snowflake-ml-python 1.0.1__py3-none-any.whl → 1.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. snowflake/ml/_internal/env_utils.py +2 -1
  2. snowflake/ml/_internal/file_utils.py +35 -40
  3. snowflake/ml/_internal/telemetry.py +5 -8
  4. snowflake/ml/_internal/utils/identifier.py +74 -7
  5. snowflake/ml/_internal/utils/uri.py +7 -2
  6. snowflake/ml/model/_core_requirements.py +1 -1
  7. snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py +15 -0
  8. snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py +259 -0
  9. snowflake/ml/model/_deploy_client/image_builds/docker_context.py +89 -0
  10. snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh +24 -0
  11. snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py +118 -0
  12. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +40 -0
  13. snowflake/ml/model/_deploy_client/snowservice/deploy.py +199 -0
  14. snowflake/ml/model/_deploy_client/snowservice/deploy_options.py +88 -0
  15. snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template +24 -0
  16. snowflake/ml/model/_deploy_client/utils/constants.py +47 -0
  17. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +178 -0
  18. snowflake/ml/model/_deploy_client/warehouse/deploy.py +25 -28
  19. snowflake/ml/model/_deploy_client/warehouse/infer_template.py +7 -4
  20. snowflake/ml/model/_deployer.py +14 -27
  21. snowflake/ml/model/_env.py +4 -4
  22. snowflake/ml/model/_handlers/_base.py +3 -1
  23. snowflake/ml/model/_handlers/custom.py +14 -2
  24. snowflake/ml/model/_handlers/pytorch.py +186 -0
  25. snowflake/ml/model/_handlers/sklearn.py +14 -8
  26. snowflake/ml/model/_handlers/snowmlmodel.py +14 -9
  27. snowflake/ml/model/_handlers/torchscript.py +180 -0
  28. snowflake/ml/model/_handlers/xgboost.py +19 -9
  29. snowflake/ml/model/_model.py +27 -21
  30. snowflake/ml/model/_model_meta.py +33 -19
  31. snowflake/ml/model/model_signature.py +446 -66
  32. snowflake/ml/model/type_hints.py +28 -15
  33. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +79 -43
  34. snowflake/ml/modeling/cluster/affinity_propagation.py +79 -43
  35. snowflake/ml/modeling/cluster/agglomerative_clustering.py +79 -43
  36. snowflake/ml/modeling/cluster/birch.py +79 -43
  37. snowflake/ml/modeling/cluster/bisecting_k_means.py +79 -43
  38. snowflake/ml/modeling/cluster/dbscan.py +79 -43
  39. snowflake/ml/modeling/cluster/feature_agglomeration.py +79 -43
  40. snowflake/ml/modeling/cluster/k_means.py +79 -43
  41. snowflake/ml/modeling/cluster/mean_shift.py +79 -43
  42. snowflake/ml/modeling/cluster/mini_batch_k_means.py +79 -43
  43. snowflake/ml/modeling/cluster/optics.py +79 -43
  44. snowflake/ml/modeling/cluster/spectral_biclustering.py +79 -43
  45. snowflake/ml/modeling/cluster/spectral_clustering.py +79 -43
  46. snowflake/ml/modeling/cluster/spectral_coclustering.py +79 -43
  47. snowflake/ml/modeling/compose/column_transformer.py +79 -43
  48. snowflake/ml/modeling/compose/transformed_target_regressor.py +79 -43
  49. snowflake/ml/modeling/covariance/elliptic_envelope.py +79 -43
  50. snowflake/ml/modeling/covariance/empirical_covariance.py +79 -43
  51. snowflake/ml/modeling/covariance/graphical_lasso.py +79 -43
  52. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +79 -43
  53. snowflake/ml/modeling/covariance/ledoit_wolf.py +79 -43
  54. snowflake/ml/modeling/covariance/min_cov_det.py +79 -43
  55. snowflake/ml/modeling/covariance/oas.py +79 -43
  56. snowflake/ml/modeling/covariance/shrunk_covariance.py +79 -43
  57. snowflake/ml/modeling/decomposition/dictionary_learning.py +79 -43
  58. snowflake/ml/modeling/decomposition/factor_analysis.py +79 -43
  59. snowflake/ml/modeling/decomposition/fast_ica.py +79 -43
  60. snowflake/ml/modeling/decomposition/incremental_pca.py +79 -43
  61. snowflake/ml/modeling/decomposition/kernel_pca.py +79 -43
  62. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +79 -43
  63. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +79 -43
  64. snowflake/ml/modeling/decomposition/pca.py +79 -43
  65. snowflake/ml/modeling/decomposition/sparse_pca.py +79 -43
  66. snowflake/ml/modeling/decomposition/truncated_svd.py +79 -43
  67. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +79 -43
  68. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +79 -43
  69. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +79 -43
  70. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +79 -43
  71. snowflake/ml/modeling/ensemble/bagging_classifier.py +79 -43
  72. snowflake/ml/modeling/ensemble/bagging_regressor.py +79 -43
  73. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +79 -43
  74. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +79 -43
  75. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +79 -43
  76. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +79 -43
  77. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +79 -43
  78. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +79 -43
  79. snowflake/ml/modeling/ensemble/isolation_forest.py +79 -43
  80. snowflake/ml/modeling/ensemble/random_forest_classifier.py +79 -43
  81. snowflake/ml/modeling/ensemble/random_forest_regressor.py +79 -43
  82. snowflake/ml/modeling/ensemble/stacking_regressor.py +79 -43
  83. snowflake/ml/modeling/ensemble/voting_classifier.py +79 -43
  84. snowflake/ml/modeling/ensemble/voting_regressor.py +79 -43
  85. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +79 -43
  86. snowflake/ml/modeling/feature_selection/select_fdr.py +79 -43
  87. snowflake/ml/modeling/feature_selection/select_fpr.py +79 -43
  88. snowflake/ml/modeling/feature_selection/select_fwe.py +79 -43
  89. snowflake/ml/modeling/feature_selection/select_k_best.py +79 -43
  90. snowflake/ml/modeling/feature_selection/select_percentile.py +79 -43
  91. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +79 -43
  92. snowflake/ml/modeling/feature_selection/variance_threshold.py +79 -43
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +79 -43
  94. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +79 -43
  95. snowflake/ml/modeling/impute/iterative_imputer.py +79 -43
  96. snowflake/ml/modeling/impute/knn_imputer.py +79 -43
  97. snowflake/ml/modeling/impute/missing_indicator.py +79 -43
  98. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +79 -43
  99. snowflake/ml/modeling/kernel_approximation/nystroem.py +79 -43
  100. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +79 -43
  101. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +79 -43
  102. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +79 -43
  103. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +79 -43
  104. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +79 -43
  105. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +79 -43
  106. snowflake/ml/modeling/linear_model/ard_regression.py +79 -43
  107. snowflake/ml/modeling/linear_model/bayesian_ridge.py +79 -43
  108. snowflake/ml/modeling/linear_model/elastic_net.py +79 -43
  109. snowflake/ml/modeling/linear_model/elastic_net_cv.py +79 -43
  110. snowflake/ml/modeling/linear_model/gamma_regressor.py +79 -43
  111. snowflake/ml/modeling/linear_model/huber_regressor.py +79 -43
  112. snowflake/ml/modeling/linear_model/lars.py +79 -43
  113. snowflake/ml/modeling/linear_model/lars_cv.py +79 -43
  114. snowflake/ml/modeling/linear_model/lasso.py +79 -43
  115. snowflake/ml/modeling/linear_model/lasso_cv.py +79 -43
  116. snowflake/ml/modeling/linear_model/lasso_lars.py +79 -43
  117. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +79 -43
  118. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +79 -43
  119. snowflake/ml/modeling/linear_model/linear_regression.py +79 -43
  120. snowflake/ml/modeling/linear_model/logistic_regression.py +79 -43
  121. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +79 -43
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +79 -43
  123. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +79 -43
  124. snowflake/ml/modeling/linear_model/multi_task_lasso.py +79 -43
  125. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +79 -43
  126. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +79 -43
  127. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +79 -43
  128. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +79 -43
  129. snowflake/ml/modeling/linear_model/perceptron.py +79 -43
  130. snowflake/ml/modeling/linear_model/poisson_regressor.py +79 -43
  131. snowflake/ml/modeling/linear_model/ransac_regressor.py +79 -43
  132. snowflake/ml/modeling/linear_model/ridge.py +79 -43
  133. snowflake/ml/modeling/linear_model/ridge_classifier.py +79 -43
  134. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +79 -43
  135. snowflake/ml/modeling/linear_model/ridge_cv.py +79 -43
  136. snowflake/ml/modeling/linear_model/sgd_classifier.py +79 -43
  137. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +79 -43
  138. snowflake/ml/modeling/linear_model/sgd_regressor.py +79 -43
  139. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +79 -43
  140. snowflake/ml/modeling/linear_model/tweedie_regressor.py +79 -43
  141. snowflake/ml/modeling/manifold/isomap.py +79 -43
  142. snowflake/ml/modeling/manifold/mds.py +79 -43
  143. snowflake/ml/modeling/manifold/spectral_embedding.py +79 -43
  144. snowflake/ml/modeling/manifold/tsne.py +79 -43
  145. snowflake/ml/modeling/metrics/classification.py +6 -1
  146. snowflake/ml/modeling/metrics/regression.py +517 -9
  147. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +79 -43
  148. snowflake/ml/modeling/mixture/gaussian_mixture.py +79 -43
  149. snowflake/ml/modeling/model_selection/grid_search_cv.py +79 -43
  150. snowflake/ml/modeling/model_selection/randomized_search_cv.py +79 -43
  151. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +79 -43
  152. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +79 -43
  153. snowflake/ml/modeling/multiclass/output_code_classifier.py +79 -43
  154. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +79 -43
  155. snowflake/ml/modeling/naive_bayes/categorical_nb.py +79 -43
  156. snowflake/ml/modeling/naive_bayes/complement_nb.py +79 -43
  157. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -43
  158. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +79 -43
  159. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +79 -43
  160. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +79 -43
  161. snowflake/ml/modeling/neighbors/kernel_density.py +79 -43
  162. snowflake/ml/modeling/neighbors/local_outlier_factor.py +79 -43
  163. snowflake/ml/modeling/neighbors/nearest_centroid.py +79 -43
  164. snowflake/ml/modeling/neighbors/nearest_neighbors.py +79 -43
  165. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +79 -43
  166. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +79 -43
  167. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +79 -43
  168. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +79 -43
  169. snowflake/ml/modeling/neural_network/mlp_classifier.py +79 -43
  170. snowflake/ml/modeling/neural_network/mlp_regressor.py +79 -43
  171. snowflake/ml/modeling/pipeline/pipeline.py +24 -0
  172. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +18 -19
  173. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +2 -0
  174. snowflake/ml/modeling/preprocessing/polynomial_features.py +79 -43
  175. snowflake/ml/modeling/semi_supervised/label_propagation.py +79 -43
  176. snowflake/ml/modeling/semi_supervised/label_spreading.py +79 -43
  177. snowflake/ml/modeling/svm/linear_svc.py +79 -43
  178. snowflake/ml/modeling/svm/linear_svr.py +79 -43
  179. snowflake/ml/modeling/svm/nu_svc.py +79 -43
  180. snowflake/ml/modeling/svm/nu_svr.py +79 -43
  181. snowflake/ml/modeling/svm/svc.py +79 -43
  182. snowflake/ml/modeling/svm/svr.py +79 -43
  183. snowflake/ml/modeling/tree/decision_tree_classifier.py +79 -43
  184. snowflake/ml/modeling/tree/decision_tree_regressor.py +79 -43
  185. snowflake/ml/modeling/tree/extra_tree_classifier.py +79 -43
  186. snowflake/ml/modeling/tree/extra_tree_regressor.py +79 -43
  187. snowflake/ml/modeling/xgboost/xgb_classifier.py +79 -43
  188. snowflake/ml/modeling/xgboost/xgb_regressor.py +79 -43
  189. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +79 -43
  190. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +79 -43
  191. snowflake/ml/registry/model_registry.py +123 -121
  192. snowflake/ml/version.py +1 -1
  193. {snowflake_ml_python-1.0.1.dist-info → snowflake_ml_python-1.0.3.dist-info}/METADATA +50 -8
  194. snowflake_ml_python-1.0.3.dist-info/RECORD +259 -0
  195. snowflake_ml_python-1.0.1.dist-info/RECORD +0 -246
  196. {snowflake_ml_python-1.0.1.dist-info → snowflake_ml_python-1.0.3.dist-info}/WHEEL +0 -0
@@ -7,6 +7,7 @@
7
7
  #
8
8
  import inspect
9
9
  import os
10
+ import posixpath
10
11
  from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
11
12
  from uuid import uuid4
12
13
 
@@ -27,6 +28,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
27
28
  from snowflake.snowpark import DataFrame, Session
28
29
  from snowflake.snowpark.functions import pandas_udf, sproc
29
30
  from snowflake.snowpark.types import PandasSeries
31
+ from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
30
32
 
31
33
  from snowflake.ml.model.model_signature import (
32
34
  DataType,
@@ -224,7 +226,6 @@ class MultiTaskLasso(BaseTransformer):
224
226
  sample_weight_col: Optional[str] = None,
225
227
  ) -> None:
226
228
  super().__init__()
227
- self.id = str(uuid4()).replace("-", "_").upper()
228
229
  deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
229
230
 
230
231
  self._deps = list(deps)
@@ -251,6 +252,15 @@ class MultiTaskLasso(BaseTransformer):
251
252
  self.set_drop_input_cols(drop_input_cols)
252
253
  self.set_sample_weight_col(sample_weight_col)
253
254
 
255
+ def _get_rand_id(self) -> str:
256
+ """
257
+ Generate random id to be used in sproc and stage names.
258
+
259
+ Returns:
260
+ Random id string usable in sproc, table, and stage names.
261
+ """
262
+ return str(uuid4()).replace("-", "_").upper()
263
+
254
264
  def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
255
265
  """
256
266
  Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
@@ -329,7 +339,7 @@ class MultiTaskLasso(BaseTransformer):
329
339
  cp.dump(self._sklearn_object, local_transform_file)
330
340
 
331
341
  # Create temp stage to run fit.
332
- transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.id)
342
+ transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
333
343
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
334
344
  SqlResultValidator(
335
345
  session=session,
@@ -342,11 +352,12 @@ class MultiTaskLasso(BaseTransformer):
342
352
  expected_value=f"Stage area {transform_stage_name} successfully created."
343
353
  ).validate()
344
354
 
345
- stage_transform_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
355
+ # Use posixpath to construct stage paths
356
+ stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
357
+ stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
346
358
  local_result_file_name = get_temp_file_path()
347
- stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
348
359
 
349
- fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.id)
360
+ fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
350
361
  statement_params = telemetry.get_function_usage_statement_params(
351
362
  project=_PROJECT,
352
363
  subproject=_SUBPROJECT,
@@ -372,6 +383,7 @@ class MultiTaskLasso(BaseTransformer):
372
383
  replace=True,
373
384
  session=session,
374
385
  statement_params=statement_params,
386
+ anonymous=True
375
387
  )
376
388
  def fit_wrapper_sproc(
377
389
  session: Session,
@@ -380,7 +392,8 @@ class MultiTaskLasso(BaseTransformer):
380
392
  stage_result_file_name: str,
381
393
  input_cols: List[str],
382
394
  label_cols: List[str],
383
- sample_weight_col: Optional[str]
395
+ sample_weight_col: Optional[str],
396
+ statement_params: Dict[str, str]
384
397
  ) -> str:
385
398
  import cloudpickle as cp
386
399
  import numpy as np
@@ -447,15 +460,15 @@ class MultiTaskLasso(BaseTransformer):
447
460
  api_calls=[Session.call],
448
461
  custom_tags=dict([("autogen", True)]),
449
462
  )
450
- sproc_export_file_name = session.call(
451
- fit_sproc_name,
463
+ sproc_export_file_name = fit_wrapper_sproc(
464
+ session,
452
465
  query,
453
466
  stage_transform_file_name,
454
467
  stage_result_file_name,
455
468
  identifier.get_unescaped_names(self.input_cols),
456
469
  identifier.get_unescaped_names(self.label_cols),
457
470
  identifier.get_unescaped_names(self.sample_weight_col),
458
- statement_params=statement_params,
471
+ statement_params,
459
472
  )
460
473
 
461
474
  if "|" in sproc_export_file_name:
@@ -465,7 +478,7 @@ class MultiTaskLasso(BaseTransformer):
465
478
  print("\n".join(fields[1:]))
466
479
 
467
480
  session.file.get(
468
- os.path.join(stage_result_file_name, sproc_export_file_name),
481
+ posixpath.join(stage_result_file_name, sproc_export_file_name),
469
482
  local_result_file_name,
470
483
  statement_params=statement_params
471
484
  )
@@ -511,7 +524,7 @@ class MultiTaskLasso(BaseTransformer):
511
524
 
512
525
  # Register vectorized UDF for batch inference
513
526
  batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
514
- safe_id=self.id, method=inference_method)
527
+ safe_id=self._get_rand_id(), method=inference_method)
515
528
 
516
529
  # Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
517
530
  # will try to pickle all of self which fails.
@@ -603,7 +616,7 @@ class MultiTaskLasso(BaseTransformer):
603
616
  return transformed_pandas_df.to_dict("records")
604
617
 
605
618
  batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
606
- safe_id=self.id
619
+ safe_id=self._get_rand_id()
607
620
  )
608
621
 
609
622
  pass_through_columns = self._get_pass_through_columns(dataset)
@@ -659,26 +672,37 @@ class MultiTaskLasso(BaseTransformer):
659
672
  # input cols need to match unquoted / quoted
660
673
  input_cols = self.input_cols
661
674
  unquoted_input_cols = identifier.get_unescaped_names(self.input_cols)
675
+ quoted_input_cols = identifier.get_escaped_names(unquoted_input_cols)
662
676
 
663
677
  estimator = self._sklearn_object
664
678
 
665
- input_df = dataset[input_cols] # Select input columns with quoted column names.
666
- if hasattr(estimator, "feature_names_in_"):
667
- missing_features = []
668
- for i, f in enumerate(getattr(estimator, "feature_names_in_")):
669
- if i >= len(input_cols) or (input_cols[i] != f and unquoted_input_cols[i] != f):
670
- missing_features.append(f)
671
-
672
- if len(missing_features) > 0:
673
- raise ValueError(
674
- "The feature names should match with those that were passed during fit.\n"
675
- f"Features seen during fit call but not present in the input: {missing_features}\n"
676
- f"Features in the input dataframe : {input_cols}\n"
677
- )
678
- input_df.columns = getattr(estimator, "feature_names_in_")
679
- else:
680
- # Just rename the column names to unquoted identifiers.
681
- input_df.columns = unquoted_input_cols # Replace the quoted columns identifier with unquoted column ids.
679
+ features_required_by_estimator = getattr(estimator, "feature_names_in_") if hasattr(estimator, "feature_names_in_") else unquoted_input_cols
680
+ missing_features = []
681
+ features_in_dataset = set(dataset.columns)
682
+ columns_to_select = []
683
+ for i, f in enumerate(features_required_by_estimator):
684
+ if (
685
+ i >= len(input_cols)
686
+ or (input_cols[i] != f and unquoted_input_cols[i] != f and quoted_input_cols[i] != f)
687
+ or (input_cols[i] not in features_in_dataset and unquoted_input_cols[i] not in features_in_dataset
688
+ and quoted_input_cols[i] not in features_in_dataset)
689
+ ):
690
+ missing_features.append(f)
691
+ elif input_cols[i] in features_in_dataset:
692
+ columns_to_select.append(input_cols[i])
693
+ elif unquoted_input_cols[i] in features_in_dataset:
694
+ columns_to_select.append(unquoted_input_cols[i])
695
+ else:
696
+ columns_to_select.append(quoted_input_cols[i])
697
+
698
+ if len(missing_features) > 0:
699
+ raise ValueError(
700
+ "The feature names should match with those that were passed during fit.\n"
701
+ f"Features seen during fit call but not present in the input: {missing_features}\n"
702
+ f"Features in the input dataframe : {input_cols}\n"
703
+ )
704
+ input_df = dataset[columns_to_select]
705
+ input_df.columns = features_required_by_estimator
682
706
 
683
707
  transformed_numpy_array = getattr(estimator, inference_method)(
684
708
  input_df
@@ -759,11 +783,18 @@ class MultiTaskLasso(BaseTransformer):
759
783
  Transformed dataset.
760
784
  """
761
785
  if isinstance(dataset, DataFrame):
786
+ expected_type_inferred = "float"
787
+ # when it is classifier, infer the datatype from label columns
788
+ if expected_type_inferred == "" and 'predict' in self.model_signatures:
789
+ expected_type_inferred = convert_sp_to_sf_type(
790
+ self.model_signatures['predict'].outputs[0].as_snowpark_type()
791
+ )
792
+
762
793
  output_df = self._batch_inference(
763
794
  dataset=dataset,
764
795
  inference_method="predict",
765
796
  expected_output_cols_list=self.output_cols,
766
- expected_output_cols_type="float",
797
+ expected_output_cols_type=expected_type_inferred,
767
798
  )
768
799
  elif isinstance(dataset, pd.DataFrame):
769
800
  output_df = self._sklearn_inference(
@@ -834,10 +865,10 @@ class MultiTaskLasso(BaseTransformer):
834
865
 
835
866
  def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
836
867
  """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
837
- Returns an empty list if current object is not a classifier or not yet fitted.
868
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
838
869
  """
839
870
  if getattr(self._sklearn_object, "classes_", None) is None:
840
- return []
871
+ return [output_cols_prefix]
841
872
 
842
873
  classes = self._sklearn_object.classes_
843
874
  if isinstance(classes, numpy.ndarray):
@@ -1062,7 +1093,7 @@ class MultiTaskLasso(BaseTransformer):
1062
1093
  cp.dump(self._sklearn_object, local_score_file)
1063
1094
 
1064
1095
  # Create temp stage to run score.
1065
- score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1096
+ score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1066
1097
  session = dataset._session
1067
1098
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
1068
1099
  SqlResultValidator(
@@ -1076,8 +1107,9 @@ class MultiTaskLasso(BaseTransformer):
1076
1107
  expected_value=f"Stage area {score_stage_name} successfully created."
1077
1108
  ).validate()
1078
1109
 
1079
- stage_score_file_name = os.path.join(score_stage_name, os.path.basename(local_score_file_name))
1080
- score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1110
+ # Use posixpath to construct stage paths
1111
+ stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
1112
+ score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1081
1113
  statement_params = telemetry.get_function_usage_statement_params(
1082
1114
  project=_PROJECT,
1083
1115
  subproject=_SUBPROJECT,
@@ -1103,6 +1135,7 @@ class MultiTaskLasso(BaseTransformer):
1103
1135
  replace=True,
1104
1136
  session=session,
1105
1137
  statement_params=statement_params,
1138
+ anonymous=True
1106
1139
  )
1107
1140
  def score_wrapper_sproc(
1108
1141
  session: Session,
@@ -1110,7 +1143,8 @@ class MultiTaskLasso(BaseTransformer):
1110
1143
  stage_score_file_name: str,
1111
1144
  input_cols: List[str],
1112
1145
  label_cols: List[str],
1113
- sample_weight_col: Optional[str]
1146
+ sample_weight_col: Optional[str],
1147
+ statement_params: Dict[str, str]
1114
1148
  ) -> float:
1115
1149
  import cloudpickle as cp
1116
1150
  import numpy as np
@@ -1160,14 +1194,14 @@ class MultiTaskLasso(BaseTransformer):
1160
1194
  api_calls=[Session.call],
1161
1195
  custom_tags=dict([("autogen", True)]),
1162
1196
  )
1163
- score = session.call(
1164
- score_sproc_name,
1197
+ score = score_wrapper_sproc(
1198
+ session,
1165
1199
  query,
1166
1200
  stage_score_file_name,
1167
1201
  identifier.get_unescaped_names(self.input_cols),
1168
1202
  identifier.get_unescaped_names(self.label_cols),
1169
1203
  identifier.get_unescaped_names(self.sample_weight_col),
1170
- statement_params=statement_params,
1204
+ statement_params,
1171
1205
  )
1172
1206
 
1173
1207
  cleanup_temp_files([local_score_file_name])
@@ -1185,18 +1219,20 @@ class MultiTaskLasso(BaseTransformer):
1185
1219
  if self._sklearn_object._estimator_type == 'classifier':
1186
1220
  outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
1187
1221
  outputs = _rename_features(outputs, self.output_cols) # rename the output columns
1188
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1222
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1223
+ ([] if self._drop_input_cols else inputs) + outputs)
1189
1224
  # For regressor, the type of predict is float64
1190
1225
  elif self._sklearn_object._estimator_type == 'regressor':
1191
1226
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1192
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1193
-
1227
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1228
+ ([] if self._drop_input_cols else inputs) + outputs)
1194
1229
  for prob_func in PROB_FUNCTIONS:
1195
1230
  if hasattr(self, prob_func):
1196
1231
  output_cols_prefix: str = f"{prob_func}_"
1197
1232
  output_column_names = self._get_output_column_names(output_cols_prefix)
1198
1233
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1199
- self._model_signature_dict[prob_func] = ModelSignature(inputs, outputs)
1234
+ self._model_signature_dict[prob_func] = ModelSignature(inputs,
1235
+ ([] if self._drop_input_cols else inputs) + outputs)
1200
1236
 
1201
1237
  @property
1202
1238
  def model_signatures(self) -> Dict[str, ModelSignature]:
@@ -7,6 +7,7 @@
7
7
  #
8
8
  import inspect
9
9
  import os
10
+ import posixpath
10
11
  from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
11
12
  from uuid import uuid4
12
13
 
@@ -27,6 +28,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
27
28
  from snowflake.snowpark import DataFrame, Session
28
29
  from snowflake.snowpark.functions import pandas_udf, sproc
29
30
  from snowflake.snowpark.types import PandasSeries
31
+ from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
30
32
 
31
33
  from snowflake.ml.model.model_signature import (
32
34
  DataType,
@@ -255,7 +257,6 @@ class MultiTaskLassoCV(BaseTransformer):
255
257
  sample_weight_col: Optional[str] = None,
256
258
  ) -> None:
257
259
  super().__init__()
258
- self.id = str(uuid4()).replace("-", "_").upper()
259
260
  deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
260
261
 
261
262
  self._deps = list(deps)
@@ -286,6 +287,15 @@ class MultiTaskLassoCV(BaseTransformer):
286
287
  self.set_drop_input_cols(drop_input_cols)
287
288
  self.set_sample_weight_col(sample_weight_col)
288
289
 
290
+ def _get_rand_id(self) -> str:
291
+ """
292
+ Generate random id to be used in sproc and stage names.
293
+
294
+ Returns:
295
+ Random id string usable in sproc, table, and stage names.
296
+ """
297
+ return str(uuid4()).replace("-", "_").upper()
298
+
289
299
  def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
290
300
  """
291
301
  Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
@@ -364,7 +374,7 @@ class MultiTaskLassoCV(BaseTransformer):
364
374
  cp.dump(self._sklearn_object, local_transform_file)
365
375
 
366
376
  # Create temp stage to run fit.
367
- transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.id)
377
+ transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
368
378
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
369
379
  SqlResultValidator(
370
380
  session=session,
@@ -377,11 +387,12 @@ class MultiTaskLassoCV(BaseTransformer):
377
387
  expected_value=f"Stage area {transform_stage_name} successfully created."
378
388
  ).validate()
379
389
 
380
- stage_transform_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
390
+ # Use posixpath to construct stage paths
391
+ stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
392
+ stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
381
393
  local_result_file_name = get_temp_file_path()
382
- stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
383
394
 
384
- fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.id)
395
+ fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
385
396
  statement_params = telemetry.get_function_usage_statement_params(
386
397
  project=_PROJECT,
387
398
  subproject=_SUBPROJECT,
@@ -407,6 +418,7 @@ class MultiTaskLassoCV(BaseTransformer):
407
418
  replace=True,
408
419
  session=session,
409
420
  statement_params=statement_params,
421
+ anonymous=True
410
422
  )
411
423
  def fit_wrapper_sproc(
412
424
  session: Session,
@@ -415,7 +427,8 @@ class MultiTaskLassoCV(BaseTransformer):
415
427
  stage_result_file_name: str,
416
428
  input_cols: List[str],
417
429
  label_cols: List[str],
418
- sample_weight_col: Optional[str]
430
+ sample_weight_col: Optional[str],
431
+ statement_params: Dict[str, str]
419
432
  ) -> str:
420
433
  import cloudpickle as cp
421
434
  import numpy as np
@@ -482,15 +495,15 @@ class MultiTaskLassoCV(BaseTransformer):
482
495
  api_calls=[Session.call],
483
496
  custom_tags=dict([("autogen", True)]),
484
497
  )
485
- sproc_export_file_name = session.call(
486
- fit_sproc_name,
498
+ sproc_export_file_name = fit_wrapper_sproc(
499
+ session,
487
500
  query,
488
501
  stage_transform_file_name,
489
502
  stage_result_file_name,
490
503
  identifier.get_unescaped_names(self.input_cols),
491
504
  identifier.get_unescaped_names(self.label_cols),
492
505
  identifier.get_unescaped_names(self.sample_weight_col),
493
- statement_params=statement_params,
506
+ statement_params,
494
507
  )
495
508
 
496
509
  if "|" in sproc_export_file_name:
@@ -500,7 +513,7 @@ class MultiTaskLassoCV(BaseTransformer):
500
513
  print("\n".join(fields[1:]))
501
514
 
502
515
  session.file.get(
503
- os.path.join(stage_result_file_name, sproc_export_file_name),
516
+ posixpath.join(stage_result_file_name, sproc_export_file_name),
504
517
  local_result_file_name,
505
518
  statement_params=statement_params
506
519
  )
@@ -546,7 +559,7 @@ class MultiTaskLassoCV(BaseTransformer):
546
559
 
547
560
  # Register vectorized UDF for batch inference
548
561
  batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
549
- safe_id=self.id, method=inference_method)
562
+ safe_id=self._get_rand_id(), method=inference_method)
550
563
 
551
564
  # Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
552
565
  # will try to pickle all of self which fails.
@@ -638,7 +651,7 @@ class MultiTaskLassoCV(BaseTransformer):
638
651
  return transformed_pandas_df.to_dict("records")
639
652
 
640
653
  batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
641
- safe_id=self.id
654
+ safe_id=self._get_rand_id()
642
655
  )
643
656
 
644
657
  pass_through_columns = self._get_pass_through_columns(dataset)
@@ -694,26 +707,37 @@ class MultiTaskLassoCV(BaseTransformer):
694
707
  # input cols need to match unquoted / quoted
695
708
  input_cols = self.input_cols
696
709
  unquoted_input_cols = identifier.get_unescaped_names(self.input_cols)
710
+ quoted_input_cols = identifier.get_escaped_names(unquoted_input_cols)
697
711
 
698
712
  estimator = self._sklearn_object
699
713
 
700
- input_df = dataset[input_cols] # Select input columns with quoted column names.
701
- if hasattr(estimator, "feature_names_in_"):
702
- missing_features = []
703
- for i, f in enumerate(getattr(estimator, "feature_names_in_")):
704
- if i >= len(input_cols) or (input_cols[i] != f and unquoted_input_cols[i] != f):
705
- missing_features.append(f)
706
-
707
- if len(missing_features) > 0:
708
- raise ValueError(
709
- "The feature names should match with those that were passed during fit.\n"
710
- f"Features seen during fit call but not present in the input: {missing_features}\n"
711
- f"Features in the input dataframe : {input_cols}\n"
712
- )
713
- input_df.columns = getattr(estimator, "feature_names_in_")
714
- else:
715
- # Just rename the column names to unquoted identifiers.
716
- input_df.columns = unquoted_input_cols # Replace the quoted columns identifier with unquoted column ids.
714
+ features_required_by_estimator = getattr(estimator, "feature_names_in_") if hasattr(estimator, "feature_names_in_") else unquoted_input_cols
715
+ missing_features = []
716
+ features_in_dataset = set(dataset.columns)
717
+ columns_to_select = []
718
+ for i, f in enumerate(features_required_by_estimator):
719
+ if (
720
+ i >= len(input_cols)
721
+ or (input_cols[i] != f and unquoted_input_cols[i] != f and quoted_input_cols[i] != f)
722
+ or (input_cols[i] not in features_in_dataset and unquoted_input_cols[i] not in features_in_dataset
723
+ and quoted_input_cols[i] not in features_in_dataset)
724
+ ):
725
+ missing_features.append(f)
726
+ elif input_cols[i] in features_in_dataset:
727
+ columns_to_select.append(input_cols[i])
728
+ elif unquoted_input_cols[i] in features_in_dataset:
729
+ columns_to_select.append(unquoted_input_cols[i])
730
+ else:
731
+ columns_to_select.append(quoted_input_cols[i])
732
+
733
+ if len(missing_features) > 0:
734
+ raise ValueError(
735
+ "The feature names should match with those that were passed during fit.\n"
736
+ f"Features seen during fit call but not present in the input: {missing_features}\n"
737
+ f"Features in the input dataframe : {input_cols}\n"
738
+ )
739
+ input_df = dataset[columns_to_select]
740
+ input_df.columns = features_required_by_estimator
717
741
 
718
742
  transformed_numpy_array = getattr(estimator, inference_method)(
719
743
  input_df
@@ -794,11 +818,18 @@ class MultiTaskLassoCV(BaseTransformer):
794
818
  Transformed dataset.
795
819
  """
796
820
  if isinstance(dataset, DataFrame):
821
+ expected_type_inferred = "float"
822
+ # when it is classifier, infer the datatype from label columns
823
+ if expected_type_inferred == "" and 'predict' in self.model_signatures:
824
+ expected_type_inferred = convert_sp_to_sf_type(
825
+ self.model_signatures['predict'].outputs[0].as_snowpark_type()
826
+ )
827
+
797
828
  output_df = self._batch_inference(
798
829
  dataset=dataset,
799
830
  inference_method="predict",
800
831
  expected_output_cols_list=self.output_cols,
801
- expected_output_cols_type="float",
832
+ expected_output_cols_type=expected_type_inferred,
802
833
  )
803
834
  elif isinstance(dataset, pd.DataFrame):
804
835
  output_df = self._sklearn_inference(
@@ -869,10 +900,10 @@ class MultiTaskLassoCV(BaseTransformer):
869
900
 
870
901
  def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
871
902
  """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
872
- Returns an empty list if current object is not a classifier or not yet fitted.
903
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
873
904
  """
874
905
  if getattr(self._sklearn_object, "classes_", None) is None:
875
- return []
906
+ return [output_cols_prefix]
876
907
 
877
908
  classes = self._sklearn_object.classes_
878
909
  if isinstance(classes, numpy.ndarray):
@@ -1097,7 +1128,7 @@ class MultiTaskLassoCV(BaseTransformer):
1097
1128
  cp.dump(self._sklearn_object, local_score_file)
1098
1129
 
1099
1130
  # Create temp stage to run score.
1100
- score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1131
+ score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1101
1132
  session = dataset._session
1102
1133
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
1103
1134
  SqlResultValidator(
@@ -1111,8 +1142,9 @@ class MultiTaskLassoCV(BaseTransformer):
1111
1142
  expected_value=f"Stage area {score_stage_name} successfully created."
1112
1143
  ).validate()
1113
1144
 
1114
- stage_score_file_name = os.path.join(score_stage_name, os.path.basename(local_score_file_name))
1115
- score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1145
+ # Use posixpath to construct stage paths
1146
+ stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
1147
+ score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1116
1148
  statement_params = telemetry.get_function_usage_statement_params(
1117
1149
  project=_PROJECT,
1118
1150
  subproject=_SUBPROJECT,
@@ -1138,6 +1170,7 @@ class MultiTaskLassoCV(BaseTransformer):
1138
1170
  replace=True,
1139
1171
  session=session,
1140
1172
  statement_params=statement_params,
1173
+ anonymous=True
1141
1174
  )
1142
1175
  def score_wrapper_sproc(
1143
1176
  session: Session,
@@ -1145,7 +1178,8 @@ class MultiTaskLassoCV(BaseTransformer):
1145
1178
  stage_score_file_name: str,
1146
1179
  input_cols: List[str],
1147
1180
  label_cols: List[str],
1148
- sample_weight_col: Optional[str]
1181
+ sample_weight_col: Optional[str],
1182
+ statement_params: Dict[str, str]
1149
1183
  ) -> float:
1150
1184
  import cloudpickle as cp
1151
1185
  import numpy as np
@@ -1195,14 +1229,14 @@ class MultiTaskLassoCV(BaseTransformer):
1195
1229
  api_calls=[Session.call],
1196
1230
  custom_tags=dict([("autogen", True)]),
1197
1231
  )
1198
- score = session.call(
1199
- score_sproc_name,
1232
+ score = score_wrapper_sproc(
1233
+ session,
1200
1234
  query,
1201
1235
  stage_score_file_name,
1202
1236
  identifier.get_unescaped_names(self.input_cols),
1203
1237
  identifier.get_unescaped_names(self.label_cols),
1204
1238
  identifier.get_unescaped_names(self.sample_weight_col),
1205
- statement_params=statement_params,
1239
+ statement_params,
1206
1240
  )
1207
1241
 
1208
1242
  cleanup_temp_files([local_score_file_name])
@@ -1220,18 +1254,20 @@ class MultiTaskLassoCV(BaseTransformer):
1220
1254
  if self._sklearn_object._estimator_type == 'classifier':
1221
1255
  outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
1222
1256
  outputs = _rename_features(outputs, self.output_cols) # rename the output columns
1223
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1257
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1258
+ ([] if self._drop_input_cols else inputs) + outputs)
1224
1259
  # For regressor, the type of predict is float64
1225
1260
  elif self._sklearn_object._estimator_type == 'regressor':
1226
1261
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1227
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1228
-
1262
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1263
+ ([] if self._drop_input_cols else inputs) + outputs)
1229
1264
  for prob_func in PROB_FUNCTIONS:
1230
1265
  if hasattr(self, prob_func):
1231
1266
  output_cols_prefix: str = f"{prob_func}_"
1232
1267
  output_column_names = self._get_output_column_names(output_cols_prefix)
1233
1268
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1234
- self._model_signature_dict[prob_func] = ModelSignature(inputs, outputs)
1269
+ self._model_signature_dict[prob_func] = ModelSignature(inputs,
1270
+ ([] if self._drop_input_cols else inputs) + outputs)
1235
1271
 
1236
1272
  @property
1237
1273
  def model_signatures(self) -> Dict[str, ModelSignature]: