vllm-cpu-avx512vnni 0.13.0__cp313-cp313-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vllm-cpu-avx512vnni might be problematic. Click here for more details.

Files changed (1641) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +225 -0
  3. vllm/_aiter_ops.py +1260 -0
  4. vllm/_bc_linter.py +54 -0
  5. vllm/_custom_ops.py +3080 -0
  6. vllm/_ipex_ops.py +457 -0
  7. vllm/_version.py +34 -0
  8. vllm/assets/__init__.py +0 -0
  9. vllm/assets/audio.py +43 -0
  10. vllm/assets/base.py +40 -0
  11. vllm/assets/image.py +59 -0
  12. vllm/assets/video.py +149 -0
  13. vllm/attention/__init__.py +0 -0
  14. vllm/attention/backends/__init__.py +0 -0
  15. vllm/attention/backends/abstract.py +443 -0
  16. vllm/attention/backends/registry.py +254 -0
  17. vllm/attention/backends/utils.py +33 -0
  18. vllm/attention/layer.py +969 -0
  19. vllm/attention/layers/__init__.py +0 -0
  20. vllm/attention/layers/chunked_local_attention.py +120 -0
  21. vllm/attention/layers/cross_attention.py +178 -0
  22. vllm/attention/layers/encoder_only_attention.py +103 -0
  23. vllm/attention/layers/mm_encoder_attention.py +284 -0
  24. vllm/attention/ops/__init__.py +0 -0
  25. vllm/attention/ops/chunked_prefill_paged_decode.py +401 -0
  26. vllm/attention/ops/common.py +469 -0
  27. vllm/attention/ops/flashmla.py +251 -0
  28. vllm/attention/ops/merge_attn_states.py +47 -0
  29. vllm/attention/ops/paged_attn.py +51 -0
  30. vllm/attention/ops/pallas_kv_cache_update.py +130 -0
  31. vllm/attention/ops/prefix_prefill.py +814 -0
  32. vllm/attention/ops/rocm_aiter_mla_sparse.py +210 -0
  33. vllm/attention/ops/triton_decode_attention.py +712 -0
  34. vllm/attention/ops/triton_merge_attn_states.py +116 -0
  35. vllm/attention/ops/triton_reshape_and_cache_flash.py +184 -0
  36. vllm/attention/ops/triton_unified_attention.py +1047 -0
  37. vllm/attention/ops/vit_attn_wrappers.py +139 -0
  38. vllm/attention/selector.py +145 -0
  39. vllm/attention/utils/__init__.py +0 -0
  40. vllm/attention/utils/fa_utils.py +118 -0
  41. vllm/attention/utils/kv_sharing_utils.py +33 -0
  42. vllm/attention/utils/kv_transfer_utils.py +60 -0
  43. vllm/beam_search.py +88 -0
  44. vllm/benchmarks/__init__.py +0 -0
  45. vllm/benchmarks/datasets.py +3228 -0
  46. vllm/benchmarks/latency.py +170 -0
  47. vllm/benchmarks/lib/__init__.py +3 -0
  48. vllm/benchmarks/lib/endpoint_request_func.py +777 -0
  49. vllm/benchmarks/lib/ready_checker.py +72 -0
  50. vllm/benchmarks/lib/utils.py +79 -0
  51. vllm/benchmarks/serve.py +1538 -0
  52. vllm/benchmarks/startup.py +326 -0
  53. vllm/benchmarks/sweep/__init__.py +0 -0
  54. vllm/benchmarks/sweep/cli.py +41 -0
  55. vllm/benchmarks/sweep/param_sweep.py +158 -0
  56. vllm/benchmarks/sweep/plot.py +675 -0
  57. vllm/benchmarks/sweep/plot_pareto.py +393 -0
  58. vllm/benchmarks/sweep/serve.py +450 -0
  59. vllm/benchmarks/sweep/serve_sla.py +492 -0
  60. vllm/benchmarks/sweep/server.py +114 -0
  61. vllm/benchmarks/sweep/sla_sweep.py +132 -0
  62. vllm/benchmarks/sweep/utils.py +4 -0
  63. vllm/benchmarks/throughput.py +808 -0
  64. vllm/collect_env.py +857 -0
  65. vllm/compilation/__init__.py +0 -0
  66. vllm/compilation/activation_quant_fusion.py +209 -0
  67. vllm/compilation/backends.py +839 -0
  68. vllm/compilation/base_static_graph.py +57 -0
  69. vllm/compilation/caching.py +180 -0
  70. vllm/compilation/collective_fusion.py +1215 -0
  71. vllm/compilation/compiler_interface.py +639 -0
  72. vllm/compilation/counter.py +48 -0
  73. vllm/compilation/cuda_graph.py +302 -0
  74. vllm/compilation/decorators.py +626 -0
  75. vllm/compilation/fix_functionalization.py +266 -0
  76. vllm/compilation/fusion.py +550 -0
  77. vllm/compilation/fusion_attn.py +359 -0
  78. vllm/compilation/fx_utils.py +91 -0
  79. vllm/compilation/inductor_pass.py +138 -0
  80. vllm/compilation/matcher_utils.py +361 -0
  81. vllm/compilation/monitor.py +62 -0
  82. vllm/compilation/noop_elimination.py +130 -0
  83. vllm/compilation/partition_rules.py +72 -0
  84. vllm/compilation/pass_manager.py +155 -0
  85. vllm/compilation/piecewise_backend.py +178 -0
  86. vllm/compilation/post_cleanup.py +21 -0
  87. vllm/compilation/qk_norm_rope_fusion.py +238 -0
  88. vllm/compilation/rocm_aiter_fusion.py +242 -0
  89. vllm/compilation/sequence_parallelism.py +364 -0
  90. vllm/compilation/torch25_custom_graph_pass.py +44 -0
  91. vllm/compilation/vllm_inductor_pass.py +173 -0
  92. vllm/compilation/wrapper.py +319 -0
  93. vllm/config/__init__.py +108 -0
  94. vllm/config/attention.py +114 -0
  95. vllm/config/cache.py +232 -0
  96. vllm/config/compilation.py +1140 -0
  97. vllm/config/device.py +75 -0
  98. vllm/config/ec_transfer.py +110 -0
  99. vllm/config/kv_events.py +56 -0
  100. vllm/config/kv_transfer.py +119 -0
  101. vllm/config/load.py +124 -0
  102. vllm/config/lora.py +96 -0
  103. vllm/config/model.py +2190 -0
  104. vllm/config/multimodal.py +247 -0
  105. vllm/config/observability.py +140 -0
  106. vllm/config/parallel.py +660 -0
  107. vllm/config/pooler.py +126 -0
  108. vllm/config/profiler.py +199 -0
  109. vllm/config/scheduler.py +299 -0
  110. vllm/config/speculative.py +644 -0
  111. vllm/config/speech_to_text.py +38 -0
  112. vllm/config/structured_outputs.py +78 -0
  113. vllm/config/utils.py +370 -0
  114. vllm/config/vllm.py +1434 -0
  115. vllm/connections.py +189 -0
  116. vllm/device_allocator/__init__.py +0 -0
  117. vllm/device_allocator/cumem.py +327 -0
  118. vllm/distributed/__init__.py +6 -0
  119. vllm/distributed/communication_op.py +43 -0
  120. vllm/distributed/device_communicators/__init__.py +0 -0
  121. vllm/distributed/device_communicators/all2all.py +490 -0
  122. vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
  123. vllm/distributed/device_communicators/base_device_communicator.py +297 -0
  124. vllm/distributed/device_communicators/cpu_communicator.py +209 -0
  125. vllm/distributed/device_communicators/cuda_communicator.py +340 -0
  126. vllm/distributed/device_communicators/cuda_wrapper.py +216 -0
  127. vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
  128. vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
  129. vllm/distributed/device_communicators/pynccl.py +386 -0
  130. vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
  131. vllm/distributed/device_communicators/pynccl_wrapper.py +564 -0
  132. vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
  133. vllm/distributed/device_communicators/ray_communicator.py +259 -0
  134. vllm/distributed/device_communicators/shm_broadcast.py +778 -0
  135. vllm/distributed/device_communicators/shm_object_storage.py +697 -0
  136. vllm/distributed/device_communicators/symm_mem.py +156 -0
  137. vllm/distributed/device_communicators/tpu_communicator.py +99 -0
  138. vllm/distributed/device_communicators/xpu_communicator.py +95 -0
  139. vllm/distributed/ec_transfer/__init__.py +14 -0
  140. vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
  141. vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
  142. vllm/distributed/ec_transfer/ec_connector/example_connector.py +201 -0
  143. vllm/distributed/ec_transfer/ec_connector/factory.py +85 -0
  144. vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
  145. vllm/distributed/eplb/__init__.py +3 -0
  146. vllm/distributed/eplb/async_worker.py +115 -0
  147. vllm/distributed/eplb/eplb_state.py +1164 -0
  148. vllm/distributed/eplb/policy/__init__.py +19 -0
  149. vllm/distributed/eplb/policy/abstract.py +40 -0
  150. vllm/distributed/eplb/policy/default.py +267 -0
  151. vllm/distributed/eplb/rebalance_execute.py +529 -0
  152. vllm/distributed/kv_events.py +499 -0
  153. vllm/distributed/kv_transfer/README.md +29 -0
  154. vllm/distributed/kv_transfer/__init__.py +20 -0
  155. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  156. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  157. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  158. vllm/distributed/kv_transfer/kv_connector/factory.py +197 -0
  159. vllm/distributed/kv_transfer/kv_connector/utils.py +322 -0
  160. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
  161. vllm/distributed/kv_transfer/kv_connector/v1/base.py +597 -0
  162. vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
  163. vllm/distributed/kv_transfer/kv_connector/v1/example_connector.py +450 -0
  164. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +327 -0
  165. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
  166. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +378 -0
  167. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +221 -0
  168. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1418 -0
  169. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +895 -0
  170. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +186 -0
  171. vllm/distributed/kv_transfer/kv_connector/v1/mooncake_connector.py +914 -0
  172. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +464 -0
  173. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2526 -0
  174. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +538 -0
  175. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  176. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
  177. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
  178. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
  179. vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
  180. vllm/distributed/parallel_state.py +1795 -0
  181. vllm/distributed/tpu_distributed_utils.py +188 -0
  182. vllm/distributed/utils.py +545 -0
  183. vllm/engine/__init__.py +0 -0
  184. vllm/engine/arg_utils.py +2068 -0
  185. vllm/engine/async_llm_engine.py +6 -0
  186. vllm/engine/llm_engine.py +6 -0
  187. vllm/engine/protocol.py +190 -0
  188. vllm/entrypoints/__init__.py +0 -0
  189. vllm/entrypoints/anthropic/__init__.py +0 -0
  190. vllm/entrypoints/anthropic/protocol.py +162 -0
  191. vllm/entrypoints/anthropic/serving_messages.py +468 -0
  192. vllm/entrypoints/api_server.py +185 -0
  193. vllm/entrypoints/chat_utils.py +1903 -0
  194. vllm/entrypoints/cli/__init__.py +15 -0
  195. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  196. vllm/entrypoints/cli/benchmark/base.py +25 -0
  197. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  198. vllm/entrypoints/cli/benchmark/main.py +56 -0
  199. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  200. vllm/entrypoints/cli/benchmark/startup.py +21 -0
  201. vllm/entrypoints/cli/benchmark/sweep.py +21 -0
  202. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  203. vllm/entrypoints/cli/collect_env.py +38 -0
  204. vllm/entrypoints/cli/main.py +79 -0
  205. vllm/entrypoints/cli/openai.py +260 -0
  206. vllm/entrypoints/cli/run_batch.py +68 -0
  207. vllm/entrypoints/cli/serve.py +249 -0
  208. vllm/entrypoints/cli/types.py +29 -0
  209. vllm/entrypoints/constants.py +12 -0
  210. vllm/entrypoints/context.py +835 -0
  211. vllm/entrypoints/launcher.py +175 -0
  212. vllm/entrypoints/llm.py +1790 -0
  213. vllm/entrypoints/logger.py +84 -0
  214. vllm/entrypoints/openai/__init__.py +0 -0
  215. vllm/entrypoints/openai/api_server.py +1469 -0
  216. vllm/entrypoints/openai/cli_args.py +302 -0
  217. vllm/entrypoints/openai/orca_metrics.py +120 -0
  218. vllm/entrypoints/openai/parser/__init__.py +0 -0
  219. vllm/entrypoints/openai/parser/harmony_utils.py +825 -0
  220. vllm/entrypoints/openai/parser/responses_parser.py +135 -0
  221. vllm/entrypoints/openai/protocol.py +2496 -0
  222. vllm/entrypoints/openai/run_batch.py +631 -0
  223. vllm/entrypoints/openai/serving_chat.py +1822 -0
  224. vllm/entrypoints/openai/serving_completion.py +729 -0
  225. vllm/entrypoints/openai/serving_engine.py +1542 -0
  226. vllm/entrypoints/openai/serving_models.py +304 -0
  227. vllm/entrypoints/openai/serving_responses.py +2080 -0
  228. vllm/entrypoints/openai/serving_transcription.py +168 -0
  229. vllm/entrypoints/openai/speech_to_text.py +559 -0
  230. vllm/entrypoints/openai/tool_parsers/__init__.py +33 -0
  231. vllm/entrypoints/openai/utils.py +49 -0
  232. vllm/entrypoints/pooling/__init__.py +16 -0
  233. vllm/entrypoints/pooling/classify/__init__.py +0 -0
  234. vllm/entrypoints/pooling/classify/api_router.py +50 -0
  235. vllm/entrypoints/pooling/classify/protocol.py +181 -0
  236. vllm/entrypoints/pooling/classify/serving.py +233 -0
  237. vllm/entrypoints/pooling/embed/__init__.py +0 -0
  238. vllm/entrypoints/pooling/embed/api_router.py +67 -0
  239. vllm/entrypoints/pooling/embed/protocol.py +208 -0
  240. vllm/entrypoints/pooling/embed/serving.py +684 -0
  241. vllm/entrypoints/pooling/pooling/__init__.py +0 -0
  242. vllm/entrypoints/pooling/pooling/api_router.py +63 -0
  243. vllm/entrypoints/pooling/pooling/protocol.py +148 -0
  244. vllm/entrypoints/pooling/pooling/serving.py +354 -0
  245. vllm/entrypoints/pooling/score/__init__.py +0 -0
  246. vllm/entrypoints/pooling/score/api_router.py +149 -0
  247. vllm/entrypoints/pooling/score/protocol.py +146 -0
  248. vllm/entrypoints/pooling/score/serving.py +508 -0
  249. vllm/entrypoints/renderer.py +410 -0
  250. vllm/entrypoints/responses_utils.py +249 -0
  251. vllm/entrypoints/sagemaker/__init__.py +4 -0
  252. vllm/entrypoints/sagemaker/routes.py +118 -0
  253. vllm/entrypoints/score_utils.py +237 -0
  254. vllm/entrypoints/serve/__init__.py +60 -0
  255. vllm/entrypoints/serve/disagg/__init__.py +0 -0
  256. vllm/entrypoints/serve/disagg/api_router.py +110 -0
  257. vllm/entrypoints/serve/disagg/protocol.py +90 -0
  258. vllm/entrypoints/serve/disagg/serving.py +285 -0
  259. vllm/entrypoints/serve/elastic_ep/__init__.py +0 -0
  260. vllm/entrypoints/serve/elastic_ep/api_router.py +96 -0
  261. vllm/entrypoints/serve/elastic_ep/middleware.py +49 -0
  262. vllm/entrypoints/serve/instrumentator/__init__.py +0 -0
  263. vllm/entrypoints/serve/instrumentator/health.py +33 -0
  264. vllm/entrypoints/serve/instrumentator/metrics.py +45 -0
  265. vllm/entrypoints/serve/lora/__init__.py +0 -0
  266. vllm/entrypoints/serve/lora/api_router.py +70 -0
  267. vllm/entrypoints/serve/profile/__init__.py +0 -0
  268. vllm/entrypoints/serve/profile/api_router.py +46 -0
  269. vllm/entrypoints/serve/rlhf/__init__.py +0 -0
  270. vllm/entrypoints/serve/rlhf/api_router.py +102 -0
  271. vllm/entrypoints/serve/sleep/__init__.py +0 -0
  272. vllm/entrypoints/serve/sleep/api_router.py +60 -0
  273. vllm/entrypoints/serve/tokenize/__init__.py +0 -0
  274. vllm/entrypoints/serve/tokenize/api_router.py +118 -0
  275. vllm/entrypoints/serve/tokenize/serving.py +204 -0
  276. vllm/entrypoints/ssl.py +78 -0
  277. vllm/entrypoints/tool.py +187 -0
  278. vllm/entrypoints/tool_server.py +234 -0
  279. vllm/entrypoints/utils.py +319 -0
  280. vllm/env_override.py +378 -0
  281. vllm/envs.py +1744 -0
  282. vllm/forward_context.py +358 -0
  283. vllm/inputs/__init__.py +44 -0
  284. vllm/inputs/data.py +359 -0
  285. vllm/inputs/parse.py +146 -0
  286. vllm/inputs/preprocess.py +717 -0
  287. vllm/logger.py +303 -0
  288. vllm/logging_utils/__init__.py +13 -0
  289. vllm/logging_utils/dump_input.py +83 -0
  290. vllm/logging_utils/formatter.py +127 -0
  291. vllm/logging_utils/lazy.py +20 -0
  292. vllm/logging_utils/log_time.py +34 -0
  293. vllm/logits_process.py +121 -0
  294. vllm/logprobs.py +206 -0
  295. vllm/lora/__init__.py +0 -0
  296. vllm/lora/layers/__init__.py +42 -0
  297. vllm/lora/layers/base.py +66 -0
  298. vllm/lora/layers/base_linear.py +165 -0
  299. vllm/lora/layers/column_parallel_linear.py +577 -0
  300. vllm/lora/layers/fused_moe.py +747 -0
  301. vllm/lora/layers/logits_processor.py +203 -0
  302. vllm/lora/layers/replicated_linear.py +70 -0
  303. vllm/lora/layers/row_parallel_linear.py +176 -0
  304. vllm/lora/layers/utils.py +74 -0
  305. vllm/lora/layers/vocal_parallel_embedding.py +140 -0
  306. vllm/lora/lora_model.py +246 -0
  307. vllm/lora/lora_weights.py +227 -0
  308. vllm/lora/model_manager.py +690 -0
  309. vllm/lora/ops/__init__.py +0 -0
  310. vllm/lora/ops/ipex_ops/__init__.py +6 -0
  311. vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
  312. vllm/lora/ops/torch_ops/__init__.py +20 -0
  313. vllm/lora/ops/torch_ops/lora_ops.py +128 -0
  314. vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
  315. vllm/lora/ops/triton_ops/__init__.py +21 -0
  316. vllm/lora/ops/triton_ops/fused_moe_lora_op.py +665 -0
  317. vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
  318. vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
  319. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
  320. vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
  321. vllm/lora/ops/triton_ops/utils.py +295 -0
  322. vllm/lora/ops/xla_ops/__init__.py +6 -0
  323. vllm/lora/ops/xla_ops/lora_ops.py +141 -0
  324. vllm/lora/peft_helper.py +128 -0
  325. vllm/lora/punica_wrapper/__init__.py +10 -0
  326. vllm/lora/punica_wrapper/punica_base.py +493 -0
  327. vllm/lora/punica_wrapper/punica_cpu.py +351 -0
  328. vllm/lora/punica_wrapper/punica_gpu.py +412 -0
  329. vllm/lora/punica_wrapper/punica_selector.py +21 -0
  330. vllm/lora/punica_wrapper/punica_tpu.py +358 -0
  331. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  332. vllm/lora/punica_wrapper/utils.py +150 -0
  333. vllm/lora/request.py +100 -0
  334. vllm/lora/resolver.py +88 -0
  335. vllm/lora/utils.py +315 -0
  336. vllm/lora/worker_manager.py +268 -0
  337. vllm/model_executor/__init__.py +11 -0
  338. vllm/model_executor/custom_op.py +199 -0
  339. vllm/model_executor/layers/__init__.py +0 -0
  340. vllm/model_executor/layers/activation.py +595 -0
  341. vllm/model_executor/layers/attention_layer_base.py +32 -0
  342. vllm/model_executor/layers/batch_invariant.py +1067 -0
  343. vllm/model_executor/layers/conv.py +256 -0
  344. vllm/model_executor/layers/fla/__init__.py +8 -0
  345. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  346. vllm/model_executor/layers/fla/ops/chunk.py +240 -0
  347. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
  348. vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
  349. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
  350. vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
  351. vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
  352. vllm/model_executor/layers/fla/ops/index.py +41 -0
  353. vllm/model_executor/layers/fla/ops/kda.py +1351 -0
  354. vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
  355. vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
  356. vllm/model_executor/layers/fla/ops/op.py +60 -0
  357. vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
  358. vllm/model_executor/layers/fla/ops/utils.py +194 -0
  359. vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
  360. vllm/model_executor/layers/fused_moe/__init__.py +114 -0
  361. vllm/model_executor/layers/fused_moe/all2all_utils.py +171 -0
  362. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +409 -0
  363. vllm/model_executor/layers/fused_moe/config.py +1043 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +147 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=20,N=1536,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Server_Edition,dtype=fp8_w8a8.json +147 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  559. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  560. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  561. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  562. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  563. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  564. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  565. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  566. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  567. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  568. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  569. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  570. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  571. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  572. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  573. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  574. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  575. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  576. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  577. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  578. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  579. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  580. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  581. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  582. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  583. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  584. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  585. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  586. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  587. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  588. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  589. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  590. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  591. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  592. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  593. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  594. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  595. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  596. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  597. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  598. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  599. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  600. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  601. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  602. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  603. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  604. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  605. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  606. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  607. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  608. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  609. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  610. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  611. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  612. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  613. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  614. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  615. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  616. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  617. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  618. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  619. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  620. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  621. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  622. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  623. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  624. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  625. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  626. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  627. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  628. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  629. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  630. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  631. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  632. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  633. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  634. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  635. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  636. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  637. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  638. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  639. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +292 -0
  640. vllm/model_executor/layers/fused_moe/cutlass_moe.py +1453 -0
  641. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +358 -0
  642. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +427 -0
  643. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
  644. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +434 -0
  645. vllm/model_executor/layers/fused_moe/flashinfer_cutedsl_moe.py +376 -0
  646. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +307 -0
  647. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +362 -0
  648. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
  649. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1012 -0
  650. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +825 -0
  651. vllm/model_executor/layers/fused_moe/fused_moe.py +2223 -0
  652. vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +103 -0
  653. vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +119 -0
  654. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +524 -0
  655. vllm/model_executor/layers/fused_moe/layer.py +2133 -0
  656. vllm/model_executor/layers/fused_moe/modular_kernel.py +1302 -0
  657. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +192 -0
  658. vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
  659. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
  660. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  661. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
  662. vllm/model_executor/layers/fused_moe/prepare_finalize.py +78 -0
  663. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +265 -0
  664. vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
  665. vllm/model_executor/layers/fused_moe/shared_fused_moe.py +96 -0
  666. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
  667. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +163 -0
  668. vllm/model_executor/layers/fused_moe/trtllm_moe.py +143 -0
  669. vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +455 -0
  670. vllm/model_executor/layers/fused_moe/utils.py +332 -0
  671. vllm/model_executor/layers/kda.py +442 -0
  672. vllm/model_executor/layers/layernorm.py +442 -0
  673. vllm/model_executor/layers/lightning_attn.py +735 -0
  674. vllm/model_executor/layers/linear.py +1424 -0
  675. vllm/model_executor/layers/logits_processor.py +106 -0
  676. vllm/model_executor/layers/mamba/__init__.py +0 -0
  677. vllm/model_executor/layers/mamba/abstract.py +68 -0
  678. vllm/model_executor/layers/mamba/linear_attn.py +388 -0
  679. vllm/model_executor/layers/mamba/mamba_mixer.py +526 -0
  680. vllm/model_executor/layers/mamba/mamba_mixer2.py +930 -0
  681. vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
  682. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  683. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
  684. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
  685. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +586 -0
  686. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
  687. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
  688. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
  689. vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
  690. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
  691. vllm/model_executor/layers/mamba/short_conv.py +255 -0
  692. vllm/model_executor/layers/mla.py +176 -0
  693. vllm/model_executor/layers/pooler.py +830 -0
  694. vllm/model_executor/layers/quantization/__init__.py +179 -0
  695. vllm/model_executor/layers/quantization/auto_round.py +454 -0
  696. vllm/model_executor/layers/quantization/awq.py +277 -0
  697. vllm/model_executor/layers/quantization/awq_marlin.py +793 -0
  698. vllm/model_executor/layers/quantization/awq_triton.py +337 -0
  699. vllm/model_executor/layers/quantization/base_config.py +170 -0
  700. vllm/model_executor/layers/quantization/bitblas.py +502 -0
  701. vllm/model_executor/layers/quantization/bitsandbytes.py +626 -0
  702. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
  703. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +986 -0
  704. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2645 -0
  705. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +35 -0
  706. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
  707. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  708. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
  709. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
  710. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
  711. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +176 -0
  712. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
  713. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
  714. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +200 -0
  715. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
  716. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +230 -0
  717. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  718. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
  719. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
  720. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  721. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
  722. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  723. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
  724. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  725. vllm/model_executor/layers/quantization/cpu_wna16.py +625 -0
  726. vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
  727. vllm/model_executor/layers/quantization/experts_int8.py +207 -0
  728. vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
  729. vllm/model_executor/layers/quantization/fp8.py +1461 -0
  730. vllm/model_executor/layers/quantization/fp_quant.py +420 -0
  731. vllm/model_executor/layers/quantization/gguf.py +677 -0
  732. vllm/model_executor/layers/quantization/gptq.py +393 -0
  733. vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
  734. vllm/model_executor/layers/quantization/gptq_marlin.py +932 -0
  735. vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
  736. vllm/model_executor/layers/quantization/hqq_marlin.py +372 -0
  737. vllm/model_executor/layers/quantization/inc.py +65 -0
  738. vllm/model_executor/layers/quantization/input_quant_fp8.py +202 -0
  739. vllm/model_executor/layers/quantization/ipex_quant.py +487 -0
  740. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  741. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
  742. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +109 -0
  743. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  744. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
  745. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
  746. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +130 -0
  747. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
  748. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +161 -0
  749. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
  750. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +200 -0
  751. vllm/model_executor/layers/quantization/kernels/mixed_precision/xpu.py +97 -0
  752. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +76 -0
  753. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +81 -0
  754. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +128 -0
  755. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +220 -0
  756. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +147 -0
  757. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +71 -0
  758. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +106 -0
  759. vllm/model_executor/layers/quantization/kv_cache.py +153 -0
  760. vllm/model_executor/layers/quantization/modelopt.py +1684 -0
  761. vllm/model_executor/layers/quantization/moe_wna16.py +516 -0
  762. vllm/model_executor/layers/quantization/mxfp4.py +1140 -0
  763. vllm/model_executor/layers/quantization/petit.py +319 -0
  764. vllm/model_executor/layers/quantization/ptpc_fp8.py +136 -0
  765. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  766. vllm/model_executor/layers/quantization/quark/quark.py +527 -0
  767. vllm/model_executor/layers/quantization/quark/quark_moe.py +622 -0
  768. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  769. vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +343 -0
  770. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  771. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
  772. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
  773. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  774. vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
  775. vllm/model_executor/layers/quantization/rtn.py +621 -0
  776. vllm/model_executor/layers/quantization/schema.py +90 -0
  777. vllm/model_executor/layers/quantization/torchao.py +380 -0
  778. vllm/model_executor/layers/quantization/tpu_int8.py +139 -0
  779. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  780. vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
  781. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=10240,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  902. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=25600,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  903. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=8192,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  904. vllm/model_executor/layers/quantization/utils/configs/N=51200,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  905. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  906. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  907. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  908. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  909. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  910. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  911. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  912. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  913. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  914. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  915. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  916. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  917. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  918. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  919. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  920. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  921. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  922. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  923. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  924. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  925. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  926. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  927. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  928. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  929. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  930. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  931. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  932. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  933. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  934. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  935. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  936. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  937. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  938. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  939. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  940. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  941. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  942. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  943. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  944. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  945. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  946. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  947. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  948. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  949. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  950. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  951. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  952. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  953. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  954. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  955. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  956. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  957. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  958. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  959. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  960. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  961. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  962. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  963. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  964. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  965. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  966. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  967. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  968. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  969. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  970. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  971. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  972. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  973. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  974. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  975. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  976. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  977. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  978. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  979. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  980. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  981. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  982. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  983. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  984. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  985. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  986. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  987. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  988. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  989. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  990. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  991. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  992. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  993. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  994. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  995. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  996. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  997. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +412 -0
  998. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +312 -0
  999. vllm/model_executor/layers/quantization/utils/fp8_utils.py +1453 -0
  1000. vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
  1001. vllm/model_executor/layers/quantization/utils/int8_utils.py +474 -0
  1002. vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
  1003. vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
  1004. vllm/model_executor/layers/quantization/utils/marlin_utils.py +678 -0
  1005. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +452 -0
  1006. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +381 -0
  1007. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +219 -0
  1008. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
  1009. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +189 -0
  1010. vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
  1011. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
  1012. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
  1013. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +67 -0
  1014. vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
  1015. vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
  1016. vllm/model_executor/layers/quantization/utils/quant_utils.py +741 -0
  1017. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +519 -0
  1018. vllm/model_executor/layers/resampler.py +283 -0
  1019. vllm/model_executor/layers/rotary_embedding/__init__.py +289 -0
  1020. vllm/model_executor/layers/rotary_embedding/base.py +254 -0
  1021. vllm/model_executor/layers/rotary_embedding/common.py +279 -0
  1022. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +165 -0
  1023. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +215 -0
  1024. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
  1025. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
  1026. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +82 -0
  1027. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  1028. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  1029. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +80 -0
  1030. vllm/model_executor/layers/rotary_embedding/mrope.py +412 -0
  1031. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
  1032. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
  1033. vllm/model_executor/layers/rotary_embedding/xdrope.py +160 -0
  1034. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +84 -0
  1035. vllm/model_executor/layers/utils.py +251 -0
  1036. vllm/model_executor/layers/vocab_parallel_embedding.py +558 -0
  1037. vllm/model_executor/model_loader/__init__.py +150 -0
  1038. vllm/model_executor/model_loader/base_loader.py +57 -0
  1039. vllm/model_executor/model_loader/bitsandbytes_loader.py +822 -0
  1040. vllm/model_executor/model_loader/default_loader.py +321 -0
  1041. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  1042. vllm/model_executor/model_loader/gguf_loader.py +371 -0
  1043. vllm/model_executor/model_loader/online_quantization.py +275 -0
  1044. vllm/model_executor/model_loader/runai_streamer_loader.py +116 -0
  1045. vllm/model_executor/model_loader/sharded_state_loader.py +214 -0
  1046. vllm/model_executor/model_loader/tensorizer.py +790 -0
  1047. vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
  1048. vllm/model_executor/model_loader/tpu.py +118 -0
  1049. vllm/model_executor/model_loader/utils.py +292 -0
  1050. vllm/model_executor/model_loader/weight_utils.py +1157 -0
  1051. vllm/model_executor/models/__init__.py +44 -0
  1052. vllm/model_executor/models/adapters.py +522 -0
  1053. vllm/model_executor/models/afmoe.py +696 -0
  1054. vllm/model_executor/models/aimv2.py +248 -0
  1055. vllm/model_executor/models/apertus.py +565 -0
  1056. vllm/model_executor/models/arcee.py +428 -0
  1057. vllm/model_executor/models/arctic.py +633 -0
  1058. vllm/model_executor/models/aria.py +653 -0
  1059. vllm/model_executor/models/audioflamingo3.py +639 -0
  1060. vllm/model_executor/models/aya_vision.py +448 -0
  1061. vllm/model_executor/models/bagel.py +584 -0
  1062. vllm/model_executor/models/baichuan.py +493 -0
  1063. vllm/model_executor/models/bailing_moe.py +642 -0
  1064. vllm/model_executor/models/bamba.py +511 -0
  1065. vllm/model_executor/models/bee.py +157 -0
  1066. vllm/model_executor/models/bert.py +925 -0
  1067. vllm/model_executor/models/bert_with_rope.py +732 -0
  1068. vllm/model_executor/models/blip.py +350 -0
  1069. vllm/model_executor/models/blip2.py +693 -0
  1070. vllm/model_executor/models/bloom.py +390 -0
  1071. vllm/model_executor/models/chameleon.py +1095 -0
  1072. vllm/model_executor/models/chatglm.py +502 -0
  1073. vllm/model_executor/models/clip.py +1004 -0
  1074. vllm/model_executor/models/cohere2_vision.py +470 -0
  1075. vllm/model_executor/models/commandr.py +469 -0
  1076. vllm/model_executor/models/config.py +531 -0
  1077. vllm/model_executor/models/dbrx.py +484 -0
  1078. vllm/model_executor/models/deepencoder.py +676 -0
  1079. vllm/model_executor/models/deepseek_eagle.py +252 -0
  1080. vllm/model_executor/models/deepseek_mtp.py +446 -0
  1081. vllm/model_executor/models/deepseek_ocr.py +591 -0
  1082. vllm/model_executor/models/deepseek_v2.py +1710 -0
  1083. vllm/model_executor/models/deepseek_vl2.py +642 -0
  1084. vllm/model_executor/models/dots1.py +565 -0
  1085. vllm/model_executor/models/dots_ocr.py +821 -0
  1086. vllm/model_executor/models/ernie45.py +53 -0
  1087. vllm/model_executor/models/ernie45_moe.py +754 -0
  1088. vllm/model_executor/models/ernie45_vl.py +1621 -0
  1089. vllm/model_executor/models/ernie45_vl_moe.py +800 -0
  1090. vllm/model_executor/models/ernie_mtp.py +279 -0
  1091. vllm/model_executor/models/exaone.py +524 -0
  1092. vllm/model_executor/models/exaone4.py +516 -0
  1093. vllm/model_executor/models/fairseq2_llama.py +154 -0
  1094. vllm/model_executor/models/falcon.py +543 -0
  1095. vllm/model_executor/models/falcon_h1.py +675 -0
  1096. vllm/model_executor/models/flex_olmo.py +155 -0
  1097. vllm/model_executor/models/fuyu.py +371 -0
  1098. vllm/model_executor/models/gemma.py +425 -0
  1099. vllm/model_executor/models/gemma2.py +435 -0
  1100. vllm/model_executor/models/gemma3.py +507 -0
  1101. vllm/model_executor/models/gemma3_mm.py +664 -0
  1102. vllm/model_executor/models/gemma3n.py +1166 -0
  1103. vllm/model_executor/models/gemma3n_mm.py +810 -0
  1104. vllm/model_executor/models/glm.py +24 -0
  1105. vllm/model_executor/models/glm4.py +295 -0
  1106. vllm/model_executor/models/glm4_1v.py +1808 -0
  1107. vllm/model_executor/models/glm4_moe.py +736 -0
  1108. vllm/model_executor/models/glm4_moe_mtp.py +359 -0
  1109. vllm/model_executor/models/glm4v.py +783 -0
  1110. vllm/model_executor/models/gpt2.py +397 -0
  1111. vllm/model_executor/models/gpt_bigcode.py +339 -0
  1112. vllm/model_executor/models/gpt_j.py +346 -0
  1113. vllm/model_executor/models/gpt_neox.py +340 -0
  1114. vllm/model_executor/models/gpt_oss.py +744 -0
  1115. vllm/model_executor/models/granite.py +475 -0
  1116. vllm/model_executor/models/granite_speech.py +912 -0
  1117. vllm/model_executor/models/granitemoe.py +560 -0
  1118. vllm/model_executor/models/granitemoehybrid.py +703 -0
  1119. vllm/model_executor/models/granitemoeshared.py +328 -0
  1120. vllm/model_executor/models/gritlm.py +243 -0
  1121. vllm/model_executor/models/grok1.py +554 -0
  1122. vllm/model_executor/models/h2ovl.py +554 -0
  1123. vllm/model_executor/models/hunyuan_v1.py +1040 -0
  1124. vllm/model_executor/models/hunyuan_vision.py +1034 -0
  1125. vllm/model_executor/models/hyperclovax_vision.py +1164 -0
  1126. vllm/model_executor/models/idefics2_vision_model.py +427 -0
  1127. vllm/model_executor/models/idefics3.py +716 -0
  1128. vllm/model_executor/models/interfaces.py +1179 -0
  1129. vllm/model_executor/models/interfaces_base.py +228 -0
  1130. vllm/model_executor/models/intern_vit.py +454 -0
  1131. vllm/model_executor/models/internlm2.py +453 -0
  1132. vllm/model_executor/models/internlm2_ve.py +139 -0
  1133. vllm/model_executor/models/interns1.py +828 -0
  1134. vllm/model_executor/models/interns1_vit.py +433 -0
  1135. vllm/model_executor/models/internvl.py +1450 -0
  1136. vllm/model_executor/models/jais.py +397 -0
  1137. vllm/model_executor/models/jais2.py +529 -0
  1138. vllm/model_executor/models/jamba.py +609 -0
  1139. vllm/model_executor/models/jina_vl.py +147 -0
  1140. vllm/model_executor/models/keye.py +1706 -0
  1141. vllm/model_executor/models/keye_vl1_5.py +726 -0
  1142. vllm/model_executor/models/kimi_linear.py +658 -0
  1143. vllm/model_executor/models/kimi_vl.py +576 -0
  1144. vllm/model_executor/models/lfm2.py +515 -0
  1145. vllm/model_executor/models/lfm2_moe.py +745 -0
  1146. vllm/model_executor/models/lightonocr.py +195 -0
  1147. vllm/model_executor/models/llama.py +700 -0
  1148. vllm/model_executor/models/llama4.py +856 -0
  1149. vllm/model_executor/models/llama4_eagle.py +225 -0
  1150. vllm/model_executor/models/llama_eagle.py +213 -0
  1151. vllm/model_executor/models/llama_eagle3.py +375 -0
  1152. vllm/model_executor/models/llava.py +840 -0
  1153. vllm/model_executor/models/llava_next.py +581 -0
  1154. vllm/model_executor/models/llava_next_video.py +465 -0
  1155. vllm/model_executor/models/llava_onevision.py +921 -0
  1156. vllm/model_executor/models/longcat_flash.py +743 -0
  1157. vllm/model_executor/models/longcat_flash_mtp.py +349 -0
  1158. vllm/model_executor/models/mamba.py +276 -0
  1159. vllm/model_executor/models/mamba2.py +288 -0
  1160. vllm/model_executor/models/medusa.py +179 -0
  1161. vllm/model_executor/models/midashenglm.py +826 -0
  1162. vllm/model_executor/models/mimo.py +188 -0
  1163. vllm/model_executor/models/mimo_mtp.py +294 -0
  1164. vllm/model_executor/models/minicpm.py +656 -0
  1165. vllm/model_executor/models/minicpm3.py +233 -0
  1166. vllm/model_executor/models/minicpm_eagle.py +385 -0
  1167. vllm/model_executor/models/minicpmo.py +768 -0
  1168. vllm/model_executor/models/minicpmv.py +1742 -0
  1169. vllm/model_executor/models/minimax_m2.py +550 -0
  1170. vllm/model_executor/models/minimax_text_01.py +1007 -0
  1171. vllm/model_executor/models/minimax_vl_01.py +394 -0
  1172. vllm/model_executor/models/mistral3.py +635 -0
  1173. vllm/model_executor/models/mistral_large_3.py +63 -0
  1174. vllm/model_executor/models/mistral_large_3_eagle.py +136 -0
  1175. vllm/model_executor/models/mixtral.py +598 -0
  1176. vllm/model_executor/models/mllama4.py +1149 -0
  1177. vllm/model_executor/models/mlp_speculator.py +235 -0
  1178. vllm/model_executor/models/modernbert.py +451 -0
  1179. vllm/model_executor/models/module_mapping.py +74 -0
  1180. vllm/model_executor/models/molmo.py +1550 -0
  1181. vllm/model_executor/models/moonvit.py +686 -0
  1182. vllm/model_executor/models/mpt.py +335 -0
  1183. vllm/model_executor/models/nano_nemotron_vl.py +1730 -0
  1184. vllm/model_executor/models/nemotron.py +499 -0
  1185. vllm/model_executor/models/nemotron_h.py +900 -0
  1186. vllm/model_executor/models/nemotron_nas.py +471 -0
  1187. vllm/model_executor/models/nemotron_vl.py +651 -0
  1188. vllm/model_executor/models/nvlm_d.py +216 -0
  1189. vllm/model_executor/models/olmo.py +412 -0
  1190. vllm/model_executor/models/olmo2.py +454 -0
  1191. vllm/model_executor/models/olmoe.py +493 -0
  1192. vllm/model_executor/models/opencua.py +262 -0
  1193. vllm/model_executor/models/openpangu.py +1049 -0
  1194. vllm/model_executor/models/openpangu_mtp.py +265 -0
  1195. vllm/model_executor/models/opt.py +426 -0
  1196. vllm/model_executor/models/orion.py +365 -0
  1197. vllm/model_executor/models/ouro.py +507 -0
  1198. vllm/model_executor/models/ovis.py +557 -0
  1199. vllm/model_executor/models/ovis2_5.py +661 -0
  1200. vllm/model_executor/models/paddleocr_vl.py +1300 -0
  1201. vllm/model_executor/models/paligemma.py +408 -0
  1202. vllm/model_executor/models/persimmon.py +373 -0
  1203. vllm/model_executor/models/phi.py +363 -0
  1204. vllm/model_executor/models/phi3.py +18 -0
  1205. vllm/model_executor/models/phi3v.py +729 -0
  1206. vllm/model_executor/models/phi4mm.py +1251 -0
  1207. vllm/model_executor/models/phi4mm_audio.py +1296 -0
  1208. vllm/model_executor/models/phi4mm_utils.py +1907 -0
  1209. vllm/model_executor/models/phimoe.py +669 -0
  1210. vllm/model_executor/models/pixtral.py +1379 -0
  1211. vllm/model_executor/models/plamo2.py +965 -0
  1212. vllm/model_executor/models/plamo3.py +440 -0
  1213. vllm/model_executor/models/qwen.py +365 -0
  1214. vllm/model_executor/models/qwen2.py +600 -0
  1215. vllm/model_executor/models/qwen2_5_omni_thinker.py +1219 -0
  1216. vllm/model_executor/models/qwen2_5_vl.py +1569 -0
  1217. vllm/model_executor/models/qwen2_audio.py +471 -0
  1218. vllm/model_executor/models/qwen2_moe.py +597 -0
  1219. vllm/model_executor/models/qwen2_rm.py +123 -0
  1220. vllm/model_executor/models/qwen2_vl.py +1568 -0
  1221. vllm/model_executor/models/qwen3.py +331 -0
  1222. vllm/model_executor/models/qwen3_moe.py +751 -0
  1223. vllm/model_executor/models/qwen3_next.py +1395 -0
  1224. vllm/model_executor/models/qwen3_next_mtp.py +296 -0
  1225. vllm/model_executor/models/qwen3_omni_moe_thinker.py +1793 -0
  1226. vllm/model_executor/models/qwen3_vl.py +2092 -0
  1227. vllm/model_executor/models/qwen3_vl_moe.py +474 -0
  1228. vllm/model_executor/models/qwen_vl.py +801 -0
  1229. vllm/model_executor/models/radio.py +555 -0
  1230. vllm/model_executor/models/registry.py +1189 -0
  1231. vllm/model_executor/models/roberta.py +259 -0
  1232. vllm/model_executor/models/rvl.py +107 -0
  1233. vllm/model_executor/models/seed_oss.py +492 -0
  1234. vllm/model_executor/models/siglip.py +1244 -0
  1235. vllm/model_executor/models/siglip2navit.py +658 -0
  1236. vllm/model_executor/models/skyworkr1v.py +951 -0
  1237. vllm/model_executor/models/smolvlm.py +38 -0
  1238. vllm/model_executor/models/solar.py +484 -0
  1239. vllm/model_executor/models/stablelm.py +354 -0
  1240. vllm/model_executor/models/starcoder2.py +365 -0
  1241. vllm/model_executor/models/step3_text.py +554 -0
  1242. vllm/model_executor/models/step3_vl.py +1147 -0
  1243. vllm/model_executor/models/swin.py +514 -0
  1244. vllm/model_executor/models/tarsier.py +617 -0
  1245. vllm/model_executor/models/telechat2.py +153 -0
  1246. vllm/model_executor/models/teleflm.py +78 -0
  1247. vllm/model_executor/models/terratorch.py +318 -0
  1248. vllm/model_executor/models/transformers/__init__.py +127 -0
  1249. vllm/model_executor/models/transformers/base.py +518 -0
  1250. vllm/model_executor/models/transformers/causal.py +65 -0
  1251. vllm/model_executor/models/transformers/legacy.py +90 -0
  1252. vllm/model_executor/models/transformers/moe.py +325 -0
  1253. vllm/model_executor/models/transformers/multimodal.py +411 -0
  1254. vllm/model_executor/models/transformers/pooling.py +119 -0
  1255. vllm/model_executor/models/transformers/utils.py +213 -0
  1256. vllm/model_executor/models/ultravox.py +766 -0
  1257. vllm/model_executor/models/utils.py +832 -0
  1258. vllm/model_executor/models/vision.py +546 -0
  1259. vllm/model_executor/models/voxtral.py +841 -0
  1260. vllm/model_executor/models/whisper.py +971 -0
  1261. vllm/model_executor/models/zamba2.py +979 -0
  1262. vllm/model_executor/parameter.py +642 -0
  1263. vllm/model_executor/utils.py +119 -0
  1264. vllm/model_executor/warmup/__init__.py +0 -0
  1265. vllm/model_executor/warmup/deep_gemm_warmup.py +314 -0
  1266. vllm/model_executor/warmup/kernel_warmup.py +98 -0
  1267. vllm/multimodal/__init__.py +40 -0
  1268. vllm/multimodal/audio.py +147 -0
  1269. vllm/multimodal/base.py +56 -0
  1270. vllm/multimodal/cache.py +823 -0
  1271. vllm/multimodal/evs.py +294 -0
  1272. vllm/multimodal/hasher.py +120 -0
  1273. vllm/multimodal/image.py +142 -0
  1274. vllm/multimodal/inputs.py +1089 -0
  1275. vllm/multimodal/parse.py +565 -0
  1276. vllm/multimodal/processing.py +2240 -0
  1277. vllm/multimodal/profiling.py +351 -0
  1278. vllm/multimodal/registry.py +357 -0
  1279. vllm/multimodal/utils.py +513 -0
  1280. vllm/multimodal/video.py +340 -0
  1281. vllm/outputs.py +345 -0
  1282. vllm/platforms/__init__.py +277 -0
  1283. vllm/platforms/cpu.py +421 -0
  1284. vllm/platforms/cuda.py +618 -0
  1285. vllm/platforms/interface.py +695 -0
  1286. vllm/platforms/rocm.py +564 -0
  1287. vllm/platforms/tpu.py +295 -0
  1288. vllm/platforms/xpu.py +277 -0
  1289. vllm/plugins/__init__.py +81 -0
  1290. vllm/plugins/io_processors/__init__.py +68 -0
  1291. vllm/plugins/io_processors/interface.py +77 -0
  1292. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1293. vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
  1294. vllm/pooling_params.py +230 -0
  1295. vllm/profiler/__init__.py +0 -0
  1296. vllm/profiler/layerwise_profile.py +392 -0
  1297. vllm/profiler/utils.py +151 -0
  1298. vllm/profiler/wrapper.py +241 -0
  1299. vllm/py.typed +2 -0
  1300. vllm/ray/__init__.py +0 -0
  1301. vllm/ray/lazy_utils.py +30 -0
  1302. vllm/ray/ray_env.py +79 -0
  1303. vllm/reasoning/__init__.py +96 -0
  1304. vllm/reasoning/abs_reasoning_parsers.py +318 -0
  1305. vllm/reasoning/basic_parsers.py +175 -0
  1306. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1307. vllm/reasoning/deepseek_v3_reasoning_parser.py +67 -0
  1308. vllm/reasoning/ernie45_reasoning_parser.py +165 -0
  1309. vllm/reasoning/glm4_moe_reasoning_parser.py +171 -0
  1310. vllm/reasoning/gptoss_reasoning_parser.py +173 -0
  1311. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1312. vllm/reasoning/holo2_reasoning_parser.py +88 -0
  1313. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
  1314. vllm/reasoning/identity_reasoning_parser.py +63 -0
  1315. vllm/reasoning/minimax_m2_reasoning_parser.py +110 -0
  1316. vllm/reasoning/mistral_reasoning_parser.py +154 -0
  1317. vllm/reasoning/olmo3_reasoning_parser.py +302 -0
  1318. vllm/reasoning/qwen3_reasoning_parser.py +67 -0
  1319. vllm/reasoning/seedoss_reasoning_parser.py +27 -0
  1320. vllm/reasoning/step3_reasoning_parser.py +107 -0
  1321. vllm/sampling_params.py +597 -0
  1322. vllm/scalar_type.py +355 -0
  1323. vllm/scripts.py +17 -0
  1324. vllm/sequence.py +98 -0
  1325. vllm/tasks.py +13 -0
  1326. vllm/third_party/__init__.py +0 -0
  1327. vllm/third_party/pynvml.py +6140 -0
  1328. vllm/tokenizers/__init__.py +20 -0
  1329. vllm/tokenizers/deepseek_v32.py +175 -0
  1330. vllm/tokenizers/deepseek_v32_encoding.py +459 -0
  1331. vllm/tokenizers/detokenizer_utils.py +198 -0
  1332. vllm/tokenizers/hf.py +119 -0
  1333. vllm/tokenizers/mistral.py +567 -0
  1334. vllm/tokenizers/protocol.py +114 -0
  1335. vllm/tokenizers/registry.py +233 -0
  1336. vllm/tool_parsers/__init__.py +150 -0
  1337. vllm/tool_parsers/abstract_tool_parser.py +273 -0
  1338. vllm/tool_parsers/deepseekv31_tool_parser.py +388 -0
  1339. vllm/tool_parsers/deepseekv32_tool_parser.py +591 -0
  1340. vllm/tool_parsers/deepseekv3_tool_parser.py +390 -0
  1341. vllm/tool_parsers/ernie45_tool_parser.py +210 -0
  1342. vllm/tool_parsers/gigachat3_tool_parser.py +190 -0
  1343. vllm/tool_parsers/glm4_moe_tool_parser.py +200 -0
  1344. vllm/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
  1345. vllm/tool_parsers/granite_tool_parser.py +253 -0
  1346. vllm/tool_parsers/hermes_tool_parser.py +495 -0
  1347. vllm/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
  1348. vllm/tool_parsers/internlm2_tool_parser.py +227 -0
  1349. vllm/tool_parsers/jamba_tool_parser.py +323 -0
  1350. vllm/tool_parsers/kimi_k2_tool_parser.py +590 -0
  1351. vllm/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
  1352. vllm/tool_parsers/llama_tool_parser.py +324 -0
  1353. vllm/tool_parsers/longcat_tool_parser.py +37 -0
  1354. vllm/tool_parsers/minimax_m2_tool_parser.py +643 -0
  1355. vllm/tool_parsers/minimax_tool_parser.py +849 -0
  1356. vllm/tool_parsers/mistral_tool_parser.py +585 -0
  1357. vllm/tool_parsers/olmo3_tool_parser.py +366 -0
  1358. vllm/tool_parsers/openai_tool_parser.py +102 -0
  1359. vllm/tool_parsers/phi4mini_tool_parser.py +120 -0
  1360. vllm/tool_parsers/pythonic_tool_parser.py +332 -0
  1361. vllm/tool_parsers/qwen3coder_tool_parser.py +781 -0
  1362. vllm/tool_parsers/qwen3xml_tool_parser.py +1316 -0
  1363. vllm/tool_parsers/seed_oss_tool_parser.py +744 -0
  1364. vllm/tool_parsers/step3_tool_parser.py +303 -0
  1365. vllm/tool_parsers/utils.py +229 -0
  1366. vllm/tool_parsers/xlam_tool_parser.py +556 -0
  1367. vllm/tracing.py +135 -0
  1368. vllm/transformers_utils/__init__.py +26 -0
  1369. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1370. vllm/transformers_utils/chat_templates/registry.py +73 -0
  1371. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1372. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1373. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1374. vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
  1375. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1376. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1377. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1378. vllm/transformers_utils/config.py +1144 -0
  1379. vllm/transformers_utils/config_parser_base.py +20 -0
  1380. vllm/transformers_utils/configs/__init__.py +102 -0
  1381. vllm/transformers_utils/configs/afmoe.py +87 -0
  1382. vllm/transformers_utils/configs/arctic.py +216 -0
  1383. vllm/transformers_utils/configs/bagel.py +53 -0
  1384. vllm/transformers_utils/configs/chatglm.py +75 -0
  1385. vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
  1386. vllm/transformers_utils/configs/dotsocr.py +71 -0
  1387. vllm/transformers_utils/configs/eagle.py +90 -0
  1388. vllm/transformers_utils/configs/falcon.py +89 -0
  1389. vllm/transformers_utils/configs/flex_olmo.py +82 -0
  1390. vllm/transformers_utils/configs/hunyuan_vl.py +322 -0
  1391. vllm/transformers_utils/configs/jais.py +243 -0
  1392. vllm/transformers_utils/configs/kimi_linear.py +148 -0
  1393. vllm/transformers_utils/configs/kimi_vl.py +38 -0
  1394. vllm/transformers_utils/configs/lfm2_moe.py +163 -0
  1395. vllm/transformers_utils/configs/medusa.py +65 -0
  1396. vllm/transformers_utils/configs/midashenglm.py +103 -0
  1397. vllm/transformers_utils/configs/mistral.py +235 -0
  1398. vllm/transformers_utils/configs/mlp_speculator.py +69 -0
  1399. vllm/transformers_utils/configs/moonvit.py +33 -0
  1400. vllm/transformers_utils/configs/nemotron.py +220 -0
  1401. vllm/transformers_utils/configs/nemotron_h.py +284 -0
  1402. vllm/transformers_utils/configs/olmo3.py +83 -0
  1403. vllm/transformers_utils/configs/ovis.py +182 -0
  1404. vllm/transformers_utils/configs/qwen3_next.py +277 -0
  1405. vllm/transformers_utils/configs/radio.py +89 -0
  1406. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1407. vllm/transformers_utils/configs/speculators/algos.py +38 -0
  1408. vllm/transformers_utils/configs/speculators/base.py +114 -0
  1409. vllm/transformers_utils/configs/step3_vl.py +178 -0
  1410. vllm/transformers_utils/configs/tarsier2.py +24 -0
  1411. vllm/transformers_utils/configs/ultravox.py +120 -0
  1412. vllm/transformers_utils/dynamic_module.py +59 -0
  1413. vllm/transformers_utils/gguf_utils.py +280 -0
  1414. vllm/transformers_utils/processor.py +424 -0
  1415. vllm/transformers_utils/processors/__init__.py +25 -0
  1416. vllm/transformers_utils/processors/bagel.py +73 -0
  1417. vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
  1418. vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
  1419. vllm/transformers_utils/processors/hunyuan_vl.py +233 -0
  1420. vllm/transformers_utils/processors/hunyuan_vl_image.py +477 -0
  1421. vllm/transformers_utils/processors/ovis.py +453 -0
  1422. vllm/transformers_utils/processors/ovis2_5.py +468 -0
  1423. vllm/transformers_utils/repo_utils.py +287 -0
  1424. vllm/transformers_utils/runai_utils.py +102 -0
  1425. vllm/transformers_utils/s3_utils.py +95 -0
  1426. vllm/transformers_utils/tokenizer.py +127 -0
  1427. vllm/transformers_utils/tokenizer_base.py +33 -0
  1428. vllm/transformers_utils/utils.py +112 -0
  1429. vllm/triton_utils/__init__.py +20 -0
  1430. vllm/triton_utils/importing.py +103 -0
  1431. vllm/usage/__init__.py +0 -0
  1432. vllm/usage/usage_lib.py +294 -0
  1433. vllm/utils/__init__.py +66 -0
  1434. vllm/utils/argparse_utils.py +492 -0
  1435. vllm/utils/async_utils.py +310 -0
  1436. vllm/utils/cache.py +214 -0
  1437. vllm/utils/collection_utils.py +112 -0
  1438. vllm/utils/counter.py +45 -0
  1439. vllm/utils/deep_gemm.py +400 -0
  1440. vllm/utils/flashinfer.py +528 -0
  1441. vllm/utils/func_utils.py +236 -0
  1442. vllm/utils/gc_utils.py +151 -0
  1443. vllm/utils/hashing.py +117 -0
  1444. vllm/utils/import_utils.py +449 -0
  1445. vllm/utils/jsontree.py +158 -0
  1446. vllm/utils/math_utils.py +32 -0
  1447. vllm/utils/mem_constants.py +13 -0
  1448. vllm/utils/mem_utils.py +232 -0
  1449. vllm/utils/nccl.py +64 -0
  1450. vllm/utils/network_utils.py +331 -0
  1451. vllm/utils/nvtx_pytorch_hooks.py +286 -0
  1452. vllm/utils/platform_utils.py +59 -0
  1453. vllm/utils/profiling.py +56 -0
  1454. vllm/utils/registry.py +51 -0
  1455. vllm/utils/serial_utils.py +214 -0
  1456. vllm/utils/system_utils.py +269 -0
  1457. vllm/utils/tensor_schema.py +255 -0
  1458. vllm/utils/torch_utils.py +648 -0
  1459. vllm/v1/__init__.py +0 -0
  1460. vllm/v1/attention/__init__.py +0 -0
  1461. vllm/v1/attention/backends/__init__.py +0 -0
  1462. vllm/v1/attention/backends/cpu_attn.py +497 -0
  1463. vllm/v1/attention/backends/flash_attn.py +1051 -0
  1464. vllm/v1/attention/backends/flashinfer.py +1575 -0
  1465. vllm/v1/attention/backends/flex_attention.py +1028 -0
  1466. vllm/v1/attention/backends/gdn_attn.py +375 -0
  1467. vllm/v1/attention/backends/linear_attn.py +77 -0
  1468. vllm/v1/attention/backends/mamba1_attn.py +159 -0
  1469. vllm/v1/attention/backends/mamba2_attn.py +348 -0
  1470. vllm/v1/attention/backends/mamba_attn.py +117 -0
  1471. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1472. vllm/v1/attention/backends/mla/aiter_triton_mla.py +74 -0
  1473. vllm/v1/attention/backends/mla/common.py +2114 -0
  1474. vllm/v1/attention/backends/mla/cutlass_mla.py +278 -0
  1475. vllm/v1/attention/backends/mla/flashattn_mla.py +342 -0
  1476. vllm/v1/attention/backends/mla/flashinfer_mla.py +174 -0
  1477. vllm/v1/attention/backends/mla/flashmla.py +317 -0
  1478. vllm/v1/attention/backends/mla/flashmla_sparse.py +1020 -0
  1479. vllm/v1/attention/backends/mla/indexer.py +345 -0
  1480. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +275 -0
  1481. vllm/v1/attention/backends/mla/rocm_aiter_mla_sparse.py +325 -0
  1482. vllm/v1/attention/backends/mla/triton_mla.py +171 -0
  1483. vllm/v1/attention/backends/pallas.py +436 -0
  1484. vllm/v1/attention/backends/rocm_aiter_fa.py +1000 -0
  1485. vllm/v1/attention/backends/rocm_aiter_unified_attn.py +206 -0
  1486. vllm/v1/attention/backends/rocm_attn.py +359 -0
  1487. vllm/v1/attention/backends/short_conv_attn.py +104 -0
  1488. vllm/v1/attention/backends/tree_attn.py +428 -0
  1489. vllm/v1/attention/backends/triton_attn.py +497 -0
  1490. vllm/v1/attention/backends/utils.py +1212 -0
  1491. vllm/v1/core/__init__.py +0 -0
  1492. vllm/v1/core/block_pool.py +485 -0
  1493. vllm/v1/core/encoder_cache_manager.py +402 -0
  1494. vllm/v1/core/kv_cache_coordinator.py +570 -0
  1495. vllm/v1/core/kv_cache_manager.py +419 -0
  1496. vllm/v1/core/kv_cache_metrics.py +96 -0
  1497. vllm/v1/core/kv_cache_utils.py +1476 -0
  1498. vllm/v1/core/sched/__init__.py +0 -0
  1499. vllm/v1/core/sched/async_scheduler.py +68 -0
  1500. vllm/v1/core/sched/interface.py +189 -0
  1501. vllm/v1/core/sched/output.py +230 -0
  1502. vllm/v1/core/sched/request_queue.py +217 -0
  1503. vllm/v1/core/sched/scheduler.py +1826 -0
  1504. vllm/v1/core/sched/utils.py +64 -0
  1505. vllm/v1/core/single_type_kv_cache_manager.py +801 -0
  1506. vllm/v1/cudagraph_dispatcher.py +183 -0
  1507. vllm/v1/engine/__init__.py +217 -0
  1508. vllm/v1/engine/async_llm.py +866 -0
  1509. vllm/v1/engine/coordinator.py +377 -0
  1510. vllm/v1/engine/core.py +1455 -0
  1511. vllm/v1/engine/core_client.py +1416 -0
  1512. vllm/v1/engine/detokenizer.py +351 -0
  1513. vllm/v1/engine/exceptions.py +18 -0
  1514. vllm/v1/engine/input_processor.py +643 -0
  1515. vllm/v1/engine/llm_engine.py +414 -0
  1516. vllm/v1/engine/logprobs.py +189 -0
  1517. vllm/v1/engine/output_processor.py +659 -0
  1518. vllm/v1/engine/parallel_sampling.py +145 -0
  1519. vllm/v1/engine/processor.py +20 -0
  1520. vllm/v1/engine/utils.py +1068 -0
  1521. vllm/v1/executor/__init__.py +6 -0
  1522. vllm/v1/executor/abstract.py +352 -0
  1523. vllm/v1/executor/multiproc_executor.py +890 -0
  1524. vllm/v1/executor/ray_distributed_executor.py +8 -0
  1525. vllm/v1/executor/ray_executor.py +626 -0
  1526. vllm/v1/executor/ray_utils.py +465 -0
  1527. vllm/v1/executor/uniproc_executor.py +186 -0
  1528. vllm/v1/kv_cache_interface.py +404 -0
  1529. vllm/v1/kv_offload/__init__.py +0 -0
  1530. vllm/v1/kv_offload/abstract.py +161 -0
  1531. vllm/v1/kv_offload/arc_manager.py +237 -0
  1532. vllm/v1/kv_offload/backend.py +97 -0
  1533. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1534. vllm/v1/kv_offload/backends/cpu.py +62 -0
  1535. vllm/v1/kv_offload/cpu.py +86 -0
  1536. vllm/v1/kv_offload/factory.py +56 -0
  1537. vllm/v1/kv_offload/lru_manager.py +139 -0
  1538. vllm/v1/kv_offload/mediums.py +39 -0
  1539. vllm/v1/kv_offload/spec.py +66 -0
  1540. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1541. vllm/v1/kv_offload/worker/cpu_gpu.py +280 -0
  1542. vllm/v1/kv_offload/worker/worker.py +144 -0
  1543. vllm/v1/metrics/__init__.py +0 -0
  1544. vllm/v1/metrics/loggers.py +1305 -0
  1545. vllm/v1/metrics/prometheus.py +82 -0
  1546. vllm/v1/metrics/ray_wrappers.py +194 -0
  1547. vllm/v1/metrics/reader.py +257 -0
  1548. vllm/v1/metrics/stats.py +437 -0
  1549. vllm/v1/outputs.py +245 -0
  1550. vllm/v1/pool/__init__.py +0 -0
  1551. vllm/v1/pool/metadata.py +126 -0
  1552. vllm/v1/request.py +282 -0
  1553. vllm/v1/sample/__init__.py +0 -0
  1554. vllm/v1/sample/logits_processor/__init__.py +352 -0
  1555. vllm/v1/sample/logits_processor/builtin.py +278 -0
  1556. vllm/v1/sample/logits_processor/interface.py +106 -0
  1557. vllm/v1/sample/logits_processor/state.py +165 -0
  1558. vllm/v1/sample/metadata.py +44 -0
  1559. vllm/v1/sample/ops/__init__.py +0 -0
  1560. vllm/v1/sample/ops/bad_words.py +52 -0
  1561. vllm/v1/sample/ops/logprobs.py +25 -0
  1562. vllm/v1/sample/ops/penalties.py +57 -0
  1563. vllm/v1/sample/ops/topk_topp_sampler.py +384 -0
  1564. vllm/v1/sample/rejection_sampler.py +805 -0
  1565. vllm/v1/sample/sampler.py +319 -0
  1566. vllm/v1/sample/tpu/__init__.py +0 -0
  1567. vllm/v1/sample/tpu/metadata.py +120 -0
  1568. vllm/v1/sample/tpu/sampler.py +215 -0
  1569. vllm/v1/serial_utils.py +514 -0
  1570. vllm/v1/spec_decode/__init__.py +0 -0
  1571. vllm/v1/spec_decode/eagle.py +1331 -0
  1572. vllm/v1/spec_decode/medusa.py +73 -0
  1573. vllm/v1/spec_decode/metadata.py +66 -0
  1574. vllm/v1/spec_decode/metrics.py +225 -0
  1575. vllm/v1/spec_decode/ngram_proposer.py +291 -0
  1576. vllm/v1/spec_decode/suffix_decoding.py +101 -0
  1577. vllm/v1/spec_decode/utils.py +121 -0
  1578. vllm/v1/structured_output/__init__.py +353 -0
  1579. vllm/v1/structured_output/backend_guidance.py +265 -0
  1580. vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
  1581. vllm/v1/structured_output/backend_outlines.py +324 -0
  1582. vllm/v1/structured_output/backend_types.py +136 -0
  1583. vllm/v1/structured_output/backend_xgrammar.py +378 -0
  1584. vllm/v1/structured_output/request.py +94 -0
  1585. vllm/v1/structured_output/utils.py +469 -0
  1586. vllm/v1/utils.py +414 -0
  1587. vllm/v1/worker/__init__.py +0 -0
  1588. vllm/v1/worker/block_table.py +343 -0
  1589. vllm/v1/worker/cp_utils.py +42 -0
  1590. vllm/v1/worker/cpu_model_runner.py +122 -0
  1591. vllm/v1/worker/cpu_worker.py +192 -0
  1592. vllm/v1/worker/dp_utils.py +240 -0
  1593. vllm/v1/worker/ec_connector_model_runner_mixin.py +87 -0
  1594. vllm/v1/worker/gpu/README.md +4 -0
  1595. vllm/v1/worker/gpu/__init__.py +0 -0
  1596. vllm/v1/worker/gpu/async_utils.py +98 -0
  1597. vllm/v1/worker/gpu/attn_utils.py +189 -0
  1598. vllm/v1/worker/gpu/block_table.py +314 -0
  1599. vllm/v1/worker/gpu/cudagraph_utils.py +259 -0
  1600. vllm/v1/worker/gpu/dp_utils.py +31 -0
  1601. vllm/v1/worker/gpu/input_batch.py +479 -0
  1602. vllm/v1/worker/gpu/metrics/__init__.py +0 -0
  1603. vllm/v1/worker/gpu/metrics/logits.py +42 -0
  1604. vllm/v1/worker/gpu/model_runner.py +1006 -0
  1605. vllm/v1/worker/gpu/sample/__init__.py +0 -0
  1606. vllm/v1/worker/gpu/sample/gumbel.py +101 -0
  1607. vllm/v1/worker/gpu/sample/logprob.py +167 -0
  1608. vllm/v1/worker/gpu/sample/metadata.py +192 -0
  1609. vllm/v1/worker/gpu/sample/min_p.py +51 -0
  1610. vllm/v1/worker/gpu/sample/output.py +14 -0
  1611. vllm/v1/worker/gpu/sample/penalties.py +155 -0
  1612. vllm/v1/worker/gpu/sample/sampler.py +87 -0
  1613. vllm/v1/worker/gpu/spec_decode/__init__.py +18 -0
  1614. vllm/v1/worker/gpu/spec_decode/eagle.py +565 -0
  1615. vllm/v1/worker/gpu/spec_decode/eagle_cudagraph.py +115 -0
  1616. vllm/v1/worker/gpu/spec_decode/rejection_sample.py +71 -0
  1617. vllm/v1/worker/gpu/states.py +316 -0
  1618. vllm/v1/worker/gpu/structured_outputs.py +76 -0
  1619. vllm/v1/worker/gpu_input_batch.py +990 -0
  1620. vllm/v1/worker/gpu_model_runner.py +5470 -0
  1621. vllm/v1/worker/gpu_ubatch_wrapper.py +472 -0
  1622. vllm/v1/worker/gpu_worker.py +955 -0
  1623. vllm/v1/worker/kv_connector_model_runner_mixin.py +302 -0
  1624. vllm/v1/worker/lora_model_runner_mixin.py +212 -0
  1625. vllm/v1/worker/tpu_input_batch.py +583 -0
  1626. vllm/v1/worker/tpu_model_runner.py +2191 -0
  1627. vllm/v1/worker/tpu_worker.py +352 -0
  1628. vllm/v1/worker/ubatch_utils.py +109 -0
  1629. vllm/v1/worker/ubatching.py +231 -0
  1630. vllm/v1/worker/utils.py +375 -0
  1631. vllm/v1/worker/worker_base.py +377 -0
  1632. vllm/v1/worker/workspace.py +253 -0
  1633. vllm/v1/worker/xpu_model_runner.py +48 -0
  1634. vllm/v1/worker/xpu_worker.py +174 -0
  1635. vllm/version.py +39 -0
  1636. vllm/vllm_flash_attn/.gitkeep +0 -0
  1637. vllm_cpu_avx512vnni-0.13.0.dist-info/METADATA +339 -0
  1638. vllm_cpu_avx512vnni-0.13.0.dist-info/RECORD +1641 -0
  1639. vllm_cpu_avx512vnni-0.13.0.dist-info/WHEEL +5 -0
  1640. vllm_cpu_avx512vnni-0.13.0.dist-info/entry_points.txt +5 -0
  1641. vllm_cpu_avx512vnni-0.13.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,2092 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ # Copyright 2025 The vLLM team.
5
+ # Copyright 2025 The Qwen Team.
6
+ # Copyright 2025 The HuggingFace Inc. team.
7
+ # All rights reserved.
8
+ #
9
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
10
+ # and OPT implementations in this library. It has been modified from its
11
+ # original forms to accommodate minor architectural differences compared
12
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
13
+ #
14
+ # Licensed under the Apache License, Version 2.0 (the "License");
15
+ # you may not use this file except in compliance with the License.
16
+ # You may obtain a copy of the License at
17
+ #
18
+ # http://www.apache.org/licenses/LICENSE-2.0
19
+ #
20
+ # Unless required by applicable law or agreed to in writing, software
21
+ # distributed under the License is distributed on an "AS IS" BASIS,
22
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
23
+ # See the License for the specific language governing permissions and
24
+ # limitations under the License.
25
+ """Inference-only Qwen3VL model compatible with HuggingFace weights."""
26
+
27
+ from collections.abc import Callable, Iterable, Iterator, Mapping, Sequence
28
+ from functools import lru_cache, partial
29
+ from itertools import islice
30
+ from typing import Any
31
+
32
+ import numpy as np
33
+ import torch
34
+ import torch.nn as nn
35
+ import torch.nn.functional as F
36
+ from transformers import BatchFeature
37
+ from transformers.models.qwen2_vl import Qwen2VLImageProcessorFast
38
+ from transformers.models.qwen2_vl.image_processing_qwen2_vl import (
39
+ smart_resize as image_smart_resize,
40
+ )
41
+ from transformers.models.qwen3_vl import Qwen3VLProcessor, Qwen3VLVideoProcessor
42
+ from transformers.models.qwen3_vl.configuration_qwen3_vl import (
43
+ Qwen3VLConfig,
44
+ Qwen3VLVisionConfig,
45
+ )
46
+ from transformers.models.qwen3_vl.video_processing_qwen3_vl import (
47
+ smart_resize as video_smart_resize,
48
+ )
49
+ from transformers.video_utils import VideoMetadata
50
+
51
+ from vllm.attention.backends.registry import AttentionBackendEnum
52
+ from vllm.compilation.decorators import support_torch_compile
53
+ from vllm.config import MultiModalConfig, VllmConfig
54
+ from vllm.config.multimodal import BaseDummyOptions, VideoDummyOptions
55
+ from vllm.distributed import get_pp_group
56
+ from vllm.logger import init_logger
57
+ from vllm.model_executor.layers.activation import _ACTIVATION_REGISTRY
58
+ from vllm.model_executor.layers.conv import Conv3dLayer
59
+ from vllm.model_executor.layers.linear import (
60
+ ColumnParallelLinear,
61
+ RowParallelLinear,
62
+ )
63
+ from vllm.model_executor.layers.logits_processor import LogitsProcessor
64
+ from vllm.model_executor.layers.quantization import QuantizationConfig
65
+ from vllm.model_executor.layers.rotary_embedding import get_rope
66
+ from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
67
+ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
68
+ from vllm.model_executor.models.module_mapping import MultiModelKeys
69
+ from vllm.multimodal import MULTIMODAL_REGISTRY
70
+ from vllm.multimodal.evs import (
71
+ compute_mrope_for_media,
72
+ compute_retained_tokens_count,
73
+ compute_retention_mask,
74
+ recompute_mrope_positions,
75
+ )
76
+ from vllm.multimodal.inputs import (
77
+ MultiModalDataDict,
78
+ MultiModalFeatureSpec,
79
+ MultiModalFieldConfig,
80
+ MultiModalKwargsItem,
81
+ MultiModalKwargsItems,
82
+ PlaceholderRange,
83
+ VideoItem,
84
+ )
85
+ from vllm.multimodal.parse import ImageSize, MultiModalDataItems, MultiModalDataParser
86
+ from vllm.multimodal.processing import (
87
+ BaseMultiModalProcessor,
88
+ PromptReplacement,
89
+ PromptUpdate,
90
+ PromptUpdateDetails,
91
+ )
92
+ from vllm.multimodal.profiling import BaseDummyInputsBuilder
93
+ from vllm.sequence import IntermediateTensors
94
+ from vllm.utils.collection_utils import is_list_of
95
+
96
+ from .interfaces import (
97
+ MultiModalEmbeddings,
98
+ SupportsEagle3,
99
+ SupportsLoRA,
100
+ SupportsMRoPE,
101
+ SupportsMultiModal,
102
+ SupportsMultiModalPruning,
103
+ SupportsPP,
104
+ _require_is_multimodal,
105
+ )
106
+ from .qwen2_5_vl import (
107
+ Qwen2_5_VisionAttention,
108
+ Qwen2_5_VLImageEmbeddingInputs,
109
+ Qwen2_5_VLImageInputs,
110
+ Qwen2_5_VLImagePixelInputs,
111
+ Qwen2_5_VLVideoEmbeddingInputs,
112
+ Qwen2_5_VLVideoInputs,
113
+ Qwen2_5_VLVideoPixelInputs,
114
+ )
115
+ from .qwen2_vl import Qwen2VLMultiModalDataParser, Qwen2VLProcessingInfo
116
+ from .qwen3 import Qwen3ForCausalLM, Qwen3Model
117
+ from .utils import (
118
+ AutoWeightsLoader,
119
+ PPMissingLayer,
120
+ WeightsMapper,
121
+ _merge_multimodal_embeddings,
122
+ maybe_prefix,
123
+ )
124
+ from .vision import (
125
+ get_vit_attn_backend,
126
+ run_dp_sharded_mrope_vision_model,
127
+ )
128
+
129
+ logger = init_logger(__name__)
130
+
131
+ # Official recommended max pixels is 24576 * 32 * 32
132
+ _MAX_FRAMES_PER_VIDEO = 24576
133
+
134
+
135
+ class Qwen3_VisionPatchEmbed(nn.Module):
136
+ def __init__(
137
+ self,
138
+ patch_size: int = 14,
139
+ temporal_patch_size: int = 2,
140
+ in_channels: int = 3,
141
+ hidden_size: int = 1152,
142
+ ) -> None:
143
+ super().__init__()
144
+ self.patch_size = patch_size
145
+ self.temporal_patch_size = temporal_patch_size
146
+ self.hidden_size = hidden_size
147
+
148
+ kernel_size = (temporal_patch_size, patch_size, patch_size)
149
+ self.proj = Conv3dLayer(
150
+ in_channels,
151
+ hidden_size,
152
+ kernel_size=kernel_size,
153
+ stride=kernel_size,
154
+ bias=True,
155
+ )
156
+
157
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
158
+ L, C = x.shape
159
+ x = x.view(L, -1, self.temporal_patch_size, self.patch_size, self.patch_size)
160
+ x = self.proj(x).view(L, self.hidden_size)
161
+ return x
162
+
163
+
164
+ class Qwen3_VisionMLP(nn.Module):
165
+ def __init__(
166
+ self,
167
+ in_features: int,
168
+ hidden_features: int,
169
+ bias: bool = False,
170
+ act_fn: Callable[[torch.Tensor], torch.Tensor] = F.silu,
171
+ quant_config: QuantizationConfig | None = None,
172
+ multimodal_config: MultiModalConfig | None = None,
173
+ prefix: str = "",
174
+ ):
175
+ super().__init__()
176
+ use_data_parallel = (
177
+ multimodal_config.mm_encoder_tp_mode == "data"
178
+ if multimodal_config
179
+ else False
180
+ )
181
+ self.linear_fc1 = ColumnParallelLinear(
182
+ in_features,
183
+ hidden_features,
184
+ bias=bias,
185
+ quant_config=quant_config,
186
+ return_bias=False,
187
+ prefix=f"{prefix}.linear_fc1",
188
+ disable_tp=use_data_parallel,
189
+ )
190
+ self.linear_fc2 = RowParallelLinear(
191
+ hidden_features,
192
+ in_features,
193
+ bias=bias,
194
+ quant_config=quant_config,
195
+ return_bias=False,
196
+ prefix=f"{prefix}.linear_fc2",
197
+ disable_tp=use_data_parallel,
198
+ )
199
+ self.act_fn = act_fn
200
+
201
+ def forward(self, x: torch.Tensor):
202
+ mlp_output = self.linear_fc2(self.act_fn(self.linear_fc1(x)))
203
+ return mlp_output
204
+
205
+
206
+ class Qwen3_VisionBlock(nn.Module):
207
+ def __init__(
208
+ self,
209
+ dim: int,
210
+ num_heads: int,
211
+ mlp_hidden_dim: int,
212
+ act_fn: Callable[[torch.Tensor], torch.Tensor] = F.silu,
213
+ norm_layer: Callable[[int], nn.Module] | None = None,
214
+ multimodal_config: MultiModalConfig | None = None,
215
+ quant_config: QuantizationConfig | None = None,
216
+ prefix: str = "",
217
+ ) -> None:
218
+ super().__init__()
219
+ if norm_layer is None:
220
+ norm_layer = partial(nn.LayerNorm, eps=1e-6)
221
+ self.norm1 = norm_layer(dim)
222
+ self.norm2 = norm_layer(dim)
223
+ self.attn = Qwen2_5_VisionAttention(
224
+ embed_dim=dim,
225
+ num_heads=num_heads,
226
+ projection_size=dim,
227
+ quant_config=quant_config,
228
+ multimodal_config=multimodal_config,
229
+ prefix=f"{prefix}.attn",
230
+ )
231
+ self.mlp = Qwen3_VisionMLP(
232
+ dim,
233
+ mlp_hidden_dim,
234
+ act_fn=act_fn,
235
+ bias=True,
236
+ quant_config=quant_config,
237
+ multimodal_config=multimodal_config,
238
+ prefix=f"{prefix}.mlp",
239
+ )
240
+
241
+ def forward(
242
+ self,
243
+ x: torch.Tensor,
244
+ cu_seqlens: torch.Tensor,
245
+ rotary_pos_emb_cos: torch.Tensor,
246
+ rotary_pos_emb_sin: torch.Tensor,
247
+ max_seqlen: torch.Tensor, # Only used for Flash Attention
248
+ ) -> torch.Tensor:
249
+ x = x + self.attn(
250
+ self.norm1(x),
251
+ cu_seqlens=cu_seqlens,
252
+ rotary_pos_emb_cos=rotary_pos_emb_cos,
253
+ rotary_pos_emb_sin=rotary_pos_emb_sin,
254
+ max_seqlen=max_seqlen,
255
+ )
256
+
257
+ x = x + self.mlp(self.norm2(x))
258
+ return x
259
+
260
+
261
+ class Qwen3_VisionPatchMerger(nn.Module):
262
+ def __init__(
263
+ self,
264
+ d_model: int,
265
+ context_dim: int,
266
+ norm_layer: Callable[[int], nn.Module] | None = None,
267
+ spatial_merge_size: int = 2,
268
+ use_postshuffle_norm: bool = False,
269
+ quant_config: QuantizationConfig | None = None,
270
+ multimodal_config: MultiModalConfig | None = None,
271
+ prefix: str = "",
272
+ ) -> None:
273
+ super().__init__()
274
+ use_data_parallel = (
275
+ multimodal_config.mm_encoder_tp_mode == "data"
276
+ if multimodal_config
277
+ else False
278
+ )
279
+ self.hidden_size = context_dim * (spatial_merge_size**2)
280
+
281
+ self.use_postshuffle_norm = use_postshuffle_norm
282
+ if self.use_postshuffle_norm:
283
+ context_dim = self.hidden_size
284
+
285
+ if norm_layer is None:
286
+ norm_layer = partial(nn.LayerNorm, eps=1e-6)
287
+ self.norm = norm_layer(context_dim)
288
+ self.linear_fc1 = ColumnParallelLinear(
289
+ self.hidden_size,
290
+ self.hidden_size,
291
+ bias=True,
292
+ quant_config=quant_config,
293
+ prefix=f"{prefix}.linear_fc1",
294
+ disable_tp=use_data_parallel,
295
+ )
296
+ self.act_fn = nn.GELU()
297
+ self.linear_fc2 = RowParallelLinear(
298
+ self.hidden_size,
299
+ d_model,
300
+ bias=True,
301
+ quant_config=quant_config,
302
+ prefix=f"{prefix}.linear_fc2",
303
+ disable_tp=use_data_parallel,
304
+ )
305
+
306
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
307
+ if self.use_postshuffle_norm:
308
+ x = self.norm(x.view(-1, self.hidden_size))
309
+ else:
310
+ x = self.norm(x).view(-1, self.hidden_size)
311
+
312
+ x_parallel, _ = self.linear_fc1(x)
313
+ x_parallel = self.act_fn(x_parallel)
314
+ out, _ = self.linear_fc2(x_parallel)
315
+ return out
316
+
317
+
318
+ class Qwen3_VisionTransformer(nn.Module):
319
+ def __init__(
320
+ self,
321
+ vision_config: Qwen3VLVisionConfig,
322
+ norm_eps: float = 1e-6,
323
+ quant_config: QuantizationConfig | None = None,
324
+ multimodal_config: MultiModalConfig | None = None,
325
+ prefix: str = "",
326
+ ) -> None:
327
+ super().__init__()
328
+ self.hidden_size = vision_config.hidden_size
329
+ self.num_heads = vision_config.num_heads
330
+ self.num_position_embeddings = vision_config.num_position_embeddings
331
+ self.patch_size = vision_config.patch_size
332
+ self.spatial_merge_size = vision_config.spatial_merge_size
333
+ self.spatial_merge_unit = self.spatial_merge_size**2
334
+ self.temporal_patch_size = vision_config.temporal_patch_size
335
+ self.deepstack_visual_indexes = vision_config.deepstack_visual_indexes
336
+ self.num_grid_per_side = int(self.num_position_embeddings**0.5)
337
+
338
+ # NOTE: This is used for creating empty tensor for all_gather for
339
+ # DP ViT. Here out_hidden_size is enlarged due to deepstack
340
+ self.out_hidden_size = vision_config.out_hidden_size * (
341
+ 1 + len(self.deepstack_visual_indexes)
342
+ )
343
+
344
+ self.patch_embed = Qwen3_VisionPatchEmbed(
345
+ patch_size=self.patch_size,
346
+ temporal_patch_size=self.temporal_patch_size,
347
+ in_channels=vision_config.in_channels,
348
+ hidden_size=self.hidden_size,
349
+ )
350
+
351
+ self.pos_embed = nn.Embedding(self.num_position_embeddings, self.hidden_size)
352
+
353
+ norm_layer = partial(nn.LayerNorm, eps=norm_eps)
354
+ head_dim = self.hidden_size // self.num_heads
355
+ self.rotary_pos_emb = get_rope(
356
+ head_size=head_dim,
357
+ max_position=8192,
358
+ is_neox_style=True,
359
+ rope_parameters={"partial_rotary_factor": 0.5},
360
+ )
361
+
362
+ self.merger = Qwen3_VisionPatchMerger(
363
+ d_model=vision_config.out_hidden_size,
364
+ context_dim=self.hidden_size,
365
+ norm_layer=norm_layer,
366
+ spatial_merge_size=self.spatial_merge_size,
367
+ quant_config=quant_config,
368
+ multimodal_config=multimodal_config,
369
+ prefix=f"{prefix}.merger",
370
+ )
371
+
372
+ self.deepstack_merger_list = nn.ModuleList(
373
+ [
374
+ Qwen3_VisionPatchMerger(
375
+ d_model=vision_config.out_hidden_size,
376
+ context_dim=self.hidden_size,
377
+ spatial_merge_size=self.spatial_merge_size,
378
+ use_postshuffle_norm=True,
379
+ norm_layer=norm_layer,
380
+ quant_config=quant_config,
381
+ multimodal_config=multimodal_config,
382
+ prefix=f"{prefix}.deepstack_merger_list.{layer_idx}",
383
+ )
384
+ for layer_idx in range(len(self.deepstack_visual_indexes))
385
+ ]
386
+ )
387
+
388
+ attn_backend_override = (
389
+ multimodal_config.mm_encoder_attn_backend if multimodal_config else None
390
+ )
391
+ self.attn_backend = get_vit_attn_backend(
392
+ head_size=head_dim,
393
+ dtype=torch.get_default_dtype(),
394
+ attn_backend_override=attn_backend_override,
395
+ )
396
+
397
+ if self.attn_backend not in {
398
+ AttentionBackendEnum.FLASH_ATTN,
399
+ AttentionBackendEnum.TORCH_SDPA,
400
+ AttentionBackendEnum.ROCM_AITER_FA,
401
+ }:
402
+ raise RuntimeError(
403
+ f"Qwen3-VL does not support {self.attn_backend} backend now."
404
+ )
405
+ self.blocks = nn.ModuleList(
406
+ [
407
+ Qwen3_VisionBlock(
408
+ dim=self.hidden_size,
409
+ num_heads=self.num_heads,
410
+ mlp_hidden_dim=vision_config.intermediate_size,
411
+ act_fn=_ACTIVATION_REGISTRY[vision_config.hidden_act],
412
+ norm_layer=norm_layer,
413
+ quant_config=quant_config,
414
+ multimodal_config=multimodal_config,
415
+ prefix=f"{prefix}.blocks.{layer_idx}",
416
+ )
417
+ for layer_idx in range(vision_config.depth)
418
+ ]
419
+ )
420
+
421
+ @property
422
+ def dtype(self) -> torch.dtype:
423
+ return self.patch_embed.proj.weight.dtype
424
+
425
+ @property
426
+ def device(self) -> torch.device:
427
+ return self.patch_embed.proj.weight.device
428
+
429
+ @staticmethod
430
+ @lru_cache(maxsize=1024)
431
+ def rot_pos_ids(h: int, w: int, spatial_merge_size: int) -> torch.Tensor:
432
+ hpos_ids = np.broadcast_to(np.arange(h).reshape(h, 1), (h, w))
433
+ h_div = h // spatial_merge_size
434
+ w_div = w // spatial_merge_size
435
+ hpos_ids = hpos_ids.reshape(
436
+ h_div,
437
+ spatial_merge_size,
438
+ w_div,
439
+ spatial_merge_size,
440
+ )
441
+ hpos_ids = hpos_ids.transpose(0, 2, 1, 3)
442
+ hpos_ids = hpos_ids.flatten()
443
+
444
+ wpos_ids = np.broadcast_to(np.arange(w).reshape(1, w), (h, w))
445
+ wpos_ids = wpos_ids.reshape(
446
+ h_div,
447
+ spatial_merge_size,
448
+ w_div,
449
+ spatial_merge_size,
450
+ )
451
+ wpos_ids = wpos_ids.transpose(0, 2, 1, 3)
452
+ wpos_ids = wpos_ids.flatten()
453
+
454
+ return torch.from_numpy(np.stack([hpos_ids, wpos_ids], axis=-1))
455
+
456
+ def rot_pos_emb(self, grid_thw: list[list[int]]):
457
+ max_grid_size = max(max(h, w) for _, h, w in grid_thw)
458
+ pos_ids = [
459
+ self.rot_pos_ids(h, w, self.spatial_merge_size)
460
+ if t == 1
461
+ else self.rot_pos_ids(h, w, self.spatial_merge_size).repeat(t, 1)
462
+ for t, h, w in grid_thw
463
+ ]
464
+ pos_ids = torch.cat(pos_ids, dim=0).to(self.device, non_blocking=True)
465
+
466
+ # Use pre-computed cos_sin_cache from RotaryEmbedding
467
+ cos, sin = self.rotary_pos_emb.get_cos_sin(max_grid_size)
468
+
469
+ cos_combined = cos[pos_ids].flatten(1)
470
+ sin_combined = sin[pos_ids].flatten(1)
471
+
472
+ return cos_combined, sin_combined
473
+
474
+ def fast_pos_embed_interpolate(self, grid_thw: list[list[int]]) -> torch.Tensor:
475
+ num_grid_per_side = self.num_grid_per_side
476
+ m_size = self.spatial_merge_size
477
+ hidden_dim = self.pos_embed.embedding_dim
478
+
479
+ outputs = []
480
+ for t, h, w in grid_thw:
481
+ h_idxs = torch.linspace(
482
+ 0, num_grid_per_side - 1, h, dtype=torch.float32, device=self.device
483
+ )
484
+ w_idxs = torch.linspace(
485
+ 0, num_grid_per_side - 1, w, dtype=torch.float32, device=self.device
486
+ )
487
+
488
+ h_floor = h_idxs.to(torch.long)
489
+ w_floor = w_idxs.to(torch.long)
490
+ h_ceil = torch.clamp(h_floor + 1, max=num_grid_per_side - 1)
491
+ w_ceil = torch.clamp(w_floor + 1, max=num_grid_per_side - 1)
492
+
493
+ dh = h_idxs - h_floor
494
+ dw = w_idxs - w_floor
495
+
496
+ # Create meshgrid view for all h, w vars
497
+ dh_grid, dw_grid = torch.meshgrid(dh, dw, indexing="ij")
498
+ h_floor_grid, w_floor_grid = torch.meshgrid(h_floor, w_floor, indexing="ij")
499
+ h_ceil_grid, w_ceil_grid = torch.meshgrid(h_ceil, w_ceil, indexing="ij")
500
+
501
+ # original computation of weights
502
+ # w00 = (1 - dh_grid) * (1 - dw_grid)
503
+ # w01 = (1 - dh_grid) * dw_grid
504
+ # w10 = dh_grid * (1 - dw_grid)
505
+ # w11 = dh_grid * dw_grid
506
+ # we reuse w11 here to avoid duplicate
507
+ # dh_grid * dw_grid computation
508
+ w11 = dh_grid * dw_grid
509
+ w10 = dh_grid - w11
510
+ w01 = dw_grid - w11
511
+ w00 = 1 - dh_grid - w01
512
+
513
+ h_grid = torch.stack([h_floor_grid, h_floor_grid, h_ceil_grid, h_ceil_grid])
514
+ w_grid = torch.stack([w_floor_grid, w_ceil_grid, w_floor_grid, w_ceil_grid])
515
+ h_grid_idx = h_grid * num_grid_per_side
516
+
517
+ indices = (h_grid_idx + w_grid).reshape(4, -1)
518
+ weights = torch.stack([w00, w01, w10, w11], dim=0).reshape(4, -1, 1)
519
+ weights = weights.to(dtype=self.dtype)
520
+
521
+ embeds = self.pos_embed(indices)
522
+ embeds *= weights
523
+ combined = embeds.sum(dim=0)
524
+
525
+ combined = combined.reshape(
526
+ h // m_size, m_size, w // m_size, m_size, hidden_dim
527
+ )
528
+ combined = combined.permute(0, 2, 1, 3, 4).reshape(1, -1, hidden_dim)
529
+ repeated = combined.expand(t, -1, -1).reshape(-1, hidden_dim)
530
+ outputs.append(repeated)
531
+
532
+ return torch.cat(outputs, dim=0)
533
+
534
+ def compute_attn_mask_seqlen(
535
+ self,
536
+ cu_seqlens: torch.Tensor,
537
+ ) -> torch.Tensor:
538
+ max_seqlen = torch.zeros([], device=cu_seqlens.device)
539
+ if (
540
+ self.attn_backend == AttentionBackendEnum.FLASH_ATTN
541
+ or self.attn_backend == AttentionBackendEnum.ROCM_AITER_FA
542
+ ):
543
+ max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max()
544
+ return max_seqlen
545
+
546
+ def forward(
547
+ self,
548
+ x: torch.Tensor,
549
+ grid_thw: torch.Tensor | list[list[int]],
550
+ ) -> torch.Tensor:
551
+ hidden_states = x.to(device=self.device, dtype=self.dtype, non_blocking=True)
552
+ hidden_states = self.patch_embed(hidden_states)
553
+
554
+ if isinstance(grid_thw, list):
555
+ grid_thw_list = grid_thw
556
+ grid_thw = np.array(grid_thw, dtype=np.int32)
557
+ else:
558
+ grid_thw_list = grid_thw.tolist()
559
+ grid_thw = grid_thw.numpy()
560
+
561
+ pos_embeds = self.fast_pos_embed_interpolate(grid_thw_list)
562
+ hidden_states = hidden_states + pos_embeds
563
+ rotary_pos_emb_cos, rotary_pos_emb_sin = self.rot_pos_emb(grid_thw_list)
564
+
565
+ cu_seqlens = np.repeat(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
566
+ axis=0, dtype=np.int32
567
+ )
568
+ cu_seqlens = np.concatenate([np.zeros(1, dtype=np.int32), cu_seqlens])
569
+ cu_seqlens = torch.from_numpy(cu_seqlens)
570
+
571
+ hidden_states = hidden_states.unsqueeze(1)
572
+ max_seqlen = self.compute_attn_mask_seqlen(cu_seqlens)
573
+ cu_seqlens = cu_seqlens.to(self.device, non_blocking=True)
574
+
575
+ deepstack_feature_lists = []
576
+ for layer_num, blk in enumerate(self.blocks):
577
+ hidden_states = blk(
578
+ hidden_states,
579
+ cu_seqlens=cu_seqlens,
580
+ rotary_pos_emb_cos=rotary_pos_emb_cos,
581
+ rotary_pos_emb_sin=rotary_pos_emb_sin,
582
+ max_seqlen=max_seqlen,
583
+ )
584
+ if layer_num in self.deepstack_visual_indexes:
585
+ deepstack_merger_idx = self.deepstack_visual_indexes.index(layer_num)
586
+ deepstack_feature = self.deepstack_merger_list[deepstack_merger_idx](
587
+ hidden_states
588
+ )
589
+ deepstack_feature_lists.append(deepstack_feature)
590
+ hidden_states = self.merger(hidden_states)
591
+ hidden_states = torch.cat(
592
+ [hidden_states] + deepstack_feature_lists, dim=1
593
+ ) # [seq_len, hidden_size * (1 + depth_of_deepstack)]
594
+ return hidden_states
595
+
596
+ def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
597
+ stacked_params_mapping = [
598
+ # (param_name, shard_name, shard_id)
599
+ ("attn.qkv.", "attn.q.", "q"),
600
+ ("attn.qkv.", "attn.k.", "k"),
601
+ ("attn.qkv.", "attn.v.", "v"),
602
+ ]
603
+ params_dict = dict(self.named_parameters(remove_duplicate=False))
604
+ loaded_params: set[str] = set()
605
+
606
+ for name, loaded_weight in weights:
607
+ for param_name, weight_name, shard_id in stacked_params_mapping:
608
+ if weight_name not in name:
609
+ continue
610
+ name = name.replace(weight_name, param_name)
611
+
612
+ param = params_dict[name]
613
+ weight_loader = param.weight_loader
614
+ weight_loader(param, loaded_weight, shard_id)
615
+ break
616
+ else:
617
+ param = params_dict[name]
618
+ weight_loader = getattr(param, "weight_loader", default_weight_loader)
619
+ weight_loader(param, loaded_weight)
620
+ loaded_params.add(name)
621
+ return loaded_params
622
+
623
+
624
+ class Qwen3VLProcessingInfo(Qwen2VLProcessingInfo):
625
+ def get_hf_config(self):
626
+ return self.ctx.get_hf_config(Qwen3VLConfig)
627
+
628
+ def get_hf_processor(self, **kwargs: object) -> Qwen3VLProcessor:
629
+ return self.ctx.get_hf_processor(
630
+ Qwen3VLProcessor,
631
+ use_fast=kwargs.pop("use_fast", True),
632
+ **kwargs,
633
+ )
634
+
635
+ def get_image_processor(self, **kwargs: object) -> Qwen2VLImageProcessorFast:
636
+ return self.get_hf_processor(**kwargs).image_processor
637
+
638
+ def get_video_processor(self, **kwargs: object) -> Qwen3VLVideoProcessor:
639
+ return self.get_hf_processor(**kwargs).video_processor
640
+
641
+ def _get_vision_info(
642
+ self,
643
+ *,
644
+ image_width: int,
645
+ image_height: int,
646
+ num_frames: int = 2,
647
+ do_resize: bool = True,
648
+ image_processor: Qwen2VLImageProcessorFast | Qwen3VLVideoProcessor | None,
649
+ ) -> tuple[ImageSize, int]:
650
+ if image_processor is None and num_frames > 1:
651
+ image_processor = self.get_video_processor()
652
+ elif image_processor is None:
653
+ image_processor = self.get_image_processor()
654
+
655
+ is_video = isinstance(image_processor, Qwen3VLVideoProcessor)
656
+
657
+ hf_config = self.get_hf_config()
658
+ vision_config = hf_config.vision_config
659
+ patch_size = vision_config.patch_size
660
+ merge_size = vision_config.spatial_merge_size
661
+ temporal_patch_size = vision_config.temporal_patch_size
662
+
663
+ if do_resize:
664
+ if is_video:
665
+ smart_resize = video_smart_resize
666
+ extra_kwargs = {
667
+ "num_frames": num_frames,
668
+ "temporal_factor": temporal_patch_size,
669
+ }
670
+ else:
671
+ smart_resize = image_smart_resize
672
+ extra_kwargs = {}
673
+ resized_height, resized_width = smart_resize(
674
+ height=image_height,
675
+ width=image_width,
676
+ factor=patch_size * merge_size,
677
+ min_pixels=image_processor.size["shortest_edge"],
678
+ max_pixels=image_processor.size["longest_edge"],
679
+ **extra_kwargs,
680
+ )
681
+ preprocessed_size = ImageSize(width=resized_width, height=resized_height)
682
+ else:
683
+ preprocessed_size = ImageSize(width=image_width, height=image_height)
684
+
685
+ padded_num_frames = num_frames + num_frames % temporal_patch_size
686
+
687
+ grid_t = max(padded_num_frames // temporal_patch_size, 1)
688
+ grid_h = preprocessed_size.height // patch_size
689
+ grid_w = preprocessed_size.width // patch_size
690
+
691
+ num_patches = grid_t * grid_h * grid_w
692
+ num_vision_tokens = num_patches // (merge_size**2)
693
+
694
+ return preprocessed_size, num_vision_tokens
695
+
696
+ def _get_max_video_frames(self, max_tokens: int, start_num_frames: int = 2) -> int:
697
+ return super()._get_max_video_frames(
698
+ max_tokens, start_num_frames=start_num_frames
699
+ )
700
+
701
+ def get_num_frames_with_most_features(
702
+ self,
703
+ seq_len: int,
704
+ mm_counts: Mapping[str, int],
705
+ ) -> int:
706
+ return super().get_num_frames_with_most_features(
707
+ seq_len, mm_counts, max_frames_per_video=_MAX_FRAMES_PER_VIDEO
708
+ )
709
+
710
+ def get_max_video_tokens(
711
+ self,
712
+ seq_len: int,
713
+ mm_counts: Mapping[str, int],
714
+ ) -> int:
715
+ target_width, target_height = self.get_image_size_with_most_features()
716
+ num_video_soft_tokens = self.get_num_video_tokens(
717
+ image_width=target_width,
718
+ image_height=target_height,
719
+ num_frames=self.get_num_frames_with_most_features(seq_len, mm_counts),
720
+ image_processor=None,
721
+ )
722
+ return num_video_soft_tokens
723
+
724
+ def _calculate_timestamps(
725
+ self, indices: list[int] | torch.Tensor, video_fps: float, merge_size: int
726
+ ):
727
+ if not isinstance(indices, list):
728
+ indices = indices.tolist()
729
+ if len(indices) % merge_size != 0:
730
+ # don't update metadata's frames_indices directly
731
+ indices = indices + [indices[-1]] * (merge_size - len(indices) % merge_size)
732
+ timestamps = [idx / video_fps for idx in indices]
733
+ timestamps = [
734
+ (timestamps[i] + timestamps[i + merge_size - 1]) / 2
735
+ for i in range(0, len(timestamps), merge_size)
736
+ ]
737
+ return timestamps
738
+
739
+ def _get_video_second_idx(
740
+ self,
741
+ metadata: dict[str, Any],
742
+ out_item: MultiModalKwargsItem,
743
+ do_sample_frames: bool | None = None,
744
+ sampled_fps: float | None = None,
745
+ ) -> list[int]:
746
+ video_processor = self.get_video_processor()
747
+ merge_size = video_processor.merge_size
748
+ indices = metadata["frames_indices"]
749
+
750
+ # metadata["fps"] refers to the true fps of the input video.
751
+ video_fps = metadata["fps"]
752
+ if do_sample_frames is None:
753
+ do_sample_frames = metadata.get("do_sample_frames", False)
754
+
755
+ # If video frames are sampled in HF processor (instead of vLLM
756
+ # video loader), we need to re-calculate the indices from original
757
+ # metadata.
758
+ if do_sample_frames:
759
+ # here video_fps is the fps of the sampled video, and
760
+ # metadata["fps"] refers to the fps of the original video.
761
+ sampled_fps = sampled_fps if sampled_fps else video_processor.fps
762
+ total_num_frames = metadata["total_num_frames"]
763
+ num_frames = int(total_num_frames / metadata["fps"] * sampled_fps)
764
+ num_frames = min(
765
+ min(
766
+ max(num_frames, video_processor.min_frames),
767
+ video_processor.max_frames,
768
+ ),
769
+ total_num_frames,
770
+ )
771
+ indices = (
772
+ np.linspace(0, total_num_frames - 1, num_frames)
773
+ .round()
774
+ .astype(int)
775
+ .tolist()
776
+ )
777
+ timestamps = self._calculate_timestamps(indices, video_fps, merge_size)
778
+ return timestamps
779
+
780
+
781
+ class Qwen3VLDummyInputsBuilder(BaseDummyInputsBuilder[Qwen3VLProcessingInfo]):
782
+ def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
783
+ num_images = mm_counts.get("image", 0)
784
+ num_videos = mm_counts.get("video", 0)
785
+
786
+ image_token = "<|vision_start|><|image_pad|><|vision_end|>"
787
+ video_token = "<|vision_start|><|video_pad|><|vision_end|>"
788
+
789
+ return image_token * num_images + video_token * num_videos
790
+
791
+ def get_dummy_mm_data(
792
+ self,
793
+ seq_len: int,
794
+ mm_counts: Mapping[str, int],
795
+ mm_options: Mapping[str, BaseDummyOptions] | None = None,
796
+ ) -> MultiModalDataDict:
797
+ num_images = mm_counts.get("image", 0)
798
+ num_videos = mm_counts.get("video", 0)
799
+ image_overrides = mm_options.get("image") if mm_options else None
800
+ video_overrides = mm_options.get("video") if mm_options else None
801
+
802
+ target_width, target_height = self.info.get_image_size_with_most_features()
803
+ target_num_frames = self.info.get_num_frames_with_most_features(
804
+ seq_len, mm_counts
805
+ )
806
+
807
+ if video_overrides:
808
+ assert isinstance(video_overrides, VideoDummyOptions)
809
+ num_frames_override = video_overrides.num_frames
810
+ if num_frames_override:
811
+ if num_frames_override > target_num_frames:
812
+ logger.warning(
813
+ "video.num_frames override (%d) exceeds model's "
814
+ "maximum number of frames (%d), will be ignored",
815
+ num_frames_override,
816
+ target_num_frames,
817
+ )
818
+ if num_frames_override < 2:
819
+ logger.warning(
820
+ "video.num_frames override (%d) cannot be less "
821
+ "than 2, will be ignored",
822
+ num_frames_override,
823
+ )
824
+ target_num_frames = min(target_num_frames, num_frames_override)
825
+ target_num_frames = max(target_num_frames, 2)
826
+
827
+ target_video_size, _ = self.info._get_vision_info(
828
+ image_width=target_width,
829
+ image_height=target_height,
830
+ num_frames=target_num_frames,
831
+ image_processor=self.info.get_video_processor(),
832
+ )
833
+ # NOTE: we need to do this check here since Qwen3-VL resizes video
834
+ # frames depending on how many frames there are.
835
+ width, height = target_video_size.width, target_video_size.height
836
+ if video_overrides:
837
+ assert isinstance(video_overrides, VideoDummyOptions)
838
+ width_override = video_overrides.width
839
+ if width_override:
840
+ if width_override > width:
841
+ logger.warning(
842
+ "video.width override (%d) exceeds model's "
843
+ "maximum width (%d), will be ignored",
844
+ width_override,
845
+ width,
846
+ )
847
+ width = min(width, width_override)
848
+ height_override = video_overrides.height
849
+ if height_override:
850
+ if height_override > height:
851
+ logger.warning(
852
+ "video.height override (%d) exceeds model's "
853
+ "maximum height (%d), will be ignored",
854
+ height_override,
855
+ height,
856
+ )
857
+ height = min(height, height_override)
858
+
859
+ return {
860
+ "image": self._get_dummy_images(
861
+ width=target_width,
862
+ height=target_height,
863
+ num_images=num_images,
864
+ overrides=image_overrides,
865
+ ),
866
+ "video": self._get_dummy_videos(
867
+ width=width,
868
+ height=height,
869
+ num_frames=target_num_frames,
870
+ num_videos=num_videos,
871
+ ),
872
+ }
873
+
874
+ def _get_dummy_videos(
875
+ self,
876
+ *,
877
+ width: int,
878
+ height: int,
879
+ num_frames: int,
880
+ num_videos: int,
881
+ ) -> list[VideoItem]:
882
+ video = np.full((num_frames, width, height, 3), 255, dtype=np.uint8)
883
+ video_items = []
884
+ for i in range(num_videos):
885
+ video_metadata = {
886
+ "fps": 2.0,
887
+ "duration": num_frames / 2.0,
888
+ "total_num_frames": num_frames,
889
+ "frames_indices": [i for i in range(num_frames)],
890
+ "video_backend": "opencv",
891
+ "do_sample_frames": False,
892
+ }
893
+ video_item = (video.copy(), video_metadata)
894
+ video_items.append(video_item)
895
+ return video_items
896
+
897
+
898
+ class Qwen3VLMultiModalProcessor(BaseMultiModalProcessor[Qwen3VLProcessingInfo]):
899
+ def _get_data_parser(self) -> MultiModalDataParser:
900
+ return Qwen2VLMultiModalDataParser(
901
+ self.info.get_hf_config().vision_config.spatial_merge_size,
902
+ video_needs_metadata=True,
903
+ )
904
+
905
+ def _call_hf_processor(
906
+ self,
907
+ prompt: str,
908
+ mm_data: Mapping[str, object],
909
+ mm_kwargs: Mapping[str, object],
910
+ tok_kwargs: Mapping[str, object],
911
+ ) -> BatchFeature:
912
+ mm_data = dict(mm_data)
913
+ processor = self.info.get_hf_processor(**mm_kwargs)
914
+
915
+ # Separate video processing from image processing. Because the videos
916
+ # are processed into several image patches
917
+ if videos := mm_data.pop("videos", []):
918
+ video_grid_thw_lst = []
919
+ pixel_values_videos_lst = []
920
+
921
+ for item in videos:
922
+ video_array, metadata = item
923
+
924
+ # NOTE: @JJJYmmm new attr metadata.frames_indices indicates
925
+ # the sampled frames indices of pre-sampled videos, which is
926
+ # used to calculate the timestamps. Make sure that
927
+ # do_sample_frames in mm_kwargs is false for presampled videos.
928
+
929
+ # NOTE: a copy of is created to update do_sample_frames,
930
+ # otherwise mm_hash for the object will be incorrect.
931
+ video_mm_kwargs = dict(**mm_kwargs)
932
+ if "do_sample_frames" not in video_mm_kwargs:
933
+ # qwen_vl_utils already has "do_sample_frames" in
934
+ # mm_kwargs, don't overwrite it.
935
+ video_mm_kwargs["do_sample_frames"] = metadata.get(
936
+ "do_sample_frames", False
937
+ )
938
+
939
+ metadata = VideoMetadata(
940
+ **{k: metadata[k] for k in metadata if k != "do_sample_frames"}
941
+ )
942
+
943
+ video_mm_data = dict()
944
+ video_mm_data["videos"] = [[video_array]]
945
+ video_mm_data["video_metadata"] = [[metadata]]
946
+
947
+ video_outputs = super()._call_hf_processor(
948
+ prompt="<|vision_start|><|video_pad|><|vision_end|>",
949
+ mm_data=video_mm_data,
950
+ mm_kwargs=video_mm_kwargs,
951
+ tok_kwargs=tok_kwargs,
952
+ )
953
+ input_ids = video_outputs.pop("input_ids")
954
+ video_placeholder = processor.tokenizer.batch_decode(input_ids)[0]
955
+ prompt = prompt.replace(
956
+ "<|vision_start|><|video_pad|><|vision_end|>",
957
+ video_placeholder,
958
+ 1,
959
+ )
960
+
961
+ video_grid_thw_lst.append(video_outputs["video_grid_thw"])
962
+ pixel_values_videos_lst.append(video_outputs["pixel_values_videos"])
963
+ video_outputs = dict(
964
+ pixel_values_videos=torch.cat(pixel_values_videos_lst),
965
+ video_grid_thw=torch.cat(video_grid_thw_lst),
966
+ )
967
+ else:
968
+ video_outputs = dict()
969
+
970
+ processed_outputs = super()._call_hf_processor(
971
+ prompt=prompt,
972
+ mm_data=mm_data,
973
+ mm_kwargs=mm_kwargs,
974
+ tok_kwargs=tok_kwargs,
975
+ )
976
+ combined_outputs = dict(
977
+ processed_outputs,
978
+ **video_outputs,
979
+ )
980
+ return BatchFeature(combined_outputs)
981
+
982
+ def _get_mm_fields_config(
983
+ self,
984
+ hf_inputs: BatchFeature,
985
+ hf_processor_mm_kwargs: Mapping[str, object],
986
+ ) -> Mapping[str, MultiModalFieldConfig]:
987
+ image_grid_thw = hf_inputs.get("image_grid_thw", torch.empty((0, 3)))
988
+ image_grid_sizes = image_grid_thw.prod(-1)
989
+
990
+ video_grid_thw = hf_inputs.get("video_grid_thw", torch.empty((0, 3)))
991
+ video_grid_sizes = video_grid_thw.prod(-1)
992
+
993
+ return dict(
994
+ pixel_values=MultiModalFieldConfig.flat_from_sizes(
995
+ "image", image_grid_sizes
996
+ ),
997
+ image_embeds=MultiModalFieldConfig.flat_from_sizes(
998
+ "image", image_grid_sizes
999
+ ),
1000
+ image_grid_thw=MultiModalFieldConfig.batched("image", keep_on_cpu=True),
1001
+ pixel_values_videos=MultiModalFieldConfig.flat_from_sizes(
1002
+ "video", video_grid_sizes
1003
+ ),
1004
+ video_embeds=MultiModalFieldConfig.flat_from_sizes(
1005
+ "video", video_grid_sizes
1006
+ ),
1007
+ video_grid_thw=MultiModalFieldConfig.batched("video", keep_on_cpu=True),
1008
+ )
1009
+
1010
+ def _get_prompt_updates(
1011
+ self,
1012
+ mm_items: MultiModalDataItems,
1013
+ hf_processor_mm_kwargs: Mapping[str, Any],
1014
+ out_mm_kwargs: MultiModalKwargsItems,
1015
+ ) -> Sequence[PromptUpdate]:
1016
+ hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
1017
+ image_processor = self.info.get_image_processor(**hf_processor_mm_kwargs)
1018
+ tokenizer = self.info.get_tokenizer()
1019
+ hf_config = self.info.get_hf_config()
1020
+
1021
+ video_token_id = hf_config.video_token_id
1022
+ vision_start_token_id = hf_config.vision_start_token_id
1023
+ vision_end_token_id = hf_config.vision_end_token_id
1024
+
1025
+ merge_length = image_processor.merge_size**2
1026
+
1027
+ def get_image_replacement_qwen3vl(item_idx: int):
1028
+ out_item = out_mm_kwargs["image"][item_idx]
1029
+ grid_thw = out_item["image_grid_thw"].data
1030
+ assert isinstance(grid_thw, torch.Tensor)
1031
+
1032
+ num_tokens = int(grid_thw.prod()) // merge_length
1033
+ return [hf_processor.image_token_id] * num_tokens
1034
+
1035
+ def get_video_replacement_qwen3vl(item_idx: int):
1036
+ out_item = out_mm_kwargs["video"][item_idx]
1037
+ grid_thw = out_item["video_grid_thw"].data
1038
+ assert isinstance(grid_thw, torch.Tensor)
1039
+
1040
+ video, metadata = mm_items["video"][item_idx]
1041
+ do_sample_frames = hf_processor_mm_kwargs.get("do_sample_frames")
1042
+ sampled_fps = hf_processor_mm_kwargs.get("fps")
1043
+ if is_list_of(sampled_fps, float):
1044
+ sampled_fps = sampled_fps[item_idx]
1045
+ timestamps = self.info._get_video_second_idx(
1046
+ metadata, out_item, do_sample_frames, sampled_fps
1047
+ )
1048
+
1049
+ assert len(timestamps) == grid_thw[0], (
1050
+ f"The timestamps length({len(timestamps)}) should be equal "
1051
+ f"video length ({grid_thw[0]})."
1052
+ )
1053
+
1054
+ frames_idx_token = [
1055
+ tokenizer.encode(f"<{curr_time:.1f} seconds>", add_special_tokens=False)
1056
+ for curr_time in timestamps
1057
+ ]
1058
+ tokens_per_frame = int(grid_thw[1:].prod()) // merge_length
1059
+ per_frame_token_counts = [tokens_per_frame for _ in frames_idx_token]
1060
+
1061
+ video_pruning_rate = self.info.ctx.get_mm_config().video_pruning_rate
1062
+ if video_pruning_rate is not None and video_pruning_rate > 0.0:
1063
+ total_retained = compute_retained_tokens_count(
1064
+ tokens_per_frame,
1065
+ len(frames_idx_token),
1066
+ video_pruning_rate,
1067
+ )
1068
+ if len(frames_idx_token) == 0:
1069
+ per_frame_token_counts = []
1070
+ elif len(frames_idx_token) == 1:
1071
+ per_frame_token_counts = [tokens_per_frame]
1072
+ else:
1073
+ first_frame_tokens = tokens_per_frame
1074
+ remaining_tokens = max(total_retained - first_frame_tokens, 0)
1075
+ base = remaining_tokens // (len(frames_idx_token) - 1)
1076
+ remainder = remaining_tokens % (len(frames_idx_token) - 1)
1077
+ per_frame_token_counts = [first_frame_tokens]
1078
+ for frame_idx in range(1, len(frames_idx_token)):
1079
+ extra = base + (1 if (frame_idx - 1) < remainder else 0)
1080
+ per_frame_token_counts.append(extra)
1081
+
1082
+ placeholder = []
1083
+ for frame_idx, timestamp_tokens in enumerate(frames_idx_token):
1084
+ placeholder.extend(timestamp_tokens)
1085
+ tokens_this_frame = per_frame_token_counts[
1086
+ frame_idx if frame_idx < len(per_frame_token_counts) else -1
1087
+ ]
1088
+ placeholder.extend(
1089
+ [vision_start_token_id]
1090
+ + [video_token_id] * tokens_this_frame
1091
+ + [vision_end_token_id]
1092
+ )
1093
+ return PromptUpdateDetails.select_token_id(placeholder, video_token_id)
1094
+
1095
+ return [
1096
+ PromptReplacement(
1097
+ modality="image",
1098
+ target=hf_processor.image_token,
1099
+ replacement=get_image_replacement_qwen3vl,
1100
+ ),
1101
+ # NOTE: We match string on purpose since searching sequence of
1102
+ # token ids takes more time.
1103
+ PromptReplacement(
1104
+ modality="video",
1105
+ target="<|vision_start|><|video_pad|><|vision_end|>",
1106
+ replacement=get_video_replacement_qwen3vl,
1107
+ ),
1108
+ ]
1109
+
1110
+
1111
+ @support_torch_compile(
1112
+ dynamic_arg_dims={
1113
+ "input_ids": 0,
1114
+ # positions is of shape (3, seq_len) if mrope is enabled for qwen2-vl,
1115
+ # otherwise (seq_len, ).
1116
+ "positions": -1,
1117
+ "intermediate_tensors": 0,
1118
+ "inputs_embeds": 0,
1119
+ # the same shape as input_embeds
1120
+ "deepstack_input_embeds": 0,
1121
+ }
1122
+ )
1123
+ class Qwen3LLMModel(Qwen3Model):
1124
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
1125
+ super().__init__(vllm_config=vllm_config, prefix=prefix)
1126
+ if not get_pp_group().is_first_rank:
1127
+ assert self.start_layer >= len(
1128
+ vllm_config.model_config.hf_config.vision_config.deepstack_visual_indexes
1129
+ ), (
1130
+ "start_layer should be greater than or equal to "
1131
+ "len(deepstack_visual_indexes)"
1132
+ )
1133
+
1134
+ def forward(
1135
+ self,
1136
+ input_ids: torch.Tensor,
1137
+ positions: torch.Tensor,
1138
+ intermediate_tensors: IntermediateTensors | None = None,
1139
+ inputs_embeds: torch.Tensor | None = None,
1140
+ # args for deepstack
1141
+ deepstack_input_embeds: IntermediateTensors | None = None,
1142
+ ) -> torch.Tensor | IntermediateTensors:
1143
+ if get_pp_group().is_first_rank:
1144
+ if inputs_embeds is not None:
1145
+ hidden_states = inputs_embeds
1146
+ else:
1147
+ hidden_states = self.embed_input_ids(input_ids)
1148
+ residual = None
1149
+ else:
1150
+ assert intermediate_tensors is not None
1151
+ hidden_states = intermediate_tensors["hidden_states"]
1152
+ residual = intermediate_tensors["residual"]
1153
+
1154
+ aux_hidden_states = []
1155
+ for layer_idx, layer in islice(
1156
+ enumerate(self.layers), self.start_layer, self.end_layer
1157
+ ):
1158
+ if layer_idx in self.aux_hidden_state_layers:
1159
+ aux_hidden_states.append(hidden_states + residual)
1160
+
1161
+ hidden_states, residual = layer(
1162
+ positions,
1163
+ hidden_states,
1164
+ residual,
1165
+ )
1166
+
1167
+ if deepstack_input_embeds is not None and layer_idx in range(
1168
+ 0, len(deepstack_input_embeds)
1169
+ ):
1170
+ hidden_states = (
1171
+ hidden_states
1172
+ + deepstack_input_embeds[f"deepstack_input_embeds_{layer_idx}"]
1173
+ )
1174
+
1175
+ if not get_pp_group().is_last_rank:
1176
+ return IntermediateTensors(
1177
+ {"hidden_states": hidden_states, "residual": residual}
1178
+ )
1179
+ hidden_states, _ = self.norm(hidden_states, residual)
1180
+
1181
+ if len(aux_hidden_states) > 0:
1182
+ return hidden_states, aux_hidden_states
1183
+ return hidden_states
1184
+
1185
+
1186
+ class Qwen3LLMForCausalLM(Qwen3ForCausalLM):
1187
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
1188
+ super(Qwen3ForCausalLM, self).__init__()
1189
+ config = vllm_config.model_config.hf_config.text_config
1190
+ quant_config = vllm_config.quant_config
1191
+
1192
+ self.config = config
1193
+
1194
+ self.quant_config = quant_config
1195
+ self.model = Qwen3LLMModel(
1196
+ vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
1197
+ )
1198
+
1199
+ if get_pp_group().is_last_rank:
1200
+ if config.tie_word_embeddings:
1201
+ self.lm_head = self.model.embed_tokens
1202
+ else:
1203
+ self.lm_head = ParallelLMHead(
1204
+ config.vocab_size,
1205
+ config.hidden_size,
1206
+ quant_config=quant_config,
1207
+ prefix="lm_head",
1208
+ )
1209
+ else:
1210
+ self.lm_head = PPMissingLayer()
1211
+
1212
+ self.logits_processor = LogitsProcessor(config.vocab_size)
1213
+
1214
+ self.make_empty_intermediate_tensors = (
1215
+ self.model.make_empty_intermediate_tensors
1216
+ )
1217
+
1218
+
1219
+ @MULTIMODAL_REGISTRY.register_processor(
1220
+ Qwen3VLMultiModalProcessor,
1221
+ info=Qwen3VLProcessingInfo,
1222
+ dummy_inputs=Qwen3VLDummyInputsBuilder,
1223
+ )
1224
+ class Qwen3VLForConditionalGeneration(
1225
+ nn.Module,
1226
+ SupportsMultiModal,
1227
+ SupportsLoRA,
1228
+ SupportsPP,
1229
+ SupportsMRoPE,
1230
+ SupportsEagle3,
1231
+ SupportsMultiModalPruning,
1232
+ ):
1233
+ packed_modules_mapping = {
1234
+ "qkv_proj": [
1235
+ "q_proj",
1236
+ "k_proj",
1237
+ "v_proj",
1238
+ ],
1239
+ "gate_up_proj": [
1240
+ "gate_proj",
1241
+ "up_proj",
1242
+ ],
1243
+ }
1244
+
1245
+ supports_encoder_tp_data = True
1246
+
1247
+ # To ensure correct weight loading and mapping.
1248
+ hf_to_vllm_mapper = WeightsMapper(
1249
+ orig_to_new_prefix={
1250
+ "model.visual.": "visual.",
1251
+ "lm_head.": "language_model.lm_head.",
1252
+ "model.language_model.": "language_model.model.",
1253
+ }
1254
+ )
1255
+
1256
+ @classmethod
1257
+ def get_placeholder_str(cls, modality: str, i: int) -> str | None:
1258
+ if modality.startswith("image"):
1259
+ return "<|vision_start|><|image_pad|><|vision_end|>"
1260
+ if modality.startswith("video"):
1261
+ return "<|vision_start|><|video_pad|><|vision_end|>"
1262
+
1263
+ raise ValueError("Only image or video modality is supported")
1264
+
1265
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = "model"):
1266
+ super().__init__()
1267
+ config: Qwen3VLConfig = vllm_config.model_config.hf_config
1268
+ quant_config = vllm_config.quant_config
1269
+ multimodal_config = vllm_config.model_config.multimodal_config
1270
+
1271
+ self.config = config
1272
+ self.multimodal_config = multimodal_config
1273
+ self.use_data_parallel = multimodal_config.mm_encoder_tp_mode == "data"
1274
+ self.video_pruning_rate = multimodal_config.video_pruning_rate
1275
+ self.is_multimodal_pruning_enabled = (
1276
+ multimodal_config.is_multimodal_pruning_enabled()
1277
+ )
1278
+
1279
+ if not multimodal_config.get_limit_per_prompt(
1280
+ "image"
1281
+ ) and not multimodal_config.get_limit_per_prompt("video"):
1282
+ self.visual = None
1283
+ else:
1284
+ self.visual = Qwen3_VisionTransformer(
1285
+ config.vision_config,
1286
+ norm_eps=getattr(config, "rms_norm_eps", 1e-6),
1287
+ quant_config=quant_config,
1288
+ multimodal_config=multimodal_config,
1289
+ prefix=maybe_prefix(prefix, "visual"),
1290
+ )
1291
+
1292
+ self.language_model = Qwen3LLMForCausalLM(
1293
+ vllm_config=vllm_config, prefix=maybe_prefix(prefix, "language_model")
1294
+ )
1295
+
1296
+ self.make_empty_intermediate_tensors = (
1297
+ self.language_model.make_empty_intermediate_tensors
1298
+ )
1299
+
1300
+ self.use_deepstack = hasattr(config.vision_config, "deepstack_visual_indexes")
1301
+ self.deepstack_num_level = (
1302
+ len(config.vision_config.deepstack_visual_indexes)
1303
+ if self.use_deepstack
1304
+ else 0
1305
+ )
1306
+ # register buffer for deepstack
1307
+ if self.use_deepstack and self.visual is not None:
1308
+ self.deepstack_input_embeds = [
1309
+ torch.zeros(
1310
+ vllm_config.scheduler_config.max_num_batched_tokens,
1311
+ config.text_config.hidden_size,
1312
+ )
1313
+ for _ in range(self.deepstack_num_level)
1314
+ ]
1315
+ else:
1316
+ self.deepstack_input_embeds = None
1317
+ self.visual_dim = config.vision_config.out_hidden_size
1318
+ self.multiscale_dim = self.visual_dim * self.deepstack_num_level
1319
+
1320
+ def set_aux_hidden_state_layers(self, layers: tuple[int, ...]) -> None:
1321
+ self.language_model.model.aux_hidden_state_layers = layers
1322
+
1323
+ def get_eagle3_aux_hidden_state_layers(self) -> tuple[int, ...]:
1324
+ num_layers = len(self.language_model.model.layers)
1325
+ return (2, num_layers // 2, num_layers - 3)
1326
+
1327
+ def _get_deepstack_input_embeds(self, num_tokens: int) -> IntermediateTensors:
1328
+ # get deepstack_input_embeds from buffer, and clear the buffer
1329
+ return IntermediateTensors(
1330
+ {
1331
+ f"deepstack_input_embeds_{idx}": self.deepstack_input_embeds[idx][
1332
+ :num_tokens
1333
+ ]
1334
+ for idx in range(self.deepstack_num_level)
1335
+ }
1336
+ )
1337
+
1338
+ def _set_deepstack_input_embeds(self, deepstack_input_embeds: torch.Tensor) -> None:
1339
+ # set deepstack_input_embeds to buffer
1340
+ num_tokens = deepstack_input_embeds.size(1)
1341
+ if num_tokens > self.deepstack_input_embeds[0].size(0):
1342
+ self.deepstack_input_embeds = [
1343
+ torch.zeros(
1344
+ num_tokens,
1345
+ self.config.text_config.hidden_size,
1346
+ device=self.deepstack_input_embeds[0].device,
1347
+ dtype=self.deepstack_input_embeds[0].dtype,
1348
+ )
1349
+ for _ in range(self.deepstack_num_level)
1350
+ ]
1351
+ for idx in range(self.deepstack_num_level):
1352
+ self.deepstack_input_embeds[idx][:num_tokens].copy_(
1353
+ deepstack_input_embeds[idx]
1354
+ )
1355
+
1356
+ def _clear_deepstack_input_embeds(self, num_tokens: int) -> None:
1357
+ # clear deepstack_input_embeds in buffer
1358
+ if num_tokens > 0:
1359
+ for idx in range(self.deepstack_num_level):
1360
+ self.deepstack_input_embeds[idx][:num_tokens].zero_()
1361
+
1362
+ def _parse_and_validate_image_input(
1363
+ self, **kwargs: object
1364
+ ) -> Qwen2_5_VLImageInputs | None:
1365
+ pixel_values = kwargs.pop("pixel_values", None)
1366
+ image_embeds = kwargs.pop("image_embeds", None)
1367
+ image_grid_thw = kwargs.pop("image_grid_thw", None)
1368
+
1369
+ if pixel_values is None and image_embeds is None:
1370
+ return None
1371
+
1372
+ if pixel_values is not None:
1373
+ return Qwen2_5_VLImagePixelInputs(
1374
+ type="pixel_values",
1375
+ pixel_values=pixel_values,
1376
+ image_grid_thw=image_grid_thw,
1377
+ )
1378
+
1379
+ if image_embeds is not None:
1380
+ return Qwen2_5_VLImageEmbeddingInputs(
1381
+ type="image_embeds",
1382
+ image_embeds=image_embeds,
1383
+ image_grid_thw=image_grid_thw,
1384
+ )
1385
+
1386
+ def _parse_and_validate_video_input(
1387
+ self, **kwargs: object
1388
+ ) -> Qwen2_5_VLVideoInputs | None:
1389
+ pixel_values_videos = kwargs.pop("pixel_values_videos", None)
1390
+ video_embeds = kwargs.pop("video_embeds", None)
1391
+ video_grid_thw = kwargs.pop("video_grid_thw", None)
1392
+ second_per_grid_ts = kwargs.pop("second_per_grid_ts", None)
1393
+
1394
+ if pixel_values_videos is None and video_embeds is None:
1395
+ return None
1396
+
1397
+ if pixel_values_videos is not None:
1398
+ return Qwen2_5_VLVideoPixelInputs(
1399
+ type="pixel_values_videos",
1400
+ pixel_values_videos=pixel_values_videos,
1401
+ video_grid_thw=video_grid_thw,
1402
+ second_per_grid_ts=second_per_grid_ts,
1403
+ )
1404
+
1405
+ if video_embeds is not None:
1406
+ return Qwen2_5_VLVideoEmbeddingInputs(
1407
+ type="video_embeds",
1408
+ video_embeds=video_embeds,
1409
+ video_grid_thw=video_grid_thw,
1410
+ )
1411
+
1412
+ def _process_image_input(
1413
+ self, image_input: Qwen2_5_VLImageInputs
1414
+ ) -> tuple[torch.Tensor, ...]:
1415
+ grid_thw = image_input["image_grid_thw"]
1416
+ assert grid_thw.ndim == 2
1417
+
1418
+ if image_input["type"] == "image_embeds":
1419
+ image_embeds = image_input["image_embeds"].type(self.visual.dtype)
1420
+ else:
1421
+ pixel_values = image_input["pixel_values"].type(self.visual.dtype)
1422
+ if self.use_data_parallel:
1423
+ return run_dp_sharded_mrope_vision_model(
1424
+ self.visual, pixel_values, grid_thw.tolist(), rope_type="rope_3d"
1425
+ )
1426
+ else:
1427
+ image_embeds = self.visual(pixel_values, grid_thw=grid_thw)
1428
+
1429
+ # Split concatenated embeddings for each image item.
1430
+ merge_size = self.visual.spatial_merge_size
1431
+ sizes = (grid_thw.prod(-1) // merge_size // merge_size).tolist()
1432
+ return image_embeds.split(sizes)
1433
+
1434
+ def _process_video_input(
1435
+ self, video_input: Qwen2_5_VLVideoInputs
1436
+ ) -> tuple[torch.Tensor, ...]:
1437
+ grid_thw = video_input["video_grid_thw"]
1438
+ assert grid_thw.ndim == 2
1439
+
1440
+ if video_input["type"] == "video_embeds":
1441
+ video_embeds = video_input["video_embeds"].type(self.visual.dtype)
1442
+ else:
1443
+ pixel_values_videos = video_input["pixel_values_videos"].type(
1444
+ self.visual.dtype
1445
+ )
1446
+ if self.use_data_parallel:
1447
+ grid_thw_list = grid_thw.tolist()
1448
+ return run_dp_sharded_mrope_vision_model(
1449
+ self.visual, pixel_values_videos, grid_thw_list, rope_type="rope_3d"
1450
+ )
1451
+ else:
1452
+ video_embeds = self.visual(pixel_values_videos, grid_thw=grid_thw)
1453
+
1454
+ # Split concatenated embeddings for each video item.
1455
+ merge_size = self.visual.spatial_merge_size
1456
+ sizes = (grid_thw.prod(-1) // merge_size // merge_size).tolist()
1457
+ return video_embeds.split(sizes)
1458
+
1459
+ def _postprocess_image_embeds_evs(
1460
+ self,
1461
+ image_embeds_split: tuple[torch.Tensor, ...],
1462
+ image_input: Qwen2_5_VLImageInputs,
1463
+ ) -> tuple[torch.Tensor, ...]:
1464
+ """
1465
+ Append mrope positions for each for images.
1466
+ This is necessary to recover correct mrope
1467
+ positions after video pruning
1468
+
1469
+ Args:
1470
+ image_embeds_split: Tuple of image embeddings for
1471
+ each image item.
1472
+ image_input: Image input data.
1473
+
1474
+ Returns:
1475
+ Tuple of image embeddings for each image item.
1476
+ Resulting embeddings will have extra 4 channels for
1477
+ computed mrope positions.
1478
+ """
1479
+ merge_size = self.visual.spatial_merge_size
1480
+ grid_thw = image_input["image_grid_thw"]
1481
+ grid_thw_list = grid_thw.tolist()
1482
+ image_embeds_out = []
1483
+ for emb, size in zip(image_embeds_split, grid_thw_list):
1484
+ positions = compute_mrope_for_media(size, merge_size).to(emb.device)
1485
+ emb = torch.cat([emb, positions], dim=1)
1486
+ image_embeds_out.append(emb)
1487
+ image_embeds_split = image_embeds_out
1488
+ return tuple(image_embeds_split)
1489
+
1490
+ def _postprocess_video_embeds_evs(
1491
+ self,
1492
+ video_embeds_split: tuple[torch.Tensor, ...],
1493
+ video_input: Qwen2_5_VLVideoInputs,
1494
+ ) -> tuple[torch.Tensor, ...]:
1495
+ """
1496
+ Prunes video embeddings via Efficient Video Sampling (EVS)
1497
+ and then appends mrope positions for each retained embeddings
1498
+
1499
+ Args:
1500
+ video_embeds_split: Tuple of video embeddings for each video item.
1501
+ video_input: Video input data.
1502
+
1503
+ Returns:
1504
+ Tuple of video embeddings for each video item.
1505
+ Resulting embeddings will have extra 4 channels for
1506
+ computed mrope positions.
1507
+ """
1508
+ grid_thw = video_input["video_grid_thw"]
1509
+ assert grid_thw.ndim == 2
1510
+ grid_thw_list = grid_thw.tolist()
1511
+ merge_size = self.visual.spatial_merge_size
1512
+
1513
+ # Cast to long to match the original code
1514
+ # https://github.com/huggingface/transformers/blob/41980ce93e775f6c88500c51c8db7946fc6a2add/src/transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py#L491 # noqa
1515
+ second_per_grid_ts = video_input.get("second_per_grid_ts")
1516
+ if second_per_grid_ts is None:
1517
+ # For Qwen3-VL, second_per_grid_ts might not be available
1518
+ # Use default value of 1.0 for each video
1519
+ second_per_grid_ts = torch.ones(len(grid_thw_list), dtype=torch.long)
1520
+ else:
1521
+ second_per_grid_ts = second_per_grid_ts.long()
1522
+ tokens_per_second = getattr(self.config.vision_config, "tokens_per_second", 1.0)
1523
+
1524
+ video_embeds_out = []
1525
+ for emb, size, video_second_per_grid_t in zip(
1526
+ video_embeds_split, grid_thw_list, second_per_grid_ts
1527
+ ):
1528
+ # For each video, we compute retention mask using EVS
1529
+ retention_mask = compute_retention_mask(
1530
+ emb,
1531
+ size,
1532
+ spatial_merge_size=self.visual.spatial_merge_size,
1533
+ q=self.video_pruning_rate,
1534
+ )
1535
+
1536
+ # Debug logging for EVS pruning
1537
+ logger.debug(
1538
+ "EVS: Video tokens pruned from %d to %d (T=%d,H=%d,W=%d, "
1539
+ "pruning_rate=%.2f, reduction=%.1f%%)",
1540
+ emb.shape[0],
1541
+ retention_mask.sum().item(),
1542
+ size[0],
1543
+ size[1],
1544
+ size[2],
1545
+ self.video_pruning_rate,
1546
+ (1 - retention_mask.float().mean().item()) * 100,
1547
+ )
1548
+
1549
+ positions = compute_mrope_for_media(
1550
+ size,
1551
+ merge_size,
1552
+ tokens_per_second=tokens_per_second,
1553
+ video_second_per_grid=video_second_per_grid_t.item(),
1554
+ ).to(emb.device)
1555
+
1556
+ emb = emb[retention_mask]
1557
+ positions = positions[retention_mask]
1558
+ emb = torch.cat([emb, positions], dim=1)
1559
+ video_embeds_out.append(emb)
1560
+ return tuple(video_embeds_out)
1561
+
1562
+ def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
1563
+ mm_input_by_modality = {}
1564
+ for input_key in kwargs:
1565
+ if (
1566
+ input_key in ("pixel_values", "image_embeds")
1567
+ and "image" not in mm_input_by_modality
1568
+ ):
1569
+ mm_input_by_modality["image"] = self._parse_and_validate_image_input(
1570
+ **kwargs
1571
+ )
1572
+ if (
1573
+ input_key in ("pixel_values_videos", "video_embeds")
1574
+ and "video" not in mm_input_by_modality
1575
+ ):
1576
+ mm_input_by_modality["video"] = self._parse_and_validate_video_input(
1577
+ **kwargs
1578
+ )
1579
+ return mm_input_by_modality
1580
+
1581
+ def iter_mm_grid_hw(
1582
+ self, input_tokens: list[int], mm_features: list[MultiModalFeatureSpec]
1583
+ ) -> Iterator[tuple[int, int, int]]:
1584
+ """
1585
+ Iterate over multimodal features and yield grid information.
1586
+
1587
+ For videos with EVS (Efficient Video Sampling) enabled, this function
1588
+ computes the offset based on the pruned token count rather than relying
1589
+ on input_tokens.index(), which would fail when tokens are pruned.
1590
+
1591
+ Args:
1592
+ input_tokens: List of token IDs in the prompt
1593
+ mm_features: List of multimodal feature specifications
1594
+
1595
+ Yields:
1596
+ Tuple of (offset, grid_h, grid_w) for each frame/image
1597
+ """
1598
+ video_token_id = self.config.video_token_id
1599
+ spatial_merge_size = self.config.vision_config.spatial_merge_size
1600
+ for mm_feature in sorted(mm_features, key=lambda f: f.mm_position.offset):
1601
+ offset = mm_feature.mm_position.offset
1602
+ if mm_feature.modality == "image":
1603
+ t, h, w = mm_feature.data["image_grid_thw"].data.tolist()
1604
+ assert t == 1, f"Image must have 1 frame, got {t}"
1605
+ yield offset, h // spatial_merge_size, w // spatial_merge_size
1606
+ elif mm_feature.modality == "video":
1607
+ t, h, w = mm_feature.data["video_grid_thw"].data.tolist()
1608
+ llm_grid_h = h // spatial_merge_size
1609
+ llm_grid_w = w // spatial_merge_size
1610
+
1611
+ # Check if EVS (Efficient Video Sampling) is enabled
1612
+ is_evs_enabled = (
1613
+ hasattr(self, "video_pruning_rate")
1614
+ and self.video_pruning_rate is not None
1615
+ and self.video_pruning_rate > 0.0
1616
+ )
1617
+
1618
+ if is_evs_enabled:
1619
+ frame_offsets = self._extract_frame_offsets_from_mask(
1620
+ mm_feature.mm_position, t
1621
+ )
1622
+ if frame_offsets is not None:
1623
+ for rel_offset in frame_offsets:
1624
+ yield offset + rel_offset, llm_grid_h, llm_grid_w
1625
+ continue
1626
+
1627
+ # If EVS is enabled but mask is missing, this indicates a bug
1628
+ # in the prompt processing pipeline. The is_embed mask should
1629
+ # always be present when video_pruning_rate > 0.
1630
+ raise RuntimeError(
1631
+ f"EVS is enabled (pruning_rate={self.video_pruning_rate}) "
1632
+ "but is_embed mask is missing from mm_position. "
1633
+ "This indicates a bug in prompt processing."
1634
+ )
1635
+ else:
1636
+ # Non-EVS mode: Use original logic with input_tokens.index()
1637
+ for _ in range(t):
1638
+ offset = input_tokens.index(video_token_id, offset)
1639
+ yield offset, llm_grid_h, llm_grid_w
1640
+ offset += llm_grid_h * llm_grid_w
1641
+ else:
1642
+ raise ValueError(f"Unsupported modality: {mm_feature.modality}")
1643
+
1644
+ def _get_evs_mask_segments(
1645
+ self, mm_position: PlaceholderRange, expected_frames: int
1646
+ ) -> list[torch.Tensor] | None:
1647
+ """Extract contiguous segments from EVS is_embed mask.
1648
+
1649
+ The EVS (Efficient Video Sampling) mask marks which placeholder
1650
+ positions should be filled with video embeddings. This method splits
1651
+ the mask into contiguous segments, where each segment represents one
1652
+ retained frame.
1653
+
1654
+ This is a pure function - it does not modify any state and always
1655
+ returns the same output for the same input (idempotent).
1656
+
1657
+ Args:
1658
+ mm_position: MultiModal position containing the is_embed mask
1659
+ expected_frames: Expected number of frame segments
1660
+
1661
+ Returns:
1662
+ List of tensors, each containing indices for one frame segment,
1663
+ or None if EVS is not enabled or validation fails.
1664
+ """
1665
+ is_embed_mask = getattr(mm_position, "is_embed", None)
1666
+ if is_embed_mask is None:
1667
+ return None
1668
+
1669
+ # Find all True positions in the mask
1670
+ mask_tensor = torch.as_tensor(is_embed_mask, dtype=torch.bool).view(-1)
1671
+ true_indices = torch.nonzero(mask_tensor, as_tuple=False).flatten()
1672
+ if true_indices.numel() == 0:
1673
+ return None
1674
+
1675
+ # Split into contiguous segments (where diff > 1 indicates a gap)
1676
+ if true_indices.numel() == 1:
1677
+ segments = [true_indices]
1678
+ else:
1679
+ diffs = torch.diff(true_indices)
1680
+ split_points = torch.nonzero(diffs != 1, as_tuple=False).flatten()
1681
+ if split_points.numel() == 0:
1682
+ segments = [true_indices]
1683
+ else:
1684
+ segments = torch.tensor_split(
1685
+ true_indices, split_points.add(1).tolist()
1686
+ )
1687
+
1688
+ # Validate segment count matches expected frames
1689
+ if len(segments) < expected_frames:
1690
+ logger.debug(
1691
+ "EVS mask segments (%d) do not match expected frames (%d)",
1692
+ len(segments),
1693
+ expected_frames,
1694
+ )
1695
+ return None
1696
+
1697
+ return segments[:expected_frames]
1698
+
1699
+ def _extract_frame_offsets_from_mask(
1700
+ self, mm_position: PlaceholderRange, expected_frames: int
1701
+ ) -> list[int] | None:
1702
+ """Return relative offsets for each EVS-retained frame.
1703
+
1704
+ The prompt processor stores a boolean mask inside ``mm_position`` that
1705
+ marks which placeholder locations should be populated with video
1706
+ embeddings. By splitting that mask into contiguous runs we can recover
1707
+ the start of every retained frame without probing ``input_tokens``.
1708
+
1709
+ Args:
1710
+ mm_position: MultiModal position containing the is_embed mask
1711
+ expected_frames: Expected number of frames
1712
+
1713
+ Returns:
1714
+ List of starting offsets (relative to mm_position) for each frame,
1715
+ or None if EVS is not enabled.
1716
+ """
1717
+ segments = self._get_evs_mask_segments(mm_position, expected_frames)
1718
+ if segments is None:
1719
+ return None
1720
+
1721
+ return [int(segment[0].item()) for segment in segments]
1722
+
1723
+ def _get_actual_frame_token_counts(
1724
+ self, mm_position: PlaceholderRange, expected_frames: int
1725
+ ) -> list[int] | None:
1726
+ """Return actual token count for each EVS-retained frame.
1727
+
1728
+ This function calculates the actual number of tokens per frame by
1729
+ analyzing the is_embed mask, accounting for EVS pruning. Each frame
1730
+ may have a different token count due to content-aware pruning.
1731
+
1732
+ Args:
1733
+ mm_position: MultiModal position containing the is_embed mask
1734
+ expected_frames: Expected number of frames
1735
+
1736
+ Returns:
1737
+ List of token counts for each frame, or None if EVS is not enabled.
1738
+ """
1739
+ segments = self._get_evs_mask_segments(mm_position, expected_frames)
1740
+ if segments is None:
1741
+ return None
1742
+
1743
+ return [len(seg) for seg in segments]
1744
+
1745
+ def recompute_mrope_positions(
1746
+ self,
1747
+ input_ids: list[int],
1748
+ multimodal_embeddings: tuple[torch.Tensor, ...],
1749
+ mrope_positions: torch.LongTensor,
1750
+ num_computed_tokens: int,
1751
+ ) -> tuple[tuple[torch.Tensor, ...], torch.Tensor, int]:
1752
+ """
1753
+ Update part of input mrope positions (starting with
1754
+ num_computed_tokens index). Original mrope_positions are computed
1755
+ for unpruned sequence and becomes incorrect once pruning occurs,
1756
+ so once we prune media tokens we should reflect this in the
1757
+ mrope_positions before we feed it to LLM.
1758
+
1759
+ Args:
1760
+ input_ids: (N,) All input tokens of the prompt (Containing
1761
+ entire sequence).
1762
+ multimodal_embeddings: Tuple of multimodal embeddings.
1763
+ mrope_positions: Existing mrope positions (3, N) for entire
1764
+ sequence
1765
+ num_computed_tokens: A number of computed tokens so far.
1766
+
1767
+ Returns:
1768
+ Tuple of (multimodal_embeddings, mrope_positions,
1769
+ mrope_position_delta).
1770
+ """
1771
+ image_token_id = self.config.image_token_id
1772
+ video_token_id = self.config.video_token_id
1773
+ vision_start_token_id = self.config.vision_start_token_id
1774
+
1775
+ # Device
1776
+ device = (
1777
+ multimodal_embeddings[0].device
1778
+ if len(multimodal_embeddings)
1779
+ else mrope_positions.device
1780
+ )
1781
+
1782
+ # Tensors
1783
+ input_ids_t = torch.as_tensor(input_ids, device=device, dtype=torch.long)
1784
+
1785
+ mm_embeddings_out = [mm[:, :-4] for mm in multimodal_embeddings]
1786
+ mm_embeddings_pos = [
1787
+ mm[:, -4:].permute(1, 0).long() for mm in multimodal_embeddings
1788
+ ]
1789
+
1790
+ positions, mrope_positions_delta = recompute_mrope_positions(
1791
+ input_ids_t,
1792
+ mm_embeddings_pos,
1793
+ mrope_positions,
1794
+ num_computed_tokens,
1795
+ vision_start_token_id,
1796
+ image_token_id,
1797
+ video_token_id,
1798
+ )
1799
+
1800
+ return tuple(mm_embeddings_out), positions, mrope_positions_delta
1801
+
1802
+ def get_mrope_input_positions(
1803
+ self,
1804
+ input_tokens: list[int],
1805
+ mm_features: list[MultiModalFeatureSpec],
1806
+ ) -> tuple[torch.Tensor, int]:
1807
+ # Pre-collect actual frame token counts for EVS mode
1808
+ frame_token_counts_map = {}
1809
+ for mm_feature in mm_features:
1810
+ if mm_feature.modality == "video":
1811
+ is_evs_enabled = (
1812
+ hasattr(self, "video_pruning_rate")
1813
+ and self.video_pruning_rate is not None
1814
+ and self.video_pruning_rate > 0.0
1815
+ )
1816
+ if is_evs_enabled:
1817
+ t = mm_feature.data["video_grid_thw"].data.tolist()[0]
1818
+ token_counts = self._get_actual_frame_token_counts(
1819
+ mm_feature.mm_position, t
1820
+ )
1821
+ assert token_counts is not None, (
1822
+ "EVS enabled but failed to extract frame token counts "
1823
+ "from is_embed mask"
1824
+ )
1825
+ frame_token_counts_map[mm_feature.mm_position.offset] = token_counts
1826
+
1827
+ llm_pos_ids_list = []
1828
+ st = 0
1829
+ frame_counts_idx = {}
1830
+
1831
+ for offset, llm_grid_h, llm_grid_w in self.iter_mm_grid_hw(
1832
+ input_tokens, mm_features
1833
+ ):
1834
+ text_len = offset - st
1835
+ st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
1836
+
1837
+ # Determine actual token count for this frame
1838
+ base_offset = None
1839
+ for feat_offset in frame_token_counts_map:
1840
+ if offset >= feat_offset:
1841
+ base_offset = feat_offset
1842
+
1843
+ if base_offset is not None:
1844
+ # EVS mode: use actual token count from is_embed mask
1845
+ assert base_offset in frame_token_counts_map, (
1846
+ f"Found base_offset {base_offset} but not in frame_token_counts_map"
1847
+ )
1848
+
1849
+ if base_offset not in frame_counts_idx:
1850
+ frame_counts_idx[base_offset] = 0
1851
+
1852
+ counts = frame_token_counts_map[base_offset]
1853
+ idx = frame_counts_idx[base_offset]
1854
+
1855
+ assert idx < len(counts), (
1856
+ f"EVS frame index {idx} out of range (total frames: {len(counts)})"
1857
+ )
1858
+
1859
+ actual_frame_tokens = counts[idx]
1860
+ frame_counts_idx[base_offset] += 1
1861
+ else:
1862
+ # Non-EVS mode (or image): use theoretical grid size
1863
+ actual_frame_tokens = llm_grid_h * llm_grid_w
1864
+
1865
+ # Add text segment
1866
+ text_positions = (
1867
+ np.broadcast_to(np.arange(text_len), (3, text_len)) + st_idx
1868
+ )
1869
+ llm_pos_ids_list.append(text_positions)
1870
+ st_idx += text_len
1871
+
1872
+ # Add frame segment with actual token count (not theoretical)
1873
+ grid_indices = np.indices((1, llm_grid_h, llm_grid_w)).reshape(3, -1)
1874
+ # Only take the first actual_frame_tokens positions
1875
+ frame_positions = grid_indices[:, :actual_frame_tokens] + st_idx
1876
+ llm_pos_ids_list.append(frame_positions)
1877
+
1878
+ # Update st using actual token count
1879
+ st = offset + actual_frame_tokens
1880
+
1881
+ # Handle final text segment
1882
+ if st < len(input_tokens):
1883
+ st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
1884
+ text_len = len(input_tokens) - st
1885
+ final_text_positions = (
1886
+ np.broadcast_to(np.arange(text_len), (3, text_len)) + st_idx
1887
+ )
1888
+ llm_pos_ids_list.append(final_text_positions)
1889
+
1890
+ llm_positions = np.concatenate(llm_pos_ids_list, axis=1).reshape(3, -1)
1891
+ mrope_position_delta = (llm_positions.max() + 1 - len(input_tokens)).item()
1892
+
1893
+ return torch.from_numpy(llm_positions), mrope_position_delta
1894
+
1895
+ def get_language_model(self) -> torch.nn.Module:
1896
+ return self.language_model
1897
+
1898
+ def embed_multimodal(self, **kwargs: object) -> MultiModalEmbeddings | None:
1899
+ mm_input_by_modality = self._parse_and_validate_multimodal_inputs(**kwargs)
1900
+ if not mm_input_by_modality:
1901
+ return None
1902
+
1903
+ # The result multimodal_embeddings is tuple of tensors, with each
1904
+ # tensor correspoending to a multimodal data item (image or video).
1905
+ multimodal_embeddings: tuple[torch.Tensor, ...] = ()
1906
+
1907
+ # NOTE: It is important to iterate over the keys in this dictionary
1908
+ # to preserve the order of the modalities.
1909
+ for modality in mm_input_by_modality:
1910
+ multimodal_input = mm_input_by_modality[modality]
1911
+ if modality == "image":
1912
+ image_embeddings = self._process_image_input(multimodal_input)
1913
+ if self.is_multimodal_pruning_enabled:
1914
+ image_embeddings = self._postprocess_image_embeds_evs(
1915
+ image_embeddings, multimodal_input
1916
+ )
1917
+ multimodal_embeddings += tuple(image_embeddings)
1918
+ if modality == "video":
1919
+ video_embeddings = self._process_video_input(multimodal_input)
1920
+ if self.is_multimodal_pruning_enabled:
1921
+ video_embeddings = self._postprocess_video_embeds_evs(
1922
+ video_embeddings, multimodal_input
1923
+ )
1924
+ multimodal_embeddings += tuple(video_embeddings)
1925
+ return multimodal_embeddings
1926
+
1927
+ def _compute_deepstack_embeds(
1928
+ self,
1929
+ inputs_embeds: torch.Tensor,
1930
+ multimodal_embeddings: MultiModalEmbeddings,
1931
+ is_multimodal: torch.Tensor,
1932
+ ) -> tuple[torch.Tensor, MultiModalEmbeddings]:
1933
+ visual_lens = [len(x) for x in multimodal_embeddings]
1934
+ multimodal_embeddings_cat = torch.cat(multimodal_embeddings, dim=0)
1935
+
1936
+ (
1937
+ multimodal_embeddings_main,
1938
+ multimodal_embeddings_multiscale,
1939
+ ) = torch.split(
1940
+ multimodal_embeddings_cat,
1941
+ [self.visual_dim, self.multiscale_dim],
1942
+ dim=-1,
1943
+ )
1944
+
1945
+ multimodal_embeddings = torch.split(
1946
+ multimodal_embeddings_main, visual_lens, dim=0
1947
+ )
1948
+ multimodal_embeddings_multiscale = torch.split(
1949
+ multimodal_embeddings_multiscale, visual_lens, dim=0
1950
+ )
1951
+
1952
+ deepstack_input_embeds = inputs_embeds.new_zeros(
1953
+ inputs_embeds.size(0), self.deepstack_num_level * inputs_embeds.size(1)
1954
+ )
1955
+
1956
+ deepstack_input_embeds = _merge_multimodal_embeddings(
1957
+ inputs_embeds=deepstack_input_embeds,
1958
+ multimodal_embeddings=multimodal_embeddings_multiscale,
1959
+ is_multimodal=is_multimodal,
1960
+ )
1961
+ deepstack_input_embeds = deepstack_input_embeds.view(
1962
+ inputs_embeds.shape[0], self.deepstack_num_level, self.visual_dim
1963
+ )
1964
+ deepstack_input_embeds = deepstack_input_embeds.permute(1, 0, 2)
1965
+
1966
+ return deepstack_input_embeds, multimodal_embeddings
1967
+
1968
+ def embed_input_ids(
1969
+ self,
1970
+ input_ids: torch.Tensor,
1971
+ multimodal_embeddings: MultiModalEmbeddings | None = None,
1972
+ *,
1973
+ is_multimodal: torch.Tensor | None = None,
1974
+ handle_oov_mm_token: bool = False,
1975
+ ) -> torch.Tensor:
1976
+ inputs_embeds = self._embed_text_input_ids(
1977
+ input_ids,
1978
+ self.language_model.embed_input_ids,
1979
+ is_multimodal=is_multimodal,
1980
+ handle_oov_mm_token=handle_oov_mm_token,
1981
+ )
1982
+
1983
+ if multimodal_embeddings is None or len(multimodal_embeddings) == 0:
1984
+ return inputs_embeds
1985
+
1986
+ is_multimodal = _require_is_multimodal(is_multimodal)
1987
+
1988
+ if self.use_deepstack:
1989
+ (
1990
+ deepstack_input_embeds,
1991
+ multimodal_embeddings,
1992
+ ) = self._compute_deepstack_embeds(
1993
+ inputs_embeds=inputs_embeds,
1994
+ multimodal_embeddings=multimodal_embeddings,
1995
+ is_multimodal=is_multimodal,
1996
+ )
1997
+ else:
1998
+ deepstack_input_embeds = None
1999
+
2000
+ inputs_embeds = _merge_multimodal_embeddings(
2001
+ inputs_embeds=inputs_embeds,
2002
+ multimodal_embeddings=multimodal_embeddings,
2003
+ is_multimodal=is_multimodal,
2004
+ )
2005
+
2006
+ if deepstack_input_embeds is not None:
2007
+ self._set_deepstack_input_embeds(deepstack_input_embeds)
2008
+
2009
+ return inputs_embeds
2010
+
2011
+ def forward(
2012
+ self,
2013
+ input_ids: torch.Tensor,
2014
+ positions: torch.Tensor,
2015
+ intermediate_tensors: IntermediateTensors | None = None,
2016
+ inputs_embeds: torch.Tensor | None = None,
2017
+ **kwargs: object,
2018
+ ) -> torch.Tensor | IntermediateTensors:
2019
+ """Run forward pass for Qwen3VL.
2020
+
2021
+ Args:
2022
+ input_ids: Flattened (concatenated) input_ids corresponding to a
2023
+ batch.
2024
+ positions: Flattened (concatenated) position ids corresponding to a
2025
+ batch.
2026
+ **NOTE**: If mrope is enabled (default setting for Qwen3VL
2027
+ opensource models), the shape will be `(3, seq_len)`,
2028
+ otherwise it will be `(seq_len,).
2029
+ intermediate_tensors: Intermediate tensors from previous pipeline
2030
+ stages.
2031
+ inputs_embeds: Pre-computed input embeddings.
2032
+ **kwargs: Additional keyword arguments including:
2033
+ - pixel_values: Pixel values to be fed to a model.
2034
+ `None` if no images are passed.
2035
+ - image_grid_thw: Tensor `(n_images, 3)` of image 3D grid in
2036
+ LLM. `None` if no images are passed.
2037
+ - pixel_values_videos: Pixel values of videos to be fed to a
2038
+ model. `None` if no videos are passed.
2039
+ - video_grid_thw: Tensor `(n_videos, 3)` of video 3D grid in
2040
+ LLM. `None` if no videos are passed.
2041
+ """
2042
+
2043
+ if intermediate_tensors is not None:
2044
+ inputs_embeds = None
2045
+
2046
+ if (
2047
+ self.use_deepstack
2048
+ and inputs_embeds is not None
2049
+ and get_pp_group().is_first_rank
2050
+ ):
2051
+ deepstack_input_embeds = self._get_deepstack_input_embeds(
2052
+ inputs_embeds.size(0)
2053
+ )
2054
+ else:
2055
+ deepstack_input_embeds = None
2056
+
2057
+ hidden_states = self.language_model.model(
2058
+ input_ids=input_ids,
2059
+ positions=positions,
2060
+ intermediate_tensors=intermediate_tensors,
2061
+ inputs_embeds=inputs_embeds,
2062
+ # args for deepstack
2063
+ deepstack_input_embeds=deepstack_input_embeds,
2064
+ )
2065
+
2066
+ if inputs_embeds is not None and get_pp_group().is_first_rank:
2067
+ self._clear_deepstack_input_embeds(inputs_embeds.size(0))
2068
+
2069
+ return hidden_states
2070
+
2071
+ def compute_logits(
2072
+ self,
2073
+ hidden_states: torch.Tensor,
2074
+ ) -> torch.Tensor | None:
2075
+ return self.language_model.compute_logits(hidden_states)
2076
+
2077
+ def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
2078
+ skip_prefixes = []
2079
+ if self.visual is None:
2080
+ skip_prefixes.extend(["visual."])
2081
+ loader = AutoWeightsLoader(self, skip_prefixes=skip_prefixes)
2082
+ return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
2083
+
2084
+ def get_mm_mapping(self) -> MultiModelKeys:
2085
+ """
2086
+ Get the module prefix in multimodal models
2087
+ """
2088
+ return MultiModelKeys.from_string_field(
2089
+ language_model="language_model",
2090
+ connector="visual.merger",
2091
+ tower_model="visual.",
2092
+ )