snowflake-ml-python 1.0.1__py3-none-any.whl → 1.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. snowflake/ml/_internal/env_utils.py +2 -1
  2. snowflake/ml/_internal/file_utils.py +35 -40
  3. snowflake/ml/_internal/telemetry.py +5 -8
  4. snowflake/ml/_internal/utils/identifier.py +74 -7
  5. snowflake/ml/_internal/utils/uri.py +7 -2
  6. snowflake/ml/model/_core_requirements.py +1 -1
  7. snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py +15 -0
  8. snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py +259 -0
  9. snowflake/ml/model/_deploy_client/image_builds/docker_context.py +89 -0
  10. snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh +24 -0
  11. snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py +118 -0
  12. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +40 -0
  13. snowflake/ml/model/_deploy_client/snowservice/deploy.py +199 -0
  14. snowflake/ml/model/_deploy_client/snowservice/deploy_options.py +88 -0
  15. snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template +24 -0
  16. snowflake/ml/model/_deploy_client/utils/constants.py +47 -0
  17. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +178 -0
  18. snowflake/ml/model/_deploy_client/warehouse/deploy.py +25 -28
  19. snowflake/ml/model/_deploy_client/warehouse/infer_template.py +7 -4
  20. snowflake/ml/model/_deployer.py +14 -27
  21. snowflake/ml/model/_env.py +4 -4
  22. snowflake/ml/model/_handlers/_base.py +3 -1
  23. snowflake/ml/model/_handlers/custom.py +14 -2
  24. snowflake/ml/model/_handlers/pytorch.py +186 -0
  25. snowflake/ml/model/_handlers/sklearn.py +14 -8
  26. snowflake/ml/model/_handlers/snowmlmodel.py +14 -9
  27. snowflake/ml/model/_handlers/torchscript.py +180 -0
  28. snowflake/ml/model/_handlers/xgboost.py +19 -9
  29. snowflake/ml/model/_model.py +27 -21
  30. snowflake/ml/model/_model_meta.py +33 -19
  31. snowflake/ml/model/model_signature.py +446 -66
  32. snowflake/ml/model/type_hints.py +28 -15
  33. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +79 -43
  34. snowflake/ml/modeling/cluster/affinity_propagation.py +79 -43
  35. snowflake/ml/modeling/cluster/agglomerative_clustering.py +79 -43
  36. snowflake/ml/modeling/cluster/birch.py +79 -43
  37. snowflake/ml/modeling/cluster/bisecting_k_means.py +79 -43
  38. snowflake/ml/modeling/cluster/dbscan.py +79 -43
  39. snowflake/ml/modeling/cluster/feature_agglomeration.py +79 -43
  40. snowflake/ml/modeling/cluster/k_means.py +79 -43
  41. snowflake/ml/modeling/cluster/mean_shift.py +79 -43
  42. snowflake/ml/modeling/cluster/mini_batch_k_means.py +79 -43
  43. snowflake/ml/modeling/cluster/optics.py +79 -43
  44. snowflake/ml/modeling/cluster/spectral_biclustering.py +79 -43
  45. snowflake/ml/modeling/cluster/spectral_clustering.py +79 -43
  46. snowflake/ml/modeling/cluster/spectral_coclustering.py +79 -43
  47. snowflake/ml/modeling/compose/column_transformer.py +79 -43
  48. snowflake/ml/modeling/compose/transformed_target_regressor.py +79 -43
  49. snowflake/ml/modeling/covariance/elliptic_envelope.py +79 -43
  50. snowflake/ml/modeling/covariance/empirical_covariance.py +79 -43
  51. snowflake/ml/modeling/covariance/graphical_lasso.py +79 -43
  52. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +79 -43
  53. snowflake/ml/modeling/covariance/ledoit_wolf.py +79 -43
  54. snowflake/ml/modeling/covariance/min_cov_det.py +79 -43
  55. snowflake/ml/modeling/covariance/oas.py +79 -43
  56. snowflake/ml/modeling/covariance/shrunk_covariance.py +79 -43
  57. snowflake/ml/modeling/decomposition/dictionary_learning.py +79 -43
  58. snowflake/ml/modeling/decomposition/factor_analysis.py +79 -43
  59. snowflake/ml/modeling/decomposition/fast_ica.py +79 -43
  60. snowflake/ml/modeling/decomposition/incremental_pca.py +79 -43
  61. snowflake/ml/modeling/decomposition/kernel_pca.py +79 -43
  62. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +79 -43
  63. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +79 -43
  64. snowflake/ml/modeling/decomposition/pca.py +79 -43
  65. snowflake/ml/modeling/decomposition/sparse_pca.py +79 -43
  66. snowflake/ml/modeling/decomposition/truncated_svd.py +79 -43
  67. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +79 -43
  68. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +79 -43
  69. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +79 -43
  70. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +79 -43
  71. snowflake/ml/modeling/ensemble/bagging_classifier.py +79 -43
  72. snowflake/ml/modeling/ensemble/bagging_regressor.py +79 -43
  73. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +79 -43
  74. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +79 -43
  75. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +79 -43
  76. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +79 -43
  77. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +79 -43
  78. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +79 -43
  79. snowflake/ml/modeling/ensemble/isolation_forest.py +79 -43
  80. snowflake/ml/modeling/ensemble/random_forest_classifier.py +79 -43
  81. snowflake/ml/modeling/ensemble/random_forest_regressor.py +79 -43
  82. snowflake/ml/modeling/ensemble/stacking_regressor.py +79 -43
  83. snowflake/ml/modeling/ensemble/voting_classifier.py +79 -43
  84. snowflake/ml/modeling/ensemble/voting_regressor.py +79 -43
  85. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +79 -43
  86. snowflake/ml/modeling/feature_selection/select_fdr.py +79 -43
  87. snowflake/ml/modeling/feature_selection/select_fpr.py +79 -43
  88. snowflake/ml/modeling/feature_selection/select_fwe.py +79 -43
  89. snowflake/ml/modeling/feature_selection/select_k_best.py +79 -43
  90. snowflake/ml/modeling/feature_selection/select_percentile.py +79 -43
  91. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +79 -43
  92. snowflake/ml/modeling/feature_selection/variance_threshold.py +79 -43
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +79 -43
  94. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +79 -43
  95. snowflake/ml/modeling/impute/iterative_imputer.py +79 -43
  96. snowflake/ml/modeling/impute/knn_imputer.py +79 -43
  97. snowflake/ml/modeling/impute/missing_indicator.py +79 -43
  98. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +79 -43
  99. snowflake/ml/modeling/kernel_approximation/nystroem.py +79 -43
  100. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +79 -43
  101. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +79 -43
  102. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +79 -43
  103. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +79 -43
  104. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +79 -43
  105. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +79 -43
  106. snowflake/ml/modeling/linear_model/ard_regression.py +79 -43
  107. snowflake/ml/modeling/linear_model/bayesian_ridge.py +79 -43
  108. snowflake/ml/modeling/linear_model/elastic_net.py +79 -43
  109. snowflake/ml/modeling/linear_model/elastic_net_cv.py +79 -43
  110. snowflake/ml/modeling/linear_model/gamma_regressor.py +79 -43
  111. snowflake/ml/modeling/linear_model/huber_regressor.py +79 -43
  112. snowflake/ml/modeling/linear_model/lars.py +79 -43
  113. snowflake/ml/modeling/linear_model/lars_cv.py +79 -43
  114. snowflake/ml/modeling/linear_model/lasso.py +79 -43
  115. snowflake/ml/modeling/linear_model/lasso_cv.py +79 -43
  116. snowflake/ml/modeling/linear_model/lasso_lars.py +79 -43
  117. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +79 -43
  118. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +79 -43
  119. snowflake/ml/modeling/linear_model/linear_regression.py +79 -43
  120. snowflake/ml/modeling/linear_model/logistic_regression.py +79 -43
  121. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +79 -43
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +79 -43
  123. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +79 -43
  124. snowflake/ml/modeling/linear_model/multi_task_lasso.py +79 -43
  125. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +79 -43
  126. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +79 -43
  127. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +79 -43
  128. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +79 -43
  129. snowflake/ml/modeling/linear_model/perceptron.py +79 -43
  130. snowflake/ml/modeling/linear_model/poisson_regressor.py +79 -43
  131. snowflake/ml/modeling/linear_model/ransac_regressor.py +79 -43
  132. snowflake/ml/modeling/linear_model/ridge.py +79 -43
  133. snowflake/ml/modeling/linear_model/ridge_classifier.py +79 -43
  134. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +79 -43
  135. snowflake/ml/modeling/linear_model/ridge_cv.py +79 -43
  136. snowflake/ml/modeling/linear_model/sgd_classifier.py +79 -43
  137. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +79 -43
  138. snowflake/ml/modeling/linear_model/sgd_regressor.py +79 -43
  139. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +79 -43
  140. snowflake/ml/modeling/linear_model/tweedie_regressor.py +79 -43
  141. snowflake/ml/modeling/manifold/isomap.py +79 -43
  142. snowflake/ml/modeling/manifold/mds.py +79 -43
  143. snowflake/ml/modeling/manifold/spectral_embedding.py +79 -43
  144. snowflake/ml/modeling/manifold/tsne.py +79 -43
  145. snowflake/ml/modeling/metrics/classification.py +6 -1
  146. snowflake/ml/modeling/metrics/regression.py +517 -9
  147. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +79 -43
  148. snowflake/ml/modeling/mixture/gaussian_mixture.py +79 -43
  149. snowflake/ml/modeling/model_selection/grid_search_cv.py +79 -43
  150. snowflake/ml/modeling/model_selection/randomized_search_cv.py +79 -43
  151. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +79 -43
  152. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +79 -43
  153. snowflake/ml/modeling/multiclass/output_code_classifier.py +79 -43
  154. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +79 -43
  155. snowflake/ml/modeling/naive_bayes/categorical_nb.py +79 -43
  156. snowflake/ml/modeling/naive_bayes/complement_nb.py +79 -43
  157. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -43
  158. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +79 -43
  159. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +79 -43
  160. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +79 -43
  161. snowflake/ml/modeling/neighbors/kernel_density.py +79 -43
  162. snowflake/ml/modeling/neighbors/local_outlier_factor.py +79 -43
  163. snowflake/ml/modeling/neighbors/nearest_centroid.py +79 -43
  164. snowflake/ml/modeling/neighbors/nearest_neighbors.py +79 -43
  165. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +79 -43
  166. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +79 -43
  167. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +79 -43
  168. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +79 -43
  169. snowflake/ml/modeling/neural_network/mlp_classifier.py +79 -43
  170. snowflake/ml/modeling/neural_network/mlp_regressor.py +79 -43
  171. snowflake/ml/modeling/pipeline/pipeline.py +24 -0
  172. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +18 -19
  173. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +2 -0
  174. snowflake/ml/modeling/preprocessing/polynomial_features.py +79 -43
  175. snowflake/ml/modeling/semi_supervised/label_propagation.py +79 -43
  176. snowflake/ml/modeling/semi_supervised/label_spreading.py +79 -43
  177. snowflake/ml/modeling/svm/linear_svc.py +79 -43
  178. snowflake/ml/modeling/svm/linear_svr.py +79 -43
  179. snowflake/ml/modeling/svm/nu_svc.py +79 -43
  180. snowflake/ml/modeling/svm/nu_svr.py +79 -43
  181. snowflake/ml/modeling/svm/svc.py +79 -43
  182. snowflake/ml/modeling/svm/svr.py +79 -43
  183. snowflake/ml/modeling/tree/decision_tree_classifier.py +79 -43
  184. snowflake/ml/modeling/tree/decision_tree_regressor.py +79 -43
  185. snowflake/ml/modeling/tree/extra_tree_classifier.py +79 -43
  186. snowflake/ml/modeling/tree/extra_tree_regressor.py +79 -43
  187. snowflake/ml/modeling/xgboost/xgb_classifier.py +79 -43
  188. snowflake/ml/modeling/xgboost/xgb_regressor.py +79 -43
  189. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +79 -43
  190. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +79 -43
  191. snowflake/ml/registry/model_registry.py +123 -121
  192. snowflake/ml/version.py +1 -1
  193. {snowflake_ml_python-1.0.1.dist-info → snowflake_ml_python-1.0.3.dist-info}/METADATA +50 -8
  194. snowflake_ml_python-1.0.3.dist-info/RECORD +259 -0
  195. snowflake_ml_python-1.0.1.dist-info/RECORD +0 -246
  196. {snowflake_ml_python-1.0.1.dist-info → snowflake_ml_python-1.0.3.dist-info}/WHEEL +0 -0
@@ -7,6 +7,7 @@
7
7
  #
8
8
  import inspect
9
9
  import os
10
+ import posixpath
10
11
  from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
11
12
  from uuid import uuid4
12
13
 
@@ -27,6 +28,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
27
28
  from snowflake.snowpark import DataFrame, Session
28
29
  from snowflake.snowpark.functions import pandas_udf, sproc
29
30
  from snowflake.snowpark.types import PandasSeries
31
+ from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
30
32
 
31
33
  from snowflake.ml.model.model_signature import (
32
34
  DataType,
@@ -261,7 +263,6 @@ class TweedieRegressor(BaseTransformer):
261
263
  sample_weight_col: Optional[str] = None,
262
264
  ) -> None:
263
265
  super().__init__()
264
- self.id = str(uuid4()).replace("-", "_").upper()
265
266
  deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
266
267
 
267
268
  self._deps = list(deps)
@@ -289,6 +290,15 @@ class TweedieRegressor(BaseTransformer):
289
290
  self.set_drop_input_cols(drop_input_cols)
290
291
  self.set_sample_weight_col(sample_weight_col)
291
292
 
293
+ def _get_rand_id(self) -> str:
294
+ """
295
+ Generate random id to be used in sproc and stage names.
296
+
297
+ Returns:
298
+ Random id string usable in sproc, table, and stage names.
299
+ """
300
+ return str(uuid4()).replace("-", "_").upper()
301
+
292
302
  def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
293
303
  """
294
304
  Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
@@ -367,7 +377,7 @@ class TweedieRegressor(BaseTransformer):
367
377
  cp.dump(self._sklearn_object, local_transform_file)
368
378
 
369
379
  # Create temp stage to run fit.
370
- transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.id)
380
+ transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
371
381
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
372
382
  SqlResultValidator(
373
383
  session=session,
@@ -380,11 +390,12 @@ class TweedieRegressor(BaseTransformer):
380
390
  expected_value=f"Stage area {transform_stage_name} successfully created."
381
391
  ).validate()
382
392
 
383
- stage_transform_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
393
+ # Use posixpath to construct stage paths
394
+ stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
395
+ stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
384
396
  local_result_file_name = get_temp_file_path()
385
- stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
386
397
 
387
- fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.id)
398
+ fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
388
399
  statement_params = telemetry.get_function_usage_statement_params(
389
400
  project=_PROJECT,
390
401
  subproject=_SUBPROJECT,
@@ -410,6 +421,7 @@ class TweedieRegressor(BaseTransformer):
410
421
  replace=True,
411
422
  session=session,
412
423
  statement_params=statement_params,
424
+ anonymous=True
413
425
  )
414
426
  def fit_wrapper_sproc(
415
427
  session: Session,
@@ -418,7 +430,8 @@ class TweedieRegressor(BaseTransformer):
418
430
  stage_result_file_name: str,
419
431
  input_cols: List[str],
420
432
  label_cols: List[str],
421
- sample_weight_col: Optional[str]
433
+ sample_weight_col: Optional[str],
434
+ statement_params: Dict[str, str]
422
435
  ) -> str:
423
436
  import cloudpickle as cp
424
437
  import numpy as np
@@ -485,15 +498,15 @@ class TweedieRegressor(BaseTransformer):
485
498
  api_calls=[Session.call],
486
499
  custom_tags=dict([("autogen", True)]),
487
500
  )
488
- sproc_export_file_name = session.call(
489
- fit_sproc_name,
501
+ sproc_export_file_name = fit_wrapper_sproc(
502
+ session,
490
503
  query,
491
504
  stage_transform_file_name,
492
505
  stage_result_file_name,
493
506
  identifier.get_unescaped_names(self.input_cols),
494
507
  identifier.get_unescaped_names(self.label_cols),
495
508
  identifier.get_unescaped_names(self.sample_weight_col),
496
- statement_params=statement_params,
509
+ statement_params,
497
510
  )
498
511
 
499
512
  if "|" in sproc_export_file_name:
@@ -503,7 +516,7 @@ class TweedieRegressor(BaseTransformer):
503
516
  print("\n".join(fields[1:]))
504
517
 
505
518
  session.file.get(
506
- os.path.join(stage_result_file_name, sproc_export_file_name),
519
+ posixpath.join(stage_result_file_name, sproc_export_file_name),
507
520
  local_result_file_name,
508
521
  statement_params=statement_params
509
522
  )
@@ -549,7 +562,7 @@ class TweedieRegressor(BaseTransformer):
549
562
 
550
563
  # Register vectorized UDF for batch inference
551
564
  batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
552
- safe_id=self.id, method=inference_method)
565
+ safe_id=self._get_rand_id(), method=inference_method)
553
566
 
554
567
  # Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
555
568
  # will try to pickle all of self which fails.
@@ -641,7 +654,7 @@ class TweedieRegressor(BaseTransformer):
641
654
  return transformed_pandas_df.to_dict("records")
642
655
 
643
656
  batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
644
- safe_id=self.id
657
+ safe_id=self._get_rand_id()
645
658
  )
646
659
 
647
660
  pass_through_columns = self._get_pass_through_columns(dataset)
@@ -697,26 +710,37 @@ class TweedieRegressor(BaseTransformer):
697
710
  # input cols need to match unquoted / quoted
698
711
  input_cols = self.input_cols
699
712
  unquoted_input_cols = identifier.get_unescaped_names(self.input_cols)
713
+ quoted_input_cols = identifier.get_escaped_names(unquoted_input_cols)
700
714
 
701
715
  estimator = self._sklearn_object
702
716
 
703
- input_df = dataset[input_cols] # Select input columns with quoted column names.
704
- if hasattr(estimator, "feature_names_in_"):
705
- missing_features = []
706
- for i, f in enumerate(getattr(estimator, "feature_names_in_")):
707
- if i >= len(input_cols) or (input_cols[i] != f and unquoted_input_cols[i] != f):
708
- missing_features.append(f)
709
-
710
- if len(missing_features) > 0:
711
- raise ValueError(
712
- "The feature names should match with those that were passed during fit.\n"
713
- f"Features seen during fit call but not present in the input: {missing_features}\n"
714
- f"Features in the input dataframe : {input_cols}\n"
715
- )
716
- input_df.columns = getattr(estimator, "feature_names_in_")
717
- else:
718
- # Just rename the column names to unquoted identifiers.
719
- input_df.columns = unquoted_input_cols # Replace the quoted columns identifier with unquoted column ids.
717
+ features_required_by_estimator = getattr(estimator, "feature_names_in_") if hasattr(estimator, "feature_names_in_") else unquoted_input_cols
718
+ missing_features = []
719
+ features_in_dataset = set(dataset.columns)
720
+ columns_to_select = []
721
+ for i, f in enumerate(features_required_by_estimator):
722
+ if (
723
+ i >= len(input_cols)
724
+ or (input_cols[i] != f and unquoted_input_cols[i] != f and quoted_input_cols[i] != f)
725
+ or (input_cols[i] not in features_in_dataset and unquoted_input_cols[i] not in features_in_dataset
726
+ and quoted_input_cols[i] not in features_in_dataset)
727
+ ):
728
+ missing_features.append(f)
729
+ elif input_cols[i] in features_in_dataset:
730
+ columns_to_select.append(input_cols[i])
731
+ elif unquoted_input_cols[i] in features_in_dataset:
732
+ columns_to_select.append(unquoted_input_cols[i])
733
+ else:
734
+ columns_to_select.append(quoted_input_cols[i])
735
+
736
+ if len(missing_features) > 0:
737
+ raise ValueError(
738
+ "The feature names should match with those that were passed during fit.\n"
739
+ f"Features seen during fit call but not present in the input: {missing_features}\n"
740
+ f"Features in the input dataframe : {input_cols}\n"
741
+ )
742
+ input_df = dataset[columns_to_select]
743
+ input_df.columns = features_required_by_estimator
720
744
 
721
745
  transformed_numpy_array = getattr(estimator, inference_method)(
722
746
  input_df
@@ -797,11 +821,18 @@ class TweedieRegressor(BaseTransformer):
797
821
  Transformed dataset.
798
822
  """
799
823
  if isinstance(dataset, DataFrame):
824
+ expected_type_inferred = "float"
825
+ # when it is classifier, infer the datatype from label columns
826
+ if expected_type_inferred == "" and 'predict' in self.model_signatures:
827
+ expected_type_inferred = convert_sp_to_sf_type(
828
+ self.model_signatures['predict'].outputs[0].as_snowpark_type()
829
+ )
830
+
800
831
  output_df = self._batch_inference(
801
832
  dataset=dataset,
802
833
  inference_method="predict",
803
834
  expected_output_cols_list=self.output_cols,
804
- expected_output_cols_type="float",
835
+ expected_output_cols_type=expected_type_inferred,
805
836
  )
806
837
  elif isinstance(dataset, pd.DataFrame):
807
838
  output_df = self._sklearn_inference(
@@ -872,10 +903,10 @@ class TweedieRegressor(BaseTransformer):
872
903
 
873
904
  def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
874
905
  """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
875
- Returns an empty list if current object is not a classifier or not yet fitted.
906
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
876
907
  """
877
908
  if getattr(self._sklearn_object, "classes_", None) is None:
878
- return []
909
+ return [output_cols_prefix]
879
910
 
880
911
  classes = self._sklearn_object.classes_
881
912
  if isinstance(classes, numpy.ndarray):
@@ -1100,7 +1131,7 @@ class TweedieRegressor(BaseTransformer):
1100
1131
  cp.dump(self._sklearn_object, local_score_file)
1101
1132
 
1102
1133
  # Create temp stage to run score.
1103
- score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1134
+ score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1104
1135
  session = dataset._session
1105
1136
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
1106
1137
  SqlResultValidator(
@@ -1114,8 +1145,9 @@ class TweedieRegressor(BaseTransformer):
1114
1145
  expected_value=f"Stage area {score_stage_name} successfully created."
1115
1146
  ).validate()
1116
1147
 
1117
- stage_score_file_name = os.path.join(score_stage_name, os.path.basename(local_score_file_name))
1118
- score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1148
+ # Use posixpath to construct stage paths
1149
+ stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
1150
+ score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1119
1151
  statement_params = telemetry.get_function_usage_statement_params(
1120
1152
  project=_PROJECT,
1121
1153
  subproject=_SUBPROJECT,
@@ -1141,6 +1173,7 @@ class TweedieRegressor(BaseTransformer):
1141
1173
  replace=True,
1142
1174
  session=session,
1143
1175
  statement_params=statement_params,
1176
+ anonymous=True
1144
1177
  )
1145
1178
  def score_wrapper_sproc(
1146
1179
  session: Session,
@@ -1148,7 +1181,8 @@ class TweedieRegressor(BaseTransformer):
1148
1181
  stage_score_file_name: str,
1149
1182
  input_cols: List[str],
1150
1183
  label_cols: List[str],
1151
- sample_weight_col: Optional[str]
1184
+ sample_weight_col: Optional[str],
1185
+ statement_params: Dict[str, str]
1152
1186
  ) -> float:
1153
1187
  import cloudpickle as cp
1154
1188
  import numpy as np
@@ -1198,14 +1232,14 @@ class TweedieRegressor(BaseTransformer):
1198
1232
  api_calls=[Session.call],
1199
1233
  custom_tags=dict([("autogen", True)]),
1200
1234
  )
1201
- score = session.call(
1202
- score_sproc_name,
1235
+ score = score_wrapper_sproc(
1236
+ session,
1203
1237
  query,
1204
1238
  stage_score_file_name,
1205
1239
  identifier.get_unescaped_names(self.input_cols),
1206
1240
  identifier.get_unescaped_names(self.label_cols),
1207
1241
  identifier.get_unescaped_names(self.sample_weight_col),
1208
- statement_params=statement_params,
1242
+ statement_params,
1209
1243
  )
1210
1244
 
1211
1245
  cleanup_temp_files([local_score_file_name])
@@ -1223,18 +1257,20 @@ class TweedieRegressor(BaseTransformer):
1223
1257
  if self._sklearn_object._estimator_type == 'classifier':
1224
1258
  outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
1225
1259
  outputs = _rename_features(outputs, self.output_cols) # rename the output columns
1226
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1260
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1261
+ ([] if self._drop_input_cols else inputs) + outputs)
1227
1262
  # For regressor, the type of predict is float64
1228
1263
  elif self._sklearn_object._estimator_type == 'regressor':
1229
1264
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1230
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1231
-
1265
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1266
+ ([] if self._drop_input_cols else inputs) + outputs)
1232
1267
  for prob_func in PROB_FUNCTIONS:
1233
1268
  if hasattr(self, prob_func):
1234
1269
  output_cols_prefix: str = f"{prob_func}_"
1235
1270
  output_column_names = self._get_output_column_names(output_cols_prefix)
1236
1271
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1237
- self._model_signature_dict[prob_func] = ModelSignature(inputs, outputs)
1272
+ self._model_signature_dict[prob_func] = ModelSignature(inputs,
1273
+ ([] if self._drop_input_cols else inputs) + outputs)
1238
1274
 
1239
1275
  @property
1240
1276
  def model_signatures(self) -> Dict[str, ModelSignature]:
@@ -7,6 +7,7 @@
7
7
  #
8
8
  import inspect
9
9
  import os
10
+ import posixpath
10
11
  from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
11
12
  from uuid import uuid4
12
13
 
@@ -27,6 +28,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
27
28
  from snowflake.snowpark import DataFrame, Session
28
29
  from snowflake.snowpark.functions import pandas_udf, sproc
29
30
  from snowflake.snowpark.types import PandasSeries
31
+ from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
30
32
 
31
33
  from snowflake.ml.model.model_signature import (
32
34
  DataType,
@@ -256,7 +258,6 @@ class Isomap(BaseTransformer):
256
258
  sample_weight_col: Optional[str] = None,
257
259
  ) -> None:
258
260
  super().__init__()
259
- self.id = str(uuid4()).replace("-", "_").upper()
260
261
  deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
261
262
 
262
263
  self._deps = list(deps)
@@ -287,6 +288,15 @@ class Isomap(BaseTransformer):
287
288
  self.set_drop_input_cols(drop_input_cols)
288
289
  self.set_sample_weight_col(sample_weight_col)
289
290
 
291
+ def _get_rand_id(self) -> str:
292
+ """
293
+ Generate random id to be used in sproc and stage names.
294
+
295
+ Returns:
296
+ Random id string usable in sproc, table, and stage names.
297
+ """
298
+ return str(uuid4()).replace("-", "_").upper()
299
+
290
300
  def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
291
301
  """
292
302
  Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
@@ -365,7 +375,7 @@ class Isomap(BaseTransformer):
365
375
  cp.dump(self._sklearn_object, local_transform_file)
366
376
 
367
377
  # Create temp stage to run fit.
368
- transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.id)
378
+ transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
369
379
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
370
380
  SqlResultValidator(
371
381
  session=session,
@@ -378,11 +388,12 @@ class Isomap(BaseTransformer):
378
388
  expected_value=f"Stage area {transform_stage_name} successfully created."
379
389
  ).validate()
380
390
 
381
- stage_transform_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
391
+ # Use posixpath to construct stage paths
392
+ stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
393
+ stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
382
394
  local_result_file_name = get_temp_file_path()
383
- stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
384
395
 
385
- fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.id)
396
+ fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
386
397
  statement_params = telemetry.get_function_usage_statement_params(
387
398
  project=_PROJECT,
388
399
  subproject=_SUBPROJECT,
@@ -408,6 +419,7 @@ class Isomap(BaseTransformer):
408
419
  replace=True,
409
420
  session=session,
410
421
  statement_params=statement_params,
422
+ anonymous=True
411
423
  )
412
424
  def fit_wrapper_sproc(
413
425
  session: Session,
@@ -416,7 +428,8 @@ class Isomap(BaseTransformer):
416
428
  stage_result_file_name: str,
417
429
  input_cols: List[str],
418
430
  label_cols: List[str],
419
- sample_weight_col: Optional[str]
431
+ sample_weight_col: Optional[str],
432
+ statement_params: Dict[str, str]
420
433
  ) -> str:
421
434
  import cloudpickle as cp
422
435
  import numpy as np
@@ -483,15 +496,15 @@ class Isomap(BaseTransformer):
483
496
  api_calls=[Session.call],
484
497
  custom_tags=dict([("autogen", True)]),
485
498
  )
486
- sproc_export_file_name = session.call(
487
- fit_sproc_name,
499
+ sproc_export_file_name = fit_wrapper_sproc(
500
+ session,
488
501
  query,
489
502
  stage_transform_file_name,
490
503
  stage_result_file_name,
491
504
  identifier.get_unescaped_names(self.input_cols),
492
505
  identifier.get_unescaped_names(self.label_cols),
493
506
  identifier.get_unescaped_names(self.sample_weight_col),
494
- statement_params=statement_params,
507
+ statement_params,
495
508
  )
496
509
 
497
510
  if "|" in sproc_export_file_name:
@@ -501,7 +514,7 @@ class Isomap(BaseTransformer):
501
514
  print("\n".join(fields[1:]))
502
515
 
503
516
  session.file.get(
504
- os.path.join(stage_result_file_name, sproc_export_file_name),
517
+ posixpath.join(stage_result_file_name, sproc_export_file_name),
505
518
  local_result_file_name,
506
519
  statement_params=statement_params
507
520
  )
@@ -547,7 +560,7 @@ class Isomap(BaseTransformer):
547
560
 
548
561
  # Register vectorized UDF for batch inference
549
562
  batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
550
- safe_id=self.id, method=inference_method)
563
+ safe_id=self._get_rand_id(), method=inference_method)
551
564
 
552
565
  # Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
553
566
  # will try to pickle all of self which fails.
@@ -639,7 +652,7 @@ class Isomap(BaseTransformer):
639
652
  return transformed_pandas_df.to_dict("records")
640
653
 
641
654
  batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
642
- safe_id=self.id
655
+ safe_id=self._get_rand_id()
643
656
  )
644
657
 
645
658
  pass_through_columns = self._get_pass_through_columns(dataset)
@@ -695,26 +708,37 @@ class Isomap(BaseTransformer):
695
708
  # input cols need to match unquoted / quoted
696
709
  input_cols = self.input_cols
697
710
  unquoted_input_cols = identifier.get_unescaped_names(self.input_cols)
711
+ quoted_input_cols = identifier.get_escaped_names(unquoted_input_cols)
698
712
 
699
713
  estimator = self._sklearn_object
700
714
 
701
- input_df = dataset[input_cols] # Select input columns with quoted column names.
702
- if hasattr(estimator, "feature_names_in_"):
703
- missing_features = []
704
- for i, f in enumerate(getattr(estimator, "feature_names_in_")):
705
- if i >= len(input_cols) or (input_cols[i] != f and unquoted_input_cols[i] != f):
706
- missing_features.append(f)
707
-
708
- if len(missing_features) > 0:
709
- raise ValueError(
710
- "The feature names should match with those that were passed during fit.\n"
711
- f"Features seen during fit call but not present in the input: {missing_features}\n"
712
- f"Features in the input dataframe : {input_cols}\n"
713
- )
714
- input_df.columns = getattr(estimator, "feature_names_in_")
715
- else:
716
- # Just rename the column names to unquoted identifiers.
717
- input_df.columns = unquoted_input_cols # Replace the quoted columns identifier with unquoted column ids.
715
+ features_required_by_estimator = getattr(estimator, "feature_names_in_") if hasattr(estimator, "feature_names_in_") else unquoted_input_cols
716
+ missing_features = []
717
+ features_in_dataset = set(dataset.columns)
718
+ columns_to_select = []
719
+ for i, f in enumerate(features_required_by_estimator):
720
+ if (
721
+ i >= len(input_cols)
722
+ or (input_cols[i] != f and unquoted_input_cols[i] != f and quoted_input_cols[i] != f)
723
+ or (input_cols[i] not in features_in_dataset and unquoted_input_cols[i] not in features_in_dataset
724
+ and quoted_input_cols[i] not in features_in_dataset)
725
+ ):
726
+ missing_features.append(f)
727
+ elif input_cols[i] in features_in_dataset:
728
+ columns_to_select.append(input_cols[i])
729
+ elif unquoted_input_cols[i] in features_in_dataset:
730
+ columns_to_select.append(unquoted_input_cols[i])
731
+ else:
732
+ columns_to_select.append(quoted_input_cols[i])
733
+
734
+ if len(missing_features) > 0:
735
+ raise ValueError(
736
+ "The feature names should match with those that were passed during fit.\n"
737
+ f"Features seen during fit call but not present in the input: {missing_features}\n"
738
+ f"Features in the input dataframe : {input_cols}\n"
739
+ )
740
+ input_df = dataset[columns_to_select]
741
+ input_df.columns = features_required_by_estimator
718
742
 
719
743
  transformed_numpy_array = getattr(estimator, inference_method)(
720
744
  input_df
@@ -793,11 +817,18 @@ class Isomap(BaseTransformer):
793
817
  Transformed dataset.
794
818
  """
795
819
  if isinstance(dataset, DataFrame):
820
+ expected_type_inferred = ""
821
+ # when it is classifier, infer the datatype from label columns
822
+ if expected_type_inferred == "" and 'predict' in self.model_signatures:
823
+ expected_type_inferred = convert_sp_to_sf_type(
824
+ self.model_signatures['predict'].outputs[0].as_snowpark_type()
825
+ )
826
+
796
827
  output_df = self._batch_inference(
797
828
  dataset=dataset,
798
829
  inference_method="predict",
799
830
  expected_output_cols_list=self.output_cols,
800
- expected_output_cols_type="",
831
+ expected_output_cols_type=expected_type_inferred,
801
832
  )
802
833
  elif isinstance(dataset, pd.DataFrame):
803
834
  output_df = self._sklearn_inference(
@@ -870,10 +901,10 @@ class Isomap(BaseTransformer):
870
901
 
871
902
  def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
872
903
  """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
873
- Returns an empty list if current object is not a classifier or not yet fitted.
904
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
874
905
  """
875
906
  if getattr(self._sklearn_object, "classes_", None) is None:
876
- return []
907
+ return [output_cols_prefix]
877
908
 
878
909
  classes = self._sklearn_object.classes_
879
910
  if isinstance(classes, numpy.ndarray):
@@ -1098,7 +1129,7 @@ class Isomap(BaseTransformer):
1098
1129
  cp.dump(self._sklearn_object, local_score_file)
1099
1130
 
1100
1131
  # Create temp stage to run score.
1101
- score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1132
+ score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1102
1133
  session = dataset._session
1103
1134
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
1104
1135
  SqlResultValidator(
@@ -1112,8 +1143,9 @@ class Isomap(BaseTransformer):
1112
1143
  expected_value=f"Stage area {score_stage_name} successfully created."
1113
1144
  ).validate()
1114
1145
 
1115
- stage_score_file_name = os.path.join(score_stage_name, os.path.basename(local_score_file_name))
1116
- score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1146
+ # Use posixpath to construct stage paths
1147
+ stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
1148
+ score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1117
1149
  statement_params = telemetry.get_function_usage_statement_params(
1118
1150
  project=_PROJECT,
1119
1151
  subproject=_SUBPROJECT,
@@ -1139,6 +1171,7 @@ class Isomap(BaseTransformer):
1139
1171
  replace=True,
1140
1172
  session=session,
1141
1173
  statement_params=statement_params,
1174
+ anonymous=True
1142
1175
  )
1143
1176
  def score_wrapper_sproc(
1144
1177
  session: Session,
@@ -1146,7 +1179,8 @@ class Isomap(BaseTransformer):
1146
1179
  stage_score_file_name: str,
1147
1180
  input_cols: List[str],
1148
1181
  label_cols: List[str],
1149
- sample_weight_col: Optional[str]
1182
+ sample_weight_col: Optional[str],
1183
+ statement_params: Dict[str, str]
1150
1184
  ) -> float:
1151
1185
  import cloudpickle as cp
1152
1186
  import numpy as np
@@ -1196,14 +1230,14 @@ class Isomap(BaseTransformer):
1196
1230
  api_calls=[Session.call],
1197
1231
  custom_tags=dict([("autogen", True)]),
1198
1232
  )
1199
- score = session.call(
1200
- score_sproc_name,
1233
+ score = score_wrapper_sproc(
1234
+ session,
1201
1235
  query,
1202
1236
  stage_score_file_name,
1203
1237
  identifier.get_unescaped_names(self.input_cols),
1204
1238
  identifier.get_unescaped_names(self.label_cols),
1205
1239
  identifier.get_unescaped_names(self.sample_weight_col),
1206
- statement_params=statement_params,
1240
+ statement_params,
1207
1241
  )
1208
1242
 
1209
1243
  cleanup_temp_files([local_score_file_name])
@@ -1221,18 +1255,20 @@ class Isomap(BaseTransformer):
1221
1255
  if self._sklearn_object._estimator_type == 'classifier':
1222
1256
  outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
1223
1257
  outputs = _rename_features(outputs, self.output_cols) # rename the output columns
1224
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1258
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1259
+ ([] if self._drop_input_cols else inputs) + outputs)
1225
1260
  # For regressor, the type of predict is float64
1226
1261
  elif self._sklearn_object._estimator_type == 'regressor':
1227
1262
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1228
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1229
-
1263
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1264
+ ([] if self._drop_input_cols else inputs) + outputs)
1230
1265
  for prob_func in PROB_FUNCTIONS:
1231
1266
  if hasattr(self, prob_func):
1232
1267
  output_cols_prefix: str = f"{prob_func}_"
1233
1268
  output_column_names = self._get_output_column_names(output_cols_prefix)
1234
1269
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1235
- self._model_signature_dict[prob_func] = ModelSignature(inputs, outputs)
1270
+ self._model_signature_dict[prob_func] = ModelSignature(inputs,
1271
+ ([] if self._drop_input_cols else inputs) + outputs)
1236
1272
 
1237
1273
  @property
1238
1274
  def model_signatures(self) -> Dict[str, ModelSignature]: