snowflake-ml-python 1.0.1__py3-none-any.whl → 1.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. snowflake/ml/_internal/env_utils.py +2 -1
  2. snowflake/ml/_internal/file_utils.py +35 -40
  3. snowflake/ml/_internal/telemetry.py +5 -8
  4. snowflake/ml/_internal/utils/identifier.py +74 -7
  5. snowflake/ml/_internal/utils/uri.py +7 -2
  6. snowflake/ml/model/_core_requirements.py +1 -1
  7. snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py +15 -0
  8. snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py +259 -0
  9. snowflake/ml/model/_deploy_client/image_builds/docker_context.py +89 -0
  10. snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh +24 -0
  11. snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py +118 -0
  12. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +40 -0
  13. snowflake/ml/model/_deploy_client/snowservice/deploy.py +199 -0
  14. snowflake/ml/model/_deploy_client/snowservice/deploy_options.py +88 -0
  15. snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template +24 -0
  16. snowflake/ml/model/_deploy_client/utils/constants.py +47 -0
  17. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +178 -0
  18. snowflake/ml/model/_deploy_client/warehouse/deploy.py +25 -28
  19. snowflake/ml/model/_deploy_client/warehouse/infer_template.py +7 -4
  20. snowflake/ml/model/_deployer.py +14 -27
  21. snowflake/ml/model/_env.py +4 -4
  22. snowflake/ml/model/_handlers/_base.py +3 -1
  23. snowflake/ml/model/_handlers/custom.py +14 -2
  24. snowflake/ml/model/_handlers/pytorch.py +186 -0
  25. snowflake/ml/model/_handlers/sklearn.py +14 -8
  26. snowflake/ml/model/_handlers/snowmlmodel.py +14 -9
  27. snowflake/ml/model/_handlers/torchscript.py +180 -0
  28. snowflake/ml/model/_handlers/xgboost.py +19 -9
  29. snowflake/ml/model/_model.py +27 -21
  30. snowflake/ml/model/_model_meta.py +33 -19
  31. snowflake/ml/model/model_signature.py +446 -66
  32. snowflake/ml/model/type_hints.py +28 -15
  33. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +79 -43
  34. snowflake/ml/modeling/cluster/affinity_propagation.py +79 -43
  35. snowflake/ml/modeling/cluster/agglomerative_clustering.py +79 -43
  36. snowflake/ml/modeling/cluster/birch.py +79 -43
  37. snowflake/ml/modeling/cluster/bisecting_k_means.py +79 -43
  38. snowflake/ml/modeling/cluster/dbscan.py +79 -43
  39. snowflake/ml/modeling/cluster/feature_agglomeration.py +79 -43
  40. snowflake/ml/modeling/cluster/k_means.py +79 -43
  41. snowflake/ml/modeling/cluster/mean_shift.py +79 -43
  42. snowflake/ml/modeling/cluster/mini_batch_k_means.py +79 -43
  43. snowflake/ml/modeling/cluster/optics.py +79 -43
  44. snowflake/ml/modeling/cluster/spectral_biclustering.py +79 -43
  45. snowflake/ml/modeling/cluster/spectral_clustering.py +79 -43
  46. snowflake/ml/modeling/cluster/spectral_coclustering.py +79 -43
  47. snowflake/ml/modeling/compose/column_transformer.py +79 -43
  48. snowflake/ml/modeling/compose/transformed_target_regressor.py +79 -43
  49. snowflake/ml/modeling/covariance/elliptic_envelope.py +79 -43
  50. snowflake/ml/modeling/covariance/empirical_covariance.py +79 -43
  51. snowflake/ml/modeling/covariance/graphical_lasso.py +79 -43
  52. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +79 -43
  53. snowflake/ml/modeling/covariance/ledoit_wolf.py +79 -43
  54. snowflake/ml/modeling/covariance/min_cov_det.py +79 -43
  55. snowflake/ml/modeling/covariance/oas.py +79 -43
  56. snowflake/ml/modeling/covariance/shrunk_covariance.py +79 -43
  57. snowflake/ml/modeling/decomposition/dictionary_learning.py +79 -43
  58. snowflake/ml/modeling/decomposition/factor_analysis.py +79 -43
  59. snowflake/ml/modeling/decomposition/fast_ica.py +79 -43
  60. snowflake/ml/modeling/decomposition/incremental_pca.py +79 -43
  61. snowflake/ml/modeling/decomposition/kernel_pca.py +79 -43
  62. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +79 -43
  63. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +79 -43
  64. snowflake/ml/modeling/decomposition/pca.py +79 -43
  65. snowflake/ml/modeling/decomposition/sparse_pca.py +79 -43
  66. snowflake/ml/modeling/decomposition/truncated_svd.py +79 -43
  67. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +79 -43
  68. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +79 -43
  69. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +79 -43
  70. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +79 -43
  71. snowflake/ml/modeling/ensemble/bagging_classifier.py +79 -43
  72. snowflake/ml/modeling/ensemble/bagging_regressor.py +79 -43
  73. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +79 -43
  74. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +79 -43
  75. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +79 -43
  76. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +79 -43
  77. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +79 -43
  78. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +79 -43
  79. snowflake/ml/modeling/ensemble/isolation_forest.py +79 -43
  80. snowflake/ml/modeling/ensemble/random_forest_classifier.py +79 -43
  81. snowflake/ml/modeling/ensemble/random_forest_regressor.py +79 -43
  82. snowflake/ml/modeling/ensemble/stacking_regressor.py +79 -43
  83. snowflake/ml/modeling/ensemble/voting_classifier.py +79 -43
  84. snowflake/ml/modeling/ensemble/voting_regressor.py +79 -43
  85. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +79 -43
  86. snowflake/ml/modeling/feature_selection/select_fdr.py +79 -43
  87. snowflake/ml/modeling/feature_selection/select_fpr.py +79 -43
  88. snowflake/ml/modeling/feature_selection/select_fwe.py +79 -43
  89. snowflake/ml/modeling/feature_selection/select_k_best.py +79 -43
  90. snowflake/ml/modeling/feature_selection/select_percentile.py +79 -43
  91. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +79 -43
  92. snowflake/ml/modeling/feature_selection/variance_threshold.py +79 -43
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +79 -43
  94. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +79 -43
  95. snowflake/ml/modeling/impute/iterative_imputer.py +79 -43
  96. snowflake/ml/modeling/impute/knn_imputer.py +79 -43
  97. snowflake/ml/modeling/impute/missing_indicator.py +79 -43
  98. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +79 -43
  99. snowflake/ml/modeling/kernel_approximation/nystroem.py +79 -43
  100. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +79 -43
  101. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +79 -43
  102. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +79 -43
  103. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +79 -43
  104. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +79 -43
  105. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +79 -43
  106. snowflake/ml/modeling/linear_model/ard_regression.py +79 -43
  107. snowflake/ml/modeling/linear_model/bayesian_ridge.py +79 -43
  108. snowflake/ml/modeling/linear_model/elastic_net.py +79 -43
  109. snowflake/ml/modeling/linear_model/elastic_net_cv.py +79 -43
  110. snowflake/ml/modeling/linear_model/gamma_regressor.py +79 -43
  111. snowflake/ml/modeling/linear_model/huber_regressor.py +79 -43
  112. snowflake/ml/modeling/linear_model/lars.py +79 -43
  113. snowflake/ml/modeling/linear_model/lars_cv.py +79 -43
  114. snowflake/ml/modeling/linear_model/lasso.py +79 -43
  115. snowflake/ml/modeling/linear_model/lasso_cv.py +79 -43
  116. snowflake/ml/modeling/linear_model/lasso_lars.py +79 -43
  117. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +79 -43
  118. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +79 -43
  119. snowflake/ml/modeling/linear_model/linear_regression.py +79 -43
  120. snowflake/ml/modeling/linear_model/logistic_regression.py +79 -43
  121. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +79 -43
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +79 -43
  123. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +79 -43
  124. snowflake/ml/modeling/linear_model/multi_task_lasso.py +79 -43
  125. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +79 -43
  126. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +79 -43
  127. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +79 -43
  128. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +79 -43
  129. snowflake/ml/modeling/linear_model/perceptron.py +79 -43
  130. snowflake/ml/modeling/linear_model/poisson_regressor.py +79 -43
  131. snowflake/ml/modeling/linear_model/ransac_regressor.py +79 -43
  132. snowflake/ml/modeling/linear_model/ridge.py +79 -43
  133. snowflake/ml/modeling/linear_model/ridge_classifier.py +79 -43
  134. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +79 -43
  135. snowflake/ml/modeling/linear_model/ridge_cv.py +79 -43
  136. snowflake/ml/modeling/linear_model/sgd_classifier.py +79 -43
  137. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +79 -43
  138. snowflake/ml/modeling/linear_model/sgd_regressor.py +79 -43
  139. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +79 -43
  140. snowflake/ml/modeling/linear_model/tweedie_regressor.py +79 -43
  141. snowflake/ml/modeling/manifold/isomap.py +79 -43
  142. snowflake/ml/modeling/manifold/mds.py +79 -43
  143. snowflake/ml/modeling/manifold/spectral_embedding.py +79 -43
  144. snowflake/ml/modeling/manifold/tsne.py +79 -43
  145. snowflake/ml/modeling/metrics/classification.py +6 -1
  146. snowflake/ml/modeling/metrics/regression.py +517 -9
  147. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +79 -43
  148. snowflake/ml/modeling/mixture/gaussian_mixture.py +79 -43
  149. snowflake/ml/modeling/model_selection/grid_search_cv.py +79 -43
  150. snowflake/ml/modeling/model_selection/randomized_search_cv.py +79 -43
  151. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +79 -43
  152. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +79 -43
  153. snowflake/ml/modeling/multiclass/output_code_classifier.py +79 -43
  154. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +79 -43
  155. snowflake/ml/modeling/naive_bayes/categorical_nb.py +79 -43
  156. snowflake/ml/modeling/naive_bayes/complement_nb.py +79 -43
  157. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -43
  158. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +79 -43
  159. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +79 -43
  160. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +79 -43
  161. snowflake/ml/modeling/neighbors/kernel_density.py +79 -43
  162. snowflake/ml/modeling/neighbors/local_outlier_factor.py +79 -43
  163. snowflake/ml/modeling/neighbors/nearest_centroid.py +79 -43
  164. snowflake/ml/modeling/neighbors/nearest_neighbors.py +79 -43
  165. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +79 -43
  166. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +79 -43
  167. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +79 -43
  168. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +79 -43
  169. snowflake/ml/modeling/neural_network/mlp_classifier.py +79 -43
  170. snowflake/ml/modeling/neural_network/mlp_regressor.py +79 -43
  171. snowflake/ml/modeling/pipeline/pipeline.py +24 -0
  172. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +18 -19
  173. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +2 -0
  174. snowflake/ml/modeling/preprocessing/polynomial_features.py +79 -43
  175. snowflake/ml/modeling/semi_supervised/label_propagation.py +79 -43
  176. snowflake/ml/modeling/semi_supervised/label_spreading.py +79 -43
  177. snowflake/ml/modeling/svm/linear_svc.py +79 -43
  178. snowflake/ml/modeling/svm/linear_svr.py +79 -43
  179. snowflake/ml/modeling/svm/nu_svc.py +79 -43
  180. snowflake/ml/modeling/svm/nu_svr.py +79 -43
  181. snowflake/ml/modeling/svm/svc.py +79 -43
  182. snowflake/ml/modeling/svm/svr.py +79 -43
  183. snowflake/ml/modeling/tree/decision_tree_classifier.py +79 -43
  184. snowflake/ml/modeling/tree/decision_tree_regressor.py +79 -43
  185. snowflake/ml/modeling/tree/extra_tree_classifier.py +79 -43
  186. snowflake/ml/modeling/tree/extra_tree_regressor.py +79 -43
  187. snowflake/ml/modeling/xgboost/xgb_classifier.py +79 -43
  188. snowflake/ml/modeling/xgboost/xgb_regressor.py +79 -43
  189. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +79 -43
  190. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +79 -43
  191. snowflake/ml/registry/model_registry.py +123 -121
  192. snowflake/ml/version.py +1 -1
  193. {snowflake_ml_python-1.0.1.dist-info → snowflake_ml_python-1.0.3.dist-info}/METADATA +50 -8
  194. snowflake_ml_python-1.0.3.dist-info/RECORD +259 -0
  195. snowflake_ml_python-1.0.1.dist-info/RECORD +0 -246
  196. {snowflake_ml_python-1.0.1.dist-info → snowflake_ml_python-1.0.3.dist-info}/WHEEL +0 -0
@@ -7,6 +7,7 @@
7
7
  #
8
8
  import inspect
9
9
  import os
10
+ import posixpath
10
11
  from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
11
12
  from uuid import uuid4
12
13
 
@@ -27,6 +28,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
27
28
  from snowflake.snowpark import DataFrame, Session
28
29
  from snowflake.snowpark.functions import pandas_udf, sproc
29
30
  from snowflake.snowpark.types import PandasSeries
31
+ from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
30
32
 
31
33
  from snowflake.ml.model.model_signature import (
32
34
  DataType,
@@ -224,7 +226,6 @@ class AffinityPropagation(BaseTransformer):
224
226
  sample_weight_col: Optional[str] = None,
225
227
  ) -> None:
226
228
  super().__init__()
227
- self.id = str(uuid4()).replace("-", "_").upper()
228
229
  deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
229
230
 
230
231
  self._deps = list(deps)
@@ -251,6 +252,15 @@ class AffinityPropagation(BaseTransformer):
251
252
  self.set_drop_input_cols(drop_input_cols)
252
253
  self.set_sample_weight_col(sample_weight_col)
253
254
 
255
+ def _get_rand_id(self) -> str:
256
+ """
257
+ Generate random id to be used in sproc and stage names.
258
+
259
+ Returns:
260
+ Random id string usable in sproc, table, and stage names.
261
+ """
262
+ return str(uuid4()).replace("-", "_").upper()
263
+
254
264
  def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
255
265
  """
256
266
  Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
@@ -329,7 +339,7 @@ class AffinityPropagation(BaseTransformer):
329
339
  cp.dump(self._sklearn_object, local_transform_file)
330
340
 
331
341
  # Create temp stage to run fit.
332
- transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.id)
342
+ transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
333
343
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
334
344
  SqlResultValidator(
335
345
  session=session,
@@ -342,11 +352,12 @@ class AffinityPropagation(BaseTransformer):
342
352
  expected_value=f"Stage area {transform_stage_name} successfully created."
343
353
  ).validate()
344
354
 
345
- stage_transform_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
355
+ # Use posixpath to construct stage paths
356
+ stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
357
+ stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
346
358
  local_result_file_name = get_temp_file_path()
347
- stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
348
359
 
349
- fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.id)
360
+ fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
350
361
  statement_params = telemetry.get_function_usage_statement_params(
351
362
  project=_PROJECT,
352
363
  subproject=_SUBPROJECT,
@@ -372,6 +383,7 @@ class AffinityPropagation(BaseTransformer):
372
383
  replace=True,
373
384
  session=session,
374
385
  statement_params=statement_params,
386
+ anonymous=True
375
387
  )
376
388
  def fit_wrapper_sproc(
377
389
  session: Session,
@@ -380,7 +392,8 @@ class AffinityPropagation(BaseTransformer):
380
392
  stage_result_file_name: str,
381
393
  input_cols: List[str],
382
394
  label_cols: List[str],
383
- sample_weight_col: Optional[str]
395
+ sample_weight_col: Optional[str],
396
+ statement_params: Dict[str, str]
384
397
  ) -> str:
385
398
  import cloudpickle as cp
386
399
  import numpy as np
@@ -447,15 +460,15 @@ class AffinityPropagation(BaseTransformer):
447
460
  api_calls=[Session.call],
448
461
  custom_tags=dict([("autogen", True)]),
449
462
  )
450
- sproc_export_file_name = session.call(
451
- fit_sproc_name,
463
+ sproc_export_file_name = fit_wrapper_sproc(
464
+ session,
452
465
  query,
453
466
  stage_transform_file_name,
454
467
  stage_result_file_name,
455
468
  identifier.get_unescaped_names(self.input_cols),
456
469
  identifier.get_unescaped_names(self.label_cols),
457
470
  identifier.get_unescaped_names(self.sample_weight_col),
458
- statement_params=statement_params,
471
+ statement_params,
459
472
  )
460
473
 
461
474
  if "|" in sproc_export_file_name:
@@ -465,7 +478,7 @@ class AffinityPropagation(BaseTransformer):
465
478
  print("\n".join(fields[1:]))
466
479
 
467
480
  session.file.get(
468
- os.path.join(stage_result_file_name, sproc_export_file_name),
481
+ posixpath.join(stage_result_file_name, sproc_export_file_name),
469
482
  local_result_file_name,
470
483
  statement_params=statement_params
471
484
  )
@@ -511,7 +524,7 @@ class AffinityPropagation(BaseTransformer):
511
524
 
512
525
  # Register vectorized UDF for batch inference
513
526
  batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
514
- safe_id=self.id, method=inference_method)
527
+ safe_id=self._get_rand_id(), method=inference_method)
515
528
 
516
529
  # Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
517
530
  # will try to pickle all of self which fails.
@@ -603,7 +616,7 @@ class AffinityPropagation(BaseTransformer):
603
616
  return transformed_pandas_df.to_dict("records")
604
617
 
605
618
  batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
606
- safe_id=self.id
619
+ safe_id=self._get_rand_id()
607
620
  )
608
621
 
609
622
  pass_through_columns = self._get_pass_through_columns(dataset)
@@ -659,26 +672,37 @@ class AffinityPropagation(BaseTransformer):
659
672
  # input cols need to match unquoted / quoted
660
673
  input_cols = self.input_cols
661
674
  unquoted_input_cols = identifier.get_unescaped_names(self.input_cols)
675
+ quoted_input_cols = identifier.get_escaped_names(unquoted_input_cols)
662
676
 
663
677
  estimator = self._sklearn_object
664
678
 
665
- input_df = dataset[input_cols] # Select input columns with quoted column names.
666
- if hasattr(estimator, "feature_names_in_"):
667
- missing_features = []
668
- for i, f in enumerate(getattr(estimator, "feature_names_in_")):
669
- if i >= len(input_cols) or (input_cols[i] != f and unquoted_input_cols[i] != f):
670
- missing_features.append(f)
671
-
672
- if len(missing_features) > 0:
673
- raise ValueError(
674
- "The feature names should match with those that were passed during fit.\n"
675
- f"Features seen during fit call but not present in the input: {missing_features}\n"
676
- f"Features in the input dataframe : {input_cols}\n"
677
- )
678
- input_df.columns = getattr(estimator, "feature_names_in_")
679
- else:
680
- # Just rename the column names to unquoted identifiers.
681
- input_df.columns = unquoted_input_cols # Replace the quoted columns identifier with unquoted column ids.
679
+ features_required_by_estimator = getattr(estimator, "feature_names_in_") if hasattr(estimator, "feature_names_in_") else unquoted_input_cols
680
+ missing_features = []
681
+ features_in_dataset = set(dataset.columns)
682
+ columns_to_select = []
683
+ for i, f in enumerate(features_required_by_estimator):
684
+ if (
685
+ i >= len(input_cols)
686
+ or (input_cols[i] != f and unquoted_input_cols[i] != f and quoted_input_cols[i] != f)
687
+ or (input_cols[i] not in features_in_dataset and unquoted_input_cols[i] not in features_in_dataset
688
+ and quoted_input_cols[i] not in features_in_dataset)
689
+ ):
690
+ missing_features.append(f)
691
+ elif input_cols[i] in features_in_dataset:
692
+ columns_to_select.append(input_cols[i])
693
+ elif unquoted_input_cols[i] in features_in_dataset:
694
+ columns_to_select.append(unquoted_input_cols[i])
695
+ else:
696
+ columns_to_select.append(quoted_input_cols[i])
697
+
698
+ if len(missing_features) > 0:
699
+ raise ValueError(
700
+ "The feature names should match with those that were passed during fit.\n"
701
+ f"Features seen during fit call but not present in the input: {missing_features}\n"
702
+ f"Features in the input dataframe : {input_cols}\n"
703
+ )
704
+ input_df = dataset[columns_to_select]
705
+ input_df.columns = features_required_by_estimator
682
706
 
683
707
  transformed_numpy_array = getattr(estimator, inference_method)(
684
708
  input_df
@@ -759,11 +783,18 @@ class AffinityPropagation(BaseTransformer):
759
783
  Transformed dataset.
760
784
  """
761
785
  if isinstance(dataset, DataFrame):
786
+ expected_type_inferred = ""
787
+ # when it is classifier, infer the datatype from label columns
788
+ if expected_type_inferred == "" and 'predict' in self.model_signatures:
789
+ expected_type_inferred = convert_sp_to_sf_type(
790
+ self.model_signatures['predict'].outputs[0].as_snowpark_type()
791
+ )
792
+
762
793
  output_df = self._batch_inference(
763
794
  dataset=dataset,
764
795
  inference_method="predict",
765
796
  expected_output_cols_list=self.output_cols,
766
- expected_output_cols_type="",
797
+ expected_output_cols_type=expected_type_inferred,
767
798
  )
768
799
  elif isinstance(dataset, pd.DataFrame):
769
800
  output_df = self._sklearn_inference(
@@ -834,10 +865,10 @@ class AffinityPropagation(BaseTransformer):
834
865
 
835
866
  def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
836
867
  """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
837
- Returns an empty list if current object is not a classifier or not yet fitted.
868
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
838
869
  """
839
870
  if getattr(self._sklearn_object, "classes_", None) is None:
840
- return []
871
+ return [output_cols_prefix]
841
872
 
842
873
  classes = self._sklearn_object.classes_
843
874
  if isinstance(classes, numpy.ndarray):
@@ -1062,7 +1093,7 @@ class AffinityPropagation(BaseTransformer):
1062
1093
  cp.dump(self._sklearn_object, local_score_file)
1063
1094
 
1064
1095
  # Create temp stage to run score.
1065
- score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1096
+ score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1066
1097
  session = dataset._session
1067
1098
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
1068
1099
  SqlResultValidator(
@@ -1076,8 +1107,9 @@ class AffinityPropagation(BaseTransformer):
1076
1107
  expected_value=f"Stage area {score_stage_name} successfully created."
1077
1108
  ).validate()
1078
1109
 
1079
- stage_score_file_name = os.path.join(score_stage_name, os.path.basename(local_score_file_name))
1080
- score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1110
+ # Use posixpath to construct stage paths
1111
+ stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
1112
+ score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1081
1113
  statement_params = telemetry.get_function_usage_statement_params(
1082
1114
  project=_PROJECT,
1083
1115
  subproject=_SUBPROJECT,
@@ -1103,6 +1135,7 @@ class AffinityPropagation(BaseTransformer):
1103
1135
  replace=True,
1104
1136
  session=session,
1105
1137
  statement_params=statement_params,
1138
+ anonymous=True
1106
1139
  )
1107
1140
  def score_wrapper_sproc(
1108
1141
  session: Session,
@@ -1110,7 +1143,8 @@ class AffinityPropagation(BaseTransformer):
1110
1143
  stage_score_file_name: str,
1111
1144
  input_cols: List[str],
1112
1145
  label_cols: List[str],
1113
- sample_weight_col: Optional[str]
1146
+ sample_weight_col: Optional[str],
1147
+ statement_params: Dict[str, str]
1114
1148
  ) -> float:
1115
1149
  import cloudpickle as cp
1116
1150
  import numpy as np
@@ -1160,14 +1194,14 @@ class AffinityPropagation(BaseTransformer):
1160
1194
  api_calls=[Session.call],
1161
1195
  custom_tags=dict([("autogen", True)]),
1162
1196
  )
1163
- score = session.call(
1164
- score_sproc_name,
1197
+ score = score_wrapper_sproc(
1198
+ session,
1165
1199
  query,
1166
1200
  stage_score_file_name,
1167
1201
  identifier.get_unescaped_names(self.input_cols),
1168
1202
  identifier.get_unescaped_names(self.label_cols),
1169
1203
  identifier.get_unescaped_names(self.sample_weight_col),
1170
- statement_params=statement_params,
1204
+ statement_params,
1171
1205
  )
1172
1206
 
1173
1207
  cleanup_temp_files([local_score_file_name])
@@ -1185,18 +1219,20 @@ class AffinityPropagation(BaseTransformer):
1185
1219
  if self._sklearn_object._estimator_type == 'classifier':
1186
1220
  outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
1187
1221
  outputs = _rename_features(outputs, self.output_cols) # rename the output columns
1188
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1222
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1223
+ ([] if self._drop_input_cols else inputs) + outputs)
1189
1224
  # For regressor, the type of predict is float64
1190
1225
  elif self._sklearn_object._estimator_type == 'regressor':
1191
1226
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1192
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1193
-
1227
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1228
+ ([] if self._drop_input_cols else inputs) + outputs)
1194
1229
  for prob_func in PROB_FUNCTIONS:
1195
1230
  if hasattr(self, prob_func):
1196
1231
  output_cols_prefix: str = f"{prob_func}_"
1197
1232
  output_column_names = self._get_output_column_names(output_cols_prefix)
1198
1233
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1199
- self._model_signature_dict[prob_func] = ModelSignature(inputs, outputs)
1234
+ self._model_signature_dict[prob_func] = ModelSignature(inputs,
1235
+ ([] if self._drop_input_cols else inputs) + outputs)
1200
1236
 
1201
1237
  @property
1202
1238
  def model_signatures(self) -> Dict[str, ModelSignature]:
@@ -7,6 +7,7 @@
7
7
  #
8
8
  import inspect
9
9
  import os
10
+ import posixpath
10
11
  from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
11
12
  from uuid import uuid4
12
13
 
@@ -27,6 +28,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
27
28
  from snowflake.snowpark import DataFrame, Session
28
29
  from snowflake.snowpark.functions import pandas_udf, sproc
29
30
  from snowflake.snowpark.types import PandasSeries
31
+ from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
30
32
 
31
33
  from snowflake.ml.model.model_signature import (
32
34
  DataType,
@@ -256,7 +258,6 @@ class AgglomerativeClustering(BaseTransformer):
256
258
  sample_weight_col: Optional[str] = None,
257
259
  ) -> None:
258
260
  super().__init__()
259
- self.id = str(uuid4()).replace("-", "_").upper()
260
261
  deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
261
262
 
262
263
  self._deps = list(deps)
@@ -284,6 +285,15 @@ class AgglomerativeClustering(BaseTransformer):
284
285
  self.set_drop_input_cols(drop_input_cols)
285
286
  self.set_sample_weight_col(sample_weight_col)
286
287
 
288
+ def _get_rand_id(self) -> str:
289
+ """
290
+ Generate random id to be used in sproc and stage names.
291
+
292
+ Returns:
293
+ Random id string usable in sproc, table, and stage names.
294
+ """
295
+ return str(uuid4()).replace("-", "_").upper()
296
+
287
297
  def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
288
298
  """
289
299
  Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
@@ -362,7 +372,7 @@ class AgglomerativeClustering(BaseTransformer):
362
372
  cp.dump(self._sklearn_object, local_transform_file)
363
373
 
364
374
  # Create temp stage to run fit.
365
- transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.id)
375
+ transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
366
376
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
367
377
  SqlResultValidator(
368
378
  session=session,
@@ -375,11 +385,12 @@ class AgglomerativeClustering(BaseTransformer):
375
385
  expected_value=f"Stage area {transform_stage_name} successfully created."
376
386
  ).validate()
377
387
 
378
- stage_transform_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
388
+ # Use posixpath to construct stage paths
389
+ stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
390
+ stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
379
391
  local_result_file_name = get_temp_file_path()
380
- stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
381
392
 
382
- fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.id)
393
+ fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
383
394
  statement_params = telemetry.get_function_usage_statement_params(
384
395
  project=_PROJECT,
385
396
  subproject=_SUBPROJECT,
@@ -405,6 +416,7 @@ class AgglomerativeClustering(BaseTransformer):
405
416
  replace=True,
406
417
  session=session,
407
418
  statement_params=statement_params,
419
+ anonymous=True
408
420
  )
409
421
  def fit_wrapper_sproc(
410
422
  session: Session,
@@ -413,7 +425,8 @@ class AgglomerativeClustering(BaseTransformer):
413
425
  stage_result_file_name: str,
414
426
  input_cols: List[str],
415
427
  label_cols: List[str],
416
- sample_weight_col: Optional[str]
428
+ sample_weight_col: Optional[str],
429
+ statement_params: Dict[str, str]
417
430
  ) -> str:
418
431
  import cloudpickle as cp
419
432
  import numpy as np
@@ -480,15 +493,15 @@ class AgglomerativeClustering(BaseTransformer):
480
493
  api_calls=[Session.call],
481
494
  custom_tags=dict([("autogen", True)]),
482
495
  )
483
- sproc_export_file_name = session.call(
484
- fit_sproc_name,
496
+ sproc_export_file_name = fit_wrapper_sproc(
497
+ session,
485
498
  query,
486
499
  stage_transform_file_name,
487
500
  stage_result_file_name,
488
501
  identifier.get_unescaped_names(self.input_cols),
489
502
  identifier.get_unescaped_names(self.label_cols),
490
503
  identifier.get_unescaped_names(self.sample_weight_col),
491
- statement_params=statement_params,
504
+ statement_params,
492
505
  )
493
506
 
494
507
  if "|" in sproc_export_file_name:
@@ -498,7 +511,7 @@ class AgglomerativeClustering(BaseTransformer):
498
511
  print("\n".join(fields[1:]))
499
512
 
500
513
  session.file.get(
501
- os.path.join(stage_result_file_name, sproc_export_file_name),
514
+ posixpath.join(stage_result_file_name, sproc_export_file_name),
502
515
  local_result_file_name,
503
516
  statement_params=statement_params
504
517
  )
@@ -544,7 +557,7 @@ class AgglomerativeClustering(BaseTransformer):
544
557
 
545
558
  # Register vectorized UDF for batch inference
546
559
  batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
547
- safe_id=self.id, method=inference_method)
560
+ safe_id=self._get_rand_id(), method=inference_method)
548
561
 
549
562
  # Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
550
563
  # will try to pickle all of self which fails.
@@ -636,7 +649,7 @@ class AgglomerativeClustering(BaseTransformer):
636
649
  return transformed_pandas_df.to_dict("records")
637
650
 
638
651
  batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
639
- safe_id=self.id
652
+ safe_id=self._get_rand_id()
640
653
  )
641
654
 
642
655
  pass_through_columns = self._get_pass_through_columns(dataset)
@@ -692,26 +705,37 @@ class AgglomerativeClustering(BaseTransformer):
692
705
  # input cols need to match unquoted / quoted
693
706
  input_cols = self.input_cols
694
707
  unquoted_input_cols = identifier.get_unescaped_names(self.input_cols)
708
+ quoted_input_cols = identifier.get_escaped_names(unquoted_input_cols)
695
709
 
696
710
  estimator = self._sklearn_object
697
711
 
698
- input_df = dataset[input_cols] # Select input columns with quoted column names.
699
- if hasattr(estimator, "feature_names_in_"):
700
- missing_features = []
701
- for i, f in enumerate(getattr(estimator, "feature_names_in_")):
702
- if i >= len(input_cols) or (input_cols[i] != f and unquoted_input_cols[i] != f):
703
- missing_features.append(f)
704
-
705
- if len(missing_features) > 0:
706
- raise ValueError(
707
- "The feature names should match with those that were passed during fit.\n"
708
- f"Features seen during fit call but not present in the input: {missing_features}\n"
709
- f"Features in the input dataframe : {input_cols}\n"
710
- )
711
- input_df.columns = getattr(estimator, "feature_names_in_")
712
- else:
713
- # Just rename the column names to unquoted identifiers.
714
- input_df.columns = unquoted_input_cols # Replace the quoted columns identifier with unquoted column ids.
712
+ features_required_by_estimator = getattr(estimator, "feature_names_in_") if hasattr(estimator, "feature_names_in_") else unquoted_input_cols
713
+ missing_features = []
714
+ features_in_dataset = set(dataset.columns)
715
+ columns_to_select = []
716
+ for i, f in enumerate(features_required_by_estimator):
717
+ if (
718
+ i >= len(input_cols)
719
+ or (input_cols[i] != f and unquoted_input_cols[i] != f and quoted_input_cols[i] != f)
720
+ or (input_cols[i] not in features_in_dataset and unquoted_input_cols[i] not in features_in_dataset
721
+ and quoted_input_cols[i] not in features_in_dataset)
722
+ ):
723
+ missing_features.append(f)
724
+ elif input_cols[i] in features_in_dataset:
725
+ columns_to_select.append(input_cols[i])
726
+ elif unquoted_input_cols[i] in features_in_dataset:
727
+ columns_to_select.append(unquoted_input_cols[i])
728
+ else:
729
+ columns_to_select.append(quoted_input_cols[i])
730
+
731
+ if len(missing_features) > 0:
732
+ raise ValueError(
733
+ "The feature names should match with those that were passed during fit.\n"
734
+ f"Features seen during fit call but not present in the input: {missing_features}\n"
735
+ f"Features in the input dataframe : {input_cols}\n"
736
+ )
737
+ input_df = dataset[columns_to_select]
738
+ input_df.columns = features_required_by_estimator
715
739
 
716
740
  transformed_numpy_array = getattr(estimator, inference_method)(
717
741
  input_df
@@ -790,11 +814,18 @@ class AgglomerativeClustering(BaseTransformer):
790
814
  Transformed dataset.
791
815
  """
792
816
  if isinstance(dataset, DataFrame):
817
+ expected_type_inferred = ""
818
+ # when it is classifier, infer the datatype from label columns
819
+ if expected_type_inferred == "" and 'predict' in self.model_signatures:
820
+ expected_type_inferred = convert_sp_to_sf_type(
821
+ self.model_signatures['predict'].outputs[0].as_snowpark_type()
822
+ )
823
+
793
824
  output_df = self._batch_inference(
794
825
  dataset=dataset,
795
826
  inference_method="predict",
796
827
  expected_output_cols_list=self.output_cols,
797
- expected_output_cols_type="",
828
+ expected_output_cols_type=expected_type_inferred,
798
829
  )
799
830
  elif isinstance(dataset, pd.DataFrame):
800
831
  output_df = self._sklearn_inference(
@@ -865,10 +896,10 @@ class AgglomerativeClustering(BaseTransformer):
865
896
 
866
897
  def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
867
898
  """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
868
- Returns an empty list if current object is not a classifier or not yet fitted.
899
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
869
900
  """
870
901
  if getattr(self._sklearn_object, "classes_", None) is None:
871
- return []
902
+ return [output_cols_prefix]
872
903
 
873
904
  classes = self._sklearn_object.classes_
874
905
  if isinstance(classes, numpy.ndarray):
@@ -1093,7 +1124,7 @@ class AgglomerativeClustering(BaseTransformer):
1093
1124
  cp.dump(self._sklearn_object, local_score_file)
1094
1125
 
1095
1126
  # Create temp stage to run score.
1096
- score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1127
+ score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1097
1128
  session = dataset._session
1098
1129
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
1099
1130
  SqlResultValidator(
@@ -1107,8 +1138,9 @@ class AgglomerativeClustering(BaseTransformer):
1107
1138
  expected_value=f"Stage area {score_stage_name} successfully created."
1108
1139
  ).validate()
1109
1140
 
1110
- stage_score_file_name = os.path.join(score_stage_name, os.path.basename(local_score_file_name))
1111
- score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1141
+ # Use posixpath to construct stage paths
1142
+ stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
1143
+ score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1112
1144
  statement_params = telemetry.get_function_usage_statement_params(
1113
1145
  project=_PROJECT,
1114
1146
  subproject=_SUBPROJECT,
@@ -1134,6 +1166,7 @@ class AgglomerativeClustering(BaseTransformer):
1134
1166
  replace=True,
1135
1167
  session=session,
1136
1168
  statement_params=statement_params,
1169
+ anonymous=True
1137
1170
  )
1138
1171
  def score_wrapper_sproc(
1139
1172
  session: Session,
@@ -1141,7 +1174,8 @@ class AgglomerativeClustering(BaseTransformer):
1141
1174
  stage_score_file_name: str,
1142
1175
  input_cols: List[str],
1143
1176
  label_cols: List[str],
1144
- sample_weight_col: Optional[str]
1177
+ sample_weight_col: Optional[str],
1178
+ statement_params: Dict[str, str]
1145
1179
  ) -> float:
1146
1180
  import cloudpickle as cp
1147
1181
  import numpy as np
@@ -1191,14 +1225,14 @@ class AgglomerativeClustering(BaseTransformer):
1191
1225
  api_calls=[Session.call],
1192
1226
  custom_tags=dict([("autogen", True)]),
1193
1227
  )
1194
- score = session.call(
1195
- score_sproc_name,
1228
+ score = score_wrapper_sproc(
1229
+ session,
1196
1230
  query,
1197
1231
  stage_score_file_name,
1198
1232
  identifier.get_unescaped_names(self.input_cols),
1199
1233
  identifier.get_unescaped_names(self.label_cols),
1200
1234
  identifier.get_unescaped_names(self.sample_weight_col),
1201
- statement_params=statement_params,
1235
+ statement_params,
1202
1236
  )
1203
1237
 
1204
1238
  cleanup_temp_files([local_score_file_name])
@@ -1216,18 +1250,20 @@ class AgglomerativeClustering(BaseTransformer):
1216
1250
  if self._sklearn_object._estimator_type == 'classifier':
1217
1251
  outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
1218
1252
  outputs = _rename_features(outputs, self.output_cols) # rename the output columns
1219
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1253
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1254
+ ([] if self._drop_input_cols else inputs) + outputs)
1220
1255
  # For regressor, the type of predict is float64
1221
1256
  elif self._sklearn_object._estimator_type == 'regressor':
1222
1257
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1223
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1224
-
1258
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1259
+ ([] if self._drop_input_cols else inputs) + outputs)
1225
1260
  for prob_func in PROB_FUNCTIONS:
1226
1261
  if hasattr(self, prob_func):
1227
1262
  output_cols_prefix: str = f"{prob_func}_"
1228
1263
  output_column_names = self._get_output_column_names(output_cols_prefix)
1229
1264
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1230
- self._model_signature_dict[prob_func] = ModelSignature(inputs, outputs)
1265
+ self._model_signature_dict[prob_func] = ModelSignature(inputs,
1266
+ ([] if self._drop_input_cols else inputs) + outputs)
1231
1267
 
1232
1268
  @property
1233
1269
  def model_signatures(self) -> Dict[str, ModelSignature]: