ # default is None and will be set as 4 GB
690
+ "VLLM_CPU_KVCACHE_SPACE": lambda: int(os.getenv("VLLM_CPU_KVCACHE_SPACE", "0"))
691
+ if "VLLM_CPU_KVCACHE_SPACE" in os.environ
692
+ else None,
693
+ # (CPU backend only) CPU core ids bound by OpenMP threads, e.g., "0-31",
694
+ # "0,1,2", "0-31,33". CPU cores of different ranks are separated by '|'.
695
+ "VLLM_CPU_OMP_THREADS_BIND": lambda: os.getenv("VLLM_CPU_OMP_THREADS_BIND", "auto"),
696
+ # (CPU backend only) CPU cores not used by OMP threads .
697
+ # Those CPU cores will not be used by OMP threads of a rank.
698
+ "VLLM_CPU_NUM_OF_RESERVED_CPU": lambda: int(
699
+ os.getenv("VLLM_CPU_NUM_OF_RESERVED_CPU", "0")
700
+ )
701
+ if "VLLM_CPU_NUM_OF_RESERVED_CPU" in os.environ
702
+ else None,
703
+ # (CPU backend only) whether to use SGL kernels, optimized for small batch.
704
+ "VLLM_CPU_SGL_KERNEL": lambda: bool(int(os.getenv("VLLM_CPU_SGL_KERNEL", "0"))),
705
+ # If the env var is set, Ray Compiled Graph uses the specified
706
+ # channel type to communicate between workers belonging to
707
+ # different pipeline-parallel stages.
708
+ # Available options:
709
+ # - "auto": use the default channel type
710
+ # - "nccl": use NCCL for communication
711
+ # - "shm": use shared memory and gRPC for communication
712
+ "VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE": env_with_choices(
713
+ "VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE", "auto", ["auto", "nccl", "shm"]
714
+ ),
715
+ # If the env var is set, it enables GPU communication overlap
716
+ # (experimental feature) in Ray's Compiled Graph.
717
+ "VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM": lambda: bool(
718
+ int(os.getenv("VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM", "0"))
719
+ ),
720
+ # If the env var is set, it uses a Ray Communicator wrapping
721
+ # vLLM's pipeline parallelism communicator to interact with Ray's
722
+ # Compiled Graph. Otherwise, it uses Ray's NCCL communicator.
723
+ "VLLM_USE_RAY_WRAPPED_PP_COMM": lambda: bool(
724
+ int(os.getenv("VLLM_USE_RAY_WRAPPED_PP_COMM", "1"))
725
+ ),
726
+ # Use dedicated multiprocess context for workers.
727
+ # Both spawn and fork work
728
+ "VLLM_WORKER_MULTIPROC_METHOD": env_with_choices(
729
+ "VLLM_WORKER_MULTIPROC_METHOD", "fork", ["spawn", "fork"]
730
+ ),
731
+ # Path to the cache for storing downloaded assets
732
+ "VLLM_ASSETS_CACHE": lambda: os.path.expanduser(
733
+ os.getenv(
734
+ "VLLM_ASSETS_CACHE",
735
+ os.path.join(get_default_cache_root(), "vllm", "assets"),
736
+ )
737
+ ),
738
+ # If the env var is set, we will clean model file in
739
+ # this path $VLLM_ASSETS_CACHE/model_streamer/$model_name
740
+ "VLLM_ASSETS_CACHE_MODEL_CLEAN": lambda: bool(
741
+ int(os.getenv("VLLM_ASSETS_CACHE_MODEL_CLEAN", "0"))
742
+ ),
743
+ # Timeout for fetching images when serving multimodal models
744
+ # Default is 5 seconds
745
+ "VLLM_IMAGE_FETCH_TIMEOUT": lambda: int(os.getenv("VLLM_IMAGE_FETCH_TIMEOUT", "5")),
746
+ # Timeout for fetching videos when serving multimodal models
747
+ # Default is 30 seconds
748
+ "VLLM_VIDEO_FETCH_TIMEOUT": lambda: int(
749
+ os.getenv("VLLM_VIDEO_FETCH_TIMEOUT", "30")
750
+ ),
751
+ # Timeout for fetching audio when serving multimodal models
752
+ # Default is 10 seconds
753
+ "VLLM_AUDIO_FETCH_TIMEOUT": lambda: int(
754
+ os.getenv("VLLM_AUDIO_FETCH_TIMEOUT", "10")
755
+ ),
756
+ # Whether to allow HTTP redirects when fetching from media URLs.
757
+ # Default to True
758
+ "VLLM_MEDIA_URL_ALLOW_REDIRECTS": lambda: bool(
759
+ int(os.getenv("VLLM_MEDIA_URL_ALLOW_REDIRECTS", "1"))
760
+ ),
761
+ # Max number of workers for the thread pool handling
762
+ # media bytes loading. Set to 1 to disable parallel processing.
763
+ # Default is 8
764
+ "VLLM_MEDIA_LOADING_THREAD_COUNT": lambda: int(
765
+ os.getenv("VLLM_MEDIA_LOADING_THREAD_COUNT", "8")
766
+ ),
767
+ # Maximum filesize in MB for a single audio file when processing
768
+ # speech-to-text requests. Files larger than this will be rejected.
769
+ # Default is 25 MB
770
+ "VLLM_MAX_AUDIO_CLIP_FILESIZE_MB": lambda: int(
771
+ os.getenv("VLLM_MAX_AUDIO_CLIP_FILESIZE_MB", "25")
772
+ ),
773
+ # Backend for Video IO
774
+ # - "opencv": Default backend that uses OpenCV stream buffered backend.
775
+ #
776
+ # Custom backend implementations can be registered
777
+ # via `@VIDEO_LOADER_REGISTRY.register("my_custom_video_loader")` and
778
+ # imported at runtime.
779
+ # If a non-existing backend is used, an AssertionError will be thrown.
780
+ "VLLM_VIDEO_LOADER_BACKEND": lambda: os.getenv(
781
+ "VLLM_VIDEO_LOADER_BACKEND", "opencv"
782
+ ),
783
+ # Media connector implementation.
784
+ # - "http": Default connector that supports fetching media via HTTP.
785
+ #
786
+ # Custom implementations can be registered
787
+ # via `@MEDIA_CONNECTOR_REGISTRY.register("my_custom_media_connector")` and
788
+ # imported at runtime.
789
+ # If a non-existing backend is used, an AssertionError will be thrown.
790
+ "VLLM_MEDIA_CONNECTOR": lambda: os.getenv("VLLM_MEDIA_CONNECTOR", "http"),
791
+ # Path to the XLA persistent cache directory.
792
+ # Only used for XLA devices such as TPUs.
793
+ "VLLM_XLA_CACHE_PATH": lambda: os.path.expanduser(
794
+ os.getenv(
795
+ "VLLM_XLA_CACHE_PATH",
796
+ os.path.join(get_default_cache_root(), "vllm", "xla_cache"),
797
+ )
798
+ ),
799
+ # If set, assert on XLA recompilation after each execution step.
800
+ "VLLM_XLA_CHECK_RECOMPILATION": lambda: bool(
801
+ int(os.getenv("VLLM_XLA_CHECK_RECOMPILATION", "0"))
802
+ ),
803
+ # Enable SPMD mode for TPU backend.
804
+ "VLLM_XLA_USE_SPMD": lambda: bool(int(os.getenv("VLLM_XLA_USE_SPMD", "0"))),
805
+ "VLLM_FUSED_MOE_CHUNK_SIZE": lambda: int(
806
+ os.getenv("VLLM_FUSED_MOE_CHUNK_SIZE", str(16 * 1024))
807
+ ),
808
+ # Control whether to use fused MoE activation chunking. Current chunking
809
+ # logic is incompatible with torch.compile and causes IMA. See issue
810
+ # https://github.com/vllm-project/vllm/issues/19631.
811
+ "VLLM_ENABLE_FUSED_MOE_ACTIVATION_CHUNKING": lambda: bool(
812
+ int(os.getenv("VLLM_ENABLE_FUSED_MOE_ACTIVATION_CHUNKING", "1"))
813
+ ),
814
+ # If set, the OpenAI API server will stay alive even after the underlying
815
+ # AsyncLLMEngine errors and stops serving requests
816
+ "VLLM_KEEP_ALIVE_ON_ENGINE_DEATH": lambda: bool(
817
+ int(os.getenv("VLLM_KEEP_ALIVE_ON_ENGINE_DEATH", "0"))
818
+ ),
819
+ # If the env var VLLM_ALLOW_LONG_MAX_MODEL_LEN is set, it allows
820
+ # the user to specify a max sequence length greater than
821
+ # the max length derived from the model's config.json.
822
+ # To enable this, set VLLM_ALLOW_LONG_MAX_MODEL_LEN=1.
823
+ "VLLM_ALLOW_LONG_MAX_MODEL_LEN": lambda: (
824
+ os.environ.get("VLLM_ALLOW_LONG_MAX_MODEL_LEN", "0").strip().lower()
825
+ in ("1", "true")
826
+ ),
827
+ # If set, forces FP8 Marlin to be used for FP8 quantization regardless
828
+ # of the hardware support for FP8 compute.
829
+ "VLLM_TEST_FORCE_FP8_MARLIN": lambda: (
830
+ os.environ.get("VLLM_TEST_FORCE_FP8_MARLIN", "0").strip().lower()
831
+ in ("1", "true")
832
+ ),
833
+ "VLLM_TEST_FORCE_LOAD_FORMAT": lambda: os.getenv(
834
+ "VLLM_TEST_FORCE_LOAD_FORMAT", "dummy"
835
+ ),
836
+ # Time in ms for the zmq client to wait for a response from the backend
837
+ # server for simple data operations
838
+ "VLLM_RPC_TIMEOUT": lambda: int(os.getenv("VLLM_RPC_TIMEOUT", "10000")),
839
+ # Timeout in seconds for keeping HTTP connections alive in API server
840
+ "VLLM_HTTP_TIMEOUT_KEEP_ALIVE": lambda: int(
841
+ os.environ.get("VLLM_HTTP_TIMEOUT_KEEP_ALIVE", "5")
842
+ ),
843
+ # a list of plugin names to load, separated by commas.
844
+ # if this is not set, it means all plugins will be loaded
845
+ # if this is set to an empty string, no plugins will be loaded
846
+ "VLLM_PLUGINS": lambda: None
847
+ if "VLLM_PLUGINS" not in os.environ
848
+ else os.environ["VLLM_PLUGINS"].split(","),
849
+ # a local directory to look in for unrecognized LoRA adapters.
850
+ # only works if plugins are enabled and
851
+ # VLLM_ALLOW_RUNTIME_LORA_UPDATING is enabled.
852
+ "VLLM_LORA_RESOLVER_CACHE_DIR": lambda: os.getenv(
853
+ "VLLM_LORA_RESOLVER_CACHE_DIR", None
854
+ ),
855
+ # Enables torch CUDA profiling if set to 1.
856
+ # Deprecated, see profiler_config.
857
+ "VLLM_TORCH_CUDA_PROFILE": lambda: os.getenv("VLLM_TORCH_CUDA_PROFILE"),
858
+ # Enables torch profiler if set.
859
+ # Deprecated, see profiler_config.
860
+ "VLLM_TORCH_PROFILER_DIR": lambda: os.getenv("VLLM_TORCH_PROFILER_DIR"),
861
+ # Enable torch profiler to record shapes if set to 1.
862
+ # Deprecated, see profiler_config.
863
+ "VLLM_TORCH_PROFILER_RECORD_SHAPES": lambda: (
864
+ os.getenv("VLLM_TORCH_PROFILER_RECORD_SHAPES")
865
+ ),
866
+ # Enable torch profiler to profile memory if set to 1.
867
+ # Deprecated, see profiler_config.
868
+ "VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY": lambda: (
869
+ os.getenv("VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY")
870
+ ),
871
+ # Enable torch profiler to profile stack if set to 1.
872
+ # Deprecated, see profiler_config.
873
+ "VLLM_TORCH_PROFILER_WITH_STACK": lambda: (
874
+ os.getenv("VLLM_TORCH_PROFILER_WITH_STACK")
875
+ ),
876
+ # Enable torch profiler to profile flops if set to 1.
877
+ # Deprecated, see profiler_config.
878
+ "VLLM_TORCH_PROFILER_WITH_FLOPS": lambda: (
879
+ os.getenv("VLLM_TORCH_PROFILER_WITH_FLOPS")
880
+ ),
881
+ # Disable torch profiling of the AsyncLLMEngine process if set to 1.
882
+ # Deprecated, see profiler_config.
883
+ "VLLM_TORCH_PROFILER_DISABLE_ASYNC_LLM": lambda: (
884
+ os.getenv("VLLM_TORCH_PROFILER_DISABLE_ASYNC_LLM")
885
+ ),
886
+ # Delay number of iterations before starting profiling when using
887
+ # the torch/torch CUDA profiler. If set to 0, will start profiling immediately.
888
+ # Deprecated, see profiler_config.
889
+ "VLLM_PROFILER_DELAY_ITERS": lambda: (os.getenv("VLLM_PROFILER_DELAY_ITERS")),
890
+ # Maximum number of iterations to profile when using the torch/torch CUDA profiler.
891
+ # If set to 0, will not limit the number of iterations.
892
+ "VLLM_PROFILER_MAX_ITERS": lambda: os.getenv("VLLM_PROFILER_MAX_ITERS"),
893
+ # Control whether torch profiler gzip-compresses profiling files.
894
+ # Deprecated, see profiler_config.
895
+ "VLLM_TORCH_PROFILER_USE_GZIP": lambda: os.getenv("VLLM_TORCH_PROFILER_USE_GZIP"),
896
+ # Control whether torch profiler dumps the self_cuda_time_total table.
897
+ # Set to 0 to disable dumping the table.
898
+ # Deprecated, see profiler_config.
899
+ "VLLM_TORCH_PROFILER_DUMP_CUDA_TIME_TOTAL": lambda: (
900
+ os.getenv("VLLM_TORCH_PROFILER_DUMP_CUDA_TIME_TOTAL")
901
+ ),
902
+ # If set, vLLM will use Triton implementations of AWQ.
903
+ "VLLM_USE_TRITON_AWQ": lambda: bool(int(os.getenv("VLLM_USE_TRITON_AWQ", "0"))),
904
+ # If set, allow loading or unloading lora adapters in runtime,
905
+ "VLLM_ALLOW_RUNTIME_LORA_UPDATING": lambda: (
906
+ os.environ.get("VLLM_ALLOW_RUNTIME_LORA_UPDATING", "0").strip().lower()
907
+ in ("1", "true")
908
+ ),
909
+ # We assume drivers can report p2p status correctly.
910
+ # If the program hangs when using custom allreduce,
911
+ # potantially caused by a bug in the driver (535 series),
912
+ # if might be helpful to set VLLM_SKIP_P2P_CHECK=0
913
+ # so that vLLM can verify if p2p is actually working.
914
+ # See https://github.com/vllm-project/vllm/blob/a9b15c606fea67a072416ea0ea115261a2756058/vllm/distributed/device_communicators/custom_all_reduce_utils.py#L101-L108 for details. # noqa
915
+ "VLLM_SKIP_P2P_CHECK": lambda: os.getenv("VLLM_SKIP_P2P_CHECK", "1") == "1",
916
+ # List of quantization kernels that should be disabled, used for testing
917
+ # and performance comparisons. Currently only affects MPLinearKernel
918
+ # selection
919
+ # (kernels: MacheteLinearKernel, MarlinLinearKernel, ExllamaLinearKernel)
920
+ "VLLM_DISABLED_KERNELS": lambda: []
921
+ if "VLLM_DISABLED_KERNELS" not in os.environ
922
+ else os.environ["VLLM_DISABLED_KERNELS"].split(","),
923
+ # Disable pynccl (using torch.distributed instead)
924
+ "VLLM_DISABLE_PYNCCL": lambda: (
925
+ os.getenv("VLLM_DISABLE_PYNCCL", "False").lower() in ("true", "1")
926
+ ),
927
+ # Disable aiter ops unless specifically enabled.
928
+ # Acts as a parent switch to enable the rest of the other operations.
929
+ "VLLM_ROCM_USE_AITER": lambda: (
930
+ os.getenv("VLLM_ROCM_USE_AITER", "False").lower() in ("true", "1")
931
+ ),
932
+ # Whether to use aiter paged attention.
933
+ # By default is disabled.
934
+ "VLLM_ROCM_USE_AITER_PAGED_ATTN": lambda: (
935
+ os.getenv("VLLM_ROCM_USE_AITER_PAGED_ATTN", "False").lower() in ("true", "1")
936
+ ),
937
+ # use aiter linear op if aiter ops are enabled
938
+ # The following list of related ops
939
+ # - scaled_mm (per-tensor / rowwise)
940
+ "VLLM_ROCM_USE_AITER_LINEAR": lambda: (
941
+ os.getenv("VLLM_ROCM_USE_AITER_LINEAR", "True").lower() in ("true", "1")
942
+ ),
943
+ # Whether to use aiter moe ops.
944
+ # By default is enabled.
945
+ "VLLM_ROCM_USE_AITER_MOE": lambda: (
946
+ os.getenv("VLLM_ROCM_USE_AITER_MOE", "True").lower() in ("true", "1")
947
+ ),
948
+ # use aiter rms norm op if aiter ops are enabled.
949
+ "VLLM_ROCM_USE_AITER_RMSNORM": lambda: (
950
+ os.getenv("VLLM_ROCM_USE_AITER_RMSNORM", "True").lower() in ("true", "1")
951
+ ),
952
+ # Whether to use aiter mla ops.
953
+ # By default is enabled.
954
+ "VLLM_ROCM_USE_AITER_MLA": lambda: (
955
+ os.getenv("VLLM_ROCM_USE_AITER_MLA", "True").lower() in ("true", "1")
956
+ ),
957
+ # Whether to use aiter mha ops.
958
+ # By default is enabled.
959
+ "VLLM_ROCM_USE_AITER_MHA": lambda: (
960
+ os.getenv("VLLM_ROCM_USE_AITER_MHA", "True").lower() in ("true", "1")
961
+ ),
962
+ # Whether to use aiter fp4 gemm asm.
963
+ # By default is disabled.
964
+ "VLLM_ROCM_USE_AITER_FP4_ASM_GEMM": lambda: (
965
+ os.getenv("VLLM_ROCM_USE_AITER_FP4_ASM_GEMM", "False").lower() in ("true", "1")
966
+ ),
967
+ # Whether to use aiter rope.
968
+ # By default is disabled.
969
+ "VLLM_ROCM_USE_AITER_TRITON_ROPE": lambda: (
970
+ os.getenv("VLLM_ROCM_USE_AITER_TRITON_ROPE", "False").lower() in ("true", "1")
971
+ ),
972
+ # Whether to use aiter triton fp8 bmm kernel
973
+ # By default is enabled.
974
+ "VLLM_ROCM_USE_AITER_FP8BMM": lambda: (
975
+ os.getenv("VLLM_ROCM_USE_AITER_FP8BMM", "True").lower() in ("true", "1")
976
+ ),
977
+ # Use AITER triton unified attention for V1 attention
978
+ "VLLM_ROCM_USE_AITER_UNIFIED_ATTENTION": lambda: (
979
+ os.getenv("VLLM_ROCM_USE_AITER_UNIFIED_ATTENTION", "False").lower()
980
+ in ("true", "1")
981
+ ),
982
+ # Whether to use aiter fusion shared experts ops.
983
+ # By default is disabled.
984
+ "VLLM_ROCM_USE_AITER_FUSION_SHARED_EXPERTS": lambda: (
985
+ os.getenv("VLLM_ROCM_USE_AITER_FUSION_SHARED_EXPERTS", "False").lower()
986
+ in ("true", "1")
987
+ ),
988
+ # Whether to use aiter triton kernels for gemm ops.
989
+ # By default is enabled.
990
+ "VLLM_ROCM_USE_AITER_TRITON_GEMM": lambda: (
991
+ os.getenv("VLLM_ROCM_USE_AITER_TRITON_GEMM", "True").lower() in ("true", "1")
992
+ ),
993
+ # use rocm skinny gemms
994
+ "VLLM_ROCM_USE_SKINNY_GEMM": lambda: (
995
+ os.getenv("VLLM_ROCM_USE_SKINNY_GEMM", "True").lower() in ("true", "1")
996
+ ),
997
+ # Pad the fp8 weights to 256 bytes for ROCm
998
+ "VLLM_ROCM_FP8_PADDING": lambda: bool(int(os.getenv("VLLM_ROCM_FP8_PADDING", "1"))),
999
+ # Pad the weights for the moe kernel
1000
+ "VLLM_ROCM_MOE_PADDING": lambda: bool(int(os.getenv("VLLM_ROCM_MOE_PADDING", "1"))),
1001
+ # custom paged attention kernel for MI3* cards
1002
+ "VLLM_ROCM_CUSTOM_PAGED_ATTN": lambda: (
1003
+ os.getenv("VLLM_ROCM_CUSTOM_PAGED_ATTN", "True").lower() in ("true", "1")
1004
+ ),
1005
+ # Custom quick allreduce kernel for MI3* cards
1006
+ # Choice of quantization level: FP, INT8, INT6, INT4 or NONE
1007
+ # Recommended for large models to get allreduce
1008
+ "VLLM_ROCM_QUICK_REDUCE_QUANTIZATION": env_with_choices(
1009
+ "VLLM_ROCM_QUICK_REDUCE_QUANTIZATION",
1010
+ "NONE",
1011
+ ["FP", "INT8", "INT6", "INT4", "NONE"],
1012
+ ),
1013
+ # Custom quick allreduce kernel for MI3* cards
1014
+ # Due to the lack of the bfloat16 asm instruction, bfloat16
1015
+ # kernels are slower than fp16,
1016
+ # If environment variable is set to 1, the input is converted to fp16
1017
+ "VLLM_ROCM_QUICK_REDUCE_CAST_BF16_TO_FP16": lambda: (
1018
+ os.getenv("VLLM_ROCM_QUICK_REDUCE_CAST_BF16_TO_FP16", "True").lower()
1019
+ in ("true", "1")
1020
+ ),
1021
+ # Custom quick allreduce kernel for MI3* cards.
1022
+ # Controls the maximum allowed number of data bytes(MB) for custom quick
1023
+ # allreduce communication.
1024
+ # Default: 2048 MB.
1025
+ # Data exceeding this size will use either custom allreduce or RCCL
1026
+ # communication.
1027
+ "VLLM_ROCM_QUICK_REDUCE_MAX_SIZE_BYTES_MB": lambda: maybe_convert_int(
1028
+ os.environ.get("VLLM_ROCM_QUICK_REDUCE_MAX_SIZE_BYTES_MB", None)
1029
+ ),
1030
+ # Divisor for dynamic query scale factor calculation for FP8 KV Cache
1031
+ "Q_SCALE_CONSTANT": lambda: int(os.getenv("Q_SCALE_CONSTANT", "200")),
1032
+ # Divisor for dynamic key scale factor calculation for FP8 KV Cache
1033
+ "K_SCALE_CONSTANT": lambda: int(os.getenv("K_SCALE_CONSTANT", "200")),
1034
+ # Divisor for dynamic value scale factor calculation for FP8 KV Cache
1035
+ "V_SCALE_CONSTANT": lambda: int(os.getenv("V_SCALE_CONSTANT", "100")),
1036
+ # If set, enable multiprocessing in LLM for the V1 code path.
1037
+ "VLLM_ENABLE_V1_MULTIPROCESSING": lambda: bool(
1038
+ int(os.getenv("VLLM_ENABLE_V1_MULTIPROCESSING", "1"))
1039
+ ),
1040
+ "VLLM_LOG_BATCHSIZE_INTERVAL": lambda: float(
1041
+ os.getenv("VLLM_LOG_BATCHSIZE_INTERVAL", "-1")
1042
+ ),
1043
+ "VLLM_DISABLE_COMPILE_CACHE": disable_compile_cache,
1044
+ # If set, vllm will run in development mode, which will enable
1045
+ # some additional endpoints for developing and debugging,
1046
+ # e.g. `/reset_prefix_cache`
1047
+ "VLLM_SERVER_DEV_MODE": lambda: bool(int(os.getenv("VLLM_SERVER_DEV_MODE", "0"))),
1048
+ # Controls the maximum number of requests to handle in a
1049
+ # single asyncio task when processing per-token outputs in the
1050
+ # V1 AsyncLLM interface. It is applicable when handling a high
1051
+ # concurrency of streaming requests.
1052
+ # Setting this too high can result in a higher variance of
1053
+ # inter-message latencies. Setting it too low can negatively impact
1054
+ # TTFT and overall throughput.
1055
+ "VLLM_V1_OUTPUT_PROC_CHUNK_SIZE": lambda: int(
1056
+ os.getenv("VLLM_V1_OUTPUT_PROC_CHUNK_SIZE", "128")
1057
+ ),
1058
+ # If set, vLLM will disable the MLA attention optimizations.
1059
+ "VLLM_MLA_DISABLE": lambda: bool(int(os.getenv("VLLM_MLA_DISABLE", "0"))),
1060
+ # If set, vLLM will pick up the provided Flash Attention MLA
1061
+ # max number splits for cuda graph decode
1062
+ "VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH": lambda: int(
1063
+ os.getenv("VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH", "32")
1064
+ ),
1065
+ # Number of GPUs per worker in Ray, if it is set to be a fraction,
1066
+ # it allows ray to schedule multiple actors on a single GPU,
1067
+ # so that users can colocate other actors on the same GPUs as vLLM.
1068
+ "VLLM_RAY_PER_WORKER_GPUS": lambda: float(
1069
+ os.getenv("VLLM_RAY_PER_WORKER_GPUS", "1.0")
1070
+ ),
1071
+ # Bundle indices for Ray, if it is set, it can control precisely
1072
+ # which indices are used for the Ray bundle, for every worker.
1073
+ # Format: comma-separated list of integers, e.g. "0,1,2,3"
1074
+ "VLLM_RAY_BUNDLE_INDICES": lambda: os.getenv("VLLM_RAY_BUNDLE_INDICES", ""),
1075
+ # In some system, find_loaded_library() may not work. So we allow users to
1076
+ # specify the path through environment variable VLLM_CUDART_SO_PATH.
1077
+ "VLLM_CUDART_SO_PATH": lambda: os.getenv("VLLM_CUDART_SO_PATH", None),
1078
+ # Rank of the process in the data parallel setting
1079
+ "VLLM_DP_RANK": lambda: int(os.getenv("VLLM_DP_RANK", "0")),
1080
+ # Rank of the process in the data parallel setting.
1081
+ # Defaults to VLLM_DP_RANK when not set.
1082
+ "VLLM_DP_RANK_LOCAL": lambda: int(
1083
+ os.getenv("VLLM_DP_RANK_LOCAL", sys.modules[__name__].VLLM_DP_RANK)
1084
+ ),
1085
+ # World size of the data parallel setting
1086
+ "VLLM_DP_SIZE": lambda: int(os.getenv("VLLM_DP_SIZE", "1")),
1087
+ # IP address of the master node in the data parallel setting
1088
+ "VLLM_DP_MASTER_IP": lambda: os.getenv("VLLM_DP_MASTER_IP", "127.0.0.1"),
1089
+ # Port of the master node in the data parallel setting
1090
+ "VLLM_DP_MASTER_PORT": lambda: int(os.getenv("VLLM_DP_MASTER_PORT", "0")),
1091
+ # In the context of executing MoE models with Data-Parallel, Expert-Parallel
1092
+ # and Batched All-to-All dispatch/combine kernels, VLLM_MOE_DP_CHUNK_SIZE
1093
+ # dictates the quantum of tokens that can be dispatched from a DP
1094
+ # rank. All DP ranks process the activations in VLLM_MOE_DP_CHUNK_SIZE
1095
+ # units.
1096
+ "VLLM_MOE_DP_CHUNK_SIZE": lambda: int(os.getenv("VLLM_MOE_DP_CHUNK_SIZE", "256")),
1097
+ "VLLM_ENABLE_MOE_DP_CHUNK": lambda: bool(
1098
+ int(os.getenv("VLLM_ENABLE_MOE_DP_CHUNK", "1"))
1099
+ ),
1100
+ # Randomize inputs during dummy runs when using Data Parallel
1101
+ "VLLM_RANDOMIZE_DP_DUMMY_INPUTS": lambda: os.environ.get(
1102
+ "VLLM_RANDOMIZE_DP_DUMMY_INPUTS", "0"
1103
+ )
1104
+ == "1",
1105
+ # Strategy to pack the data parallel ranks for Ray.
1106
+ # Available options:
1107
+ # - "fill":
1108
+ # for DP master node, allocate exactly data-parallel-size-local DP ranks,
1109
+ # for non-master nodes, allocate as many DP ranks as can fit;
1110
+ # - "strict":
1111
+ # allocate exactly data-parallel-size-local DP ranks to each picked node;
1112
+ # - "span":
1113
+ # Should be used only when a single DP rank requires multiple nodes.
1114
+ # allocate one DP rank over as many nodes as required for set world_size;
1115
+ # This environment variable is ignored if data-parallel-backend is not Ray.
1116
+ "VLLM_RAY_DP_PACK_STRATEGY": lambda: os.getenv(
1117
+ "VLLM_RAY_DP_PACK_STRATEGY", "strict"
1118
+ ),
1119
+ # Whether to use S3 path for model loading in CI via RunAI Streamer
1120
+ "VLLM_CI_USE_S3": lambda: os.environ.get("VLLM_CI_USE_S3", "0") == "1",
1121
+ # Use model_redirect to redirect the model name to a local folder.
1122
+ # `model_redirect` can be a json file mapping the model between
1123
+ # repo_id and local folder:
1124
+ # {"meta-llama/Llama-3.2-1B": "/tmp/Llama-3.2-1B"}
1125
+ # or a space separated values table file:
1126
+ # meta-llama/Llama-3.2-1B /tmp/Llama-3.2-1B
1127
+ "VLLM_MODEL_REDIRECT_PATH": lambda: os.environ.get(
1128
+ "VLLM_MODEL_REDIRECT_PATH", None
1129
+ ),
1130
+ # Whether to use atomicAdd reduce in gptq/awq marlin kernel.
1131
+ "VLLM_MARLIN_USE_ATOMIC_ADD": lambda: os.environ.get(
1132
+ "VLLM_MARLIN_USE_ATOMIC_ADD", "0"
1133
+ )
1134
+ == "1",
1135
+ # Whether to use marlin kernel in mxfp4 quantization method
1136
+ "VLLM_MXFP4_USE_MARLIN": lambda: maybe_convert_bool(
1137
+ os.environ.get("VLLM_MXFP4_USE_MARLIN", None)
1138
+ ),
1139
+ # The activation dtype for marlin kernel
1140
+ "VLLM_MARLIN_INPUT_DTYPE": env_with_choices(
1141
+ "VLLM_MARLIN_INPUT_DTYPE", None, ["int8", "fp8"]
1142
+ ),
1143
+ # Whether to use DeepEPLL kernels for NVFP4 quantization and dispatch method
1144
+ # only supported on Blackwell GPUs and with
1145
+ # https://github.com/deepseek-ai/DeepEP/pull/341
1146
+ "VLLM_DEEPEPLL_NVFP4_DISPATCH": lambda: bool(
1147
+ int(os.getenv("VLLM_DEEPEPLL_NVFP4_DISPATCH", "0"))
1148
+ ),
1149
+ # Whether to turn on the outlines cache for V1
1150
+ # This cache is unbounded and on disk, so it's not safe to use in
1151
+ # an environment with potentially malicious users.
1152
+ "VLLM_V1_USE_OUTLINES_CACHE": lambda: os.environ.get(
1153
+ "VLLM_V1_USE_OUTLINES_CACHE", "0"
1154
+ )
1155
+ == "1",
1156
+ # Gap between padding buckets for the forward pass. So we have
1157
+ # 8, we will run forward pass with [16, 24, 32, ...].
1158
+ "VLLM_TPU_BUCKET_PADDING_GAP": lambda: int(
1159
+ os.environ["VLLM_TPU_BUCKET_PADDING_GAP"]
1160
+ )
1161
+ if "VLLM_TPU_BUCKET_PADDING_GAP" in os.environ
1162
+ else 0,
1163
+ "VLLM_TPU_MOST_MODEL_LEN": lambda: maybe_convert_int(
1164
+ os.environ.get("VLLM_TPU_MOST_MODEL_LEN", None)
1165
+ ),
1166
+ # Whether using Pathways
1167
+ "VLLM_TPU_USING_PATHWAYS": lambda: bool(
1168
+ "proxy" in os.getenv("JAX_PLATFORMS", "").lower()
1169
+ ),
1170
+ # Allow use of DeepGemm kernels for fused moe ops.
1171
+ "VLLM_USE_DEEP_GEMM": lambda: bool(int(os.getenv("VLLM_USE_DEEP_GEMM", "1"))),
1172
+ # Allow use of DeepGemm specifically for MoE fused ops (overrides only MoE).
1173
+ "VLLM_MOE_USE_DEEP_GEMM": lambda: bool(
1174
+ int(os.getenv("VLLM_MOE_USE_DEEP_GEMM", "1"))
1175
+ ),
1176
+ # Whether to use E8M0 scaling when DeepGEMM is used on Blackwell GPUs.
1177
+ "VLLM_USE_DEEP_GEMM_E8M0": lambda: bool(
1178
+ int(os.getenv("VLLM_USE_DEEP_GEMM_E8M0", "1"))
1179
+ ),
1180
+ # DeepGemm JITs the kernels on-demand. The warmup attempts to make DeepGemm
1181
+ # JIT all the required kernels before model execution so there is no
1182
+ # JIT'ing in the hot-path. However, this warmup increases the engine
1183
+ # startup time by a couple of minutes.
1184
+ # Available options:
1185
+ # - "skip" : Skip warmup.
1186
+ # - "full" : Warmup deepgemm by running all possible gemm shapes the
1187
+ # engine could encounter.
1188
+ # - "relax" : Select gemm shapes to run based on some heuristics. The
1189
+ # heuristic aims to have the same effect as running all possible gemm
1190
+ # shapes, but provides no guarantees.
1191
+ "VLLM_DEEP_GEMM_WARMUP": env_with_choices(
1192
+ "VLLM_DEEP_GEMM_WARMUP",
1193
+ "relax",
1194
+ [
1195
+ "skip",
1196
+ "full",
1197
+ "relax",
1198
+ ],
1199
+ ),
1200
+ # Whether to use fused grouped_topk used for MoE expert selection.
1201
+ "VLLM_USE_FUSED_MOE_GROUPED_TOPK": lambda: bool(
1202
+ int(os.getenv("VLLM_USE_FUSED_MOE_GROUPED_TOPK", "1"))
1203
+ ),
1204
+ # Allow use of FlashInfer MoE kernels for fused moe ops.
1205
+ "VLLM_USE_FLASHINFER_MOE_FP16": lambda: bool(
1206
+ int(os.getenv("VLLM_USE_FLASHINFER_MOE_FP16", "0"))
1207
+ ),
1208
+ # Allow use of FlashInfer MoE kernels for fused moe ops.
1209
+ "VLLM_USE_FLASHINFER_MOE_FP8": lambda: bool(
1210
+ int(os.getenv("VLLM_USE_FLASHINFER_MOE_FP8", "0"))
1211
+ ),
1212
+ # Allow use of FlashInfer CUTLASS kernels for fused moe ops.
1213
+ "VLLM_USE_FLASHINFER_MOE_FP4": lambda: bool(
1214
+ int(os.getenv("VLLM_USE_FLASHINFER_MOE_FP4", "0"))
1215
+ ),
1216
+ # If set to 1, use the FlashInfer
1217
+ # MXFP8 (activation) x MXFP4 (weight) MoE backend.
1218
+ "VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8": lambda: bool(
1219
+ int(os.getenv("VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8", "0"))
1220
+ ),
1221
+ # If set to 1, use the FlashInfer CUTLASS backend for
1222
+ # MXFP8 (activation) x MXFP4 (weight) MoE.
1223
+ # This is separate from the TRTLLMGEN path controlled by
1224
+ # VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8.
1225
+ "VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8_CUTLASS": lambda: bool(
1226
+ int(os.getenv("VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8_CUTLASS", "0"))
1227
+ ),
1228
+ # If set to 1, use the FlashInfer
1229
+ # BF16 (activation) x MXFP4 (weight) MoE backend.
1230
+ "VLLM_USE_FLASHINFER_MOE_MXFP4_BF16": lambda: bool(
1231
+ int(os.getenv("VLLM_USE_FLASHINFER_MOE_MXFP4_BF16", "0"))
1232
+ ),
1233
+ # Control the cache sized used by the xgrammar compiler. The default
1234
+ # of 512 MB should be enough for roughly 1000 JSON schemas.
1235
+ # It can be changed with this variable if needed for some reason.
1236
+ "VLLM_XGRAMMAR_CACHE_MB": lambda: int(os.getenv("VLLM_XGRAMMAR_CACHE_MB", "512")),
1237
+ # Control the threshold for msgspec to use 'zero copy' for
1238
+ # serialization/deserialization of tensors. Tensors below
1239
+ # this limit will be encoded into the msgpack buffer, and
1240
+ # tensors above will instead be sent via a separate message.
1241
+ # While the sending side still actually copies the tensor
1242
+ # in all cases, on the receiving side, tensors above this
1243
+ # limit will actually be zero-copy decoded.
1244
+ "VLLM_MSGPACK_ZERO_COPY_THRESHOLD": lambda: int(
1245
+ os.getenv("VLLM_MSGPACK_ZERO_COPY_THRESHOLD", "256")
1246
+ ),
1247
+ # If set, allow insecure serialization using pickle.
1248
+ # This is useful for environments where it is deemed safe to use the
1249
+ # insecure method and it is needed for some reason.
1250
+ "VLLM_ALLOW_INSECURE_SERIALIZATION": lambda: bool(
1251
+ int(os.getenv("VLLM_ALLOW_INSECURE_SERIALIZATION", "0"))
1252
+ ),
1253
+ # IP address used for NIXL handshake between remote agents.
1254
+ "VLLM_NIXL_SIDE_CHANNEL_HOST": lambda: os.getenv(
1255
+ "VLLM_NIXL_SIDE_CHANNEL_HOST", "localhost"
1256
+ ),
1257
+ # Port used for NIXL handshake between remote agents.
1258
+ "VLLM_NIXL_SIDE_CHANNEL_PORT": lambda: int(
1259
+ os.getenv("VLLM_NIXL_SIDE_CHANNEL_PORT", "5600")
1260
+ ),
1261
+ # Port used for Mooncake handshake between remote agents.
1262
+ "VLLM_MOONCAKE_BOOTSTRAP_PORT": lambda: int(
1263
+ os.getenv("VLLM_MOONCAKE_BOOTSTRAP_PORT", "8998")
1264
+ ),
1265
+ # all2all backend for vllm's expert parallel communication
1266
+ # Available options:
1267
+ # - "naive": naive all2all implementation using broadcasts
1268
+ # - "allgather_reducescatter": all2all implementation based on allgather and
1269
+ # reducescatter
1270
+ # - "pplx": use pplx kernels
1271
+ # - "deepep_high_throughput", use deepep high-throughput kernels
1272
+ # - "deepep_low_latency", use deepep low-latency kernels
1273
+ # - "flashinfer_all2allv", use flashinfer alltoallv kernels for mnnvl
1274
+ "VLLM_ALL2ALL_BACKEND": env_with_choices(
1275
+ "VLLM_ALL2ALL_BACKEND",
1276
+ "allgather_reducescatter",
1277
+ [
1278
+ "naive",
1279
+ "pplx",
1280
+ "deepep_high_throughput",
1281
+ "deepep_low_latency",
1282
+ "allgather_reducescatter",
1283
+ "flashinfer_all2allv",
1284
+ ],
1285
+ ),
1286
+ # Flashinfer MoE backend for vLLM's fused Mixture-of-Experts support.
1287
+ # Both require compute capability 10.0 or above.
1288
+ # Available options:
1289
+ # - "throughput": [default]
1290
+ # Uses CUTLASS kernels optimized for high-throughput batch inference.
1291
+ # - "latency":
1292
+ # Uses TensorRT-LLM kernels optimized for low-latency inference.
1293
+ "VLLM_FLASHINFER_MOE_BACKEND": env_with_choices(
1294
+ "VLLM_FLASHINFER_MOE_BACKEND",
1295
+ "latency",
1296
+ ["throughput", "latency", "masked_gemm"],
1297
+ ),
1298
+ # Control the workspace buffer size for the FlashInfer backend.
1299
+ "VLLM_FLASHINFER_WORKSPACE_BUFFER_SIZE": lambda: int(
1300
+ os.getenv("VLLM_FLASHINFER_WORKSPACE_BUFFER_SIZE", str(394 * 1024 * 1024))
1301
+ ),
1302
+ # Control the maximum number of tokens per expert supported by the
1303
+ # NVFP4 MoE CUTLASS Kernel. This value is used to create a buffer for
1304
+ # the blockscale tensor of activations NVFP4 Quantization.
1305
+ # This is used to prevent the kernel from running out of memory.
1306
+ "VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE": lambda: int(
1307
+ os.getenv("VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE", "163840")
1308
+ ),
1309
+ # Specifies the thresholds of the communicated tensor sizes under which
1310
+ # vllm should use flashinfer fused allreduce. The variable should be a
1311
+ # JSON with the following format:
1312
+ # { <world size>: <max size in mb> }
1313
+ # Unspecified world sizes will fall back to
1314
+ # { 2: 64, 4: 1, <everything else>: 0.5 }
1315
+ "VLLM_FLASHINFER_ALLREDUCE_FUSION_THRESHOLDS_MB": lambda: json.loads(
1316
+ os.getenv("VLLM_FLASHINFER_ALLREDUCE_FUSION_THRESHOLDS_MB", "{}")
1317
+ ),
1318
+ # MoE routing strategy selector.
1319
+ # See `RoutingSimulator.get_available_strategies()` # for available
1320
+ # strategies.
1321
+ # Custom routing strategies can be registered by
1322
+ # RoutingSimulator.register_strategy()
1323
+ # Note: custom strategies may not produce correct model outputs
1324
+ "VLLM_MOE_ROUTING_SIMULATION_STRATEGY": lambda: os.environ.get(
1325
+ "VLLM_MOE_ROUTING_SIMULATION_STRATEGY", ""
1326
+ ).lower(),
1327
+ # Regex timeout for use by the vLLM tool parsing plugins.
1328
+ "VLLM_TOOL_PARSE_REGEX_TIMEOUT_SECONDS": lambda: int(
1329
+ os.getenv("VLLM_TOOL_PARSE_REGEX_TIMEOUT_SECONDS", "1")
1330
+ ),
1331
+ # Reduce CPU usage when vLLM is idle. Enabling this will incur small
1332
+ # latency penalty when a request eventually comes.
1333
+ "VLLM_SLEEP_WHEN_IDLE": lambda: bool(int(os.getenv("VLLM_SLEEP_WHEN_IDLE", "0"))),
1334
+ # Control the max chunk bytes (in MB) for the rpc message queue.
1335
+ # Object larger than this threshold will be broadcast to worker
1336
+ # processes via zmq.
1337
+ "VLLM_MQ_MAX_CHUNK_BYTES_MB": lambda: int(
1338
+ os.getenv("VLLM_MQ_MAX_CHUNK_BYTES_MB", "16")
1339
+ ),
1340
+ # Timeout in seconds for execute_model RPC calls in multiprocessing
1341
+ # executor (only applies when TP > 1).
1342
+ "VLLM_EXECUTE_MODEL_TIMEOUT_SECONDS": lambda: int(
1343
+ os.getenv("VLLM_EXECUTE_MODEL_TIMEOUT_SECONDS", "300")
1344
+ ),
1345
+ # KV Cache layout used throughout vllm.
1346
+ # Some common values are:
1347
+ # - NHD
1348
+ # - HND
1349
+ # Where N=num_blocks, H=num_heads and D=head_size. The default value will
1350
+ # leave the layout choice to the backend. Mind that backends may only
1351
+ # implement and support a subset of all possible layouts.
1352
+ "VLLM_KV_CACHE_LAYOUT": env_with_choices(
1353
+ "VLLM_KV_CACHE_LAYOUT", None, ["NHD", "HND"]
1354
+ ),
1355
+ # Enable checking whether the generated logits contain NaNs,
1356
+ # indicating corrupted output. Useful for debugging low level bugs
1357
+ # or bad hardware but it may add compute overhead.
1358
+ "VLLM_COMPUTE_NANS_IN_LOGITS": lambda: bool(
1359
+ int(os.getenv("VLLM_COMPUTE_NANS_IN_LOGITS", "0"))
1360
+ ),
1361
+ # Controls whether or not emulations are used for NVFP4
1362
+ # generations on machines < 100 for compressed-tensors
1363
+ # models
1364
+ "VLLM_USE_NVFP4_CT_EMULATIONS": lambda: bool(
1365
+ int(os.getenv("VLLM_USE_NVFP4_CT_EMULATIONS", "0"))
1366
+ ),
1367
+ # Time (in seconds) after which the KV cache on the producer side is
1368
+ # automatically cleared if no READ notification is received from the
1369
+ # consumer. This is only applicable when using NixlConnector in a
1370
+ # disaggregated decode-prefill setup.
1371
+ "VLLM_NIXL_ABORT_REQUEST_TIMEOUT": lambda: int(
1372
+ os.getenv("VLLM_NIXL_ABORT_REQUEST_TIMEOUT", "480")
1373
+ ),
1374
+ # Timeout (in seconds) for MooncakeConnector in PD disaggregated setup.
1375
+ "VLLM_MOONCAKE_ABORT_REQUEST_TIMEOUT": lambda: int(
1376
+ os.getenv("VLLM_MOONCAKE_ABORT_REQUEST_TIMEOUT", "480")
1377
+ ),
1378
+ # Controls whether or not to use cudnn prefill
1379
+ "VLLM_USE_CUDNN_PREFILL": lambda: bool(
1380
+ int(os.getenv("VLLM_USE_CUDNN_PREFILL", "0"))
1381
+ ),
1382
+ # Controls whether to use TRT-LLM ragged DeepSeek prefill
1383
+ "VLLM_USE_TRTLLM_RAGGED_DEEPSEEK_PREFILL": lambda: bool(
1384
+ int(os.getenv("VLLM_USE_TRTLLM_RAGGED_DEEPSEEK_PREFILL", "0"))
1385
+ ),
1386
+ # If set to 1/True, use the TRTLLM attention backend in flashinfer.
1387
+ # If set to 0/False, use the default attention backend in flashinfer.
1388
+ # If not set, auto-detect the attention backend in flashinfer.
1389
+ "VLLM_USE_TRTLLM_ATTENTION": lambda: (
1390
+ None
1391
+ if "VLLM_USE_TRTLLM_ATTENTION" not in os.environ
1392
+ else os.environ["VLLM_USE_TRTLLM_ATTENTION"].lower() in ("1", "true")
1393
+ ),
1394
+ # If set to 1, when we use fp8 kv, we do not quantize Q to fp8
1395
+ "VLLM_FLASHINFER_DISABLE_Q_QUANTIZATION": lambda: bool(
1396
+ int(os.getenv("VLLM_FLASHINFER_DISABLE_Q_QUANTIZATION", "0"))
1397
+ ),
1398
+ # If set, it means we pre-downloaded cubin files and flashinfer will
1399
+ # read the cubin files directly.
1400
+ "VLLM_HAS_FLASHINFER_CUBIN": lambda: bool(
1401
+ int(os.getenv("VLLM_HAS_FLASHINFER_CUBIN", "0"))
1402
+ ),
1403
+ # Supported options:
1404
+ # - "flashinfer-cudnn": use flashinfer cudnn GEMM backend
1405
+ # - "flashinfer-trtllm": use flashinfer trtllm GEMM backend
1406
+ # - "flashinfer-cutlass": use flashinfer cutlass GEMM backend
1407
+ # - <none>: automatically pick an available backend
1408
+ "VLLM_NVFP4_GEMM_BACKEND": env_with_choices(
1409
+ "VLLM_NVFP4_GEMM_BACKEND",
1410
+ None,
1411
+ ["flashinfer-cudnn", "flashinfer-trtllm", "flashinfer-cutlass", "cutlass"],
1412
+ ),
1413
+ # Controls garbage collection during CUDA graph capture.
1414
+ # If set to 0 (default), enables GC freezing to speed up capture time.
1415
+ # If set to 1, allows GC to run during capture.
1416
+ "VLLM_ENABLE_CUDAGRAPH_GC": lambda: bool(
1417
+ int(os.getenv("VLLM_ENABLE_CUDAGRAPH_GC", "0"))
1418
+ ),
1419
+ # Used to force set up loopback IP
1420
+ "VLLM_LOOPBACK_IP": lambda: os.getenv("VLLM_LOOPBACK_IP", ""),
1421
+ # Used to set the process name prefix for vLLM processes.
1422
+ # This is useful for debugging and monitoring purposes.
1423
+ # The default value is "VLLM".
1424
+ "VLLM_PROCESS_NAME_PREFIX": lambda: os.getenv("VLLM_PROCESS_NAME_PREFIX", "VLLM"),
1425
+ # Allow chunked local attention with hybrid kv cache manager.
1426
+ # Currently using the Hybrid KV cache manager with chunked local attention
1427
+ # in the Llama4 models (the only models currently using chunked local attn)
1428
+ # causes a latency regression. For this reason, we disable it by default.
1429
+ # This flag is used to allow users to enable it if they want to (to save on
1430
+ # kv-cache memory usage and enable longer contexts)
1431
+ # TODO(lucas): Remove this flag once latency regression is resolved.
1432
+ "VLLM_ALLOW_CHUNKED_LOCAL_ATTN_WITH_HYBRID_KV_CACHE": lambda: bool(
1433
+ int(os.getenv("VLLM_ALLOW_CHUNKED_LOCAL_ATTN_WITH_HYBRID_KV_CACHE", "0"))
1434
+ ),
1435
+ # Enables support for the "store" option in the OpenAI Responses API.
1436
+ # When set to 1, vLLM's OpenAI server will retain the input and output
1437
+ # messages for those requests in memory. By default, this is disabled (0),
1438
+ # and the "store" option is ignored.
1439
+ # NOTE/WARNING:
1440
+ # 1. Messages are kept in memory only (not persisted to disk) and will be
1441
+ # lost when the vLLM server shuts down.
1442
+ # 2. Enabling this option will cause a memory leak, as stored messages are
1443
+ # never removed from memory until the server terminates.
1444
+ "VLLM_ENABLE_RESPONSES_API_STORE": lambda: bool(
1445
+ int(os.getenv("VLLM_ENABLE_RESPONSES_API_STORE", "0"))
1446
+ ),
1447
+ # If set, use the fp8 mfma in rocm paged attention.
1448
+ "VLLM_ROCM_FP8_MFMA_PAGE_ATTN": lambda: bool(
1449
+ int(os.getenv("VLLM_ROCM_FP8_MFMA_PAGE_ATTN", "0"))
1450
+ ),
1451
+ # Whether to use pytorch symmetric memory for allreduce
1452
+ "VLLM_ALLREDUCE_USE_SYMM_MEM": lambda: bool(
1453
+ int(os.getenv("VLLM_ALLREDUCE_USE_SYMM_MEM", "1"))
1454
+ ),
1455
+ # Experimental: use this to enable MCP tool calling for non harmony models
1456
+ "VLLM_USE_EXPERIMENTAL_PARSER_CONTEXT": lambda: bool(
1457
+ int(os.getenv("VLLM_USE_EXPERIMENTAL_PARSER_CONTEXT", "0"))
1458
+ ),
1459
+ # Allows vllm to find tuned config under customized folder
1460
+ "VLLM_TUNED_CONFIG_FOLDER": lambda: os.getenv("VLLM_TUNED_CONFIG_FOLDER", None),
1461
+ # Valid values are container,code_interpreter,web_search_preview
1462
+ # ex VLLM_GPT_OSS_SYSTEM_TOOL_MCP_LABELS=container,code_interpreter
1463
+ # If the server_label of your mcp tool is not in this list it will
1464
+ # be completely ignored.
1465
+ "VLLM_GPT_OSS_SYSTEM_TOOL_MCP_LABELS": env_set_with_choices(
1466
+ "VLLM_GPT_OSS_SYSTEM_TOOL_MCP_LABELS",
1467
+ default=[],
1468
+ choices=["container", "code_interpreter", "web_search_preview"],
1469
+ ),
1470
+ # Allows harmony instructions to be injected on system messages
1471
+ "VLLM_GPT_OSS_HARMONY_SYSTEM_INSTRUCTIONS": lambda: bool(
1472
+ int(os.getenv("VLLM_GPT_OSS_HARMONY_SYSTEM_INSTRUCTIONS", "0"))
1473
+ ),
1474
+ # Enable automatic retry when tool call JSON parsing fails
1475
+ # If enabled, returns an error message to the model to retry
1476
+ # If disabled (default), raises an exception and fails the request
1477
+ "VLLM_TOOL_JSON_ERROR_AUTOMATIC_RETRY": lambda: bool(
1478
+ int(os.getenv("VLLM_TOOL_JSON_ERROR_AUTOMATIC_RETRY", "0"))
1479
+ ),
1480
+ # Add optional custom scopes for profiling, disable to avoid overheads
1481
+ "VLLM_CUSTOM_SCOPES_FOR_PROFILING": lambda: bool(
1482
+ int(os.getenv("VLLM_CUSTOM_SCOPES_FOR_PROFILING", "0"))
1483
+ ),
1484
+ # Add optional nvtx scopes for profiling, disable to avoid overheads
1485
+ "VLLM_NVTX_SCOPES_FOR_PROFILING": lambda: bool(
1486
+ int(os.getenv("VLLM_NVTX_SCOPES_FOR_PROFILING", "0"))
1487
+ ),
1488
+ # Represent block hashes in KV cache events as 64-bit integers instead of
1489
+ # raw bytes. Defaults to True for backward compatibility.
1490
+ "VLLM_KV_EVENTS_USE_INT_BLOCK_HASHES": lambda: bool(
1491
+ int(os.getenv("VLLM_KV_EVENTS_USE_INT_BLOCK_HASHES", "1"))
1492
+ ),
1493
+ # Name of the shared memory buffer used for object storage.
1494
+ # Only effective when mm_config.mm_processor_cache_type == "shm".
1495
+ "VLLM_OBJECT_STORAGE_SHM_BUFFER_NAME": lambda: os.getenv(
1496
+ "VLLM_OBJECT_STORAGE_SHM_BUFFER_NAME", "VLLM_OBJECT_STORAGE_SHM_BUFFER"
1497
+ ),
1498
+ # The size in MB of the buffers (NVL and RDMA) used by DeepEP
1499
+ "VLLM_DEEPEP_BUFFER_SIZE_MB": lambda: int(
1500
+ os.getenv("VLLM_DEEPEP_BUFFER_SIZE_MB", "1024")
1501
+ ),
1502
+ # Force DeepEP to use intranode kernel for inter-node communication in
1503
+ # high throughput mode. This is useful archive higher prefill throuhgput
1504
+ # on system supports multi-node nvlink (e.g GB200).
1505
+ "VLLM_DEEPEP_HIGH_THROUGHPUT_FORCE_INTRA_NODE": lambda: bool(
1506
+ int(os.getenv("VLLM_DEEPEP_HIGH_THROUGHPUT_FORCE_INTRA_NODE", "0"))
1507
+ ),
1508
+ # Allow DeepEP to use MNNVL (multi-node nvlink) for internode_ll kernel,
1509
+ # turn this for better latency on GB200 like system
1510
+ "VLLM_DEEPEP_LOW_LATENCY_USE_MNNVL": lambda: bool(
1511
+ int(os.getenv("VLLM_DEEPEP_LOW_LATENCY_USE_MNNVL", "0"))
1512
+ ),
1513
+ # The number of SMs to allocate for communication kernels when running DBO
1514
+ # the rest of the SMs on the device will be allocated to compute
1515
+ "VLLM_DBO_COMM_SMS": lambda: int(os.getenv("VLLM_DBO_COMM_SMS", "20")),
1516
+ # Enable max_autotune & coordinate_descent_tuning in inductor_config
1517
+ # to compile static shapes passed from compile_sizes in compilation_config
1518
+ # If set to 1, enable max_autotune; By default, this is enabled (1)
1519
+ "VLLM_ENABLE_INDUCTOR_MAX_AUTOTUNE": lambda: bool(
1520
+ int(os.getenv("VLLM_ENABLE_INDUCTOR_MAX_AUTOTUNE", "1"))
1521
+ ),
1522
+ # If set to 1, enable coordinate_descent_tuning;
1523
+ # By default, this is enabled (1)
1524
+ "VLLM_ENABLE_INDUCTOR_COORDINATE_DESCENT_TUNING": lambda: bool(
1525
+ int(os.getenv("VLLM_ENABLE_INDUCTOR_COORDINATE_DESCENT_TUNING", "1"))
1526
+ ),
1527
+ # Flag to enable NCCL symmetric memory allocation and registration
1528
+ "VLLM_USE_NCCL_SYMM_MEM": lambda: bool(
1529
+ int(os.getenv("VLLM_USE_NCCL_SYMM_MEM", "0"))
1530
+ ),
1531
+ # NCCL header path
1532
+ "VLLM_NCCL_INCLUDE_PATH": lambda: os.environ.get("VLLM_NCCL_INCLUDE_PATH", None),
1533
+ # Flag to enable FBGemm kernels on model execution
1534
+ "VLLM_USE_FBGEMM": lambda: bool(int(os.getenv("VLLM_USE_FBGEMM", "0"))),
1535
+ # GC debug config
1536
+ # - VLLM_GC_DEBUG=0: disable GC debugger
1537
+ # - VLLM_GC_DEBUG=1: enable GC debugger with gc.collect elpased times
1538
+ # - VLLM_GC_DEBUG='{"top_objects":5}': enable GC debugger with
1539
+ # top 5 collected objects
1540
+ "VLLM_GC_DEBUG": lambda: os.getenv("VLLM_GC_DEBUG", ""),
1541
+ # Debug workspace allocations.
1542
+ # logging of workspace resize operations.
1543
+ "VLLM_DEBUG_WORKSPACE": lambda: bool(int(os.getenv("VLLM_DEBUG_WORKSPACE", "0"))),
1544
+ # Disables parallel execution of shared_experts via separate cuda stream
1545
+ "VLLM_DISABLE_SHARED_EXPERTS_STREAM": lambda: bool(
1546
+ int(os.getenv("VLLM_DISABLE_SHARED_EXPERTS_STREAM", "0"))
1547
+ ),
1548
+ # Limits when we run shared_experts in a separate stream.
1549
+ # We found out that for large batch sizes, the separate stream
1550
+ # execution is not beneficial (most likely because of the input clone)
1551
+ # TODO(alexm-redhat): Tune to be more dynamic based on GPU type
1552
+ "VLLM_SHARED_EXPERTS_STREAM_TOKEN_THRESHOLD": lambda: int(
1553
+ int(os.getenv("VLLM_SHARED_EXPERTS_STREAM_TOKEN_THRESHOLD", 256))
1554
+ ),
1555
+ # Format for saving torch.compile cache artifacts
1556
+ # - "binary": saves as binary file
1557
+ # Safe for multiple vllm serve processes accessing the same torch compile cache.
1558
+ # - "unpacked": saves as directory structure (for inspection/debugging)
1559
+ # NOT multiprocess safe - race conditions may occur with multiple processes.
1560
+ # Allows viewing and setting breakpoints in Inductor's code output files.
1561
+ "VLLM_COMPILE_CACHE_SAVE_FORMAT": env_with_choices(
1562
+ "VLLM_COMPILE_CACHE_SAVE_FORMAT", "binary", ["binary", "unpacked"]
1563
+ ),
1564
+ # Flag to enable v2 model runner.
1565
+ "VLLM_USE_V2_MODEL_RUNNER": lambda: bool(
1566
+ int(os.getenv("VLLM_USE_V2_MODEL_RUNNER", "0"))
1567
+ ),
1568
+ }
1569
+
1570
+ # --8<-- [end:env-vars-definition]
1571
+
1572
+
1573
+ def __getattr__(name: str):
1574
+ """
1575
+ Gets environment variables lazily.
1576
+
1577
+ NOTE: After enable_envs_cache() invocation (which triggered after service
1578
+ initialization), all environment variables will be cached.
1579
+ """
1580
+ if name in environment_variables:
1581
+ return environment_variables[name]()
1582
+ raise AttributeError(f"module {__name__!r} has no attribute {name!r}")
1583
+
1584
+
1585
+ def _is_envs_cache_enabled() -> bool:
1586
+ """Checked if __getattr__ is wrapped with functools.cache"""
1587
+ global __getattr__
1588
+ return hasattr(__getattr__, "cache_clear")
1589
+
1590
+
1591
+ def enable_envs_cache() -> None:
1592
+ """
1593
+ Enables caching of environment variables. This is useful for performance
1594
+ reasons, as it avoids the need to re-evaluate environment variables on
1595
+ every call.
1596
+
1597
+ NOTE: Currently, it's invoked after service initialization to reduce
1598
+ runtime overhead. This also means that environment variables should NOT
1599
+ be updated after the service is initialized.
1600
+ """
1601
+ if _is_envs_cache_enabled():
1602
+ # Avoid wrapping functools.cache multiple times
1603
+ return
1604
+ # Tag __getattr__ with functools.cache
1605
+ global __getattr__
1606
+ __getattr__ = functools.cache(__getattr__)
1607
+
1608
+ # Cache all environment variables
1609
+ for key in environment_variables:
1610
+ __getattr__(key)
1611
+
1612
+
1613
+ def disable_envs_cache() -> None:
1614
+ """
1615
+ Resets the environment variables cache. It could be used to isolate environments
1616
+ between unit tests.
1617
+ """
1618
+ global __getattr__
1619
+ # If __getattr__ is wrapped by functions.cache, unwrap the caching layer.
1620
+ if _is_envs_cache_enabled():
1621
+ __getattr__ = __getattr__.__wrapped__
1622
+
1623
+
1624
+ def __dir__():
1625
+ return list(environment_variables.keys())
1626
+
1627
+
1628
+ def is_set(name: str):
1629
+ """Check if an environment variable is explicitly set."""
1630
+ if name in environment_variables:
1631
+ return name in os.environ
1632
+ raise AttributeError(f"module {__name__!r} has no attribute {name!r}")
1633
+
1634
+
1635
+ def compile_factors() -> dict[str, object]:
1636
+ """Return env vars used for torch.compile cache keys.
1637
+
1638
+ Start with every known vLLM env var; drop entries in `ignored_factors`;
1639
+ hash everything else. This keeps the cache key aligned across workers."""
1640
+
1641
+ ignored_factors: set[str] = {
1642
+ "MAX_JOBS",
1643
+ "VLLM_RPC_BASE_PATH",
1644
+ "VLLM_USE_MODELSCOPE",
1645
+ "VLLM_RINGBUFFER_WARNING_INTERVAL",
1646
+ "VLLM_DEBUG_DUMP_PATH",
1647
+ "VLLM_PORT",
1648
+ "VLLM_CACHE_ROOT",
1649
+ "LD_LIBRARY_PATH",
1650
+ "VLLM_SERVER_DEV_MODE",
1651
+ "VLLM_DP_MASTER_IP",
1652
+ "VLLM_DP_MASTER_PORT",
1653
+ "VLLM_RANDOMIZE_DP_DUMMY_INPUTS",
1654
+ "VLLM_CI_USE_S3",
1655
+ "VLLM_MODEL_REDIRECT_PATH",
1656
+ "VLLM_HOST_IP",
1657
+ "S3_ACCESS_KEY_ID",
1658
+ "S3_SECRET_ACCESS_KEY",
1659
+ "S3_ENDPOINT_URL",
1660
+ "VLLM_USAGE_STATS_SERVER",
1661
+ "VLLM_NO_USAGE_STATS",
1662
+ "VLLM_DO_NOT_TRACK",
1663
+ "VLLM_LOGGING_LEVEL",
1664
+ "VLLM_LOGGING_PREFIX",
1665
+ "VLLM_LOGGING_STREAM",
1666
+ "VLLM_LOGGING_CONFIG_PATH",
1667
+ "VLLM_LOGGING_COLOR",
1668
+ "VLLM_LOG_STATS_INTERVAL",
1669
+ "VLLM_DEBUG_LOG_API_SERVER_RESPONSE",
1670
+ "VLLM_TUNED_CONFIG_FOLDER",
1671
+ "VLLM_ENGINE_ITERATION_TIMEOUT_S",
1672
+ "VLLM_HTTP_TIMEOUT_KEEP_ALIVE",
1673
+ "VLLM_EXECUTE_MODEL_TIMEOUT_SECONDS",
1674
+ "VLLM_KEEP_ALIVE_ON_ENGINE_DEATH",
1675
+ "VLLM_SLEEP_WHEN_IDLE",
1676
+ "VLLM_IMAGE_FETCH_TIMEOUT",
1677
+ "VLLM_VIDEO_FETCH_TIMEOUT",
1678
+ "VLLM_AUDIO_FETCH_TIMEOUT",
1679
+ "VLLM_MEDIA_URL_ALLOW_REDIRECTS",
1680
+ "VLLM_MEDIA_LOADING_THREAD_COUNT",
1681
+ "VLLM_MAX_AUDIO_CLIP_FILESIZE_MB",
1682
+ "VLLM_VIDEO_LOADER_BACKEND",
1683
+ "VLLM_MEDIA_CONNECTOR",
1684
+ "VLLM_ASSETS_CACHE",
1685
+ "VLLM_ASSETS_CACHE_MODEL_CLEAN",
1686
+ "VLLM_WORKER_MULTIPROC_METHOD",
1687
+ "VLLM_ENABLE_V1_MULTIPROCESSING",
1688
+ "VLLM_V1_OUTPUT_PROC_CHUNK_SIZE",
1689
+ "VLLM_CPU_KVCACHE_SPACE",
1690
+ "VLLM_CPU_OMP_THREADS_BIND",
1691
+ "VLLM_CPU_NUM_OF_RESERVED_CPU",
1692
+ "VLLM_CPU_MOE_PREPACK",
1693
+ "VLLM_CPU_SGL_KERNEL",
1694
+ "VLLM_TEST_FORCE_LOAD_FORMAT",
1695
+ "LOCAL_RANK",
1696
+ "CUDA_VISIBLE_DEVICES",
1697
+ "NO_COLOR",
1698
+ }
1699
+
1700
+ from vllm.config.utils import normalize_value
1701
+
1702
+ factors: dict[str, object] = {}
1703
+ for factor, getter in environment_variables.items():
1704
+ if factor in ignored_factors:
1705
+ continue
1706
+
1707
+ try:
1708
+ raw = getter()
1709
+ except Exception as exc: # pragma: no cover - defensive logging
1710
+ logger.warning(
1711
+ "Skipping environment variable %s while hashing compile factors: %s",
1712
+ factor,
1713
+ exc,
1714
+ )
1715
+ continue
1716
+
1717
+ factors[factor] = normalize_value(raw)
1718
+
1719
+ ray_noset_env_vars = [
1720
+ # Refer to
1721
+ # https://github.com/ray-project/ray/blob/c584b1ea97b00793d1def71eaf81537d70efba42/python/ray/_private/accelerators/nvidia_gpu.py#L11
1722
+ # https://github.com/ray-project/ray/blob/c584b1ea97b00793d1def71eaf81537d70efba42/python/ray/_private/accelerators/amd_gpu.py#L11
1723
+ # https://github.com/ray-project/ray/blob/b97d21dab233c2bd8ed7db749a82a1e594222b5c/python/ray/_private/accelerators/amd_gpu.py#L10
1724
+ # https://github.com/ray-project/ray/blob/c584b1ea97b00793d1def71eaf81537d70efba42/python/ray/_private/accelerators/npu.py#L12
1725
+ # https://github.com/ray-project/ray/blob/c584b1ea97b00793d1def71eaf81537d70efba42/python/ray/_private/accelerators/hpu.py#L12
1726
+ # https://github.com/ray-project/ray/blob/c584b1ea97b00793d1def71eaf81537d70efba42/python/ray/_private/accelerators/neuron.py#L14
1727
+ # https://github.com/ray-project/ray/blob/c584b1ea97b00793d1def71eaf81537d70efba42/python/ray/_private/accelerators/tpu.py#L38
1728
+ # https://github.com/ray-project/ray/blob/c584b1ea97b00793d1def71eaf81537d70efba42/python/ray/_private/accelerators/intel_gpu.py#L10
1729
+ # https://github.com/ray-project/ray/blob/c584b1ea97b00793d1def71eaf81537d70efba42/python/ray/_private/accelerators/rbln.py#L10
1730
+ "RAY_EXPERIMENTAL_NOSET_CUDA_VISIBLE_DEVICES",
1731
+ "RAY_EXPERIMENTAL_NOSET_ROCR_VISIBLE_DEVICES",
1732
+ "RAY_EXPERIMENTAL_NOSET_HIP_VISIBLE_DEVICES",
1733
+ "RAY_EXPERIMENTAL_NOSET_ASCEND_RT_VISIBLE_DEVICES",
1734
+ "RAY_EXPERIMENTAL_NOSET_HABANA_VISIBLE_MODULES",
1735
+ "RAY_EXPERIMENTAL_NOSET_NEURON_RT_VISIBLE_CORES",
1736
+ "RAY_EXPERIMENTAL_NOSET_TPU_VISIBLE_CHIPS",
1737
+ "RAY_EXPERIMENTAL_NOSET_ONEAPI_DEVICE_SELECTOR",
1738
+ "RAY_EXPERIMENTAL_NOSET_RBLN_RT_VISIBLE_DEVICES",
1739
+ ]
1740
+
1741
+ for var in ray_noset_env_vars:
1742
+ factors[var] = normalize_value(os.getenv(var))
1743
+
1744
+ return factors