snowflake-ml-python 1.0.1__py3-none-any.whl → 1.0.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +2 -1
- snowflake/ml/_internal/file_utils.py +35 -40
- snowflake/ml/_internal/telemetry.py +5 -8
- snowflake/ml/_internal/utils/identifier.py +74 -7
- snowflake/ml/_internal/utils/uri.py +7 -2
- snowflake/ml/model/_core_requirements.py +1 -1
- snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py +15 -0
- snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py +259 -0
- snowflake/ml/model/_deploy_client/image_builds/docker_context.py +89 -0
- snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh +24 -0
- snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py +118 -0
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +40 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +199 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy_options.py +88 -0
- snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template +24 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +47 -0
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +178 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +25 -28
- snowflake/ml/model/_deploy_client/warehouse/infer_template.py +7 -4
- snowflake/ml/model/_deployer.py +14 -27
- snowflake/ml/model/_env.py +4 -4
- snowflake/ml/model/_handlers/_base.py +3 -1
- snowflake/ml/model/_handlers/custom.py +14 -2
- snowflake/ml/model/_handlers/pytorch.py +186 -0
- snowflake/ml/model/_handlers/sklearn.py +14 -8
- snowflake/ml/model/_handlers/snowmlmodel.py +14 -9
- snowflake/ml/model/_handlers/torchscript.py +180 -0
- snowflake/ml/model/_handlers/xgboost.py +19 -9
- snowflake/ml/model/_model.py +27 -21
- snowflake/ml/model/_model_meta.py +33 -19
- snowflake/ml/model/model_signature.py +446 -66
- snowflake/ml/model/type_hints.py +28 -15
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +79 -43
- snowflake/ml/modeling/cluster/affinity_propagation.py +79 -43
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +79 -43
- snowflake/ml/modeling/cluster/birch.py +79 -43
- snowflake/ml/modeling/cluster/bisecting_k_means.py +79 -43
- snowflake/ml/modeling/cluster/dbscan.py +79 -43
- snowflake/ml/modeling/cluster/feature_agglomeration.py +79 -43
- snowflake/ml/modeling/cluster/k_means.py +79 -43
- snowflake/ml/modeling/cluster/mean_shift.py +79 -43
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +79 -43
- snowflake/ml/modeling/cluster/optics.py +79 -43
- snowflake/ml/modeling/cluster/spectral_biclustering.py +79 -43
- snowflake/ml/modeling/cluster/spectral_clustering.py +79 -43
- snowflake/ml/modeling/cluster/spectral_coclustering.py +79 -43
- snowflake/ml/modeling/compose/column_transformer.py +79 -43
- snowflake/ml/modeling/compose/transformed_target_regressor.py +79 -43
- snowflake/ml/modeling/covariance/elliptic_envelope.py +79 -43
- snowflake/ml/modeling/covariance/empirical_covariance.py +79 -43
- snowflake/ml/modeling/covariance/graphical_lasso.py +79 -43
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +79 -43
- snowflake/ml/modeling/covariance/ledoit_wolf.py +79 -43
- snowflake/ml/modeling/covariance/min_cov_det.py +79 -43
- snowflake/ml/modeling/covariance/oas.py +79 -43
- snowflake/ml/modeling/covariance/shrunk_covariance.py +79 -43
- snowflake/ml/modeling/decomposition/dictionary_learning.py +79 -43
- snowflake/ml/modeling/decomposition/factor_analysis.py +79 -43
- snowflake/ml/modeling/decomposition/fast_ica.py +79 -43
- snowflake/ml/modeling/decomposition/incremental_pca.py +79 -43
- snowflake/ml/modeling/decomposition/kernel_pca.py +79 -43
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +79 -43
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +79 -43
- snowflake/ml/modeling/decomposition/pca.py +79 -43
- snowflake/ml/modeling/decomposition/sparse_pca.py +79 -43
- snowflake/ml/modeling/decomposition/truncated_svd.py +79 -43
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +79 -43
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +79 -43
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +79 -43
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +79 -43
- snowflake/ml/modeling/ensemble/bagging_classifier.py +79 -43
- snowflake/ml/modeling/ensemble/bagging_regressor.py +79 -43
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +79 -43
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +79 -43
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +79 -43
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +79 -43
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +79 -43
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +79 -43
- snowflake/ml/modeling/ensemble/isolation_forest.py +79 -43
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +79 -43
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +79 -43
- snowflake/ml/modeling/ensemble/stacking_regressor.py +79 -43
- snowflake/ml/modeling/ensemble/voting_classifier.py +79 -43
- snowflake/ml/modeling/ensemble/voting_regressor.py +79 -43
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +79 -43
- snowflake/ml/modeling/feature_selection/select_fdr.py +79 -43
- snowflake/ml/modeling/feature_selection/select_fpr.py +79 -43
- snowflake/ml/modeling/feature_selection/select_fwe.py +79 -43
- snowflake/ml/modeling/feature_selection/select_k_best.py +79 -43
- snowflake/ml/modeling/feature_selection/select_percentile.py +79 -43
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +79 -43
- snowflake/ml/modeling/feature_selection/variance_threshold.py +79 -43
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +79 -43
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +79 -43
- snowflake/ml/modeling/impute/iterative_imputer.py +79 -43
- snowflake/ml/modeling/impute/knn_imputer.py +79 -43
- snowflake/ml/modeling/impute/missing_indicator.py +79 -43
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +79 -43
- snowflake/ml/modeling/kernel_approximation/nystroem.py +79 -43
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +79 -43
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +79 -43
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +79 -43
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +79 -43
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +79 -43
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +79 -43
- snowflake/ml/modeling/linear_model/ard_regression.py +79 -43
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +79 -43
- snowflake/ml/modeling/linear_model/elastic_net.py +79 -43
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +79 -43
- snowflake/ml/modeling/linear_model/gamma_regressor.py +79 -43
- snowflake/ml/modeling/linear_model/huber_regressor.py +79 -43
- snowflake/ml/modeling/linear_model/lars.py +79 -43
- snowflake/ml/modeling/linear_model/lars_cv.py +79 -43
- snowflake/ml/modeling/linear_model/lasso.py +79 -43
- snowflake/ml/modeling/linear_model/lasso_cv.py +79 -43
- snowflake/ml/modeling/linear_model/lasso_lars.py +79 -43
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +79 -43
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +79 -43
- snowflake/ml/modeling/linear_model/linear_regression.py +79 -43
- snowflake/ml/modeling/linear_model/logistic_regression.py +79 -43
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +79 -43
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +79 -43
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +79 -43
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +79 -43
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +79 -43
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +79 -43
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +79 -43
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +79 -43
- snowflake/ml/modeling/linear_model/perceptron.py +79 -43
- snowflake/ml/modeling/linear_model/poisson_regressor.py +79 -43
- snowflake/ml/modeling/linear_model/ransac_regressor.py +79 -43
- snowflake/ml/modeling/linear_model/ridge.py +79 -43
- snowflake/ml/modeling/linear_model/ridge_classifier.py +79 -43
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +79 -43
- snowflake/ml/modeling/linear_model/ridge_cv.py +79 -43
- snowflake/ml/modeling/linear_model/sgd_classifier.py +79 -43
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +79 -43
- snowflake/ml/modeling/linear_model/sgd_regressor.py +79 -43
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +79 -43
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +79 -43
- snowflake/ml/modeling/manifold/isomap.py +79 -43
- snowflake/ml/modeling/manifold/mds.py +79 -43
- snowflake/ml/modeling/manifold/spectral_embedding.py +79 -43
- snowflake/ml/modeling/manifold/tsne.py +79 -43
- snowflake/ml/modeling/metrics/classification.py +6 -1
- snowflake/ml/modeling/metrics/regression.py +517 -9
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +79 -43
- snowflake/ml/modeling/mixture/gaussian_mixture.py +79 -43
- snowflake/ml/modeling/model_selection/grid_search_cv.py +79 -43
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +79 -43
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +79 -43
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +79 -43
- snowflake/ml/modeling/multiclass/output_code_classifier.py +79 -43
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +79 -43
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +79 -43
- snowflake/ml/modeling/naive_bayes/complement_nb.py +79 -43
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -43
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +79 -43
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +79 -43
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +79 -43
- snowflake/ml/modeling/neighbors/kernel_density.py +79 -43
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +79 -43
- snowflake/ml/modeling/neighbors/nearest_centroid.py +79 -43
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +79 -43
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +79 -43
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +79 -43
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +79 -43
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +79 -43
- snowflake/ml/modeling/neural_network/mlp_classifier.py +79 -43
- snowflake/ml/modeling/neural_network/mlp_regressor.py +79 -43
- snowflake/ml/modeling/pipeline/pipeline.py +24 -0
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +18 -19
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +2 -0
- snowflake/ml/modeling/preprocessing/polynomial_features.py +79 -43
- snowflake/ml/modeling/semi_supervised/label_propagation.py +79 -43
- snowflake/ml/modeling/semi_supervised/label_spreading.py +79 -43
- snowflake/ml/modeling/svm/linear_svc.py +79 -43
- snowflake/ml/modeling/svm/linear_svr.py +79 -43
- snowflake/ml/modeling/svm/nu_svc.py +79 -43
- snowflake/ml/modeling/svm/nu_svr.py +79 -43
- snowflake/ml/modeling/svm/svc.py +79 -43
- snowflake/ml/modeling/svm/svr.py +79 -43
- snowflake/ml/modeling/tree/decision_tree_classifier.py +79 -43
- snowflake/ml/modeling/tree/decision_tree_regressor.py +79 -43
- snowflake/ml/modeling/tree/extra_tree_classifier.py +79 -43
- snowflake/ml/modeling/tree/extra_tree_regressor.py +79 -43
- snowflake/ml/modeling/xgboost/xgb_classifier.py +79 -43
- snowflake/ml/modeling/xgboost/xgb_regressor.py +79 -43
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +79 -43
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +79 -43
- snowflake/ml/registry/model_registry.py +123 -121
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.0.1.dist-info → snowflake_ml_python-1.0.3.dist-info}/METADATA +50 -8
- snowflake_ml_python-1.0.3.dist-info/RECORD +259 -0
- snowflake_ml_python-1.0.1.dist-info/RECORD +0 -246
- {snowflake_ml_python-1.0.1.dist-info → snowflake_ml_python-1.0.3.dist-info}/WHEEL +0 -0
@@ -7,6 +7,7 @@
|
|
7
7
|
#
|
8
8
|
import inspect
|
9
9
|
import os
|
10
|
+
import posixpath
|
10
11
|
from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
|
11
12
|
from uuid import uuid4
|
12
13
|
|
@@ -27,6 +28,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
|
|
27
28
|
from snowflake.snowpark import DataFrame, Session
|
28
29
|
from snowflake.snowpark.functions import pandas_udf, sproc
|
29
30
|
from snowflake.snowpark.types import PandasSeries
|
31
|
+
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
32
|
|
31
33
|
from snowflake.ml.model.model_signature import (
|
32
34
|
DataType,
|
@@ -211,7 +213,6 @@ class CategoricalNB(BaseTransformer):
|
|
211
213
|
sample_weight_col: Optional[str] = None,
|
212
214
|
) -> None:
|
213
215
|
super().__init__()
|
214
|
-
self.id = str(uuid4()).replace("-", "_").upper()
|
215
216
|
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
216
217
|
|
217
218
|
self._deps = list(deps)
|
@@ -235,6 +236,15 @@ class CategoricalNB(BaseTransformer):
|
|
235
236
|
self.set_drop_input_cols(drop_input_cols)
|
236
237
|
self.set_sample_weight_col(sample_weight_col)
|
237
238
|
|
239
|
+
def _get_rand_id(self) -> str:
|
240
|
+
"""
|
241
|
+
Generate random id to be used in sproc and stage names.
|
242
|
+
|
243
|
+
Returns:
|
244
|
+
Random id string usable in sproc, table, and stage names.
|
245
|
+
"""
|
246
|
+
return str(uuid4()).replace("-", "_").upper()
|
247
|
+
|
238
248
|
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
239
249
|
"""
|
240
250
|
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
@@ -313,7 +323,7 @@ class CategoricalNB(BaseTransformer):
|
|
313
323
|
cp.dump(self._sklearn_object, local_transform_file)
|
314
324
|
|
315
325
|
# Create temp stage to run fit.
|
316
|
-
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.
|
326
|
+
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
|
317
327
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
|
318
328
|
SqlResultValidator(
|
319
329
|
session=session,
|
@@ -326,11 +336,12 @@ class CategoricalNB(BaseTransformer):
|
|
326
336
|
expected_value=f"Stage area {transform_stage_name} successfully created."
|
327
337
|
).validate()
|
328
338
|
|
329
|
-
|
339
|
+
# Use posixpath to construct stage paths
|
340
|
+
stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
341
|
+
stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
330
342
|
local_result_file_name = get_temp_file_path()
|
331
|
-
stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
332
343
|
|
333
|
-
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.
|
344
|
+
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
|
334
345
|
statement_params = telemetry.get_function_usage_statement_params(
|
335
346
|
project=_PROJECT,
|
336
347
|
subproject=_SUBPROJECT,
|
@@ -356,6 +367,7 @@ class CategoricalNB(BaseTransformer):
|
|
356
367
|
replace=True,
|
357
368
|
session=session,
|
358
369
|
statement_params=statement_params,
|
370
|
+
anonymous=True
|
359
371
|
)
|
360
372
|
def fit_wrapper_sproc(
|
361
373
|
session: Session,
|
@@ -364,7 +376,8 @@ class CategoricalNB(BaseTransformer):
|
|
364
376
|
stage_result_file_name: str,
|
365
377
|
input_cols: List[str],
|
366
378
|
label_cols: List[str],
|
367
|
-
sample_weight_col: Optional[str]
|
379
|
+
sample_weight_col: Optional[str],
|
380
|
+
statement_params: Dict[str, str]
|
368
381
|
) -> str:
|
369
382
|
import cloudpickle as cp
|
370
383
|
import numpy as np
|
@@ -431,15 +444,15 @@ class CategoricalNB(BaseTransformer):
|
|
431
444
|
api_calls=[Session.call],
|
432
445
|
custom_tags=dict([("autogen", True)]),
|
433
446
|
)
|
434
|
-
sproc_export_file_name =
|
435
|
-
|
447
|
+
sproc_export_file_name = fit_wrapper_sproc(
|
448
|
+
session,
|
436
449
|
query,
|
437
450
|
stage_transform_file_name,
|
438
451
|
stage_result_file_name,
|
439
452
|
identifier.get_unescaped_names(self.input_cols),
|
440
453
|
identifier.get_unescaped_names(self.label_cols),
|
441
454
|
identifier.get_unescaped_names(self.sample_weight_col),
|
442
|
-
statement_params
|
455
|
+
statement_params,
|
443
456
|
)
|
444
457
|
|
445
458
|
if "|" in sproc_export_file_name:
|
@@ -449,7 +462,7 @@ class CategoricalNB(BaseTransformer):
|
|
449
462
|
print("\n".join(fields[1:]))
|
450
463
|
|
451
464
|
session.file.get(
|
452
|
-
|
465
|
+
posixpath.join(stage_result_file_name, sproc_export_file_name),
|
453
466
|
local_result_file_name,
|
454
467
|
statement_params=statement_params
|
455
468
|
)
|
@@ -495,7 +508,7 @@ class CategoricalNB(BaseTransformer):
|
|
495
508
|
|
496
509
|
# Register vectorized UDF for batch inference
|
497
510
|
batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
|
498
|
-
safe_id=self.
|
511
|
+
safe_id=self._get_rand_id(), method=inference_method)
|
499
512
|
|
500
513
|
# Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
|
501
514
|
# will try to pickle all of self which fails.
|
@@ -587,7 +600,7 @@ class CategoricalNB(BaseTransformer):
|
|
587
600
|
return transformed_pandas_df.to_dict("records")
|
588
601
|
|
589
602
|
batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
|
590
|
-
safe_id=self.
|
603
|
+
safe_id=self._get_rand_id()
|
591
604
|
)
|
592
605
|
|
593
606
|
pass_through_columns = self._get_pass_through_columns(dataset)
|
@@ -643,26 +656,37 @@ class CategoricalNB(BaseTransformer):
|
|
643
656
|
# input cols need to match unquoted / quoted
|
644
657
|
input_cols = self.input_cols
|
645
658
|
unquoted_input_cols = identifier.get_unescaped_names(self.input_cols)
|
659
|
+
quoted_input_cols = identifier.get_escaped_names(unquoted_input_cols)
|
646
660
|
|
647
661
|
estimator = self._sklearn_object
|
648
662
|
|
649
|
-
|
650
|
-
|
651
|
-
|
652
|
-
|
653
|
-
|
654
|
-
|
655
|
-
|
656
|
-
|
657
|
-
|
658
|
-
|
659
|
-
|
660
|
-
|
661
|
-
|
662
|
-
|
663
|
-
|
664
|
-
|
665
|
-
|
663
|
+
features_required_by_estimator = getattr(estimator, "feature_names_in_") if hasattr(estimator, "feature_names_in_") else unquoted_input_cols
|
664
|
+
missing_features = []
|
665
|
+
features_in_dataset = set(dataset.columns)
|
666
|
+
columns_to_select = []
|
667
|
+
for i, f in enumerate(features_required_by_estimator):
|
668
|
+
if (
|
669
|
+
i >= len(input_cols)
|
670
|
+
or (input_cols[i] != f and unquoted_input_cols[i] != f and quoted_input_cols[i] != f)
|
671
|
+
or (input_cols[i] not in features_in_dataset and unquoted_input_cols[i] not in features_in_dataset
|
672
|
+
and quoted_input_cols[i] not in features_in_dataset)
|
673
|
+
):
|
674
|
+
missing_features.append(f)
|
675
|
+
elif input_cols[i] in features_in_dataset:
|
676
|
+
columns_to_select.append(input_cols[i])
|
677
|
+
elif unquoted_input_cols[i] in features_in_dataset:
|
678
|
+
columns_to_select.append(unquoted_input_cols[i])
|
679
|
+
else:
|
680
|
+
columns_to_select.append(quoted_input_cols[i])
|
681
|
+
|
682
|
+
if len(missing_features) > 0:
|
683
|
+
raise ValueError(
|
684
|
+
"The feature names should match with those that were passed during fit.\n"
|
685
|
+
f"Features seen during fit call but not present in the input: {missing_features}\n"
|
686
|
+
f"Features in the input dataframe : {input_cols}\n"
|
687
|
+
)
|
688
|
+
input_df = dataset[columns_to_select]
|
689
|
+
input_df.columns = features_required_by_estimator
|
666
690
|
|
667
691
|
transformed_numpy_array = getattr(estimator, inference_method)(
|
668
692
|
input_df
|
@@ -743,11 +767,18 @@ class CategoricalNB(BaseTransformer):
|
|
743
767
|
Transformed dataset.
|
744
768
|
"""
|
745
769
|
if isinstance(dataset, DataFrame):
|
770
|
+
expected_type_inferred = ""
|
771
|
+
# when it is classifier, infer the datatype from label columns
|
772
|
+
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
773
|
+
expected_type_inferred = convert_sp_to_sf_type(
|
774
|
+
self.model_signatures['predict'].outputs[0].as_snowpark_type()
|
775
|
+
)
|
776
|
+
|
746
777
|
output_df = self._batch_inference(
|
747
778
|
dataset=dataset,
|
748
779
|
inference_method="predict",
|
749
780
|
expected_output_cols_list=self.output_cols,
|
750
|
-
expected_output_cols_type=
|
781
|
+
expected_output_cols_type=expected_type_inferred,
|
751
782
|
)
|
752
783
|
elif isinstance(dataset, pd.DataFrame):
|
753
784
|
output_df = self._sklearn_inference(
|
@@ -818,10 +849,10 @@ class CategoricalNB(BaseTransformer):
|
|
818
849
|
|
819
850
|
def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
|
820
851
|
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
821
|
-
Returns
|
852
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
822
853
|
"""
|
823
854
|
if getattr(self._sklearn_object, "classes_", None) is None:
|
824
|
-
return []
|
855
|
+
return [output_cols_prefix]
|
825
856
|
|
826
857
|
classes = self._sklearn_object.classes_
|
827
858
|
if isinstance(classes, numpy.ndarray):
|
@@ -1050,7 +1081,7 @@ class CategoricalNB(BaseTransformer):
|
|
1050
1081
|
cp.dump(self._sklearn_object, local_score_file)
|
1051
1082
|
|
1052
1083
|
# Create temp stage to run score.
|
1053
|
-
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.
|
1084
|
+
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1054
1085
|
session = dataset._session
|
1055
1086
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
|
1056
1087
|
SqlResultValidator(
|
@@ -1064,8 +1095,9 @@ class CategoricalNB(BaseTransformer):
|
|
1064
1095
|
expected_value=f"Stage area {score_stage_name} successfully created."
|
1065
1096
|
).validate()
|
1066
1097
|
|
1067
|
-
|
1068
|
-
|
1098
|
+
# Use posixpath to construct stage paths
|
1099
|
+
stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
|
1100
|
+
score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1069
1101
|
statement_params = telemetry.get_function_usage_statement_params(
|
1070
1102
|
project=_PROJECT,
|
1071
1103
|
subproject=_SUBPROJECT,
|
@@ -1091,6 +1123,7 @@ class CategoricalNB(BaseTransformer):
|
|
1091
1123
|
replace=True,
|
1092
1124
|
session=session,
|
1093
1125
|
statement_params=statement_params,
|
1126
|
+
anonymous=True
|
1094
1127
|
)
|
1095
1128
|
def score_wrapper_sproc(
|
1096
1129
|
session: Session,
|
@@ -1098,7 +1131,8 @@ class CategoricalNB(BaseTransformer):
|
|
1098
1131
|
stage_score_file_name: str,
|
1099
1132
|
input_cols: List[str],
|
1100
1133
|
label_cols: List[str],
|
1101
|
-
sample_weight_col: Optional[str]
|
1134
|
+
sample_weight_col: Optional[str],
|
1135
|
+
statement_params: Dict[str, str]
|
1102
1136
|
) -> float:
|
1103
1137
|
import cloudpickle as cp
|
1104
1138
|
import numpy as np
|
@@ -1148,14 +1182,14 @@ class CategoricalNB(BaseTransformer):
|
|
1148
1182
|
api_calls=[Session.call],
|
1149
1183
|
custom_tags=dict([("autogen", True)]),
|
1150
1184
|
)
|
1151
|
-
score =
|
1152
|
-
|
1185
|
+
score = score_wrapper_sproc(
|
1186
|
+
session,
|
1153
1187
|
query,
|
1154
1188
|
stage_score_file_name,
|
1155
1189
|
identifier.get_unescaped_names(self.input_cols),
|
1156
1190
|
identifier.get_unescaped_names(self.label_cols),
|
1157
1191
|
identifier.get_unescaped_names(self.sample_weight_col),
|
1158
|
-
statement_params
|
1192
|
+
statement_params,
|
1159
1193
|
)
|
1160
1194
|
|
1161
1195
|
cleanup_temp_files([local_score_file_name])
|
@@ -1173,18 +1207,20 @@ class CategoricalNB(BaseTransformer):
|
|
1173
1207
|
if self._sklearn_object._estimator_type == 'classifier':
|
1174
1208
|
outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
|
1175
1209
|
outputs = _rename_features(outputs, self.output_cols) # rename the output columns
|
1176
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1210
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1211
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1177
1212
|
# For regressor, the type of predict is float64
|
1178
1213
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1179
1214
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1180
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1181
|
-
|
1215
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1216
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1182
1217
|
for prob_func in PROB_FUNCTIONS:
|
1183
1218
|
if hasattr(self, prob_func):
|
1184
1219
|
output_cols_prefix: str = f"{prob_func}_"
|
1185
1220
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1186
1221
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1187
|
-
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1222
|
+
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1223
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1188
1224
|
|
1189
1225
|
@property
|
1190
1226
|
def model_signatures(self) -> Dict[str, ModelSignature]:
|
@@ -7,6 +7,7 @@
|
|
7
7
|
#
|
8
8
|
import inspect
|
9
9
|
import os
|
10
|
+
import posixpath
|
10
11
|
from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
|
11
12
|
from uuid import uuid4
|
12
13
|
|
@@ -27,6 +28,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
|
|
27
28
|
from snowflake.snowpark import DataFrame, Session
|
28
29
|
from snowflake.snowpark.functions import pandas_udf, sproc
|
29
30
|
from snowflake.snowpark.types import PandasSeries
|
31
|
+
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
32
|
|
31
33
|
from snowflake.ml.model.model_signature import (
|
32
34
|
DataType,
|
@@ -205,7 +207,6 @@ class ComplementNB(BaseTransformer):
|
|
205
207
|
sample_weight_col: Optional[str] = None,
|
206
208
|
) -> None:
|
207
209
|
super().__init__()
|
208
|
-
self.id = str(uuid4()).replace("-", "_").upper()
|
209
210
|
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
210
211
|
|
211
212
|
self._deps = list(deps)
|
@@ -229,6 +230,15 @@ class ComplementNB(BaseTransformer):
|
|
229
230
|
self.set_drop_input_cols(drop_input_cols)
|
230
231
|
self.set_sample_weight_col(sample_weight_col)
|
231
232
|
|
233
|
+
def _get_rand_id(self) -> str:
|
234
|
+
"""
|
235
|
+
Generate random id to be used in sproc and stage names.
|
236
|
+
|
237
|
+
Returns:
|
238
|
+
Random id string usable in sproc, table, and stage names.
|
239
|
+
"""
|
240
|
+
return str(uuid4()).replace("-", "_").upper()
|
241
|
+
|
232
242
|
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
233
243
|
"""
|
234
244
|
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
@@ -307,7 +317,7 @@ class ComplementNB(BaseTransformer):
|
|
307
317
|
cp.dump(self._sklearn_object, local_transform_file)
|
308
318
|
|
309
319
|
# Create temp stage to run fit.
|
310
|
-
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.
|
320
|
+
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
|
311
321
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
|
312
322
|
SqlResultValidator(
|
313
323
|
session=session,
|
@@ -320,11 +330,12 @@ class ComplementNB(BaseTransformer):
|
|
320
330
|
expected_value=f"Stage area {transform_stage_name} successfully created."
|
321
331
|
).validate()
|
322
332
|
|
323
|
-
|
333
|
+
# Use posixpath to construct stage paths
|
334
|
+
stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
335
|
+
stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
324
336
|
local_result_file_name = get_temp_file_path()
|
325
|
-
stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
326
337
|
|
327
|
-
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.
|
338
|
+
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
|
328
339
|
statement_params = telemetry.get_function_usage_statement_params(
|
329
340
|
project=_PROJECT,
|
330
341
|
subproject=_SUBPROJECT,
|
@@ -350,6 +361,7 @@ class ComplementNB(BaseTransformer):
|
|
350
361
|
replace=True,
|
351
362
|
session=session,
|
352
363
|
statement_params=statement_params,
|
364
|
+
anonymous=True
|
353
365
|
)
|
354
366
|
def fit_wrapper_sproc(
|
355
367
|
session: Session,
|
@@ -358,7 +370,8 @@ class ComplementNB(BaseTransformer):
|
|
358
370
|
stage_result_file_name: str,
|
359
371
|
input_cols: List[str],
|
360
372
|
label_cols: List[str],
|
361
|
-
sample_weight_col: Optional[str]
|
373
|
+
sample_weight_col: Optional[str],
|
374
|
+
statement_params: Dict[str, str]
|
362
375
|
) -> str:
|
363
376
|
import cloudpickle as cp
|
364
377
|
import numpy as np
|
@@ -425,15 +438,15 @@ class ComplementNB(BaseTransformer):
|
|
425
438
|
api_calls=[Session.call],
|
426
439
|
custom_tags=dict([("autogen", True)]),
|
427
440
|
)
|
428
|
-
sproc_export_file_name =
|
429
|
-
|
441
|
+
sproc_export_file_name = fit_wrapper_sproc(
|
442
|
+
session,
|
430
443
|
query,
|
431
444
|
stage_transform_file_name,
|
432
445
|
stage_result_file_name,
|
433
446
|
identifier.get_unescaped_names(self.input_cols),
|
434
447
|
identifier.get_unescaped_names(self.label_cols),
|
435
448
|
identifier.get_unescaped_names(self.sample_weight_col),
|
436
|
-
statement_params
|
449
|
+
statement_params,
|
437
450
|
)
|
438
451
|
|
439
452
|
if "|" in sproc_export_file_name:
|
@@ -443,7 +456,7 @@ class ComplementNB(BaseTransformer):
|
|
443
456
|
print("\n".join(fields[1:]))
|
444
457
|
|
445
458
|
session.file.get(
|
446
|
-
|
459
|
+
posixpath.join(stage_result_file_name, sproc_export_file_name),
|
447
460
|
local_result_file_name,
|
448
461
|
statement_params=statement_params
|
449
462
|
)
|
@@ -489,7 +502,7 @@ class ComplementNB(BaseTransformer):
|
|
489
502
|
|
490
503
|
# Register vectorized UDF for batch inference
|
491
504
|
batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
|
492
|
-
safe_id=self.
|
505
|
+
safe_id=self._get_rand_id(), method=inference_method)
|
493
506
|
|
494
507
|
# Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
|
495
508
|
# will try to pickle all of self which fails.
|
@@ -581,7 +594,7 @@ class ComplementNB(BaseTransformer):
|
|
581
594
|
return transformed_pandas_df.to_dict("records")
|
582
595
|
|
583
596
|
batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
|
584
|
-
safe_id=self.
|
597
|
+
safe_id=self._get_rand_id()
|
585
598
|
)
|
586
599
|
|
587
600
|
pass_through_columns = self._get_pass_through_columns(dataset)
|
@@ -637,26 +650,37 @@ class ComplementNB(BaseTransformer):
|
|
637
650
|
# input cols need to match unquoted / quoted
|
638
651
|
input_cols = self.input_cols
|
639
652
|
unquoted_input_cols = identifier.get_unescaped_names(self.input_cols)
|
653
|
+
quoted_input_cols = identifier.get_escaped_names(unquoted_input_cols)
|
640
654
|
|
641
655
|
estimator = self._sklearn_object
|
642
656
|
|
643
|
-
|
644
|
-
|
645
|
-
|
646
|
-
|
647
|
-
|
648
|
-
|
649
|
-
|
650
|
-
|
651
|
-
|
652
|
-
|
653
|
-
|
654
|
-
|
655
|
-
|
656
|
-
|
657
|
-
|
658
|
-
|
659
|
-
|
657
|
+
features_required_by_estimator = getattr(estimator, "feature_names_in_") if hasattr(estimator, "feature_names_in_") else unquoted_input_cols
|
658
|
+
missing_features = []
|
659
|
+
features_in_dataset = set(dataset.columns)
|
660
|
+
columns_to_select = []
|
661
|
+
for i, f in enumerate(features_required_by_estimator):
|
662
|
+
if (
|
663
|
+
i >= len(input_cols)
|
664
|
+
or (input_cols[i] != f and unquoted_input_cols[i] != f and quoted_input_cols[i] != f)
|
665
|
+
or (input_cols[i] not in features_in_dataset and unquoted_input_cols[i] not in features_in_dataset
|
666
|
+
and quoted_input_cols[i] not in features_in_dataset)
|
667
|
+
):
|
668
|
+
missing_features.append(f)
|
669
|
+
elif input_cols[i] in features_in_dataset:
|
670
|
+
columns_to_select.append(input_cols[i])
|
671
|
+
elif unquoted_input_cols[i] in features_in_dataset:
|
672
|
+
columns_to_select.append(unquoted_input_cols[i])
|
673
|
+
else:
|
674
|
+
columns_to_select.append(quoted_input_cols[i])
|
675
|
+
|
676
|
+
if len(missing_features) > 0:
|
677
|
+
raise ValueError(
|
678
|
+
"The feature names should match with those that were passed during fit.\n"
|
679
|
+
f"Features seen during fit call but not present in the input: {missing_features}\n"
|
680
|
+
f"Features in the input dataframe : {input_cols}\n"
|
681
|
+
)
|
682
|
+
input_df = dataset[columns_to_select]
|
683
|
+
input_df.columns = features_required_by_estimator
|
660
684
|
|
661
685
|
transformed_numpy_array = getattr(estimator, inference_method)(
|
662
686
|
input_df
|
@@ -737,11 +761,18 @@ class ComplementNB(BaseTransformer):
|
|
737
761
|
Transformed dataset.
|
738
762
|
"""
|
739
763
|
if isinstance(dataset, DataFrame):
|
764
|
+
expected_type_inferred = ""
|
765
|
+
# when it is classifier, infer the datatype from label columns
|
766
|
+
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
767
|
+
expected_type_inferred = convert_sp_to_sf_type(
|
768
|
+
self.model_signatures['predict'].outputs[0].as_snowpark_type()
|
769
|
+
)
|
770
|
+
|
740
771
|
output_df = self._batch_inference(
|
741
772
|
dataset=dataset,
|
742
773
|
inference_method="predict",
|
743
774
|
expected_output_cols_list=self.output_cols,
|
744
|
-
expected_output_cols_type=
|
775
|
+
expected_output_cols_type=expected_type_inferred,
|
745
776
|
)
|
746
777
|
elif isinstance(dataset, pd.DataFrame):
|
747
778
|
output_df = self._sklearn_inference(
|
@@ -812,10 +843,10 @@ class ComplementNB(BaseTransformer):
|
|
812
843
|
|
813
844
|
def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
|
814
845
|
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
815
|
-
Returns
|
846
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
816
847
|
"""
|
817
848
|
if getattr(self._sklearn_object, "classes_", None) is None:
|
818
|
-
return []
|
849
|
+
return [output_cols_prefix]
|
819
850
|
|
820
851
|
classes = self._sklearn_object.classes_
|
821
852
|
if isinstance(classes, numpy.ndarray):
|
@@ -1044,7 +1075,7 @@ class ComplementNB(BaseTransformer):
|
|
1044
1075
|
cp.dump(self._sklearn_object, local_score_file)
|
1045
1076
|
|
1046
1077
|
# Create temp stage to run score.
|
1047
|
-
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.
|
1078
|
+
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1048
1079
|
session = dataset._session
|
1049
1080
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
|
1050
1081
|
SqlResultValidator(
|
@@ -1058,8 +1089,9 @@ class ComplementNB(BaseTransformer):
|
|
1058
1089
|
expected_value=f"Stage area {score_stage_name} successfully created."
|
1059
1090
|
).validate()
|
1060
1091
|
|
1061
|
-
|
1062
|
-
|
1092
|
+
# Use posixpath to construct stage paths
|
1093
|
+
stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
|
1094
|
+
score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1063
1095
|
statement_params = telemetry.get_function_usage_statement_params(
|
1064
1096
|
project=_PROJECT,
|
1065
1097
|
subproject=_SUBPROJECT,
|
@@ -1085,6 +1117,7 @@ class ComplementNB(BaseTransformer):
|
|
1085
1117
|
replace=True,
|
1086
1118
|
session=session,
|
1087
1119
|
statement_params=statement_params,
|
1120
|
+
anonymous=True
|
1088
1121
|
)
|
1089
1122
|
def score_wrapper_sproc(
|
1090
1123
|
session: Session,
|
@@ -1092,7 +1125,8 @@ class ComplementNB(BaseTransformer):
|
|
1092
1125
|
stage_score_file_name: str,
|
1093
1126
|
input_cols: List[str],
|
1094
1127
|
label_cols: List[str],
|
1095
|
-
sample_weight_col: Optional[str]
|
1128
|
+
sample_weight_col: Optional[str],
|
1129
|
+
statement_params: Dict[str, str]
|
1096
1130
|
) -> float:
|
1097
1131
|
import cloudpickle as cp
|
1098
1132
|
import numpy as np
|
@@ -1142,14 +1176,14 @@ class ComplementNB(BaseTransformer):
|
|
1142
1176
|
api_calls=[Session.call],
|
1143
1177
|
custom_tags=dict([("autogen", True)]),
|
1144
1178
|
)
|
1145
|
-
score =
|
1146
|
-
|
1179
|
+
score = score_wrapper_sproc(
|
1180
|
+
session,
|
1147
1181
|
query,
|
1148
1182
|
stage_score_file_name,
|
1149
1183
|
identifier.get_unescaped_names(self.input_cols),
|
1150
1184
|
identifier.get_unescaped_names(self.label_cols),
|
1151
1185
|
identifier.get_unescaped_names(self.sample_weight_col),
|
1152
|
-
statement_params
|
1186
|
+
statement_params,
|
1153
1187
|
)
|
1154
1188
|
|
1155
1189
|
cleanup_temp_files([local_score_file_name])
|
@@ -1167,18 +1201,20 @@ class ComplementNB(BaseTransformer):
|
|
1167
1201
|
if self._sklearn_object._estimator_type == 'classifier':
|
1168
1202
|
outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
|
1169
1203
|
outputs = _rename_features(outputs, self.output_cols) # rename the output columns
|
1170
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1204
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1205
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1171
1206
|
# For regressor, the type of predict is float64
|
1172
1207
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1173
1208
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1174
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1175
|
-
|
1209
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1210
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1176
1211
|
for prob_func in PROB_FUNCTIONS:
|
1177
1212
|
if hasattr(self, prob_func):
|
1178
1213
|
output_cols_prefix: str = f"{prob_func}_"
|
1179
1214
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1180
1215
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1181
|
-
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1216
|
+
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1217
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1182
1218
|
|
1183
1219
|
@property
|
1184
1220
|
def model_signatures(self) -> Dict[str, ModelSignature]:
|