vllm-cpu-avx512vnni 0.13.0__cp313-cp313-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vllm-cpu-avx512vnni might be problematic. Click here for more details.

Files changed (1641) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +225 -0
  3. vllm/_aiter_ops.py +1260 -0
  4. vllm/_bc_linter.py +54 -0
  5. vllm/_custom_ops.py +3080 -0
  6. vllm/_ipex_ops.py +457 -0
  7. vllm/_version.py +34 -0
  8. vllm/assets/__init__.py +0 -0
  9. vllm/assets/audio.py +43 -0
  10. vllm/assets/base.py +40 -0
  11. vllm/assets/image.py +59 -0
  12. vllm/assets/video.py +149 -0
  13. vllm/attention/__init__.py +0 -0
  14. vllm/attention/backends/__init__.py +0 -0
  15. vllm/attention/backends/abstract.py +443 -0
  16. vllm/attention/backends/registry.py +254 -0
  17. vllm/attention/backends/utils.py +33 -0
  18. vllm/attention/layer.py +969 -0
  19. vllm/attention/layers/__init__.py +0 -0
  20. vllm/attention/layers/chunked_local_attention.py +120 -0
  21. vllm/attention/layers/cross_attention.py +178 -0
  22. vllm/attention/layers/encoder_only_attention.py +103 -0
  23. vllm/attention/layers/mm_encoder_attention.py +284 -0
  24. vllm/attention/ops/__init__.py +0 -0
  25. vllm/attention/ops/chunked_prefill_paged_decode.py +401 -0
  26. vllm/attention/ops/common.py +469 -0
  27. vllm/attention/ops/flashmla.py +251 -0
  28. vllm/attention/ops/merge_attn_states.py +47 -0
  29. vllm/attention/ops/paged_attn.py +51 -0
  30. vllm/attention/ops/pallas_kv_cache_update.py +130 -0
  31. vllm/attention/ops/prefix_prefill.py +814 -0
  32. vllm/attention/ops/rocm_aiter_mla_sparse.py +210 -0
  33. vllm/attention/ops/triton_decode_attention.py +712 -0
  34. vllm/attention/ops/triton_merge_attn_states.py +116 -0
  35. vllm/attention/ops/triton_reshape_and_cache_flash.py +184 -0
  36. vllm/attention/ops/triton_unified_attention.py +1047 -0
  37. vllm/attention/ops/vit_attn_wrappers.py +139 -0
  38. vllm/attention/selector.py +145 -0
  39. vllm/attention/utils/__init__.py +0 -0
  40. vllm/attention/utils/fa_utils.py +118 -0
  41. vllm/attention/utils/kv_sharing_utils.py +33 -0
  42. vllm/attention/utils/kv_transfer_utils.py +60 -0
  43. vllm/beam_search.py +88 -0
  44. vllm/benchmarks/__init__.py +0 -0
  45. vllm/benchmarks/datasets.py +3228 -0
  46. vllm/benchmarks/latency.py +170 -0
  47. vllm/benchmarks/lib/__init__.py +3 -0
  48. vllm/benchmarks/lib/endpoint_request_func.py +777 -0
  49. vllm/benchmarks/lib/ready_checker.py +72 -0
  50. vllm/benchmarks/lib/utils.py +79 -0
  51. vllm/benchmarks/serve.py +1538 -0
  52. vllm/benchmarks/startup.py +326 -0
  53. vllm/benchmarks/sweep/__init__.py +0 -0
  54. vllm/benchmarks/sweep/cli.py +41 -0
  55. vllm/benchmarks/sweep/param_sweep.py +158 -0
  56. vllm/benchmarks/sweep/plot.py +675 -0
  57. vllm/benchmarks/sweep/plot_pareto.py +393 -0
  58. vllm/benchmarks/sweep/serve.py +450 -0
  59. vllm/benchmarks/sweep/serve_sla.py +492 -0
  60. vllm/benchmarks/sweep/server.py +114 -0
  61. vllm/benchmarks/sweep/sla_sweep.py +132 -0
  62. vllm/benchmarks/sweep/utils.py +4 -0
  63. vllm/benchmarks/throughput.py +808 -0
  64. vllm/collect_env.py +857 -0
  65. vllm/compilation/__init__.py +0 -0
  66. vllm/compilation/activation_quant_fusion.py +209 -0
  67. vllm/compilation/backends.py +839 -0
  68. vllm/compilation/base_static_graph.py +57 -0
  69. vllm/compilation/caching.py +180 -0
  70. vllm/compilation/collective_fusion.py +1215 -0
  71. vllm/compilation/compiler_interface.py +639 -0
  72. vllm/compilation/counter.py +48 -0
  73. vllm/compilation/cuda_graph.py +302 -0
  74. vllm/compilation/decorators.py +626 -0
  75. vllm/compilation/fix_functionalization.py +266 -0
  76. vllm/compilation/fusion.py +550 -0
  77. vllm/compilation/fusion_attn.py +359 -0
  78. vllm/compilation/fx_utils.py +91 -0
  79. vllm/compilation/inductor_pass.py +138 -0
  80. vllm/compilation/matcher_utils.py +361 -0
  81. vllm/compilation/monitor.py +62 -0
  82. vllm/compilation/noop_elimination.py +130 -0
  83. vllm/compilation/partition_rules.py +72 -0
  84. vllm/compilation/pass_manager.py +155 -0
  85. vllm/compilation/piecewise_backend.py +178 -0
  86. vllm/compilation/post_cleanup.py +21 -0
  87. vllm/compilation/qk_norm_rope_fusion.py +238 -0
  88. vllm/compilation/rocm_aiter_fusion.py +242 -0
  89. vllm/compilation/sequence_parallelism.py +364 -0
  90. vllm/compilation/torch25_custom_graph_pass.py +44 -0
  91. vllm/compilation/vllm_inductor_pass.py +173 -0
  92. vllm/compilation/wrapper.py +319 -0
  93. vllm/config/__init__.py +108 -0
  94. vllm/config/attention.py +114 -0
  95. vllm/config/cache.py +232 -0
  96. vllm/config/compilation.py +1140 -0
  97. vllm/config/device.py +75 -0
  98. vllm/config/ec_transfer.py +110 -0
  99. vllm/config/kv_events.py +56 -0
  100. vllm/config/kv_transfer.py +119 -0
  101. vllm/config/load.py +124 -0
  102. vllm/config/lora.py +96 -0
  103. vllm/config/model.py +2190 -0
  104. vllm/config/multimodal.py +247 -0
  105. vllm/config/observability.py +140 -0
  106. vllm/config/parallel.py +660 -0
  107. vllm/config/pooler.py +126 -0
  108. vllm/config/profiler.py +199 -0
  109. vllm/config/scheduler.py +299 -0
  110. vllm/config/speculative.py +644 -0
  111. vllm/config/speech_to_text.py +38 -0
  112. vllm/config/structured_outputs.py +78 -0
  113. vllm/config/utils.py +370 -0
  114. vllm/config/vllm.py +1434 -0
  115. vllm/connections.py +189 -0
  116. vllm/device_allocator/__init__.py +0 -0
  117. vllm/device_allocator/cumem.py +327 -0
  118. vllm/distributed/__init__.py +6 -0
  119. vllm/distributed/communication_op.py +43 -0
  120. vllm/distributed/device_communicators/__init__.py +0 -0
  121. vllm/distributed/device_communicators/all2all.py +490 -0
  122. vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
  123. vllm/distributed/device_communicators/base_device_communicator.py +297 -0
  124. vllm/distributed/device_communicators/cpu_communicator.py +209 -0
  125. vllm/distributed/device_communicators/cuda_communicator.py +340 -0
  126. vllm/distributed/device_communicators/cuda_wrapper.py +216 -0
  127. vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
  128. vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
  129. vllm/distributed/device_communicators/pynccl.py +386 -0
  130. vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
  131. vllm/distributed/device_communicators/pynccl_wrapper.py +564 -0
  132. vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
  133. vllm/distributed/device_communicators/ray_communicator.py +259 -0
  134. vllm/distributed/device_communicators/shm_broadcast.py +778 -0
  135. vllm/distributed/device_communicators/shm_object_storage.py +697 -0
  136. vllm/distributed/device_communicators/symm_mem.py +156 -0
  137. vllm/distributed/device_communicators/tpu_communicator.py +99 -0
  138. vllm/distributed/device_communicators/xpu_communicator.py +95 -0
  139. vllm/distributed/ec_transfer/__init__.py +14 -0
  140. vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
  141. vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
  142. vllm/distributed/ec_transfer/ec_connector/example_connector.py +201 -0
  143. vllm/distributed/ec_transfer/ec_connector/factory.py +85 -0
  144. vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
  145. vllm/distributed/eplb/__init__.py +3 -0
  146. vllm/distributed/eplb/async_worker.py +115 -0
  147. vllm/distributed/eplb/eplb_state.py +1164 -0
  148. vllm/distributed/eplb/policy/__init__.py +19 -0
  149. vllm/distributed/eplb/policy/abstract.py +40 -0
  150. vllm/distributed/eplb/policy/default.py +267 -0
  151. vllm/distributed/eplb/rebalance_execute.py +529 -0
  152. vllm/distributed/kv_events.py +499 -0
  153. vllm/distributed/kv_transfer/README.md +29 -0
  154. vllm/distributed/kv_transfer/__init__.py +20 -0
  155. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  156. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  157. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  158. vllm/distributed/kv_transfer/kv_connector/factory.py +197 -0
  159. vllm/distributed/kv_transfer/kv_connector/utils.py +322 -0
  160. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
  161. vllm/distributed/kv_transfer/kv_connector/v1/base.py +597 -0
  162. vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
  163. vllm/distributed/kv_transfer/kv_connector/v1/example_connector.py +450 -0
  164. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +327 -0
  165. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
  166. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +378 -0
  167. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +221 -0
  168. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1418 -0
  169. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +895 -0
  170. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +186 -0
  171. vllm/distributed/kv_transfer/kv_connector/v1/mooncake_connector.py +914 -0
  172. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +464 -0
  173. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2526 -0
  174. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +538 -0
  175. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  176. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
  177. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
  178. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
  179. vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
  180. vllm/distributed/parallel_state.py +1795 -0
  181. vllm/distributed/tpu_distributed_utils.py +188 -0
  182. vllm/distributed/utils.py +545 -0
  183. vllm/engine/__init__.py +0 -0
  184. vllm/engine/arg_utils.py +2068 -0
  185. vllm/engine/async_llm_engine.py +6 -0
  186. vllm/engine/llm_engine.py +6 -0
  187. vllm/engine/protocol.py +190 -0
  188. vllm/entrypoints/__init__.py +0 -0
  189. vllm/entrypoints/anthropic/__init__.py +0 -0
  190. vllm/entrypoints/anthropic/protocol.py +162 -0
  191. vllm/entrypoints/anthropic/serving_messages.py +468 -0
  192. vllm/entrypoints/api_server.py +185 -0
  193. vllm/entrypoints/chat_utils.py +1903 -0
  194. vllm/entrypoints/cli/__init__.py +15 -0
  195. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  196. vllm/entrypoints/cli/benchmark/base.py +25 -0
  197. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  198. vllm/entrypoints/cli/benchmark/main.py +56 -0
  199. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  200. vllm/entrypoints/cli/benchmark/startup.py +21 -0
  201. vllm/entrypoints/cli/benchmark/sweep.py +21 -0
  202. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  203. vllm/entrypoints/cli/collect_env.py +38 -0
  204. vllm/entrypoints/cli/main.py +79 -0
  205. vllm/entrypoints/cli/openai.py +260 -0
  206. vllm/entrypoints/cli/run_batch.py +68 -0
  207. vllm/entrypoints/cli/serve.py +249 -0
  208. vllm/entrypoints/cli/types.py +29 -0
  209. vllm/entrypoints/constants.py +12 -0
  210. vllm/entrypoints/context.py +835 -0
  211. vllm/entrypoints/launcher.py +175 -0
  212. vllm/entrypoints/llm.py +1790 -0
  213. vllm/entrypoints/logger.py +84 -0
  214. vllm/entrypoints/openai/__init__.py +0 -0
  215. vllm/entrypoints/openai/api_server.py +1469 -0
  216. vllm/entrypoints/openai/cli_args.py +302 -0
  217. vllm/entrypoints/openai/orca_metrics.py +120 -0
  218. vllm/entrypoints/openai/parser/__init__.py +0 -0
  219. vllm/entrypoints/openai/parser/harmony_utils.py +825 -0
  220. vllm/entrypoints/openai/parser/responses_parser.py +135 -0
  221. vllm/entrypoints/openai/protocol.py +2496 -0
  222. vllm/entrypoints/openai/run_batch.py +631 -0
  223. vllm/entrypoints/openai/serving_chat.py +1822 -0
  224. vllm/entrypoints/openai/serving_completion.py +729 -0
  225. vllm/entrypoints/openai/serving_engine.py +1542 -0
  226. vllm/entrypoints/openai/serving_models.py +304 -0
  227. vllm/entrypoints/openai/serving_responses.py +2080 -0
  228. vllm/entrypoints/openai/serving_transcription.py +168 -0
  229. vllm/entrypoints/openai/speech_to_text.py +559 -0
  230. vllm/entrypoints/openai/tool_parsers/__init__.py +33 -0
  231. vllm/entrypoints/openai/utils.py +49 -0
  232. vllm/entrypoints/pooling/__init__.py +16 -0
  233. vllm/entrypoints/pooling/classify/__init__.py +0 -0
  234. vllm/entrypoints/pooling/classify/api_router.py +50 -0
  235. vllm/entrypoints/pooling/classify/protocol.py +181 -0
  236. vllm/entrypoints/pooling/classify/serving.py +233 -0
  237. vllm/entrypoints/pooling/embed/__init__.py +0 -0
  238. vllm/entrypoints/pooling/embed/api_router.py +67 -0
  239. vllm/entrypoints/pooling/embed/protocol.py +208 -0
  240. vllm/entrypoints/pooling/embed/serving.py +684 -0
  241. vllm/entrypoints/pooling/pooling/__init__.py +0 -0
  242. vllm/entrypoints/pooling/pooling/api_router.py +63 -0
  243. vllm/entrypoints/pooling/pooling/protocol.py +148 -0
  244. vllm/entrypoints/pooling/pooling/serving.py +354 -0
  245. vllm/entrypoints/pooling/score/__init__.py +0 -0
  246. vllm/entrypoints/pooling/score/api_router.py +149 -0
  247. vllm/entrypoints/pooling/score/protocol.py +146 -0
  248. vllm/entrypoints/pooling/score/serving.py +508 -0
  249. vllm/entrypoints/renderer.py +410 -0
  250. vllm/entrypoints/responses_utils.py +249 -0
  251. vllm/entrypoints/sagemaker/__init__.py +4 -0
  252. vllm/entrypoints/sagemaker/routes.py +118 -0
  253. vllm/entrypoints/score_utils.py +237 -0
  254. vllm/entrypoints/serve/__init__.py +60 -0
  255. vllm/entrypoints/serve/disagg/__init__.py +0 -0
  256. vllm/entrypoints/serve/disagg/api_router.py +110 -0
  257. vllm/entrypoints/serve/disagg/protocol.py +90 -0
  258. vllm/entrypoints/serve/disagg/serving.py +285 -0
  259. vllm/entrypoints/serve/elastic_ep/__init__.py +0 -0
  260. vllm/entrypoints/serve/elastic_ep/api_router.py +96 -0
  261. vllm/entrypoints/serve/elastic_ep/middleware.py +49 -0
  262. vllm/entrypoints/serve/instrumentator/__init__.py +0 -0
  263. vllm/entrypoints/serve/instrumentator/health.py +33 -0
  264. vllm/entrypoints/serve/instrumentator/metrics.py +45 -0
  265. vllm/entrypoints/serve/lora/__init__.py +0 -0
  266. vllm/entrypoints/serve/lora/api_router.py +70 -0
  267. vllm/entrypoints/serve/profile/__init__.py +0 -0
  268. vllm/entrypoints/serve/profile/api_router.py +46 -0
  269. vllm/entrypoints/serve/rlhf/__init__.py +0 -0
  270. vllm/entrypoints/serve/rlhf/api_router.py +102 -0
  271. vllm/entrypoints/serve/sleep/__init__.py +0 -0
  272. vllm/entrypoints/serve/sleep/api_router.py +60 -0
  273. vllm/entrypoints/serve/tokenize/__init__.py +0 -0
  274. vllm/entrypoints/serve/tokenize/api_router.py +118 -0
  275. vllm/entrypoints/serve/tokenize/serving.py +204 -0
  276. vllm/entrypoints/ssl.py +78 -0
  277. vllm/entrypoints/tool.py +187 -0
  278. vllm/entrypoints/tool_server.py +234 -0
  279. vllm/entrypoints/utils.py +319 -0
  280. vllm/env_override.py +378 -0
  281. vllm/envs.py +1744 -0
  282. vllm/forward_context.py +358 -0
  283. vllm/inputs/__init__.py +44 -0
  284. vllm/inputs/data.py +359 -0
  285. vllm/inputs/parse.py +146 -0
  286. vllm/inputs/preprocess.py +717 -0
  287. vllm/logger.py +303 -0
  288. vllm/logging_utils/__init__.py +13 -0
  289. vllm/logging_utils/dump_input.py +83 -0
  290. vllm/logging_utils/formatter.py +127 -0
  291. vllm/logging_utils/lazy.py +20 -0
  292. vllm/logging_utils/log_time.py +34 -0
  293. vllm/logits_process.py +121 -0
  294. vllm/logprobs.py +206 -0
  295. vllm/lora/__init__.py +0 -0
  296. vllm/lora/layers/__init__.py +42 -0
  297. vllm/lora/layers/base.py +66 -0
  298. vllm/lora/layers/base_linear.py +165 -0
  299. vllm/lora/layers/column_parallel_linear.py +577 -0
  300. vllm/lora/layers/fused_moe.py +747 -0
  301. vllm/lora/layers/logits_processor.py +203 -0
  302. vllm/lora/layers/replicated_linear.py +70 -0
  303. vllm/lora/layers/row_parallel_linear.py +176 -0
  304. vllm/lora/layers/utils.py +74 -0
  305. vllm/lora/layers/vocal_parallel_embedding.py +140 -0
  306. vllm/lora/lora_model.py +246 -0
  307. vllm/lora/lora_weights.py +227 -0
  308. vllm/lora/model_manager.py +690 -0
  309. vllm/lora/ops/__init__.py +0 -0
  310. vllm/lora/ops/ipex_ops/__init__.py +6 -0
  311. vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
  312. vllm/lora/ops/torch_ops/__init__.py +20 -0
  313. vllm/lora/ops/torch_ops/lora_ops.py +128 -0
  314. vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
  315. vllm/lora/ops/triton_ops/__init__.py +21 -0
  316. vllm/lora/ops/triton_ops/fused_moe_lora_op.py +665 -0
  317. vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
  318. vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
  319. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
  320. vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
  321. vllm/lora/ops/triton_ops/utils.py +295 -0
  322. vllm/lora/ops/xla_ops/__init__.py +6 -0
  323. vllm/lora/ops/xla_ops/lora_ops.py +141 -0
  324. vllm/lora/peft_helper.py +128 -0
  325. vllm/lora/punica_wrapper/__init__.py +10 -0
  326. vllm/lora/punica_wrapper/punica_base.py +493 -0
  327. vllm/lora/punica_wrapper/punica_cpu.py +351 -0
  328. vllm/lora/punica_wrapper/punica_gpu.py +412 -0
  329. vllm/lora/punica_wrapper/punica_selector.py +21 -0
  330. vllm/lora/punica_wrapper/punica_tpu.py +358 -0
  331. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  332. vllm/lora/punica_wrapper/utils.py +150 -0
  333. vllm/lora/request.py +100 -0
  334. vllm/lora/resolver.py +88 -0
  335. vllm/lora/utils.py +315 -0
  336. vllm/lora/worker_manager.py +268 -0
  337. vllm/model_executor/__init__.py +11 -0
  338. vllm/model_executor/custom_op.py +199 -0
  339. vllm/model_executor/layers/__init__.py +0 -0
  340. vllm/model_executor/layers/activation.py +595 -0
  341. vllm/model_executor/layers/attention_layer_base.py +32 -0
  342. vllm/model_executor/layers/batch_invariant.py +1067 -0
  343. vllm/model_executor/layers/conv.py +256 -0
  344. vllm/model_executor/layers/fla/__init__.py +8 -0
  345. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  346. vllm/model_executor/layers/fla/ops/chunk.py +240 -0
  347. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
  348. vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
  349. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
  350. vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
  351. vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
  352. vllm/model_executor/layers/fla/ops/index.py +41 -0
  353. vllm/model_executor/layers/fla/ops/kda.py +1351 -0
  354. vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
  355. vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
  356. vllm/model_executor/layers/fla/ops/op.py +60 -0
  357. vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
  358. vllm/model_executor/layers/fla/ops/utils.py +194 -0
  359. vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
  360. vllm/model_executor/layers/fused_moe/__init__.py +114 -0
  361. vllm/model_executor/layers/fused_moe/all2all_utils.py +171 -0
  362. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +409 -0
  363. vllm/model_executor/layers/fused_moe/config.py +1043 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +147 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=20,N=1536,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Server_Edition,dtype=fp8_w8a8.json +147 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  559. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  560. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  561. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  562. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  563. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  564. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  565. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  566. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  567. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  568. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  569. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  570. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  571. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  572. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  573. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  574. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  575. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  576. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  577. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  578. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  579. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  580. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  581. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  582. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  583. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  584. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  585. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  586. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  587. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  588. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  589. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  590. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  591. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  592. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  593. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  594. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  595. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  596. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  597. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  598. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  599. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  600. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  601. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  602. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  603. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  604. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  605. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  606. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  607. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  608. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  609. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  610. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  611. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  612. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  613. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  614. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  615. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  616. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  617. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  618. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  619. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  620. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  621. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  622. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  623. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  624. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  625. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  626. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  627. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  628. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  629. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  630. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  631. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  632. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  633. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  634. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  635. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  636. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  637. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  638. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  639. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +292 -0
  640. vllm/model_executor/layers/fused_moe/cutlass_moe.py +1453 -0
  641. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +358 -0
  642. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +427 -0
  643. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
  644. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +434 -0
  645. vllm/model_executor/layers/fused_moe/flashinfer_cutedsl_moe.py +376 -0
  646. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +307 -0
  647. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +362 -0
  648. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
  649. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1012 -0
  650. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +825 -0
  651. vllm/model_executor/layers/fused_moe/fused_moe.py +2223 -0
  652. vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +103 -0
  653. vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +119 -0
  654. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +524 -0
  655. vllm/model_executor/layers/fused_moe/layer.py +2133 -0
  656. vllm/model_executor/layers/fused_moe/modular_kernel.py +1302 -0
  657. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +192 -0
  658. vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
  659. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
  660. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  661. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
  662. vllm/model_executor/layers/fused_moe/prepare_finalize.py +78 -0
  663. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +265 -0
  664. vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
  665. vllm/model_executor/layers/fused_moe/shared_fused_moe.py +96 -0
  666. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
  667. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +163 -0
  668. vllm/model_executor/layers/fused_moe/trtllm_moe.py +143 -0
  669. vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +455 -0
  670. vllm/model_executor/layers/fused_moe/utils.py +332 -0
  671. vllm/model_executor/layers/kda.py +442 -0
  672. vllm/model_executor/layers/layernorm.py +442 -0
  673. vllm/model_executor/layers/lightning_attn.py +735 -0
  674. vllm/model_executor/layers/linear.py +1424 -0
  675. vllm/model_executor/layers/logits_processor.py +106 -0
  676. vllm/model_executor/layers/mamba/__init__.py +0 -0
  677. vllm/model_executor/layers/mamba/abstract.py +68 -0
  678. vllm/model_executor/layers/mamba/linear_attn.py +388 -0
  679. vllm/model_executor/layers/mamba/mamba_mixer.py +526 -0
  680. vllm/model_executor/layers/mamba/mamba_mixer2.py +930 -0
  681. vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
  682. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  683. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
  684. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
  685. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +586 -0
  686. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
  687. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
  688. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
  689. vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
  690. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
  691. vllm/model_executor/layers/mamba/short_conv.py +255 -0
  692. vllm/model_executor/layers/mla.py +176 -0
  693. vllm/model_executor/layers/pooler.py +830 -0
  694. vllm/model_executor/layers/quantization/__init__.py +179 -0
  695. vllm/model_executor/layers/quantization/auto_round.py +454 -0
  696. vllm/model_executor/layers/quantization/awq.py +277 -0
  697. vllm/model_executor/layers/quantization/awq_marlin.py +793 -0
  698. vllm/model_executor/layers/quantization/awq_triton.py +337 -0
  699. vllm/model_executor/layers/quantization/base_config.py +170 -0
  700. vllm/model_executor/layers/quantization/bitblas.py +502 -0
  701. vllm/model_executor/layers/quantization/bitsandbytes.py +626 -0
  702. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
  703. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +986 -0
  704. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2645 -0
  705. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +35 -0
  706. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
  707. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  708. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
  709. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
  710. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
  711. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +176 -0
  712. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
  713. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
  714. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +200 -0
  715. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
  716. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +230 -0
  717. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  718. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
  719. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
  720. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  721. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
  722. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  723. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
  724. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  725. vllm/model_executor/layers/quantization/cpu_wna16.py +625 -0
  726. vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
  727. vllm/model_executor/layers/quantization/experts_int8.py +207 -0
  728. vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
  729. vllm/model_executor/layers/quantization/fp8.py +1461 -0
  730. vllm/model_executor/layers/quantization/fp_quant.py +420 -0
  731. vllm/model_executor/layers/quantization/gguf.py +677 -0
  732. vllm/model_executor/layers/quantization/gptq.py +393 -0
  733. vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
  734. vllm/model_executor/layers/quantization/gptq_marlin.py +932 -0
  735. vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
  736. vllm/model_executor/layers/quantization/hqq_marlin.py +372 -0
  737. vllm/model_executor/layers/quantization/inc.py +65 -0
  738. vllm/model_executor/layers/quantization/input_quant_fp8.py +202 -0
  739. vllm/model_executor/layers/quantization/ipex_quant.py +487 -0
  740. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  741. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
  742. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +109 -0
  743. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  744. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
  745. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
  746. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +130 -0
  747. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
  748. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +161 -0
  749. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
  750. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +200 -0
  751. vllm/model_executor/layers/quantization/kernels/mixed_precision/xpu.py +97 -0
  752. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +76 -0
  753. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +81 -0
  754. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +128 -0
  755. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +220 -0
  756. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +147 -0
  757. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +71 -0
  758. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +106 -0
  759. vllm/model_executor/layers/quantization/kv_cache.py +153 -0
  760. vllm/model_executor/layers/quantization/modelopt.py +1684 -0
  761. vllm/model_executor/layers/quantization/moe_wna16.py +516 -0
  762. vllm/model_executor/layers/quantization/mxfp4.py +1140 -0
  763. vllm/model_executor/layers/quantization/petit.py +319 -0
  764. vllm/model_executor/layers/quantization/ptpc_fp8.py +136 -0
  765. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  766. vllm/model_executor/layers/quantization/quark/quark.py +527 -0
  767. vllm/model_executor/layers/quantization/quark/quark_moe.py +622 -0
  768. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  769. vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +343 -0
  770. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  771. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
  772. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
  773. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  774. vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
  775. vllm/model_executor/layers/quantization/rtn.py +621 -0
  776. vllm/model_executor/layers/quantization/schema.py +90 -0
  777. vllm/model_executor/layers/quantization/torchao.py +380 -0
  778. vllm/model_executor/layers/quantization/tpu_int8.py +139 -0
  779. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  780. vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
  781. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=10240,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  902. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=25600,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  903. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=8192,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  904. vllm/model_executor/layers/quantization/utils/configs/N=51200,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  905. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  906. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  907. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  908. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  909. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  910. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  911. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  912. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  913. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  914. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  915. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  916. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  917. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  918. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  919. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  920. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  921. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  922. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  923. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  924. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  925. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  926. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  927. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  928. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  929. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  930. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  931. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  932. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  933. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  934. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  935. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  936. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  937. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  938. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  939. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  940. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  941. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  942. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  943. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  944. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  945. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  946. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  947. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  948. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  949. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  950. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  951. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  952. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  953. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  954. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  955. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  956. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  957. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  958. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  959. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  960. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  961. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  962. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  963. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  964. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  965. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  966. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  967. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  968. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  969. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  970. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  971. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  972. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  973. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  974. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  975. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  976. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  977. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  978. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  979. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  980. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  981. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  982. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  983. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  984. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  985. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  986. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  987. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  988. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  989. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  990. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  991. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  992. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  993. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  994. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  995. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  996. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  997. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +412 -0
  998. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +312 -0
  999. vllm/model_executor/layers/quantization/utils/fp8_utils.py +1453 -0
  1000. vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
  1001. vllm/model_executor/layers/quantization/utils/int8_utils.py +474 -0
  1002. vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
  1003. vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
  1004. vllm/model_executor/layers/quantization/utils/marlin_utils.py +678 -0
  1005. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +452 -0
  1006. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +381 -0
  1007. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +219 -0
  1008. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
  1009. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +189 -0
  1010. vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
  1011. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
  1012. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
  1013. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +67 -0
  1014. vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
  1015. vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
  1016. vllm/model_executor/layers/quantization/utils/quant_utils.py +741 -0
  1017. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +519 -0
  1018. vllm/model_executor/layers/resampler.py +283 -0
  1019. vllm/model_executor/layers/rotary_embedding/__init__.py +289 -0
  1020. vllm/model_executor/layers/rotary_embedding/base.py +254 -0
  1021. vllm/model_executor/layers/rotary_embedding/common.py +279 -0
  1022. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +165 -0
  1023. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +215 -0
  1024. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
  1025. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
  1026. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +82 -0
  1027. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  1028. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  1029. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +80 -0
  1030. vllm/model_executor/layers/rotary_embedding/mrope.py +412 -0
  1031. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
  1032. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
  1033. vllm/model_executor/layers/rotary_embedding/xdrope.py +160 -0
  1034. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +84 -0
  1035. vllm/model_executor/layers/utils.py +251 -0
  1036. vllm/model_executor/layers/vocab_parallel_embedding.py +558 -0
  1037. vllm/model_executor/model_loader/__init__.py +150 -0
  1038. vllm/model_executor/model_loader/base_loader.py +57 -0
  1039. vllm/model_executor/model_loader/bitsandbytes_loader.py +822 -0
  1040. vllm/model_executor/model_loader/default_loader.py +321 -0
  1041. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  1042. vllm/model_executor/model_loader/gguf_loader.py +371 -0
  1043. vllm/model_executor/model_loader/online_quantization.py +275 -0
  1044. vllm/model_executor/model_loader/runai_streamer_loader.py +116 -0
  1045. vllm/model_executor/model_loader/sharded_state_loader.py +214 -0
  1046. vllm/model_executor/model_loader/tensorizer.py +790 -0
  1047. vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
  1048. vllm/model_executor/model_loader/tpu.py +118 -0
  1049. vllm/model_executor/model_loader/utils.py +292 -0
  1050. vllm/model_executor/model_loader/weight_utils.py +1157 -0
  1051. vllm/model_executor/models/__init__.py +44 -0
  1052. vllm/model_executor/models/adapters.py +522 -0
  1053. vllm/model_executor/models/afmoe.py +696 -0
  1054. vllm/model_executor/models/aimv2.py +248 -0
  1055. vllm/model_executor/models/apertus.py +565 -0
  1056. vllm/model_executor/models/arcee.py +428 -0
  1057. vllm/model_executor/models/arctic.py +633 -0
  1058. vllm/model_executor/models/aria.py +653 -0
  1059. vllm/model_executor/models/audioflamingo3.py +639 -0
  1060. vllm/model_executor/models/aya_vision.py +448 -0
  1061. vllm/model_executor/models/bagel.py +584 -0
  1062. vllm/model_executor/models/baichuan.py +493 -0
  1063. vllm/model_executor/models/bailing_moe.py +642 -0
  1064. vllm/model_executor/models/bamba.py +511 -0
  1065. vllm/model_executor/models/bee.py +157 -0
  1066. vllm/model_executor/models/bert.py +925 -0
  1067. vllm/model_executor/models/bert_with_rope.py +732 -0
  1068. vllm/model_executor/models/blip.py +350 -0
  1069. vllm/model_executor/models/blip2.py +693 -0
  1070. vllm/model_executor/models/bloom.py +390 -0
  1071. vllm/model_executor/models/chameleon.py +1095 -0
  1072. vllm/model_executor/models/chatglm.py +502 -0
  1073. vllm/model_executor/models/clip.py +1004 -0
  1074. vllm/model_executor/models/cohere2_vision.py +470 -0
  1075. vllm/model_executor/models/commandr.py +469 -0
  1076. vllm/model_executor/models/config.py +531 -0
  1077. vllm/model_executor/models/dbrx.py +484 -0
  1078. vllm/model_executor/models/deepencoder.py +676 -0
  1079. vllm/model_executor/models/deepseek_eagle.py +252 -0
  1080. vllm/model_executor/models/deepseek_mtp.py +446 -0
  1081. vllm/model_executor/models/deepseek_ocr.py +591 -0
  1082. vllm/model_executor/models/deepseek_v2.py +1710 -0
  1083. vllm/model_executor/models/deepseek_vl2.py +642 -0
  1084. vllm/model_executor/models/dots1.py +565 -0
  1085. vllm/model_executor/models/dots_ocr.py +821 -0
  1086. vllm/model_executor/models/ernie45.py +53 -0
  1087. vllm/model_executor/models/ernie45_moe.py +754 -0
  1088. vllm/model_executor/models/ernie45_vl.py +1621 -0
  1089. vllm/model_executor/models/ernie45_vl_moe.py +800 -0
  1090. vllm/model_executor/models/ernie_mtp.py +279 -0
  1091. vllm/model_executor/models/exaone.py +524 -0
  1092. vllm/model_executor/models/exaone4.py +516 -0
  1093. vllm/model_executor/models/fairseq2_llama.py +154 -0
  1094. vllm/model_executor/models/falcon.py +543 -0
  1095. vllm/model_executor/models/falcon_h1.py +675 -0
  1096. vllm/model_executor/models/flex_olmo.py +155 -0
  1097. vllm/model_executor/models/fuyu.py +371 -0
  1098. vllm/model_executor/models/gemma.py +425 -0
  1099. vllm/model_executor/models/gemma2.py +435 -0
  1100. vllm/model_executor/models/gemma3.py +507 -0
  1101. vllm/model_executor/models/gemma3_mm.py +664 -0
  1102. vllm/model_executor/models/gemma3n.py +1166 -0
  1103. vllm/model_executor/models/gemma3n_mm.py +810 -0
  1104. vllm/model_executor/models/glm.py +24 -0
  1105. vllm/model_executor/models/glm4.py +295 -0
  1106. vllm/model_executor/models/glm4_1v.py +1808 -0
  1107. vllm/model_executor/models/glm4_moe.py +736 -0
  1108. vllm/model_executor/models/glm4_moe_mtp.py +359 -0
  1109. vllm/model_executor/models/glm4v.py +783 -0
  1110. vllm/model_executor/models/gpt2.py +397 -0
  1111. vllm/model_executor/models/gpt_bigcode.py +339 -0
  1112. vllm/model_executor/models/gpt_j.py +346 -0
  1113. vllm/model_executor/models/gpt_neox.py +340 -0
  1114. vllm/model_executor/models/gpt_oss.py +744 -0
  1115. vllm/model_executor/models/granite.py +475 -0
  1116. vllm/model_executor/models/granite_speech.py +912 -0
  1117. vllm/model_executor/models/granitemoe.py +560 -0
  1118. vllm/model_executor/models/granitemoehybrid.py +703 -0
  1119. vllm/model_executor/models/granitemoeshared.py +328 -0
  1120. vllm/model_executor/models/gritlm.py +243 -0
  1121. vllm/model_executor/models/grok1.py +554 -0
  1122. vllm/model_executor/models/h2ovl.py +554 -0
  1123. vllm/model_executor/models/hunyuan_v1.py +1040 -0
  1124. vllm/model_executor/models/hunyuan_vision.py +1034 -0
  1125. vllm/model_executor/models/hyperclovax_vision.py +1164 -0
  1126. vllm/model_executor/models/idefics2_vision_model.py +427 -0
  1127. vllm/model_executor/models/idefics3.py +716 -0
  1128. vllm/model_executor/models/interfaces.py +1179 -0
  1129. vllm/model_executor/models/interfaces_base.py +228 -0
  1130. vllm/model_executor/models/intern_vit.py +454 -0
  1131. vllm/model_executor/models/internlm2.py +453 -0
  1132. vllm/model_executor/models/internlm2_ve.py +139 -0
  1133. vllm/model_executor/models/interns1.py +828 -0
  1134. vllm/model_executor/models/interns1_vit.py +433 -0
  1135. vllm/model_executor/models/internvl.py +1450 -0
  1136. vllm/model_executor/models/jais.py +397 -0
  1137. vllm/model_executor/models/jais2.py +529 -0
  1138. vllm/model_executor/models/jamba.py +609 -0
  1139. vllm/model_executor/models/jina_vl.py +147 -0
  1140. vllm/model_executor/models/keye.py +1706 -0
  1141. vllm/model_executor/models/keye_vl1_5.py +726 -0
  1142. vllm/model_executor/models/kimi_linear.py +658 -0
  1143. vllm/model_executor/models/kimi_vl.py +576 -0
  1144. vllm/model_executor/models/lfm2.py +515 -0
  1145. vllm/model_executor/models/lfm2_moe.py +745 -0
  1146. vllm/model_executor/models/lightonocr.py +195 -0
  1147. vllm/model_executor/models/llama.py +700 -0
  1148. vllm/model_executor/models/llama4.py +856 -0
  1149. vllm/model_executor/models/llama4_eagle.py +225 -0
  1150. vllm/model_executor/models/llama_eagle.py +213 -0
  1151. vllm/model_executor/models/llama_eagle3.py +375 -0
  1152. vllm/model_executor/models/llava.py +840 -0
  1153. vllm/model_executor/models/llava_next.py +581 -0
  1154. vllm/model_executor/models/llava_next_video.py +465 -0
  1155. vllm/model_executor/models/llava_onevision.py +921 -0
  1156. vllm/model_executor/models/longcat_flash.py +743 -0
  1157. vllm/model_executor/models/longcat_flash_mtp.py +349 -0
  1158. vllm/model_executor/models/mamba.py +276 -0
  1159. vllm/model_executor/models/mamba2.py +288 -0
  1160. vllm/model_executor/models/medusa.py +179 -0
  1161. vllm/model_executor/models/midashenglm.py +826 -0
  1162. vllm/model_executor/models/mimo.py +188 -0
  1163. vllm/model_executor/models/mimo_mtp.py +294 -0
  1164. vllm/model_executor/models/minicpm.py +656 -0
  1165. vllm/model_executor/models/minicpm3.py +233 -0
  1166. vllm/model_executor/models/minicpm_eagle.py +385 -0
  1167. vllm/model_executor/models/minicpmo.py +768 -0
  1168. vllm/model_executor/models/minicpmv.py +1742 -0
  1169. vllm/model_executor/models/minimax_m2.py +550 -0
  1170. vllm/model_executor/models/minimax_text_01.py +1007 -0
  1171. vllm/model_executor/models/minimax_vl_01.py +394 -0
  1172. vllm/model_executor/models/mistral3.py +635 -0
  1173. vllm/model_executor/models/mistral_large_3.py +63 -0
  1174. vllm/model_executor/models/mistral_large_3_eagle.py +136 -0
  1175. vllm/model_executor/models/mixtral.py +598 -0
  1176. vllm/model_executor/models/mllama4.py +1149 -0
  1177. vllm/model_executor/models/mlp_speculator.py +235 -0
  1178. vllm/model_executor/models/modernbert.py +451 -0
  1179. vllm/model_executor/models/module_mapping.py +74 -0
  1180. vllm/model_executor/models/molmo.py +1550 -0
  1181. vllm/model_executor/models/moonvit.py +686 -0
  1182. vllm/model_executor/models/mpt.py +335 -0
  1183. vllm/model_executor/models/nano_nemotron_vl.py +1730 -0
  1184. vllm/model_executor/models/nemotron.py +499 -0
  1185. vllm/model_executor/models/nemotron_h.py +900 -0
  1186. vllm/model_executor/models/nemotron_nas.py +471 -0
  1187. vllm/model_executor/models/nemotron_vl.py +651 -0
  1188. vllm/model_executor/models/nvlm_d.py +216 -0
  1189. vllm/model_executor/models/olmo.py +412 -0
  1190. vllm/model_executor/models/olmo2.py +454 -0
  1191. vllm/model_executor/models/olmoe.py +493 -0
  1192. vllm/model_executor/models/opencua.py +262 -0
  1193. vllm/model_executor/models/openpangu.py +1049 -0
  1194. vllm/model_executor/models/openpangu_mtp.py +265 -0
  1195. vllm/model_executor/models/opt.py +426 -0
  1196. vllm/model_executor/models/orion.py +365 -0
  1197. vllm/model_executor/models/ouro.py +507 -0
  1198. vllm/model_executor/models/ovis.py +557 -0
  1199. vllm/model_executor/models/ovis2_5.py +661 -0
  1200. vllm/model_executor/models/paddleocr_vl.py +1300 -0
  1201. vllm/model_executor/models/paligemma.py +408 -0
  1202. vllm/model_executor/models/persimmon.py +373 -0
  1203. vllm/model_executor/models/phi.py +363 -0
  1204. vllm/model_executor/models/phi3.py +18 -0
  1205. vllm/model_executor/models/phi3v.py +729 -0
  1206. vllm/model_executor/models/phi4mm.py +1251 -0
  1207. vllm/model_executor/models/phi4mm_audio.py +1296 -0
  1208. vllm/model_executor/models/phi4mm_utils.py +1907 -0
  1209. vllm/model_executor/models/phimoe.py +669 -0
  1210. vllm/model_executor/models/pixtral.py +1379 -0
  1211. vllm/model_executor/models/plamo2.py +965 -0
  1212. vllm/model_executor/models/plamo3.py +440 -0
  1213. vllm/model_executor/models/qwen.py +365 -0
  1214. vllm/model_executor/models/qwen2.py +600 -0
  1215. vllm/model_executor/models/qwen2_5_omni_thinker.py +1219 -0
  1216. vllm/model_executor/models/qwen2_5_vl.py +1569 -0
  1217. vllm/model_executor/models/qwen2_audio.py +471 -0
  1218. vllm/model_executor/models/qwen2_moe.py +597 -0
  1219. vllm/model_executor/models/qwen2_rm.py +123 -0
  1220. vllm/model_executor/models/qwen2_vl.py +1568 -0
  1221. vllm/model_executor/models/qwen3.py +331 -0
  1222. vllm/model_executor/models/qwen3_moe.py +751 -0
  1223. vllm/model_executor/models/qwen3_next.py +1395 -0
  1224. vllm/model_executor/models/qwen3_next_mtp.py +296 -0
  1225. vllm/model_executor/models/qwen3_omni_moe_thinker.py +1793 -0
  1226. vllm/model_executor/models/qwen3_vl.py +2092 -0
  1227. vllm/model_executor/models/qwen3_vl_moe.py +474 -0
  1228. vllm/model_executor/models/qwen_vl.py +801 -0
  1229. vllm/model_executor/models/radio.py +555 -0
  1230. vllm/model_executor/models/registry.py +1189 -0
  1231. vllm/model_executor/models/roberta.py +259 -0
  1232. vllm/model_executor/models/rvl.py +107 -0
  1233. vllm/model_executor/models/seed_oss.py +492 -0
  1234. vllm/model_executor/models/siglip.py +1244 -0
  1235. vllm/model_executor/models/siglip2navit.py +658 -0
  1236. vllm/model_executor/models/skyworkr1v.py +951 -0
  1237. vllm/model_executor/models/smolvlm.py +38 -0
  1238. vllm/model_executor/models/solar.py +484 -0
  1239. vllm/model_executor/models/stablelm.py +354 -0
  1240. vllm/model_executor/models/starcoder2.py +365 -0
  1241. vllm/model_executor/models/step3_text.py +554 -0
  1242. vllm/model_executor/models/step3_vl.py +1147 -0
  1243. vllm/model_executor/models/swin.py +514 -0
  1244. vllm/model_executor/models/tarsier.py +617 -0
  1245. vllm/model_executor/models/telechat2.py +153 -0
  1246. vllm/model_executor/models/teleflm.py +78 -0
  1247. vllm/model_executor/models/terratorch.py +318 -0
  1248. vllm/model_executor/models/transformers/__init__.py +127 -0
  1249. vllm/model_executor/models/transformers/base.py +518 -0
  1250. vllm/model_executor/models/transformers/causal.py +65 -0
  1251. vllm/model_executor/models/transformers/legacy.py +90 -0
  1252. vllm/model_executor/models/transformers/moe.py +325 -0
  1253. vllm/model_executor/models/transformers/multimodal.py +411 -0
  1254. vllm/model_executor/models/transformers/pooling.py +119 -0
  1255. vllm/model_executor/models/transformers/utils.py +213 -0
  1256. vllm/model_executor/models/ultravox.py +766 -0
  1257. vllm/model_executor/models/utils.py +832 -0
  1258. vllm/model_executor/models/vision.py +546 -0
  1259. vllm/model_executor/models/voxtral.py +841 -0
  1260. vllm/model_executor/models/whisper.py +971 -0
  1261. vllm/model_executor/models/zamba2.py +979 -0
  1262. vllm/model_executor/parameter.py +642 -0
  1263. vllm/model_executor/utils.py +119 -0
  1264. vllm/model_executor/warmup/__init__.py +0 -0
  1265. vllm/model_executor/warmup/deep_gemm_warmup.py +314 -0
  1266. vllm/model_executor/warmup/kernel_warmup.py +98 -0
  1267. vllm/multimodal/__init__.py +40 -0
  1268. vllm/multimodal/audio.py +147 -0
  1269. vllm/multimodal/base.py +56 -0
  1270. vllm/multimodal/cache.py +823 -0
  1271. vllm/multimodal/evs.py +294 -0
  1272. vllm/multimodal/hasher.py +120 -0
  1273. vllm/multimodal/image.py +142 -0
  1274. vllm/multimodal/inputs.py +1089 -0
  1275. vllm/multimodal/parse.py +565 -0
  1276. vllm/multimodal/processing.py +2240 -0
  1277. vllm/multimodal/profiling.py +351 -0
  1278. vllm/multimodal/registry.py +357 -0
  1279. vllm/multimodal/utils.py +513 -0
  1280. vllm/multimodal/video.py +340 -0
  1281. vllm/outputs.py +345 -0
  1282. vllm/platforms/__init__.py +277 -0
  1283. vllm/platforms/cpu.py +421 -0
  1284. vllm/platforms/cuda.py +618 -0
  1285. vllm/platforms/interface.py +695 -0
  1286. vllm/platforms/rocm.py +564 -0
  1287. vllm/platforms/tpu.py +295 -0
  1288. vllm/platforms/xpu.py +277 -0
  1289. vllm/plugins/__init__.py +81 -0
  1290. vllm/plugins/io_processors/__init__.py +68 -0
  1291. vllm/plugins/io_processors/interface.py +77 -0
  1292. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1293. vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
  1294. vllm/pooling_params.py +230 -0
  1295. vllm/profiler/__init__.py +0 -0
  1296. vllm/profiler/layerwise_profile.py +392 -0
  1297. vllm/profiler/utils.py +151 -0
  1298. vllm/profiler/wrapper.py +241 -0
  1299. vllm/py.typed +2 -0
  1300. vllm/ray/__init__.py +0 -0
  1301. vllm/ray/lazy_utils.py +30 -0
  1302. vllm/ray/ray_env.py +79 -0
  1303. vllm/reasoning/__init__.py +96 -0
  1304. vllm/reasoning/abs_reasoning_parsers.py +318 -0
  1305. vllm/reasoning/basic_parsers.py +175 -0
  1306. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1307. vllm/reasoning/deepseek_v3_reasoning_parser.py +67 -0
  1308. vllm/reasoning/ernie45_reasoning_parser.py +165 -0
  1309. vllm/reasoning/glm4_moe_reasoning_parser.py +171 -0
  1310. vllm/reasoning/gptoss_reasoning_parser.py +173 -0
  1311. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1312. vllm/reasoning/holo2_reasoning_parser.py +88 -0
  1313. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
  1314. vllm/reasoning/identity_reasoning_parser.py +63 -0
  1315. vllm/reasoning/minimax_m2_reasoning_parser.py +110 -0
  1316. vllm/reasoning/mistral_reasoning_parser.py +154 -0
  1317. vllm/reasoning/olmo3_reasoning_parser.py +302 -0
  1318. vllm/reasoning/qwen3_reasoning_parser.py +67 -0
  1319. vllm/reasoning/seedoss_reasoning_parser.py +27 -0
  1320. vllm/reasoning/step3_reasoning_parser.py +107 -0
  1321. vllm/sampling_params.py +597 -0
  1322. vllm/scalar_type.py +355 -0
  1323. vllm/scripts.py +17 -0
  1324. vllm/sequence.py +98 -0
  1325. vllm/tasks.py +13 -0
  1326. vllm/third_party/__init__.py +0 -0
  1327. vllm/third_party/pynvml.py +6140 -0
  1328. vllm/tokenizers/__init__.py +20 -0
  1329. vllm/tokenizers/deepseek_v32.py +175 -0
  1330. vllm/tokenizers/deepseek_v32_encoding.py +459 -0
  1331. vllm/tokenizers/detokenizer_utils.py +198 -0
  1332. vllm/tokenizers/hf.py +119 -0
  1333. vllm/tokenizers/mistral.py +567 -0
  1334. vllm/tokenizers/protocol.py +114 -0
  1335. vllm/tokenizers/registry.py +233 -0
  1336. vllm/tool_parsers/__init__.py +150 -0
  1337. vllm/tool_parsers/abstract_tool_parser.py +273 -0
  1338. vllm/tool_parsers/deepseekv31_tool_parser.py +388 -0
  1339. vllm/tool_parsers/deepseekv32_tool_parser.py +591 -0
  1340. vllm/tool_parsers/deepseekv3_tool_parser.py +390 -0
  1341. vllm/tool_parsers/ernie45_tool_parser.py +210 -0
  1342. vllm/tool_parsers/gigachat3_tool_parser.py +190 -0
  1343. vllm/tool_parsers/glm4_moe_tool_parser.py +200 -0
  1344. vllm/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
  1345. vllm/tool_parsers/granite_tool_parser.py +253 -0
  1346. vllm/tool_parsers/hermes_tool_parser.py +495 -0
  1347. vllm/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
  1348. vllm/tool_parsers/internlm2_tool_parser.py +227 -0
  1349. vllm/tool_parsers/jamba_tool_parser.py +323 -0
  1350. vllm/tool_parsers/kimi_k2_tool_parser.py +590 -0
  1351. vllm/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
  1352. vllm/tool_parsers/llama_tool_parser.py +324 -0
  1353. vllm/tool_parsers/longcat_tool_parser.py +37 -0
  1354. vllm/tool_parsers/minimax_m2_tool_parser.py +643 -0
  1355. vllm/tool_parsers/minimax_tool_parser.py +849 -0
  1356. vllm/tool_parsers/mistral_tool_parser.py +585 -0
  1357. vllm/tool_parsers/olmo3_tool_parser.py +366 -0
  1358. vllm/tool_parsers/openai_tool_parser.py +102 -0
  1359. vllm/tool_parsers/phi4mini_tool_parser.py +120 -0
  1360. vllm/tool_parsers/pythonic_tool_parser.py +332 -0
  1361. vllm/tool_parsers/qwen3coder_tool_parser.py +781 -0
  1362. vllm/tool_parsers/qwen3xml_tool_parser.py +1316 -0
  1363. vllm/tool_parsers/seed_oss_tool_parser.py +744 -0
  1364. vllm/tool_parsers/step3_tool_parser.py +303 -0
  1365. vllm/tool_parsers/utils.py +229 -0
  1366. vllm/tool_parsers/xlam_tool_parser.py +556 -0
  1367. vllm/tracing.py +135 -0
  1368. vllm/transformers_utils/__init__.py +26 -0
  1369. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1370. vllm/transformers_utils/chat_templates/registry.py +73 -0
  1371. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1372. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1373. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1374. vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
  1375. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1376. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1377. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1378. vllm/transformers_utils/config.py +1144 -0
  1379. vllm/transformers_utils/config_parser_base.py +20 -0
  1380. vllm/transformers_utils/configs/__init__.py +102 -0
  1381. vllm/transformers_utils/configs/afmoe.py +87 -0
  1382. vllm/transformers_utils/configs/arctic.py +216 -0
  1383. vllm/transformers_utils/configs/bagel.py +53 -0
  1384. vllm/transformers_utils/configs/chatglm.py +75 -0
  1385. vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
  1386. vllm/transformers_utils/configs/dotsocr.py +71 -0
  1387. vllm/transformers_utils/configs/eagle.py +90 -0
  1388. vllm/transformers_utils/configs/falcon.py +89 -0
  1389. vllm/transformers_utils/configs/flex_olmo.py +82 -0
  1390. vllm/transformers_utils/configs/hunyuan_vl.py +322 -0
  1391. vllm/transformers_utils/configs/jais.py +243 -0
  1392. vllm/transformers_utils/configs/kimi_linear.py +148 -0
  1393. vllm/transformers_utils/configs/kimi_vl.py +38 -0
  1394. vllm/transformers_utils/configs/lfm2_moe.py +163 -0
  1395. vllm/transformers_utils/configs/medusa.py +65 -0
  1396. vllm/transformers_utils/configs/midashenglm.py +103 -0
  1397. vllm/transformers_utils/configs/mistral.py +235 -0
  1398. vllm/transformers_utils/configs/mlp_speculator.py +69 -0
  1399. vllm/transformers_utils/configs/moonvit.py +33 -0
  1400. vllm/transformers_utils/configs/nemotron.py +220 -0
  1401. vllm/transformers_utils/configs/nemotron_h.py +284 -0
  1402. vllm/transformers_utils/configs/olmo3.py +83 -0
  1403. vllm/transformers_utils/configs/ovis.py +182 -0
  1404. vllm/transformers_utils/configs/qwen3_next.py +277 -0
  1405. vllm/transformers_utils/configs/radio.py +89 -0
  1406. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1407. vllm/transformers_utils/configs/speculators/algos.py +38 -0
  1408. vllm/transformers_utils/configs/speculators/base.py +114 -0
  1409. vllm/transformers_utils/configs/step3_vl.py +178 -0
  1410. vllm/transformers_utils/configs/tarsier2.py +24 -0
  1411. vllm/transformers_utils/configs/ultravox.py +120 -0
  1412. vllm/transformers_utils/dynamic_module.py +59 -0
  1413. vllm/transformers_utils/gguf_utils.py +280 -0
  1414. vllm/transformers_utils/processor.py +424 -0
  1415. vllm/transformers_utils/processors/__init__.py +25 -0
  1416. vllm/transformers_utils/processors/bagel.py +73 -0
  1417. vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
  1418. vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
  1419. vllm/transformers_utils/processors/hunyuan_vl.py +233 -0
  1420. vllm/transformers_utils/processors/hunyuan_vl_image.py +477 -0
  1421. vllm/transformers_utils/processors/ovis.py +453 -0
  1422. vllm/transformers_utils/processors/ovis2_5.py +468 -0
  1423. vllm/transformers_utils/repo_utils.py +287 -0
  1424. vllm/transformers_utils/runai_utils.py +102 -0
  1425. vllm/transformers_utils/s3_utils.py +95 -0
  1426. vllm/transformers_utils/tokenizer.py +127 -0
  1427. vllm/transformers_utils/tokenizer_base.py +33 -0
  1428. vllm/transformers_utils/utils.py +112 -0
  1429. vllm/triton_utils/__init__.py +20 -0
  1430. vllm/triton_utils/importing.py +103 -0
  1431. vllm/usage/__init__.py +0 -0
  1432. vllm/usage/usage_lib.py +294 -0
  1433. vllm/utils/__init__.py +66 -0
  1434. vllm/utils/argparse_utils.py +492 -0
  1435. vllm/utils/async_utils.py +310 -0
  1436. vllm/utils/cache.py +214 -0
  1437. vllm/utils/collection_utils.py +112 -0
  1438. vllm/utils/counter.py +45 -0
  1439. vllm/utils/deep_gemm.py +400 -0
  1440. vllm/utils/flashinfer.py +528 -0
  1441. vllm/utils/func_utils.py +236 -0
  1442. vllm/utils/gc_utils.py +151 -0
  1443. vllm/utils/hashing.py +117 -0
  1444. vllm/utils/import_utils.py +449 -0
  1445. vllm/utils/jsontree.py +158 -0
  1446. vllm/utils/math_utils.py +32 -0
  1447. vllm/utils/mem_constants.py +13 -0
  1448. vllm/utils/mem_utils.py +232 -0
  1449. vllm/utils/nccl.py +64 -0
  1450. vllm/utils/network_utils.py +331 -0
  1451. vllm/utils/nvtx_pytorch_hooks.py +286 -0
  1452. vllm/utils/platform_utils.py +59 -0
  1453. vllm/utils/profiling.py +56 -0
  1454. vllm/utils/registry.py +51 -0
  1455. vllm/utils/serial_utils.py +214 -0
  1456. vllm/utils/system_utils.py +269 -0
  1457. vllm/utils/tensor_schema.py +255 -0
  1458. vllm/utils/torch_utils.py +648 -0
  1459. vllm/v1/__init__.py +0 -0
  1460. vllm/v1/attention/__init__.py +0 -0
  1461. vllm/v1/attention/backends/__init__.py +0 -0
  1462. vllm/v1/attention/backends/cpu_attn.py +497 -0
  1463. vllm/v1/attention/backends/flash_attn.py +1051 -0
  1464. vllm/v1/attention/backends/flashinfer.py +1575 -0
  1465. vllm/v1/attention/backends/flex_attention.py +1028 -0
  1466. vllm/v1/attention/backends/gdn_attn.py +375 -0
  1467. vllm/v1/attention/backends/linear_attn.py +77 -0
  1468. vllm/v1/attention/backends/mamba1_attn.py +159 -0
  1469. vllm/v1/attention/backends/mamba2_attn.py +348 -0
  1470. vllm/v1/attention/backends/mamba_attn.py +117 -0
  1471. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1472. vllm/v1/attention/backends/mla/aiter_triton_mla.py +74 -0
  1473. vllm/v1/attention/backends/mla/common.py +2114 -0
  1474. vllm/v1/attention/backends/mla/cutlass_mla.py +278 -0
  1475. vllm/v1/attention/backends/mla/flashattn_mla.py +342 -0
  1476. vllm/v1/attention/backends/mla/flashinfer_mla.py +174 -0
  1477. vllm/v1/attention/backends/mla/flashmla.py +317 -0
  1478. vllm/v1/attention/backends/mla/flashmla_sparse.py +1020 -0
  1479. vllm/v1/attention/backends/mla/indexer.py +345 -0
  1480. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +275 -0
  1481. vllm/v1/attention/backends/mla/rocm_aiter_mla_sparse.py +325 -0
  1482. vllm/v1/attention/backends/mla/triton_mla.py +171 -0
  1483. vllm/v1/attention/backends/pallas.py +436 -0
  1484. vllm/v1/attention/backends/rocm_aiter_fa.py +1000 -0
  1485. vllm/v1/attention/backends/rocm_aiter_unified_attn.py +206 -0
  1486. vllm/v1/attention/backends/rocm_attn.py +359 -0
  1487. vllm/v1/attention/backends/short_conv_attn.py +104 -0
  1488. vllm/v1/attention/backends/tree_attn.py +428 -0
  1489. vllm/v1/attention/backends/triton_attn.py +497 -0
  1490. vllm/v1/attention/backends/utils.py +1212 -0
  1491. vllm/v1/core/__init__.py +0 -0
  1492. vllm/v1/core/block_pool.py +485 -0
  1493. vllm/v1/core/encoder_cache_manager.py +402 -0
  1494. vllm/v1/core/kv_cache_coordinator.py +570 -0
  1495. vllm/v1/core/kv_cache_manager.py +419 -0
  1496. vllm/v1/core/kv_cache_metrics.py +96 -0
  1497. vllm/v1/core/kv_cache_utils.py +1476 -0
  1498. vllm/v1/core/sched/__init__.py +0 -0
  1499. vllm/v1/core/sched/async_scheduler.py +68 -0
  1500. vllm/v1/core/sched/interface.py +189 -0
  1501. vllm/v1/core/sched/output.py +230 -0
  1502. vllm/v1/core/sched/request_queue.py +217 -0
  1503. vllm/v1/core/sched/scheduler.py +1826 -0
  1504. vllm/v1/core/sched/utils.py +64 -0
  1505. vllm/v1/core/single_type_kv_cache_manager.py +801 -0
  1506. vllm/v1/cudagraph_dispatcher.py +183 -0
  1507. vllm/v1/engine/__init__.py +217 -0
  1508. vllm/v1/engine/async_llm.py +866 -0
  1509. vllm/v1/engine/coordinator.py +377 -0
  1510. vllm/v1/engine/core.py +1455 -0
  1511. vllm/v1/engine/core_client.py +1416 -0
  1512. vllm/v1/engine/detokenizer.py +351 -0
  1513. vllm/v1/engine/exceptions.py +18 -0
  1514. vllm/v1/engine/input_processor.py +643 -0
  1515. vllm/v1/engine/llm_engine.py +414 -0
  1516. vllm/v1/engine/logprobs.py +189 -0
  1517. vllm/v1/engine/output_processor.py +659 -0
  1518. vllm/v1/engine/parallel_sampling.py +145 -0
  1519. vllm/v1/engine/processor.py +20 -0
  1520. vllm/v1/engine/utils.py +1068 -0
  1521. vllm/v1/executor/__init__.py +6 -0
  1522. vllm/v1/executor/abstract.py +352 -0
  1523. vllm/v1/executor/multiproc_executor.py +890 -0
  1524. vllm/v1/executor/ray_distributed_executor.py +8 -0
  1525. vllm/v1/executor/ray_executor.py +626 -0
  1526. vllm/v1/executor/ray_utils.py +465 -0
  1527. vllm/v1/executor/uniproc_executor.py +186 -0
  1528. vllm/v1/kv_cache_interface.py +404 -0
  1529. vllm/v1/kv_offload/__init__.py +0 -0
  1530. vllm/v1/kv_offload/abstract.py +161 -0
  1531. vllm/v1/kv_offload/arc_manager.py +237 -0
  1532. vllm/v1/kv_offload/backend.py +97 -0
  1533. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1534. vllm/v1/kv_offload/backends/cpu.py +62 -0
  1535. vllm/v1/kv_offload/cpu.py +86 -0
  1536. vllm/v1/kv_offload/factory.py +56 -0
  1537. vllm/v1/kv_offload/lru_manager.py +139 -0
  1538. vllm/v1/kv_offload/mediums.py +39 -0
  1539. vllm/v1/kv_offload/spec.py +66 -0
  1540. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1541. vllm/v1/kv_offload/worker/cpu_gpu.py +280 -0
  1542. vllm/v1/kv_offload/worker/worker.py +144 -0
  1543. vllm/v1/metrics/__init__.py +0 -0
  1544. vllm/v1/metrics/loggers.py +1305 -0
  1545. vllm/v1/metrics/prometheus.py +82 -0
  1546. vllm/v1/metrics/ray_wrappers.py +194 -0
  1547. vllm/v1/metrics/reader.py +257 -0
  1548. vllm/v1/metrics/stats.py +437 -0
  1549. vllm/v1/outputs.py +245 -0
  1550. vllm/v1/pool/__init__.py +0 -0
  1551. vllm/v1/pool/metadata.py +126 -0
  1552. vllm/v1/request.py +282 -0
  1553. vllm/v1/sample/__init__.py +0 -0
  1554. vllm/v1/sample/logits_processor/__init__.py +352 -0
  1555. vllm/v1/sample/logits_processor/builtin.py +278 -0
  1556. vllm/v1/sample/logits_processor/interface.py +106 -0
  1557. vllm/v1/sample/logits_processor/state.py +165 -0
  1558. vllm/v1/sample/metadata.py +44 -0
  1559. vllm/v1/sample/ops/__init__.py +0 -0
  1560. vllm/v1/sample/ops/bad_words.py +52 -0
  1561. vllm/v1/sample/ops/logprobs.py +25 -0
  1562. vllm/v1/sample/ops/penalties.py +57 -0
  1563. vllm/v1/sample/ops/topk_topp_sampler.py +384 -0
  1564. vllm/v1/sample/rejection_sampler.py +805 -0
  1565. vllm/v1/sample/sampler.py +319 -0
  1566. vllm/v1/sample/tpu/__init__.py +0 -0
  1567. vllm/v1/sample/tpu/metadata.py +120 -0
  1568. vllm/v1/sample/tpu/sampler.py +215 -0
  1569. vllm/v1/serial_utils.py +514 -0
  1570. vllm/v1/spec_decode/__init__.py +0 -0
  1571. vllm/v1/spec_decode/eagle.py +1331 -0
  1572. vllm/v1/spec_decode/medusa.py +73 -0
  1573. vllm/v1/spec_decode/metadata.py +66 -0
  1574. vllm/v1/spec_decode/metrics.py +225 -0
  1575. vllm/v1/spec_decode/ngram_proposer.py +291 -0
  1576. vllm/v1/spec_decode/suffix_decoding.py +101 -0
  1577. vllm/v1/spec_decode/utils.py +121 -0
  1578. vllm/v1/structured_output/__init__.py +353 -0
  1579. vllm/v1/structured_output/backend_guidance.py +265 -0
  1580. vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
  1581. vllm/v1/structured_output/backend_outlines.py +324 -0
  1582. vllm/v1/structured_output/backend_types.py +136 -0
  1583. vllm/v1/structured_output/backend_xgrammar.py +378 -0
  1584. vllm/v1/structured_output/request.py +94 -0
  1585. vllm/v1/structured_output/utils.py +469 -0
  1586. vllm/v1/utils.py +414 -0
  1587. vllm/v1/worker/__init__.py +0 -0
  1588. vllm/v1/worker/block_table.py +343 -0
  1589. vllm/v1/worker/cp_utils.py +42 -0
  1590. vllm/v1/worker/cpu_model_runner.py +122 -0
  1591. vllm/v1/worker/cpu_worker.py +192 -0
  1592. vllm/v1/worker/dp_utils.py +240 -0
  1593. vllm/v1/worker/ec_connector_model_runner_mixin.py +87 -0
  1594. vllm/v1/worker/gpu/README.md +4 -0
  1595. vllm/v1/worker/gpu/__init__.py +0 -0
  1596. vllm/v1/worker/gpu/async_utils.py +98 -0
  1597. vllm/v1/worker/gpu/attn_utils.py +189 -0
  1598. vllm/v1/worker/gpu/block_table.py +314 -0
  1599. vllm/v1/worker/gpu/cudagraph_utils.py +259 -0
  1600. vllm/v1/worker/gpu/dp_utils.py +31 -0
  1601. vllm/v1/worker/gpu/input_batch.py +479 -0
  1602. vllm/v1/worker/gpu/metrics/__init__.py +0 -0
  1603. vllm/v1/worker/gpu/metrics/logits.py +42 -0
  1604. vllm/v1/worker/gpu/model_runner.py +1006 -0
  1605. vllm/v1/worker/gpu/sample/__init__.py +0 -0
  1606. vllm/v1/worker/gpu/sample/gumbel.py +101 -0
  1607. vllm/v1/worker/gpu/sample/logprob.py +167 -0
  1608. vllm/v1/worker/gpu/sample/metadata.py +192 -0
  1609. vllm/v1/worker/gpu/sample/min_p.py +51 -0
  1610. vllm/v1/worker/gpu/sample/output.py +14 -0
  1611. vllm/v1/worker/gpu/sample/penalties.py +155 -0
  1612. vllm/v1/worker/gpu/sample/sampler.py +87 -0
  1613. vllm/v1/worker/gpu/spec_decode/__init__.py +18 -0
  1614. vllm/v1/worker/gpu/spec_decode/eagle.py +565 -0
  1615. vllm/v1/worker/gpu/spec_decode/eagle_cudagraph.py +115 -0
  1616. vllm/v1/worker/gpu/spec_decode/rejection_sample.py +71 -0
  1617. vllm/v1/worker/gpu/states.py +316 -0
  1618. vllm/v1/worker/gpu/structured_outputs.py +76 -0
  1619. vllm/v1/worker/gpu_input_batch.py +990 -0
  1620. vllm/v1/worker/gpu_model_runner.py +5470 -0
  1621. vllm/v1/worker/gpu_ubatch_wrapper.py +472 -0
  1622. vllm/v1/worker/gpu_worker.py +955 -0
  1623. vllm/v1/worker/kv_connector_model_runner_mixin.py +302 -0
  1624. vllm/v1/worker/lora_model_runner_mixin.py +212 -0
  1625. vllm/v1/worker/tpu_input_batch.py +583 -0
  1626. vllm/v1/worker/tpu_model_runner.py +2191 -0
  1627. vllm/v1/worker/tpu_worker.py +352 -0
  1628. vllm/v1/worker/ubatch_utils.py +109 -0
  1629. vllm/v1/worker/ubatching.py +231 -0
  1630. vllm/v1/worker/utils.py +375 -0
  1631. vllm/v1/worker/worker_base.py +377 -0
  1632. vllm/v1/worker/workspace.py +253 -0
  1633. vllm/v1/worker/xpu_model_runner.py +48 -0
  1634. vllm/v1/worker/xpu_worker.py +174 -0
  1635. vllm/version.py +39 -0
  1636. vllm/vllm_flash_attn/.gitkeep +0 -0
  1637. vllm_cpu_avx512vnni-0.13.0.dist-info/METADATA +339 -0
  1638. vllm_cpu_avx512vnni-0.13.0.dist-info/RECORD +1641 -0
  1639. vllm_cpu_avx512vnni-0.13.0.dist-info/WHEEL +5 -0
  1640. vllm_cpu_avx512vnni-0.13.0.dist-info/entry_points.txt +5 -0
  1641. vllm_cpu_avx512vnni-0.13.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,2133 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ from collections.abc import Callable, Iterable
5
+ from contextlib import nullcontext
6
+ from enum import Enum
7
+ from functools import partial
8
+ from typing import Literal, cast, get_args, overload
9
+
10
+ import torch
11
+ import torch.nn.functional as F
12
+ from torch.nn.parameter import UninitializedParameter
13
+
14
+ import vllm.envs as envs
15
+ from vllm._aiter_ops import rocm_aiter_ops
16
+ from vllm.config import VllmConfig, get_current_vllm_config
17
+ from vllm.config.parallel import ExpertPlacementStrategy
18
+ from vllm.distributed import (
19
+ get_dp_group,
20
+ get_ep_group,
21
+ get_pcp_group,
22
+ get_tensor_model_parallel_world_size,
23
+ tensor_model_parallel_all_reduce,
24
+ )
25
+ from vllm.distributed.eplb.eplb_state import EplbState
26
+ from vllm.forward_context import ForwardContext, get_forward_context
27
+ from vllm.logger import init_logger
28
+ from vllm.model_executor.custom_op import CustomOp
29
+ from vllm.model_executor.layers.fused_moe.config import (
30
+ FusedMoEConfig,
31
+ FusedMoEParallelConfig,
32
+ FusedMoEQuantConfig,
33
+ RoutingMethodType,
34
+ )
35
+ from vllm.model_executor.layers.fused_moe.fused_moe import zero_experts_compute_triton
36
+ from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import (
37
+ init_aiter_topK_meta_data,
38
+ )
39
+ from vllm.model_executor.layers.fused_moe.routing_simulator import RoutingSimulator
40
+ from vllm.model_executor.layers.quantization.base_config import (
41
+ QuantizationConfig,
42
+ )
43
+ from vllm.model_executor.layers.quantization.utils.flashinfer_utils import (
44
+ is_flashinfer_supporting_global_sf,
45
+ )
46
+ from vllm.platforms import current_platform
47
+ from vllm.utils.math_utils import cdiv, round_up
48
+ from vllm.utils.torch_utils import (
49
+ aux_stream,
50
+ current_stream,
51
+ direct_register_custom_op,
52
+ )
53
+ from vllm.v1.worker.ubatching import dbo_current_ubatch_id
54
+
55
+ if current_platform.is_cuda_alike():
56
+ from .fused_moe import eplb_map_to_physical_and_record
57
+ else:
58
+
59
+ def _eplb_map_to_physical_and_record(
60
+ topk_ids: torch.Tensor,
61
+ expert_load_view: torch.Tensor,
62
+ logical_to_physical_map: torch.Tensor,
63
+ logical_replica_count: torch.Tensor,
64
+ ) -> torch.Tensor:
65
+ # CPU fallback: no EPLB so just return as is
66
+ return topk_ids
67
+
68
+ eplb_map_to_physical_and_record = _eplb_map_to_physical_and_record
69
+ from vllm.model_executor.layers.fused_moe.fused_moe import grouped_topk
70
+ from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import ( # noqa: E501
71
+ rocm_aiter_grouped_topk,
72
+ )
73
+
74
+ if current_platform.is_tpu():
75
+ from .moe_pallas import fused_moe as fused_moe_pallas
76
+ else:
77
+ fused_moe_pallas = None # type: ignore
78
+
79
+ from vllm.model_executor.layers.fused_moe.fused_moe_method_base import (
80
+ FusedMoEMethodBase,
81
+ )
82
+ from vllm.model_executor.layers.fused_moe.fused_moe_modular_method import (
83
+ FusedMoEModularMethod,
84
+ )
85
+ from vllm.model_executor.layers.fused_moe.unquantized_fused_moe_method import (
86
+ UnquantizedFusedMoEMethod,
87
+ )
88
+
89
+ logger = init_logger(__name__)
90
+
91
+
92
+ class FusedMoeWeightScaleSupported(Enum):
93
+ TENSOR = "tensor"
94
+ CHANNEL = "channel"
95
+ GROUP = "group"
96
+ BLOCK = "block"
97
+
98
+
99
+ def determine_expert_map(
100
+ ep_size: int,
101
+ ep_rank: int,
102
+ global_num_experts: int,
103
+ expert_placement_strategy: ExpertPlacementStrategy = "linear",
104
+ num_fused_shared_experts: int = 0,
105
+ return_expert_mask: bool = False,
106
+ ) -> tuple[int, torch.Tensor | None, torch.Tensor | None]:
107
+ """
108
+ Calculates how many experts should be assigned to each rank for EP and
109
+ creates a mapping from global to local expert index. Experts are
110
+ distributed evenly across ranks. Any remaining are assigned to the
111
+ last rank.
112
+
113
+ Args:
114
+ ep_size: The size of the expert parallel group
115
+ ep_rank: The rank of the current process in the expert parallel
116
+ group
117
+ global_num_experts: The total number of experts in the model.
118
+ expert_placement_strategy: The expert placement strategy.
119
+
120
+ Returns:
121
+ tuple[int, Optional[torch.Tensor]]: A tuple containing:
122
+ - local_num_experts (int): The number of experts assigned
123
+ to the current rank.
124
+ - expert_map (Optional[torch.Tensor]): A tensor of shape
125
+ (global_num_experts,) mapping from global to local index.
126
+ Contains -1 for experts not assigned to the current rank.
127
+ Returns None if ep_size is 1.
128
+ - expert_mask (Optional[torch.Tensor]): A tensor of shape
129
+ (global_num_experts + num_fused_shared_experts + 1,)
130
+ containing 1 for experts assigned to the current rank
131
+ and 0 for sentinel.
132
+ Returns None if ep_size is 1.
133
+ Used only when AITER MOE is enabled.
134
+ """
135
+ assert ep_size > 0
136
+ if ep_size == 1:
137
+ return (global_num_experts, None, None)
138
+
139
+ # Distribute experts as evenly as possible to each rank.
140
+ base_experts = global_num_experts // ep_size
141
+ remainder = global_num_experts % ep_size
142
+ local_num_experts = base_experts + 1 if ep_rank < remainder else base_experts
143
+
144
+ # Create a tensor of size num_experts filled with -1
145
+ expert_map = torch.full((global_num_experts,), -1, dtype=torch.int32)
146
+ # Create an expert map for the local experts
147
+ if expert_placement_strategy == "linear":
148
+ start_idx = ep_rank * base_experts + min(ep_rank, remainder)
149
+ expert_map[start_idx : start_idx + local_num_experts] = torch.arange(
150
+ 0, local_num_experts, dtype=torch.int32
151
+ )
152
+ elif expert_placement_strategy == "round_robin":
153
+ local_log_experts = torch.arange(
154
+ ep_rank, global_num_experts, ep_size, dtype=torch.int32
155
+ )
156
+
157
+ expert_map[local_log_experts] = torch.arange(
158
+ 0, local_num_experts, dtype=torch.int32
159
+ )
160
+ else:
161
+ raise ValueError(
162
+ "Unsupported expert placement strategy "
163
+ f"'{expert_placement_strategy}', expected one of "
164
+ f"{get_args(ExpertPlacementStrategy)}"
165
+ )
166
+
167
+ expert_mask = None
168
+ if return_expert_mask:
169
+ expert_mask = torch.ones(
170
+ (global_num_experts + num_fused_shared_experts + 1,), dtype=torch.int32
171
+ )
172
+ expert_mask[-1] = 0
173
+ expert_mask[:global_num_experts] = expert_map > -1
174
+ expert_map = torch.cat(
175
+ (
176
+ expert_map,
177
+ torch.tensor(
178
+ [local_num_experts + i for i in range(num_fused_shared_experts)],
179
+ dtype=torch.int32,
180
+ ),
181
+ ),
182
+ dim=0,
183
+ )
184
+
185
+ return (local_num_experts, expert_map, expert_mask)
186
+
187
+
188
+ def determine_expert_placement_strategy(
189
+ expert_placement_strategy: ExpertPlacementStrategy,
190
+ moe_parallel_config: FusedMoEParallelConfig,
191
+ num_expert_group: int | None,
192
+ num_redundant_experts: int,
193
+ enable_eplb: bool,
194
+ ) -> ExpertPlacementStrategy:
195
+ if expert_placement_strategy == "round_robin":
196
+ round_robin_supported = (
197
+ (num_expert_group is not None and num_expert_group > 1)
198
+ and num_redundant_experts == 0
199
+ and not enable_eplb
200
+ )
201
+
202
+ if not round_robin_supported:
203
+ logger.warning(
204
+ "Round-robin expert placement is only supported for "
205
+ "models with multiple expert groups and no redundant "
206
+ "experts. Falling back to linear expert placement."
207
+ )
208
+ return "linear"
209
+ if (
210
+ moe_parallel_config.use_all2all_kernels
211
+ and not moe_parallel_config.use_deepep_ll_kernels
212
+ ):
213
+ logger.warning(
214
+ "Round-robin expert placement currently only supports "
215
+ "the DeepEP low-latency backend, but '%s' was configured. "
216
+ "Falling back to linear expert placement.",
217
+ moe_parallel_config.all2all_backend,
218
+ )
219
+ return "linear"
220
+
221
+ return expert_placement_strategy
222
+
223
+
224
+ def get_compressed_expert_map(expert_map: torch.Tensor) -> str:
225
+ """
226
+ Compresses the expert map by removing any -1 entries.
227
+
228
+ Args:
229
+ expert_map (torch.Tensor): A tensor of shape (global_num_experts,)
230
+ mapping from global to local index. Contains -1 for experts not
231
+ assigned to the current rank.
232
+
233
+ Returns:
234
+ str: A string mapping from local to global index.
235
+ Using str to support hashing for logging once only.
236
+ """
237
+ global_indices = torch.where(expert_map != -1)[0]
238
+ local_indices = expert_map[global_indices]
239
+ return ", ".join(
240
+ f"{local_index.item()}->{global_index.item()}"
241
+ for local_index, global_index in zip(local_indices, global_indices)
242
+ )
243
+
244
+
245
+ def maybe_roundup_hidden_size(
246
+ hidden_size: int,
247
+ act_dtype: torch.dtype,
248
+ quant_config: QuantizationConfig | None,
249
+ moe_parallel_config: FusedMoEParallelConfig,
250
+ is_lora_enabled: bool,
251
+ ) -> int:
252
+ """
253
+ Given layer hidden size and MoE configurations, round up hidden_size
254
+ if necessary.
255
+
256
+ Args:
257
+ hidden_size: Layer hidden-size
258
+ act_dtype: Data type of the layer activations.
259
+ quant_config: Fused MoE quantization configuration.
260
+ moe_parallel_config: Fused MoE parallelization strategy configuration.
261
+ is_lora_enabled: True if the engine is enabled with LoRA. This
262
+ is used in the case of mxfp4 quantization in selecting the
263
+ MxFP4Backend.
264
+
265
+ Return:
266
+ Rounded up hidden_size if rounding up is required based on the configs.
267
+ Original hidden size otherwise.
268
+ """
269
+ from vllm.model_executor.layers.fused_moe.all2all_utils import (
270
+ maybe_roundup_layer_hidden_size,
271
+ )
272
+
273
+ hidden_size = maybe_roundup_layer_hidden_size(
274
+ hidden_size, act_dtype, moe_parallel_config
275
+ )
276
+
277
+ # we are padding globally so EP buffer allocation works
278
+ if quant_config and quant_config.get_name() == "mxfp4":
279
+ from vllm.model_executor.layers.quantization.mxfp4 import (
280
+ Mxfp4Backend,
281
+ get_mxfp4_backend,
282
+ )
283
+
284
+ current_mxfp4_backend = get_mxfp4_backend(is_lora_enabled)
285
+ if (
286
+ current_mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16
287
+ or current_mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS
288
+ ):
289
+ hidden_size = round_up(hidden_size, 128)
290
+ elif (
291
+ current_platform.is_rocm()
292
+ or current_mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM
293
+ or current_mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16
294
+ ):
295
+ hidden_size = round_up(hidden_size, 256)
296
+
297
+ return hidden_size
298
+
299
+
300
+ @CustomOp.register("fused_moe")
301
+ class FusedMoE(CustomOp):
302
+ """FusedMoE layer for MoE models.
303
+
304
+ This layer contains both MergedColumnParallel weights (gate_up_proj /
305
+ w13) and RowParallelLinear weights (down_proj/ w2).
306
+
307
+ Note: Mixtral uses w1, w2, and w3 for gate, up, and down_proj. We
308
+ copy that naming convention here and handle any remapping in the
309
+ load_weights function in each model implementation.
310
+
311
+ Args:
312
+ num_experts: Number of experts in the model
313
+ top_k: Number of experts selected for each token
314
+ hidden_size: Input hidden state size of the transformer
315
+ intermediate_size: Intermediate size of the experts
316
+ params_dtype: Data type for the parameters.
317
+ reduce_results: Whether to all_reduce on the output of the layer
318
+ renormalize: Whether to renormalize the logits in the fused_moe kernel
319
+ quant_config: Quantization configure.
320
+ enable_eplb: Whether to enable expert parallelism load balancer.
321
+ """
322
+
323
+ def __init__(
324
+ self,
325
+ num_experts: int, # Global number of experts
326
+ top_k: int,
327
+ hidden_size: int,
328
+ intermediate_size: int,
329
+ params_dtype: torch.dtype | None = None,
330
+ reduce_results: bool = False,
331
+ renormalize: bool = True,
332
+ use_grouped_topk: bool = False,
333
+ num_expert_group: int | None = None,
334
+ topk_group: int | None = None,
335
+ quant_config: QuantizationConfig | None = None,
336
+ tp_size: int | None = None,
337
+ ep_size: int | None = None,
338
+ dp_size: int | None = None,
339
+ pcp_size: int | None = None,
340
+ prefix: str = "",
341
+ custom_routing_function: Callable | None = None,
342
+ scoring_func: str = "softmax",
343
+ routed_scaling_factor: float = 1.0,
344
+ e_score_correction_bias: torch.Tensor | None = None,
345
+ apply_router_weight_on_input: bool = False,
346
+ activation: str = "silu",
347
+ is_act_and_mul: bool = True,
348
+ enable_eplb: bool = False,
349
+ num_redundant_experts: int = 0,
350
+ has_bias: bool = False,
351
+ is_sequence_parallel=False,
352
+ zero_expert_num: int | None = 0,
353
+ zero_expert_type: str | None = None,
354
+ expert_mapping: list[tuple[str, str, int, str]] | None = None,
355
+ n_shared_experts: int | None = None,
356
+ routing_method_type: int | None = None,
357
+ ):
358
+ super().__init__()
359
+
360
+ # Allow disabling of the separate shared experts stream for
361
+ # debug purposes.
362
+ # TODO: Remove this after more extensive testings with TP/DP
363
+ # and other execution modes
364
+ if envs.VLLM_DISABLE_SHARED_EXPERTS_STREAM:
365
+ logger.info_once("Disabling MoE shared_experts cuda stream")
366
+ self.shared_experts_stream = None
367
+ else:
368
+ # TODO(rob): enable shared expert overlap with non-cuda-alike.
369
+ # aux_stream() returns None on non-cuda-alike platforms.
370
+ self.shared_experts_stream = aux_stream()
371
+ if self.shared_experts_stream is not None:
372
+ logger.info_once(
373
+ "Enabled separate cuda stream for MoE shared_experts", scope="local"
374
+ )
375
+
376
+ if params_dtype is None:
377
+ params_dtype = torch.get_default_dtype()
378
+ self.params_dtype = params_dtype
379
+
380
+ vllm_config = get_current_vllm_config()
381
+ self.vllm_config = vllm_config
382
+
383
+ # FIXME (varun): We should have a better way of inferring the activation
384
+ # datatype. This works for now as the tensor datatype entering the MoE
385
+ # operation is typically unquantized (i.e. float16/bfloat16).
386
+ if vllm_config.model_config is not None:
387
+ moe_in_dtype = vllm_config.model_config.dtype
388
+ else:
389
+ # TODO (bnell): This is a hack to get test_mixtral_moe to work
390
+ # since model_config is not set in the pytest test.
391
+ moe_in_dtype = params_dtype
392
+
393
+ tp_size_ = (
394
+ tp_size if tp_size is not None else get_tensor_model_parallel_world_size()
395
+ )
396
+ dp_size_ = dp_size if dp_size is not None else get_dp_group().world_size
397
+ pcp_size_ = pcp_size if pcp_size is not None else get_pcp_group().world_size
398
+
399
+ self.is_sequence_parallel = is_sequence_parallel
400
+ self.sp_size = tp_size_ if is_sequence_parallel else 1
401
+
402
+ self.moe_parallel_config: FusedMoEParallelConfig = FusedMoEParallelConfig.make(
403
+ tp_size_=tp_size_,
404
+ pcp_size_=pcp_size_,
405
+ dp_size_=dp_size_,
406
+ vllm_parallel_config=vllm_config.parallel_config,
407
+ )
408
+
409
+ self.global_num_experts = num_experts + num_redundant_experts
410
+ self.logical_num_experts = num_experts
411
+ self.zero_expert_num = zero_expert_num
412
+ self.zero_expert_type = zero_expert_type
413
+
414
+ # Expert mapping used in self.load_weights
415
+ self.expert_mapping = expert_mapping
416
+
417
+ # Round up hidden size if needed.
418
+ hidden_size = maybe_roundup_hidden_size(
419
+ hidden_size,
420
+ moe_in_dtype,
421
+ quant_config,
422
+ self.moe_parallel_config,
423
+ is_lora_enabled=self.vllm_config.lora_config is not None,
424
+ )
425
+
426
+ # For smuggling this layer into the fused moe custom op
427
+ compilation_config = vllm_config.compilation_config
428
+ if prefix in compilation_config.static_forward_context:
429
+ raise ValueError("Duplicate layer name: {}".format(prefix))
430
+ compilation_config.static_forward_context[prefix] = self
431
+ self.layer_name = prefix
432
+
433
+ self.enable_eplb = enable_eplb
434
+ self.expert_load_view: torch.Tensor | None = None
435
+ self.logical_to_physical_map: torch.Tensor | None = None
436
+ self.logical_replica_count: torch.Tensor | None = None
437
+ self.expert_placement_strategy: ExpertPlacementStrategy = (
438
+ vllm_config.parallel_config.expert_placement_strategy
439
+ )
440
+
441
+ # ROCm aiter shared experts fusion
442
+ self.rocm_aiter_fmoe_enabled = rocm_aiter_ops.is_fused_moe_enabled()
443
+ self.aiter_fmoe_shared_expert_enabled = (
444
+ rocm_aiter_ops.is_fusion_moe_shared_experts_enabled()
445
+ )
446
+
447
+ self.num_fused_shared_experts = (
448
+ n_shared_experts
449
+ if n_shared_experts is not None and self.aiter_fmoe_shared_expert_enabled
450
+ else 0
451
+ )
452
+ if (
453
+ not self.aiter_fmoe_shared_expert_enabled
454
+ and self.num_fused_shared_experts != 0
455
+ ):
456
+ raise ValueError(
457
+ "n_shared_experts is only supported on ROCm aiter when "
458
+ "VLLM_ROCM_USE_AITER_FUSION_SHARED_EXPERTS is enabled"
459
+ )
460
+
461
+ # Determine expert maps
462
+ if self.use_ep:
463
+ if self.enable_eplb:
464
+ assert self.global_num_experts % self.ep_size == 0, (
465
+ "EPLB currently only supports even distribution of "
466
+ "experts across ranks."
467
+ )
468
+ else:
469
+ assert num_redundant_experts == 0, (
470
+ "Redundant experts are only supported with EPLB."
471
+ )
472
+
473
+ self.expert_placement_strategy = determine_expert_placement_strategy(
474
+ expert_placement_strategy=self.expert_placement_strategy,
475
+ moe_parallel_config=self.moe_parallel_config,
476
+ num_expert_group=num_expert_group,
477
+ num_redundant_experts=num_redundant_experts,
478
+ enable_eplb=self.enable_eplb,
479
+ )
480
+
481
+ self._expert_map: torch.Tensor | None
482
+ local_num_experts, expert_map, expert_mask = determine_expert_map(
483
+ ep_size=self.ep_size,
484
+ ep_rank=self.ep_rank,
485
+ global_num_experts=self.global_num_experts,
486
+ expert_placement_strategy=self.expert_placement_strategy,
487
+ num_fused_shared_experts=self.num_fused_shared_experts,
488
+ return_expert_mask=self.rocm_aiter_fmoe_enabled,
489
+ )
490
+ self.local_num_experts = local_num_experts
491
+ self.register_buffer("_expert_map", expert_map)
492
+ self.register_buffer("expert_mask", expert_mask)
493
+ self._maybe_init_expert_routing_tables()
494
+ logger.info_once(
495
+ "[EP Rank %s/%s] Expert parallelism is enabled. Expert "
496
+ "placement strategy: %s. Local/global"
497
+ " number of experts: %s/%s. Experts local to global index map:"
498
+ " %s.",
499
+ self.ep_rank,
500
+ self.ep_size,
501
+ self.expert_placement_strategy,
502
+ self.local_num_experts,
503
+ self.global_num_experts,
504
+ get_compressed_expert_map(self._expert_map),
505
+ )
506
+ else:
507
+ self.local_num_experts, self._expert_map, self.expert_mask = (
508
+ self.global_num_experts,
509
+ None,
510
+ None,
511
+ )
512
+
513
+ self.top_k = top_k
514
+
515
+ self._init_aiter_shared_experts_topK_buffer(
516
+ vllm_config=vllm_config, dp_size=dp_size_
517
+ )
518
+ if self.use_ep and self.rocm_aiter_fmoe_enabled:
519
+ assert self.expert_mask is None or torch.all(
520
+ (expert_mask == 0) | (expert_mask == 1)
521
+ ), "Aiter Fused MoE kernel only supports expert_map with 0 and 1s."
522
+
523
+ assert intermediate_size % self.tp_size == 0
524
+ self.hidden_size = hidden_size
525
+ self.intermediate_size_per_partition = intermediate_size // self.tp_size
526
+ self.reduce_results = reduce_results
527
+ self.renormalize = renormalize
528
+ self.use_grouped_topk = use_grouped_topk
529
+ if self.use_grouped_topk:
530
+ assert num_expert_group is not None and topk_group is not None
531
+ self.num_expert_group = num_expert_group
532
+ self.topk_group = topk_group
533
+ self.custom_routing_function = custom_routing_function
534
+ self.scoring_func = scoring_func
535
+ self.routed_scaling_factor = routed_scaling_factor
536
+ self.e_score_correction_bias = e_score_correction_bias
537
+ self.apply_router_weight_on_input = apply_router_weight_on_input
538
+ self.activation = activation
539
+
540
+ if self.scoring_func != "softmax" and not self.use_grouped_topk:
541
+ raise ValueError(
542
+ "Only softmax scoring function is supported for non-grouped topk."
543
+ )
544
+
545
+ # ToDo: Better logic to determine the routing method type
546
+ if routing_method_type is not None:
547
+ self.routing_method_type = routing_method_type
548
+ else:
549
+ if scoring_func == "sigmoid":
550
+ if self.use_grouped_topk:
551
+ self.routing_method_type = RoutingMethodType.DeepSeekV3
552
+ elif self.top_k == 1:
553
+ self.routing_method_type = RoutingMethodType.Llama4
554
+ elif self.scoring_func == "softmax":
555
+ self.routing_method_type = (
556
+ RoutingMethodType.Renormalize
557
+ if not self.renormalize
558
+ else RoutingMethodType.RenormalizeNaive
559
+ )
560
+ else:
561
+ self.routing_method_type = RoutingMethodType.TopK
562
+
563
+ self.moe_config: FusedMoEConfig = FusedMoEConfig(
564
+ num_experts=self.global_num_experts,
565
+ experts_per_token=top_k,
566
+ hidden_dim=hidden_size,
567
+ num_local_experts=self.local_num_experts,
568
+ moe_parallel_config=self.moe_parallel_config,
569
+ in_dtype=moe_in_dtype,
570
+ max_num_tokens=envs.VLLM_MOE_DP_CHUNK_SIZE,
571
+ has_bias=has_bias,
572
+ is_act_and_mul=is_act_and_mul,
573
+ is_lora_enabled=vllm_config.lora_config is not None,
574
+ )
575
+ self.moe_config_use_flashinfer_cutlass_kernels = (
576
+ self.moe_config.use_flashinfer_cutlass_kernels
577
+ )
578
+
579
+ self.quant_config = quant_config
580
+
581
+ def _get_quant_method() -> FusedMoEMethodBase:
582
+ """
583
+ Helper method to ensure self.quant_method is never None and
584
+ of the proper type.
585
+ """
586
+ quant_method = None
587
+ if self.quant_config is not None:
588
+ quant_method = self.quant_config.get_quant_method(self, prefix)
589
+ if quant_method is None:
590
+ quant_method = UnquantizedFusedMoEMethod(self.moe_config)
591
+ assert isinstance(quant_method, FusedMoEMethodBase)
592
+ return quant_method
593
+
594
+ # Note: get_quant_method will look at the layer's local_num_experts
595
+ # for heuristic purposes, so it must be initialized first.
596
+ self.quant_method: FusedMoEMethodBase = _get_quant_method()
597
+
598
+ if not self.moe_config.is_act_and_mul:
599
+ # Avoid circular import
600
+ from vllm.model_executor.layers.quantization.modelopt import (
601
+ ModelOptFp8MoEMethod,
602
+ ModelOptNvFp4FusedMoE,
603
+ )
604
+
605
+ if not isinstance(
606
+ self.quant_method,
607
+ (
608
+ UnquantizedFusedMoEMethod,
609
+ ModelOptFp8MoEMethod,
610
+ ModelOptNvFp4FusedMoE,
611
+ ),
612
+ ):
613
+ raise NotImplementedError(
614
+ "is_act_and_mul=False is supported only for unquantized "
615
+ ", ModelOpt FP8, and ModelOpt NvFp4 checkpoints"
616
+ )
617
+ if not current_platform.is_cuda():
618
+ raise NotImplementedError(
619
+ "is_act_and_mul=False is supported only for CUDA for now"
620
+ )
621
+
622
+ if self.enable_eplb and not self.quant_method.supports_eplb:
623
+ # TODO: Add support for additional quantization methods.
624
+ # The implementation for other quantization methods does not
625
+ # contain essential differences, but the current quant API
626
+ # design causes duplicated work when extending to new
627
+ # quantization methods, so I'm leaving it for now.
628
+ # If you plan to add support for more quantization methods,
629
+ # please refer to the implementation in `Fp8MoEMethod`.
630
+ raise NotImplementedError(
631
+ f"EPLB is not supported {self.quant_method.__class__.__name__}. "
632
+ "EPLB is only supported for FP8 quantization for now."
633
+ )
634
+
635
+ moe_quant_params = {
636
+ "num_experts": self.local_num_experts,
637
+ "hidden_size": hidden_size,
638
+ "intermediate_size_per_partition": self.intermediate_size_per_partition,
639
+ "params_dtype": params_dtype,
640
+ "weight_loader": self.weight_loader,
641
+ "global_num_experts": self.global_num_experts,
642
+ }
643
+ # need full intermediate size pre-sharding for WNA16 act order
644
+ if self.quant_method.__class__.__name__ in (
645
+ "GPTQMarlinMoEMethod",
646
+ "CompressedTensorsWNA16MarlinMoEMethod",
647
+ "CompressedTensorsWNA16MoEMethod",
648
+ ):
649
+ moe_quant_params["intermediate_size_full"] = intermediate_size
650
+
651
+ self.quant_method.create_weights(layer=self, **moe_quant_params)
652
+
653
+ # Chunked all2all staging tensor
654
+ self.batched_hidden_states: torch.Tensor | None = None
655
+ self.batched_router_logits: torch.Tensor | None = None
656
+
657
+ # Note: maybe_init_modular_kernel should only be called by
658
+ # prepare_communication_buffer_for_model.
659
+ # This is called after all weight loading and post-processing, so it
660
+ # should be safe to swap out the quant_method.
661
+ def maybe_init_modular_kernel(self) -> None:
662
+ self.ensure_moe_quant_config_init()
663
+ # routing_tables only needed for round-robin expert placement with
664
+ # DeepEP all2all backend.
665
+ routing_tables = self._maybe_init_expert_routing_tables()
666
+ prepare_finalize = self.quant_method.maybe_make_prepare_finalize(
667
+ routing_tables=routing_tables
668
+ )
669
+ if prepare_finalize is not None:
670
+ logger.debug(
671
+ "%s for %s(%s)", prepare_finalize.__class__.__name__, self, id(self)
672
+ )
673
+ self.quant_method = FusedMoEModularMethod.make(
674
+ self, self.quant_method, prepare_finalize, self.shared_experts
675
+ )
676
+
677
+ @property
678
+ def shared_experts(self) -> torch.nn.Module | None:
679
+ return None
680
+
681
+ @property
682
+ def gate(self) -> torch.nn.Module | None:
683
+ return None
684
+
685
+ @property
686
+ def tp_size(self):
687
+ return self.moe_parallel_config.tp_size
688
+
689
+ @property
690
+ def dp_size(self):
691
+ return self.moe_parallel_config.dp_size
692
+
693
+ @property
694
+ def pcp_size(self):
695
+ return self.moe_parallel_config.pcp_size
696
+
697
+ @property
698
+ def ep_size(self):
699
+ return self.moe_parallel_config.ep_size
700
+
701
+ @property
702
+ def tp_rank(self):
703
+ return self.moe_parallel_config.tp_rank
704
+
705
+ @property
706
+ def dp_rank(self):
707
+ return self.moe_parallel_config.dp_rank
708
+
709
+ @property
710
+ def pcp_rank(self):
711
+ return self.moe_parallel_config.pcp_rank
712
+
713
+ @property
714
+ def ep_rank(self):
715
+ return self.moe_parallel_config.ep_rank
716
+
717
+ @property
718
+ def use_ep(self):
719
+ return self.moe_parallel_config.use_ep
720
+
721
+ @property
722
+ def use_pplx_kernels(self):
723
+ return self.moe_parallel_config.use_pplx_kernels
724
+
725
+ @property
726
+ def use_deepep_ht_kernels(self):
727
+ return self.moe_parallel_config.use_deepep_ht_kernels
728
+
729
+ @property
730
+ def use_deepep_ll_kernels(self):
731
+ return self.moe_parallel_config.use_deepep_ll_kernels
732
+
733
+ @property
734
+ def use_flashinfer_cutlass_kernels(self):
735
+ return (
736
+ self.moe_quant_config is not None
737
+ and self.moe_quant_config.quant_dtype == "nvfp4"
738
+ and self.moe_config_use_flashinfer_cutlass_kernels
739
+ )
740
+
741
+ @property
742
+ def use_marlin_kernels(self):
743
+ return getattr(self.quant_method, "use_marlin", False)
744
+
745
+ @property
746
+ def use_dp_chunking(self) -> bool:
747
+ return (
748
+ self.moe_parallel_config.use_pplx_kernels
749
+ or self.moe_parallel_config.use_deepep_ll_kernels
750
+ or (self.dp_size > 1 and self.use_flashinfer_cutlass_kernels)
751
+ ) and envs.VLLM_ENABLE_MOE_DP_CHUNK
752
+
753
+ @property
754
+ def is_internal_router(self) -> bool:
755
+ # By default, router/gate is called before FusedMoE forward pass
756
+ return False
757
+
758
+ def _maybe_init_expert_routing_tables(
759
+ self,
760
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor] | None:
761
+ # Currently routing_tables only needed for round-robin expert placement
762
+ # with DeepEP-ll all2all backend.
763
+ if (
764
+ self.expert_placement_strategy != "round_robin"
765
+ or not self.use_deepep_ll_kernels
766
+ ):
767
+ return None
768
+
769
+ if hasattr(self, "expert_global_to_physical"):
770
+ return cast(
771
+ tuple[torch.Tensor, torch.Tensor, torch.Tensor],
772
+ (
773
+ self.expert_global_to_physical,
774
+ self.expert_physical_to_global,
775
+ self.expert_local_to_global,
776
+ ),
777
+ )
778
+
779
+ if self._expert_map is None:
780
+ return None
781
+
782
+ routing_tables = self.ensure_round_robin_expert_routing_tables(
783
+ global_num_experts=self.global_num_experts,
784
+ ep_size=self.ep_size,
785
+ ep_rank=self.ep_rank,
786
+ local_num_experts=self.local_num_experts,
787
+ device=self._expert_map.device,
788
+ )
789
+
790
+ global_to_physical, physical_to_global, local_global = routing_tables
791
+ self.register_buffer("expert_global_to_physical", global_to_physical)
792
+ self.register_buffer("expert_physical_to_global", physical_to_global)
793
+ self.register_buffer("expert_local_to_global", local_global)
794
+
795
+ return routing_tables
796
+
797
+ @staticmethod
798
+ def ensure_round_robin_expert_routing_tables(
799
+ global_num_experts: int,
800
+ ep_size: int,
801
+ ep_rank: int,
802
+ local_num_experts: int,
803
+ device: torch.device | None = None,
804
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
805
+ device_kwargs = {"device": device} if device is not None else {}
806
+ global_indices = torch.arange(
807
+ global_num_experts, dtype=torch.long, **device_kwargs
808
+ )
809
+ owner = torch.remainder(global_indices, ep_size)
810
+ local_index = torch.div(global_indices, ep_size, rounding_mode="floor")
811
+ base = global_num_experts // ep_size
812
+ remainder = global_num_experts % ep_size
813
+ physical_offset = owner * base
814
+ if remainder > 0:
815
+ remainder_tensor = torch.tensor(
816
+ remainder, dtype=torch.long, **device_kwargs
817
+ )
818
+ physical_offset = physical_offset + torch.minimum(owner, remainder_tensor)
819
+
820
+ global_to_physical = physical_offset + local_index
821
+ physical_to_global = torch.empty_like(global_to_physical)
822
+ physical_to_global[global_to_physical] = global_indices
823
+
824
+ local_global = torch.arange(
825
+ ep_rank,
826
+ global_num_experts,
827
+ ep_size,
828
+ dtype=torch.long,
829
+ **device_kwargs,
830
+ )
831
+ if local_global.numel() != local_num_experts:
832
+ local_global = local_global[:local_num_experts]
833
+
834
+ return (global_to_physical, physical_to_global, local_global)
835
+
836
+ def update_expert_map(self):
837
+ # ep_size and ep_rank should already be updated
838
+ assert self._expert_map is not None
839
+ with self._expert_map.device:
840
+ local_num_experts, expert_map, expert_mask = determine_expert_map(
841
+ ep_size=self.ep_size,
842
+ ep_rank=self.ep_rank,
843
+ global_num_experts=self.global_num_experts,
844
+ expert_placement_strategy=self.expert_placement_strategy,
845
+ num_fused_shared_experts=self.num_fused_shared_experts,
846
+ return_expert_mask=self.rocm_aiter_fmoe_enabled,
847
+ )
848
+ self.local_num_experts = local_num_experts
849
+ self.register_buffer("_expert_map", expert_map)
850
+ self.register_buffer("expert_mask", expert_mask)
851
+ self._maybe_init_expert_routing_tables()
852
+ if self.aiter_fmoe_shared_expert_enabled:
853
+ self._init_aiter_shared_experts_topK_buffer(
854
+ vllm_config=get_current_vllm_config(),
855
+ dp_size=get_dp_group().world_size,
856
+ )
857
+
858
+ def _maybe_setup_shared_experts_stream(
859
+ self,
860
+ hidden_states: torch.Tensor,
861
+ has_separate_shared_experts: bool,
862
+ use_chunked_impl: bool,
863
+ ) -> tuple[bool, torch.Tensor | None]:
864
+ use_shared_experts_stream = (
865
+ current_platform.is_cuda()
866
+ and has_separate_shared_experts
867
+ and not use_chunked_impl
868
+ and self.shared_experts_stream is not None
869
+ and (
870
+ hidden_states.shape[0]
871
+ <= envs.VLLM_SHARED_EXPERTS_STREAM_TOKEN_THRESHOLD
872
+ )
873
+ )
874
+
875
+ hidden_states_clone: torch.Tensor | None = None
876
+ if use_shared_experts_stream:
877
+ assert self.shared_experts_stream is not None
878
+
879
+ # Clone BEFORE switching streams to avoid race condition
880
+ # where routed_expert kernel may mutate hidden_states.
881
+ hidden_states_clone = hidden_states.clone()
882
+
883
+ # Record that the clone will be used by shared_experts_stream
884
+ # to avoid gc issue from deallocation of hidden_states_clone
885
+ # For more details: https://docs.pytorch.org/docs/stable/generated/torch.Tensor.record_stream.html # noqa: E501
886
+ # NOTE: We don't need shared_output.record_stream(current_stream())
887
+ # because we synch the streams before using shared_output.
888
+ hidden_states_clone.record_stream(self.shared_experts_stream)
889
+
890
+ # Mark sync start point for the separate shared experts
891
+ # stream here since we want to run in parallel with the
892
+ # router/gate (next op below)
893
+ assert self.shared_experts_stream is not None
894
+ self.shared_experts_stream.wait_stream(current_stream())
895
+
896
+ return use_shared_experts_stream, hidden_states_clone
897
+
898
+ def _load_per_tensor_weight_scale(
899
+ self,
900
+ shard_id: str,
901
+ param: torch.nn.Parameter,
902
+ loaded_weight: torch.Tensor,
903
+ expert_id: int,
904
+ ):
905
+ param_data = param.data
906
+ # for per tensor weight quantization
907
+ if shard_id in ("w1", "w3"):
908
+ # We have to keep the weight scales of w1 and w3 because
909
+ # we need to re-quantize w1/w3 weights after weight loading.
910
+ idx = 0 if shard_id == "w1" else 1
911
+ param_data[expert_id][idx] = loaded_weight
912
+ # If we are in the row parallel case (down_proj)
913
+ elif shard_id == "w2":
914
+ param_data[expert_id] = loaded_weight
915
+
916
+ def _load_combined_w13_weight_scale(
917
+ self,
918
+ shard_dim: int,
919
+ loaded_weight: torch.Tensor,
920
+ param: torch.Tensor,
921
+ tp_rank: int,
922
+ ):
923
+ """
924
+ Load w13 weight scales assuming that w1 weight scales and w3 weight
925
+ scales are stored in the same loaded_weight tensor.
926
+ """
927
+ shard_size = param.shape[shard_dim]
928
+ loaded_weight = loaded_weight.narrow(
929
+ shard_dim, shard_size * tp_rank, shard_size
930
+ )
931
+ param.copy_(loaded_weight)
932
+
933
+ def _load_model_weight_or_group_weight_scale(
934
+ self,
935
+ shard_dim: int,
936
+ expert_data: torch.Tensor,
937
+ shard_id: str,
938
+ loaded_weight: torch.Tensor,
939
+ tp_rank: int,
940
+ load_full_w2: bool = False,
941
+ ):
942
+ """
943
+ Load grouped weight scales for group quantization or model weights
944
+ :param shard_dim: dimension to shard
945
+ :param expert_data: parameter for a particular expert
946
+ :param shard_id: either w1, w2, or w3
947
+ :param loaded_weight: checkpoint weight to load into the param
948
+ :param tp_rank: tensor parallel rank
949
+ :param load_full_w2: whether or not the w2 loaded should be sharded.
950
+ """
951
+ if shard_id == "w2":
952
+ # In the case where we have actorder/g_idx, we do not partition the
953
+ # w2 scales, as indicated by `load_full` argument, for all tp cases
954
+ self._load_w2(
955
+ shard_dim=shard_dim,
956
+ loaded_weight=loaded_weight,
957
+ expert_data=expert_data,
958
+ tp_rank=tp_rank,
959
+ load_full=load_full_w2,
960
+ )
961
+ elif shard_id in ("w1", "w3"):
962
+ self._load_w13(
963
+ shard_id=shard_id,
964
+ shard_dim=shard_dim,
965
+ loaded_weight=loaded_weight,
966
+ expert_data=expert_data,
967
+ tp_rank=tp_rank,
968
+ )
969
+
970
+ def _load_per_channel_weight_scale(
971
+ self,
972
+ expert_data: torch.Tensor,
973
+ shard_dim: int,
974
+ shard_id: str,
975
+ loaded_weight: torch.Tensor,
976
+ tp_rank: int,
977
+ ):
978
+ # for per channel weight quantization
979
+ if shard_id == "w2":
980
+ expert_data.copy_(loaded_weight)
981
+ elif shard_id in ("w1", "w3"):
982
+ self._load_w13(
983
+ shard_id=shard_id,
984
+ shard_dim=shard_dim,
985
+ loaded_weight=loaded_weight,
986
+ expert_data=expert_data,
987
+ tp_rank=tp_rank,
988
+ )
989
+
990
+ def _load_w13(
991
+ self,
992
+ expert_data: torch.Tensor,
993
+ shard_dim: int,
994
+ shard_id: str,
995
+ loaded_weight: torch.Tensor,
996
+ tp_rank: int,
997
+ load_full: bool = False,
998
+ ):
999
+ # Index the loaded weight for tp sharding.
1000
+ # gate_up_proj: "MergedColumnParallel", so tp sharding on output_dim
1001
+ if self.moe_config.is_act_and_mul:
1002
+ shard_size = expert_data.shape[shard_dim] // 2
1003
+ else:
1004
+ shard_size = expert_data.shape[shard_dim]
1005
+ if not load_full:
1006
+ loaded_weight = loaded_weight.narrow(
1007
+ shard_dim, shard_size * tp_rank, shard_size
1008
+ )
1009
+ # Narrow parameter and load.
1010
+ # w1, gate_proj: Load into first logical weight of w13.
1011
+ if shard_id == "w1":
1012
+ expert_data = expert_data.narrow(shard_dim, 0, shard_size)
1013
+ # w3, up_proj: Load into second logical weight of w13.
1014
+ else:
1015
+ assert shard_id == "w3"
1016
+ expert_data = expert_data.narrow(shard_dim, shard_size, shard_size)
1017
+ expert_data.copy_(loaded_weight)
1018
+
1019
+ def _load_w2(
1020
+ self,
1021
+ expert_data: torch.Tensor,
1022
+ shard_dim: int,
1023
+ loaded_weight: torch.Tensor,
1024
+ tp_rank: int,
1025
+ load_full: bool = False,
1026
+ ):
1027
+ # Index the loaded weight for tp sharding.
1028
+ # down_proj: "RowParallel" so tp sharding on input_dim
1029
+ # Narrow parameter and load.
1030
+ shard_size = expert_data.shape[shard_dim]
1031
+ if not load_full:
1032
+ loaded_weight = loaded_weight.narrow(
1033
+ shard_dim, shard_size * tp_rank, shard_size
1034
+ )
1035
+ # w2, down_proj: Load into only logical weight of w2.
1036
+ expert_data.copy_(loaded_weight)
1037
+
1038
+ def _load_single_value(
1039
+ self, param: torch.nn.Parameter, loaded_weight: torch.Tensor, expert_id: int
1040
+ ):
1041
+ param_data = param.data
1042
+
1043
+ # Input scales can be loaded directly and should be equal.
1044
+ param_data[expert_id] = loaded_weight
1045
+
1046
+ def _load_g_idx(
1047
+ self,
1048
+ shard_id: str,
1049
+ expert_data: torch.Tensor,
1050
+ shard_dim: int,
1051
+ loaded_weight: torch.Tensor,
1052
+ tp_rank: int,
1053
+ ):
1054
+ if shard_id == "w2":
1055
+ self._load_w2(
1056
+ shard_dim=shard_dim,
1057
+ loaded_weight=loaded_weight,
1058
+ expert_data=expert_data,
1059
+ tp_rank=tp_rank,
1060
+ )
1061
+ else:
1062
+ assert shard_id in ("w1", "w3")
1063
+ expert_data.copy_(loaded_weight)
1064
+
1065
+ def _map_global_expert_id_to_local_expert_id(self, expert_id: int) -> int:
1066
+ if self._expert_map is None:
1067
+ return expert_id
1068
+ return self._expert_map[expert_id].item()
1069
+
1070
+ def _init_aiter_shared_experts_topK_buffer(
1071
+ self, vllm_config: VllmConfig, dp_size: int
1072
+ ):
1073
+ if self.num_fused_shared_experts > 0:
1074
+ init_aiter_topK_meta_data(
1075
+ n_routed_experts=self.global_num_experts,
1076
+ n_shared_experts=self.num_fused_shared_experts,
1077
+ top_k=self.top_k,
1078
+ tp_rank=self.ep_rank if self.use_ep else self.tp_rank,
1079
+ tp_size=self.ep_size if self.use_ep else self.tp_size,
1080
+ shared_experts_score=1.0,
1081
+ max_num_tokens=vllm_config.scheduler_config.max_num_batched_tokens
1082
+ * dp_size,
1083
+ is_EP=self.use_ep,
1084
+ )
1085
+ self.local_num_experts += self.num_fused_shared_experts
1086
+
1087
+ @overload
1088
+ def weight_loader(
1089
+ self,
1090
+ param: torch.nn.Parameter,
1091
+ loaded_weight: torch.Tensor,
1092
+ weight_name: str,
1093
+ shard_id: str,
1094
+ expert_id: int,
1095
+ return_success: Literal[False],
1096
+ ) -> None: ...
1097
+
1098
+ @overload
1099
+ def weight_loader(
1100
+ self,
1101
+ param: torch.nn.Parameter,
1102
+ loaded_weight: torch.Tensor,
1103
+ weight_name: str,
1104
+ shard_id: str,
1105
+ expert_id: int,
1106
+ return_success: Literal[True],
1107
+ ) -> bool: ...
1108
+
1109
+ def weight_loader(
1110
+ self,
1111
+ param: torch.nn.Parameter,
1112
+ loaded_weight: torch.Tensor,
1113
+ weight_name: str,
1114
+ shard_id: str,
1115
+ expert_id: int,
1116
+ return_success: bool = False,
1117
+ ) -> bool | None:
1118
+ if self.quant_config and self.quant_config.get_name() == "mxfp4":
1119
+ # (FIXME) for gpt-oss all experts are combined
1120
+ if "bias" in weight_name:
1121
+ dim1 = loaded_weight.shape[1]
1122
+ param.data[:, :dim1].copy_(loaded_weight)
1123
+ else:
1124
+ dim1 = loaded_weight.shape[1]
1125
+ dim2 = loaded_weight.shape[2]
1126
+ param.data[:, :dim1, :dim2].copy_(loaded_weight)
1127
+ return True if return_success else None
1128
+
1129
+ quant_method_name = self.quant_method.__class__.__name__
1130
+ global_expert_id = expert_id
1131
+ expert_id = self._map_global_expert_id_to_local_expert_id(global_expert_id)
1132
+
1133
+ allow_flashinfer = getattr(self.quant_method, "allow_flashinfer", False)
1134
+ moe_backend = getattr(self.quant_method, "flashinfer_moe_backend", None)
1135
+
1136
+ use_global_sf = (
1137
+ allow_flashinfer
1138
+ and is_flashinfer_supporting_global_sf(moe_backend)
1139
+ and "input_scale" in weight_name
1140
+ and quant_method_name == "ModelOptNvFp4FusedMoE"
1141
+ )
1142
+
1143
+ if expert_id == -1 and not use_global_sf:
1144
+ # Failed to load this param since it's not local to this rank
1145
+ return False if return_success else None
1146
+ # Hereafter, `expert_id` is local physical id
1147
+
1148
+ # compressed-tensors checkpoints with packed weights are stored flipped
1149
+ # TODO (mgoin): check self.quant_method.quant_config.quant_format
1150
+ # against known CompressionFormat enum values that have this quality
1151
+ if self.quant_method.__class__.__name__ in (
1152
+ "CompressedTensorsWNA16MarlinMoEMethod",
1153
+ "CompressedTensorsWNA16MoEMethod",
1154
+ ):
1155
+ loaded_weight = loaded_weight.t().contiguous()
1156
+
1157
+ if shard_id not in ("w1", "w2", "w3"):
1158
+ raise ValueError(f"shard_id must be ['w1','w2','w3'] but got {shard_id}.")
1159
+
1160
+ # Fetch the dim to shard the parameter/loaded weight
1161
+ # based on the shard id. This will be whatever
1162
+ # dimension intermediate_size_per_partition is used.
1163
+ SHARD_ID_TO_SHARDED_DIM = {"w1": 0, "w2": 1, "w3": 0}
1164
+
1165
+ is_gguf_weight = getattr(param, "is_gguf_weight", False)
1166
+ is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
1167
+ if is_gguf_weight_type:
1168
+ param.weight_type = loaded_weight.item()
1169
+ param.data.copy_(loaded_weight)
1170
+ return True if return_success else None
1171
+
1172
+ # Case for BitsAndBytes
1173
+ use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit", False)
1174
+ if use_bitsandbytes_4bit:
1175
+ shard_dim = 0
1176
+
1177
+ expert_data = param.data[expert_id]
1178
+ if shard_id == "w2":
1179
+ expert_data.copy_(loaded_weight)
1180
+ elif shard_id in ("w1", "w3"):
1181
+ # BNB inflight quantization has already sharded the weights
1182
+ full_load = True
1183
+ self._load_w13(
1184
+ shard_id=shard_id,
1185
+ shard_dim=shard_dim,
1186
+ loaded_weight=loaded_weight,
1187
+ expert_data=expert_data,
1188
+ tp_rank=self.tp_rank,
1189
+ load_full=full_load,
1190
+ )
1191
+ return True if return_success else None
1192
+
1193
+ # is_transposed: if the dim to shard the weight
1194
+ # should be flipped. Required by GPTQ, compressed-tensors
1195
+ # should be whatever dimension intermediate_size_per_partition is
1196
+ is_transposed = getattr(param, "is_transposed", False)
1197
+ shard_dim = SHARD_ID_TO_SHARDED_DIM[shard_id]
1198
+ if is_transposed:
1199
+ shard_dim = int(not shard_dim)
1200
+
1201
+ full_load = len(loaded_weight.shape) == 3
1202
+ if full_load:
1203
+ shard_dim += 1
1204
+
1205
+ # Materialize GGUF UninitializedParameter accounting merged weights
1206
+ if is_gguf_weight and isinstance(param, UninitializedParameter):
1207
+ # To materialize a tensor, we must have full shape including
1208
+ # number of experts, making this portion to require `full_load`.
1209
+ assert full_load
1210
+ final_shape = list(loaded_weight.shape)
1211
+ # w1 and w3 are merged per expert.
1212
+ if shard_id in {"w1", "w3"}:
1213
+ final_shape[1] *= 2
1214
+ final_shape[shard_dim] = final_shape[shard_dim] // self.tp_size
1215
+ param.materialize(final_shape, dtype=loaded_weight.dtype)
1216
+
1217
+ expert_data = param.data if full_load else param.data[expert_id]
1218
+
1219
+ # Case input scale: input_scale loading is only supported for fp8
1220
+ if "input_scale" in weight_name:
1221
+ # this is needed for compressed-tensors only
1222
+ loaded_weight = loaded_weight.to(param.data.device)
1223
+
1224
+ if (
1225
+ "compressed" in quant_method_name.lower()
1226
+ and param.data[expert_id] != 1
1227
+ and (param.data[expert_id] - loaded_weight).abs() > 1e-5
1228
+ ):
1229
+ raise ValueError(
1230
+ "input_scales of w1 and w3 of a layer "
1231
+ f"must be equal. But got {param.data[expert_id]} "
1232
+ f"vs. {loaded_weight}"
1233
+ )
1234
+
1235
+ self._load_single_value(
1236
+ param=param,
1237
+ loaded_weight=loaded_weight,
1238
+ expert_id=global_expert_id if use_global_sf else expert_id,
1239
+ )
1240
+ return True if return_success else None
1241
+
1242
+ # Case g_idx
1243
+ if "g_idx" in weight_name:
1244
+ self._load_g_idx(
1245
+ shard_dim=0,
1246
+ shard_id=shard_id,
1247
+ loaded_weight=loaded_weight,
1248
+ expert_data=expert_data,
1249
+ tp_rank=self.tp_rank,
1250
+ )
1251
+ return True if return_success else None
1252
+
1253
+ # TODO @dsikka: ModelOpt should follow the proper MoE loading pattern
1254
+ if "ModelOpt" in quant_method_name:
1255
+ # Determine per-tensor weight scale patterns based on variant
1256
+ # Use the dedicated method instead of brittle string matching
1257
+ uses_weight_scale_2 = self.quant_method.uses_weight_scale_2_pattern()
1258
+
1259
+ # Call _load_per_tensor_weight_scale() to load per-tensor (scalar)
1260
+ # weights scales.
1261
+ # Input scales are always per-tensor.
1262
+ # Weight scales: FP4 uses "weight_scale_2" and FP8 uses
1263
+ # "weight_scale" for per-tensor scales.
1264
+ is_per_tensor = (
1265
+ "weight_scale_2" in weight_name
1266
+ if uses_weight_scale_2
1267
+ else "weight_scale" in weight_name
1268
+ ) or "input_scale" in weight_name
1269
+ if is_per_tensor:
1270
+ self._load_per_tensor_weight_scale(
1271
+ shard_id=shard_id,
1272
+ param=param,
1273
+ loaded_weight=loaded_weight,
1274
+ expert_id=expert_id,
1275
+ )
1276
+ return True if return_success else None
1277
+
1278
+ # If the weight is w13_weight_scale and w13_weight_scales are
1279
+ # combined into single loaded_weight, call
1280
+ # _load_combined_w13_weight_scale() to load it.
1281
+ # This is checked by comparing the hidden_out dims of the
1282
+ # loaded_weight and the param.
1283
+ if "w13_weight_scale" in weight_name:
1284
+ loaded_weight_hidden_out = loaded_weight.shape[-2]
1285
+ param_hidden_out = param.data.shape[-2] * self.tp_size
1286
+ if loaded_weight_hidden_out == param_hidden_out:
1287
+ self._load_combined_w13_weight_scale(
1288
+ shard_dim=shard_dim,
1289
+ loaded_weight=loaded_weight,
1290
+ param=expert_data,
1291
+ tp_rank=self.tp_rank,
1292
+ )
1293
+ return True if return_success else None
1294
+
1295
+ # For other weights, call _load_model_weight_or_group_weight_scale()
1296
+ # to load it.
1297
+ if "weight" in weight_name:
1298
+ self._load_model_weight_or_group_weight_scale(
1299
+ shard_id=shard_id,
1300
+ shard_dim=shard_dim,
1301
+ loaded_weight=loaded_weight,
1302
+ expert_data=expert_data,
1303
+ tp_rank=self.tp_rank,
1304
+ )
1305
+ return True if return_success else None
1306
+
1307
+ # Case weight scales, zero_points and offset, weight/input global scales
1308
+ if "scale" in weight_name or "zero" in weight_name or "offset" in weight_name:
1309
+ # load the weight scales and zp based on the quantization scheme
1310
+ # supported weight scales/zp can be found in
1311
+ # FusedMoeWeightScaleSupported
1312
+ # TODO @dsikka: once hardened, refactor to use vLLM Parameters
1313
+ # specific to each case
1314
+ quant_method = getattr(param, "quant_method", None)
1315
+ if quant_method == FusedMoeWeightScaleSupported.CHANNEL.value:
1316
+ self._load_per_channel_weight_scale(
1317
+ shard_id=shard_id,
1318
+ shard_dim=shard_dim,
1319
+ loaded_weight=loaded_weight,
1320
+ expert_data=expert_data,
1321
+ tp_rank=self.tp_rank,
1322
+ )
1323
+ elif quant_method in [
1324
+ FusedMoeWeightScaleSupported.GROUP.value,
1325
+ FusedMoeWeightScaleSupported.BLOCK.value,
1326
+ ]:
1327
+ self._load_model_weight_or_group_weight_scale(
1328
+ shard_id=shard_id,
1329
+ shard_dim=shard_dim,
1330
+ loaded_weight=loaded_weight,
1331
+ expert_data=expert_data,
1332
+ tp_rank=self.tp_rank,
1333
+ load_full_w2=getattr(param, "load_full_w2", False),
1334
+ )
1335
+ elif quant_method == FusedMoeWeightScaleSupported.TENSOR.value:
1336
+ self._load_per_tensor_weight_scale(
1337
+ shard_id=shard_id,
1338
+ param=param,
1339
+ loaded_weight=loaded_weight,
1340
+ expert_id=expert_id,
1341
+ )
1342
+ else:
1343
+ WEIGHT_SCALE_SUPPORTED = [e.value for e in FusedMoeWeightScaleSupported]
1344
+ raise ValueError(
1345
+ f"quant method must be one of {WEIGHT_SCALE_SUPPORTED}"
1346
+ )
1347
+ return True if return_success else None
1348
+
1349
+ # Case weight_shape
1350
+ if "weight_shape" in weight_name:
1351
+ # only required by compressed-tensors
1352
+ self._load_single_value(
1353
+ param=param, loaded_weight=loaded_weight, expert_id=expert_id
1354
+ )
1355
+ return True if return_success else None
1356
+
1357
+ # Case model weights
1358
+ if "weight" in weight_name:
1359
+ self._load_model_weight_or_group_weight_scale(
1360
+ shard_id=shard_id,
1361
+ shard_dim=shard_dim,
1362
+ loaded_weight=loaded_weight,
1363
+ expert_data=expert_data,
1364
+ tp_rank=self.tp_rank,
1365
+ )
1366
+ return True if return_success else None
1367
+
1368
+ return False if return_success else None
1369
+
1370
+ def load_weights(
1371
+ self, weights: Iterable[tuple[str, torch.Tensor]]
1372
+ ) -> Iterable[str]:
1373
+ if (expert_mapping := self.expert_mapping) is None:
1374
+ raise ValueError(
1375
+ "`self.expert_mapping` must be provided to "
1376
+ "load weights using `self.load_weights`."
1377
+ )
1378
+ for expert_name, loaded_weight in weights:
1379
+ qual_name = f"{self.layer_name}.{expert_name}"
1380
+ for param_name, weight_name, expert_id, shard_id in expert_mapping:
1381
+ if weight_name not in qual_name:
1382
+ continue
1383
+ weight_name = qual_name.replace(weight_name, param_name)
1384
+ param_name = weight_name.removeprefix(f"{self.layer_name}.")
1385
+ param = getattr(self, param_name)
1386
+ success = self.weight_loader(
1387
+ param=param,
1388
+ loaded_weight=loaded_weight,
1389
+ weight_name=weight_name,
1390
+ shard_id=shard_id,
1391
+ expert_id=expert_id,
1392
+ return_success=True,
1393
+ )
1394
+ if success:
1395
+ logger.debug(
1396
+ "Loaded %s for expert %d into %s",
1397
+ param_name,
1398
+ expert_id,
1399
+ self.layer_name,
1400
+ )
1401
+ yield param_name
1402
+
1403
+ def get_expert_weights(self) -> Iterable[torch.Tensor]:
1404
+ def _maybe_make_contiguous(
1405
+ name: str, p: torch.nn.Parameter
1406
+ ) -> torch.nn.Parameter:
1407
+ """
1408
+ In some cases, the last 2 dimensions (the non-expert dimensions)
1409
+ of the weight scale tensor are transposed. This function
1410
+ transforms the tensor (view update) so the tensor is contiguous().
1411
+ Example: A non-contiguous scale tensor,
1412
+ `x` of shape (E, 32, 16) and stride (512, 1, 32) is transformed to
1413
+ `x_` of shape (E, 16, 32) and stride (512, 32, 1).
1414
+ Note that we specifically use torch.transpose() so `x_` refers
1415
+ to the same underlying memory. The tensors `x` and `x_`, pointing
1416
+ to the same underlying memory make this transformation safe in the
1417
+ context of EPLB. i.e. It is the same memory and just the view
1418
+ is different.
1419
+ Note: This function handles the "weight_scale" tensors specifically.
1420
+ This could however be generalized to handle similar tensors.
1421
+ """
1422
+ if p.ndim != 3:
1423
+ return p
1424
+ if p.is_contiguous():
1425
+ # Already contiguous. do nothing.
1426
+ return p
1427
+ # p is non-contiguous. We only handle the case where the last 2
1428
+ # dimensions of the scales tensor is transposed. We can handle
1429
+ # other cases when they become relevant.
1430
+ is_transposed_12 = p.stride(1) == 1 and p.stride(2) != 1
1431
+ if "weight_scale" not in name or not is_transposed_12:
1432
+ # do nothing.
1433
+ return p
1434
+
1435
+ # Do not update the layer parameter as the layer's MoE operations would
1436
+ # expect the parameter's tensor to the same shape / stride. Instead,
1437
+ # make a new torch.nn.Parameter that is used just in the context of
1438
+ # EPLB.
1439
+ return torch.nn.Parameter(
1440
+ torch.transpose(p.data, 1, 2), requires_grad=False
1441
+ )
1442
+
1443
+ weights = list(self.named_parameters())
1444
+ weights = [(name, _maybe_make_contiguous(name, p)) for name, p in weights]
1445
+
1446
+ assert all(
1447
+ weight.is_contiguous()
1448
+ for name, weight in weights
1449
+ if not name.startswith("_shared_experts.")
1450
+ )
1451
+
1452
+ # Filter out the non-expert weights.
1453
+ # `e_score_correction_bias` is a bias for each logical expert,
1454
+ # with shape (num_logical_experts,), not an expert weight.
1455
+ NON_EXPERT_WEIGHTS = {
1456
+ "e_score_correction_bias",
1457
+ }
1458
+
1459
+ return [
1460
+ weight.view(self.local_num_experts, -1)
1461
+ for name, weight in weights
1462
+ if name not in NON_EXPERT_WEIGHTS
1463
+ and weight.shape != torch.Size([])
1464
+ and not name.startswith("_shared_experts.")
1465
+ # exclude parameters from non-expert submodules (e.g. gate/shared)
1466
+ and not name.startswith("_gate.")
1467
+ ]
1468
+
1469
+ def set_eplb_state(
1470
+ self,
1471
+ moe_layer_idx: int,
1472
+ expert_load_view: torch.Tensor,
1473
+ logical_to_physical_map: torch.Tensor,
1474
+ logical_replica_count: torch.Tensor,
1475
+ ) -> None:
1476
+ """
1477
+ Register the EPLB state in this layer.
1478
+
1479
+ This is used later in forward pass, where we get the expert mapping
1480
+ and record the load metrics in `expert_load_view`.
1481
+ """
1482
+ self.expert_load_view = expert_load_view[moe_layer_idx]
1483
+ self.logical_to_physical_map = logical_to_physical_map[moe_layer_idx]
1484
+ self.logical_replica_count = logical_replica_count[moe_layer_idx]
1485
+
1486
+ def ensure_moe_quant_config_init(self):
1487
+ if self.quant_method.moe_quant_config is None:
1488
+ # Note: the moe_quant_config can't be constructed until after
1489
+ # weight loading post processing.
1490
+ self.quant_method.moe_quant_config = (
1491
+ self.quant_method.get_fused_moe_quant_config(self)
1492
+ )
1493
+
1494
+ @property
1495
+ def moe_quant_config(self) -> FusedMoEQuantConfig | None:
1496
+ self.ensure_moe_quant_config_init()
1497
+ return self.quant_method.moe_quant_config
1498
+
1499
+ def ensure_dp_chunking_init(self):
1500
+ if not self.use_dp_chunking or self.batched_hidden_states is not None:
1501
+ return
1502
+
1503
+ states_shape: tuple[int, ...]
1504
+ logits_shape: tuple[int, ...]
1505
+
1506
+ moe = self.moe_config
1507
+
1508
+ if self.vllm_config.parallel_config.enable_dbo:
1509
+ states_shape = (2, moe.max_num_tokens, self.hidden_size)
1510
+ logits_shape = (2, moe.max_num_tokens, self.logical_num_experts)
1511
+ else:
1512
+ states_shape = (moe.max_num_tokens, self.hidden_size)
1513
+ logits_shape = (moe.max_num_tokens, self.logical_num_experts)
1514
+
1515
+ self.batched_hidden_states = torch.zeros(
1516
+ states_shape, dtype=moe.in_dtype, device=torch.cuda.current_device()
1517
+ )
1518
+
1519
+ self.batched_router_logits = torch.zeros(
1520
+ logits_shape, dtype=moe.in_dtype, device=torch.cuda.current_device()
1521
+ )
1522
+
1523
+ def select_experts(
1524
+ self,
1525
+ hidden_states: torch.Tensor,
1526
+ router_logits: torch.Tensor,
1527
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor | None]:
1528
+ """
1529
+ Route the input hidden states to the top-k experts based on the
1530
+ router logits.
1531
+
1532
+ Returns:
1533
+ (topk_weights, topk_ids, zero_expert_result)
1534
+ (tuple[torch.Tensor, torch.Tensor, torch.Tensor]):
1535
+ The weights, expert ids, and zero expert computation result.
1536
+
1537
+ **Compatibility**: When EPLB is not enabled, the returned ids are
1538
+ equivalent to global logical ids, so should be compatible with
1539
+ plain MoE implementations without redundant experts.
1540
+ """
1541
+ from vllm.model_executor.layers.fused_moe.fused_moe import (
1542
+ fused_topk,
1543
+ fused_topk_bias,
1544
+ )
1545
+
1546
+ if self.enable_eplb:
1547
+ if self.quant_method.supports_eplb:
1548
+ if self.expert_load_view is None:
1549
+ raise ValueError(
1550
+ "enable_eplb=True requiere expert_load_view != None"
1551
+ )
1552
+ if self.logical_to_physical_map is None:
1553
+ raise ValueError(
1554
+ "enable_eplb=True requiere logical_to_physical_map != None"
1555
+ )
1556
+ if self.logical_replica_count is None:
1557
+ raise ValueError(
1558
+ "enable_eplb=True requiere logical_replica_count != None"
1559
+ )
1560
+ else:
1561
+ raise NotImplementedError(
1562
+ f"EPLB is not supported for {self.quant_method.method_name}."
1563
+ )
1564
+
1565
+ def valid_grouping() -> bool:
1566
+ # Check if num_experts is greater than num_expert_group
1567
+ # and is divisible by num_expert_group
1568
+ num_experts = router_logits.shape[-1]
1569
+ if num_experts <= self.num_expert_group:
1570
+ return False
1571
+ return num_experts % self.num_expert_group == 0
1572
+
1573
+ indices_type = self.quant_method.topk_indices_dtype
1574
+
1575
+ # Check if we should use a routing simulation strategy
1576
+ routing_strategy = envs.VLLM_MOE_ROUTING_SIMULATION_STRATEGY
1577
+ if routing_strategy != "":
1578
+ topk_weights, topk_ids = RoutingSimulator.simulate_routing(
1579
+ hidden_states=hidden_states,
1580
+ router_logits=router_logits,
1581
+ strategy_name=routing_strategy,
1582
+ top_k=self.top_k,
1583
+ indices_type=indices_type,
1584
+ )
1585
+
1586
+ # DeepSeekv2 uses grouped_top_k
1587
+ elif self.use_grouped_topk and valid_grouping():
1588
+ assert self.topk_group is not None
1589
+ assert self.num_expert_group is not None
1590
+ if rocm_aiter_ops.is_fused_moe_enabled():
1591
+ if not rocm_aiter_ops.is_fusion_moe_shared_experts_enabled():
1592
+ assert self.num_fused_shared_experts == 0
1593
+ grouped_topk_impl = partial(
1594
+ rocm_aiter_grouped_topk,
1595
+ num_fused_shared_experts=self.num_fused_shared_experts,
1596
+ )
1597
+ else:
1598
+ grouped_topk_impl = grouped_topk
1599
+
1600
+ topk_weights, topk_ids = grouped_topk_impl(
1601
+ hidden_states=hidden_states,
1602
+ gating_output=router_logits,
1603
+ topk=self.top_k,
1604
+ renormalize=self.renormalize,
1605
+ num_expert_group=self.num_expert_group,
1606
+ topk_group=self.topk_group,
1607
+ scoring_func=self.scoring_func,
1608
+ routed_scaling_factor=self.routed_scaling_factor,
1609
+ e_score_correction_bias=self.e_score_correction_bias,
1610
+ )
1611
+ elif self.e_score_correction_bias is not None:
1612
+ topk_weights, topk_ids = fused_topk_bias(
1613
+ hidden_states=hidden_states,
1614
+ gating_output=router_logits,
1615
+ e_score_correction_bias=self.e_score_correction_bias.data,
1616
+ topk=self.top_k,
1617
+ renormalize=self.renormalize,
1618
+ )
1619
+ if self.routed_scaling_factor != 1.0:
1620
+ topk_weights *= self.routed_scaling_factor
1621
+ elif self.custom_routing_function is None:
1622
+ topk_weights, topk_ids, token_expert_indices = fused_topk(
1623
+ hidden_states=hidden_states,
1624
+ gating_output=router_logits,
1625
+ topk=self.top_k,
1626
+ renormalize=self.renormalize,
1627
+ indices_type=indices_type,
1628
+ )
1629
+ else:
1630
+ topk_weights, topk_ids = self.custom_routing_function(
1631
+ hidden_states=hidden_states,
1632
+ gating_output=router_logits,
1633
+ topk=self.top_k,
1634
+ renormalize=self.renormalize,
1635
+ )
1636
+
1637
+ if self.enable_eplb:
1638
+ topk_ids = eplb_map_to_physical_and_record(
1639
+ topk_ids=topk_ids,
1640
+ expert_load_view=self.expert_load_view,
1641
+ logical_to_physical_map=self.logical_to_physical_map,
1642
+ logical_replica_count=self.logical_replica_count,
1643
+ )
1644
+
1645
+ if (indices_type is not None) and topk_ids.dtype != indices_type:
1646
+ topk_ids = topk_ids.to(dtype=indices_type)
1647
+
1648
+ assert topk_ids.dtype == indices_type or indices_type is None
1649
+
1650
+ # Compute zero expert result if needed
1651
+ if (
1652
+ self.zero_expert_num is not None
1653
+ and self.zero_expert_num > 0
1654
+ and self.zero_expert_type is not None
1655
+ and self.global_num_experts is not None
1656
+ ):
1657
+ zero_expert_result = zero_experts_compute_triton(
1658
+ expert_indices=topk_ids,
1659
+ expert_scales=topk_weights,
1660
+ num_experts=self.global_num_experts,
1661
+ zero_expert_type=self.zero_expert_type,
1662
+ hidden_states=hidden_states,
1663
+ )
1664
+ else:
1665
+ zero_expert_result = None
1666
+ return topk_weights, topk_ids, zero_expert_result
1667
+
1668
+ def must_reduce_shared_expert_outputs(self) -> bool:
1669
+ """
1670
+ The shared_experts are typically computed using the RowParallelLinear
1671
+ layer. The result of this function is typically used as
1672
+ the reduce_results argument to the module.
1673
+ When just tensor-parallel is used, it is not required to reduce
1674
+ the shared_experts results immediately. Instead we reduce at the
1675
+ once at the end of the MoE op. (Refer to DeepSeekV2MoE module)
1676
+ With EP and all2all kernels - this is no longer viable as all
1677
+ GPU ranks in DP, produce the complete set of hidden_states.
1678
+ Therefore it is required that we reduce the shared_experts output
1679
+ early.
1680
+ """
1681
+ assert self.quant_method is not None
1682
+ return (
1683
+ isinstance(self.quant_method, FusedMoEModularMethod)
1684
+ and self.quant_method.fused_experts.output_is_reduced()
1685
+ )
1686
+
1687
+ def maybe_all_reduce_tensor_model_parallel(self, final_hidden_states: torch.Tensor):
1688
+ """
1689
+ Some combine kernels reduce across GPU ranks by default.
1690
+ """
1691
+ if self.must_reduce_shared_expert_outputs():
1692
+ return final_hidden_states
1693
+ else:
1694
+ return tensor_model_parallel_all_reduce(final_hidden_states)
1695
+
1696
+ def forward_native(
1697
+ self,
1698
+ hidden_states: torch.Tensor,
1699
+ router_logits: torch.Tensor,
1700
+ ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
1701
+ og_hidden_states = hidden_states.shape[-1]
1702
+ if self.hidden_size != og_hidden_states:
1703
+ hidden_states = F.pad(
1704
+ hidden_states,
1705
+ (0, self.hidden_size - og_hidden_states),
1706
+ mode="constant",
1707
+ value=0.0,
1708
+ )
1709
+
1710
+ def reduce_output(states: torch.Tensor) -> torch.Tensor:
1711
+ if (
1712
+ not self.is_sequence_parallel
1713
+ and not self.use_dp_chunking
1714
+ and self.reduce_results
1715
+ and (self.tp_size > 1 or self.ep_size > 1)
1716
+ ):
1717
+ states = self.maybe_all_reduce_tensor_model_parallel(states)
1718
+ return states
1719
+
1720
+ if self.shared_experts is None:
1721
+ if current_platform.is_tpu():
1722
+ # TODO: Once the OOM issue for the TPU backend is resolved, we
1723
+ # will switch to using the moe_forward custom op.
1724
+ fused_output = self.forward_impl(hidden_states, router_logits)
1725
+ assert not isinstance(fused_output, tuple)
1726
+ else:
1727
+ fused_output = torch.ops.vllm.moe_forward(
1728
+ hidden_states, router_logits, self.layer_name
1729
+ )
1730
+ if self.zero_expert_num is not None and self.zero_expert_num > 0:
1731
+ assert isinstance(fused_output, tuple)
1732
+ fused_output, zero_expert_result = fused_output
1733
+ return (reduce_output(fused_output) + zero_expert_result)[
1734
+ ..., :og_hidden_states
1735
+ ]
1736
+ else:
1737
+ return reduce_output(fused_output)[..., :og_hidden_states]
1738
+ else:
1739
+ if current_platform.is_tpu():
1740
+ # TODO: Once the OOM issue for the TPU backend is resolved, we
1741
+ # will switch to using the moe_forward custom op.
1742
+ shared_output, fused_output = self.forward_impl(
1743
+ hidden_states, router_logits
1744
+ )
1745
+ else:
1746
+ shared_output, fused_output = torch.ops.vllm.moe_forward_shared(
1747
+ hidden_states, router_logits, self.layer_name
1748
+ )
1749
+ return (
1750
+ reduce_output(shared_output)[..., :og_hidden_states],
1751
+ reduce_output(fused_output)[..., :og_hidden_states],
1752
+ )
1753
+
1754
+ @property
1755
+ def expert_map(self) -> torch.Tensor | None:
1756
+ return (
1757
+ self._expert_map if not self.rocm_aiter_fmoe_enabled else self.expert_mask
1758
+ )
1759
+
1760
+ def forward_cuda(
1761
+ self,
1762
+ hidden_states: torch.Tensor,
1763
+ router_logits: torch.Tensor,
1764
+ ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
1765
+ return self.forward_native(hidden_states, router_logits)
1766
+
1767
+ def forward_impl_chunked(
1768
+ self,
1769
+ full_hidden_states: torch.Tensor,
1770
+ full_router_logits: torch.Tensor,
1771
+ has_separate_shared_experts: bool,
1772
+ ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
1773
+ assert self.batched_hidden_states is not None
1774
+ assert self.batched_router_logits is not None
1775
+ assert self.batched_hidden_states.dtype == full_hidden_states.dtype
1776
+ assert self.batched_router_logits.dtype == full_router_logits.dtype
1777
+ # Check size compatibility.
1778
+ assert self.batched_hidden_states.size(-1) == full_hidden_states.size(-1)
1779
+ assert self.batched_router_logits.size(-1) == full_router_logits.size(-1)
1780
+
1781
+ full_fused_final_hidden_states = torch.empty_like(full_hidden_states)
1782
+ if self.shared_experts is not None:
1783
+ full_shared_final_hidden_states = torch.empty_like(full_hidden_states)
1784
+
1785
+ def process_chunk(chunk_start, chunk_end, skip_result_store=False):
1786
+ chunk_size = chunk_end - chunk_start
1787
+ hidden_states = full_hidden_states[chunk_start:chunk_end, :]
1788
+ router_logits = full_router_logits[chunk_start:chunk_end, :]
1789
+
1790
+ assert self.batched_hidden_states is not None
1791
+ assert self.batched_router_logits is not None
1792
+ # This is only true when DBO has been enabled in the config.
1793
+ # Both tensors will have an outer dimension for the ubatch id
1794
+ if self.batched_hidden_states.dim() == 3:
1795
+ assert self.batched_router_logits.dim() == 3
1796
+ batch_buffer_idx = dbo_current_ubatch_id()
1797
+ batched_hidden_states = self.batched_hidden_states[batch_buffer_idx, :]
1798
+ batched_router_logits = self.batched_router_logits[batch_buffer_idx, :]
1799
+ else:
1800
+ batched_hidden_states = self.batched_hidden_states
1801
+ batched_router_logits = self.batched_router_logits
1802
+
1803
+ assert (
1804
+ batched_hidden_states.size(0) # type: ignore
1805
+ >= chunk_size
1806
+ )
1807
+ assert (
1808
+ batched_router_logits.size(0) # type: ignore
1809
+ >= chunk_size
1810
+ )
1811
+ staged_hidden_states = batched_hidden_states[:chunk_size, :] # type: ignore
1812
+ staged_router_logits = batched_router_logits[:chunk_size, :] # type: ignore
1813
+ staged_hidden_states.copy_(hidden_states, non_blocking=True)
1814
+ staged_router_logits.copy_(router_logits, non_blocking=True)
1815
+
1816
+ # Matrix multiply.
1817
+ final_hidden_states = self.quant_method.apply(
1818
+ layer=self,
1819
+ x=staged_hidden_states,
1820
+ router_logits=staged_router_logits,
1821
+ )
1822
+
1823
+ if has_separate_shared_experts:
1824
+ assert not isinstance(final_hidden_states, tuple)
1825
+ assert self.shared_experts is not None
1826
+
1827
+ shared_output = self.shared_experts(staged_hidden_states)
1828
+
1829
+ final_hidden_states = (
1830
+ shared_output,
1831
+ final_hidden_states,
1832
+ )
1833
+
1834
+ if self.zero_expert_num is not None and self.zero_expert_num > 0:
1835
+ assert isinstance(final_hidden_states, tuple)
1836
+ assert self.shared_experts is None
1837
+ final_hidden_states, zero_expert_result = final_hidden_states
1838
+ if zero_expert_result is not None:
1839
+ final_hidden_states += zero_expert_result
1840
+
1841
+ if not skip_result_store:
1842
+ if self.shared_experts is None:
1843
+ full_fused_final_hidden_states[chunk_start:chunk_end, :].copy_(
1844
+ final_hidden_states, non_blocking=True
1845
+ )
1846
+ else:
1847
+ full_shared_final_hidden_states[chunk_start:chunk_end, :].copy_(
1848
+ final_hidden_states[0], non_blocking=True
1849
+ )
1850
+ full_fused_final_hidden_states[chunk_start:chunk_end, :].copy_(
1851
+ final_hidden_states[1], non_blocking=True
1852
+ )
1853
+
1854
+ ctx = get_forward_context()
1855
+ # flashinfer_cutlass_kernels can handle: optional DP + TP/EP
1856
+ max_tokens_across_dispatchers = ctx.dp_metadata.max_tokens_across_dp_cpu
1857
+ moe_dp_chunk_size_per_rank = self.moe_config.max_num_tokens
1858
+
1859
+ # If the input to the MoE is sequence parallel then divide by sp_size
1860
+ # to find the maximum number of tokens for any individual dispatcher.
1861
+ if self.is_sequence_parallel:
1862
+ max_tokens_across_dispatchers = cdiv(
1863
+ max_tokens_across_dispatchers, self.sp_size
1864
+ )
1865
+
1866
+ num_tokens = full_hidden_states.size(0)
1867
+ for chunk_idx, chunk_start_ in enumerate(
1868
+ range(0, max_tokens_across_dispatchers, moe_dp_chunk_size_per_rank)
1869
+ ):
1870
+ chunk_start = chunk_start_
1871
+ chunk_end = min(
1872
+ chunk_start + moe_dp_chunk_size_per_rank, max_tokens_across_dispatchers
1873
+ )
1874
+ # clamp start and end
1875
+ chunk_start = min(chunk_start, num_tokens - 1)
1876
+ chunk_end = min(chunk_end, num_tokens)
1877
+ with ctx.dp_metadata.chunked_sizes(
1878
+ self.sp_size, moe_dp_chunk_size_per_rank, chunk_idx
1879
+ ):
1880
+ process_chunk(
1881
+ chunk_start, chunk_end, skip_result_store=chunk_start_ >= num_tokens
1882
+ )
1883
+
1884
+ if self.shared_experts is None:
1885
+ return full_fused_final_hidden_states
1886
+ else:
1887
+ return (full_shared_final_hidden_states, full_fused_final_hidden_states)
1888
+
1889
+ def forward_impl(
1890
+ self,
1891
+ hidden_states: torch.Tensor,
1892
+ router_logits: torch.Tensor,
1893
+ ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
1894
+ assert self.quant_method is not None
1895
+
1896
+ self.ensure_moe_quant_config_init()
1897
+ self.ensure_dp_chunking_init()
1898
+
1899
+ has_separate_shared_experts = (
1900
+ not isinstance(self.quant_method, FusedMoEModularMethod)
1901
+ and self.shared_experts is not None
1902
+ )
1903
+
1904
+ use_chunked_impl = self.use_dp_chunking
1905
+
1906
+ use_shared_experts_stream, hidden_states_clone = (
1907
+ self._maybe_setup_shared_experts_stream(
1908
+ hidden_states, has_separate_shared_experts, use_chunked_impl
1909
+ )
1910
+ )
1911
+
1912
+ # If router/gate provided, then apply it here.
1913
+ # (Note: This code runs only when "overlapped mode" is on to allow
1914
+ # parallel execution of shared experts with the FusedMoE via
1915
+ # separate cuda stream)
1916
+ if self.gate is not None:
1917
+ router_logits, _ = self.gate(hidden_states)
1918
+
1919
+ if use_chunked_impl:
1920
+ return self.forward_impl_chunked(
1921
+ hidden_states, router_logits, has_separate_shared_experts
1922
+ )
1923
+
1924
+ do_naive_dispatch_combine: bool = self.dp_size > 1 and not isinstance(
1925
+ self.quant_method, FusedMoEModularMethod
1926
+ )
1927
+
1928
+ ctx = get_forward_context()
1929
+ sp_ctx = (
1930
+ ctx.dp_metadata.sp_local_sizes(self.sp_size)
1931
+ if ctx.dp_metadata
1932
+ else nullcontext()
1933
+ )
1934
+
1935
+ with sp_ctx:
1936
+ if do_naive_dispatch_combine:
1937
+ hidden_states_combined, router_logits = get_ep_group().dispatch(
1938
+ hidden_states, router_logits, self.is_sequence_parallel
1939
+ )
1940
+ # Run shared experts before matrix multiply.
1941
+ # because matrix multiply maybe modify the hidden_states.
1942
+ if has_separate_shared_experts and not use_shared_experts_stream:
1943
+ assert self.shared_experts is not None
1944
+ shared_output = self.shared_experts(hidden_states)
1945
+
1946
+ # NOTE: Similar with DP, PCP also needs dispatch and combine. For
1947
+ # simplicity, AgRsAll2All was added separately for PCP here. Maybe
1948
+ # we should modify All2AllManager abstract to better support PCP.
1949
+ if self.pcp_size > 1:
1950
+ hidden_states = get_pcp_group().all_gather(
1951
+ hidden_states,
1952
+ dim=0,
1953
+ )
1954
+ router_logits = get_pcp_group().all_gather(
1955
+ router_logits,
1956
+ dim=0,
1957
+ )
1958
+
1959
+ # Matrix multiply.
1960
+ final_hidden_states = self.quant_method.apply(
1961
+ layer=self,
1962
+ x=hidden_states_combined
1963
+ if do_naive_dispatch_combine
1964
+ else hidden_states,
1965
+ router_logits=router_logits,
1966
+ )
1967
+
1968
+ if has_separate_shared_experts:
1969
+ assert self.shared_experts is not None
1970
+
1971
+ if use_shared_experts_stream:
1972
+ # Run shared experts in parallel on a separate stream
1973
+ # NOTE: We start the separate stream here and mark the
1974
+ # sync end point immediately after it is done. This is
1975
+ # important to avoid excessive stream allocations by the cuda
1976
+ # graph replay later.
1977
+ with torch.cuda.stream(self.shared_experts_stream):
1978
+ # Note that hidden_states clone() is necessary here to avoid
1979
+ # conflict with the main stream
1980
+ shared_output = self.shared_experts(hidden_states_clone)
1981
+ current_stream().wait_stream(self.shared_experts_stream)
1982
+
1983
+ final_hidden_states = (
1984
+ shared_output,
1985
+ final_hidden_states,
1986
+ )
1987
+ elif self.zero_expert_num is not None and self.zero_expert_num > 0:
1988
+ assert isinstance(final_hidden_states, tuple)
1989
+ final_hidden_states, zero_expert_result = final_hidden_states
1990
+
1991
+ def combine_output(states: torch.Tensor) -> torch.Tensor:
1992
+ if do_naive_dispatch_combine:
1993
+ states = get_ep_group().combine(states, self.is_sequence_parallel)
1994
+
1995
+ if self.pcp_size > 1:
1996
+ states = get_pcp_group().reduce_scatter(
1997
+ states,
1998
+ dim=0,
1999
+ )
2000
+
2001
+ return states
2002
+
2003
+ if self.shared_experts is not None:
2004
+ return (
2005
+ final_hidden_states[0],
2006
+ combine_output(final_hidden_states[1]),
2007
+ )
2008
+ elif self.zero_expert_num is not None and self.zero_expert_num > 0:
2009
+ assert isinstance(final_hidden_states, torch.Tensor)
2010
+ return (combine_output(final_hidden_states), zero_expert_result)
2011
+ else:
2012
+ return combine_output(final_hidden_states)
2013
+
2014
+ @classmethod
2015
+ def make_expert_params_mapping(
2016
+ cls,
2017
+ ckpt_gate_proj_name: str,
2018
+ ckpt_down_proj_name: str,
2019
+ ckpt_up_proj_name: str,
2020
+ num_experts: int,
2021
+ num_redundant_experts: int = 0,
2022
+ ) -> list[tuple[str, str, int, str]]:
2023
+ num_physical_experts = num_experts + num_redundant_experts
2024
+
2025
+ # In the returned mapping:
2026
+ # - `expert_id` is the physical expert id
2027
+ # - `weight_name` contains the weight name of the logical expert
2028
+ # So that we should map the expert id to logical in `weight_name`
2029
+ physical_to_logical_map = (
2030
+ EplbState.build_initial_global_physical_to_logical_map(
2031
+ num_experts, num_redundant_experts
2032
+ )
2033
+ )
2034
+
2035
+ return [
2036
+ # (param_name, weight_name, expert_id, shard_id)
2037
+ (
2038
+ "experts.w13_"
2039
+ if weight_name in [ckpt_gate_proj_name, ckpt_up_proj_name]
2040
+ else "experts.w2_",
2041
+ f"experts.{physical_to_logical_map[expert_id]}.{weight_name}.",
2042
+ expert_id,
2043
+ shard_id,
2044
+ )
2045
+ for expert_id in range(num_physical_experts)
2046
+ for shard_id, weight_name in [
2047
+ ("w1", ckpt_gate_proj_name),
2048
+ ("w2", ckpt_down_proj_name),
2049
+ ("w3", ckpt_up_proj_name),
2050
+ ]
2051
+ ]
2052
+
2053
+ def extra_repr(self) -> str:
2054
+ s = (
2055
+ f"global_num_experts={self.global_num_experts}, "
2056
+ f"local_num_experts={self.local_num_experts}, "
2057
+ f"top_k={self.top_k}, "
2058
+ f"intermediate_size_per_partition={self.intermediate_size_per_partition}, " # noqa: E501
2059
+ f"tp_size={self.tp_size},\n"
2060
+ f"ep_size={self.ep_size}, "
2061
+ f"reduce_results={self.reduce_results}, "
2062
+ f"renormalize={self.renormalize}, "
2063
+ f"use_grouped_topk={self.use_grouped_topk}"
2064
+ )
2065
+
2066
+ if self.use_grouped_topk:
2067
+ s += f", num_expert_group={self.num_expert_group}, topk_group={self.topk_group}" # noqa: E501
2068
+
2069
+ s += f", scoring_func='{self.scoring_func}', activation='{self.activation}'" # noqa: E501
2070
+
2071
+ return s
2072
+
2073
+
2074
+ def moe_forward(
2075
+ hidden_states: torch.Tensor,
2076
+ router_logits: torch.Tensor,
2077
+ layer_name: str,
2078
+ ) -> torch.Tensor:
2079
+ forward_context: ForwardContext = get_forward_context()
2080
+ self = forward_context.no_compile_layers[layer_name]
2081
+ assert self.shared_experts is None
2082
+ return self.forward_impl(hidden_states, router_logits)
2083
+
2084
+
2085
+ def moe_forward_fake(
2086
+ hidden_states: torch.Tensor,
2087
+ router_logits: torch.Tensor,
2088
+ layer_name: str,
2089
+ ) -> torch.Tensor:
2090
+ return torch.empty_like(hidden_states)
2091
+
2092
+
2093
+ direct_register_custom_op(
2094
+ op_name="moe_forward",
2095
+ op_func=moe_forward,
2096
+ mutates_args=["hidden_states"],
2097
+ fake_impl=moe_forward_fake,
2098
+ tags=(torch.Tag.needs_fixed_stride_order,),
2099
+ )
2100
+
2101
+
2102
+ def moe_forward_shared(
2103
+ hidden_states: torch.Tensor,
2104
+ router_logits: torch.Tensor,
2105
+ layer_name: str,
2106
+ ) -> tuple[torch.Tensor, torch.Tensor]:
2107
+ forward_context: ForwardContext = get_forward_context()
2108
+ self = forward_context.no_compile_layers[layer_name]
2109
+ assert self.shared_experts is not None
2110
+ return self.forward_impl(hidden_states, router_logits)
2111
+
2112
+
2113
+ def moe_forward_shared_fake(
2114
+ hidden_states: torch.Tensor,
2115
+ router_logits: torch.Tensor,
2116
+ layer_name: str,
2117
+ ) -> tuple[torch.Tensor, torch.Tensor]:
2118
+ shared_out = torch.empty_like(hidden_states)
2119
+ fused_out = torch.empty_like(hidden_states)
2120
+ return shared_out, fused_out
2121
+
2122
+
2123
+ direct_register_custom_op(
2124
+ op_name="moe_forward_shared",
2125
+ op_func=moe_forward_shared,
2126
+ mutates_args=["hidden_states"],
2127
+ fake_impl=moe_forward_shared_fake,
2128
+ tags=(torch.Tag.needs_fixed_stride_order,),
2129
+ )
2130
+
2131
+ # Mark the FusedMoE weight_loader as supporting MoE-specific parameters
2132
+ # to avoid expensive runtime reflection in model loading code
2133
+ FusedMoE.weight_loader.supports_moe_loading = True # type: ignore[attr-defined]