snowflake-ml-python 1.0.1__py3-none-any.whl → 1.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. snowflake/ml/_internal/env_utils.py +2 -1
  2. snowflake/ml/_internal/file_utils.py +35 -40
  3. snowflake/ml/_internal/telemetry.py +5 -8
  4. snowflake/ml/_internal/utils/identifier.py +74 -7
  5. snowflake/ml/_internal/utils/uri.py +7 -2
  6. snowflake/ml/model/_core_requirements.py +1 -1
  7. snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py +15 -0
  8. snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py +259 -0
  9. snowflake/ml/model/_deploy_client/image_builds/docker_context.py +89 -0
  10. snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh +24 -0
  11. snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py +118 -0
  12. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +40 -0
  13. snowflake/ml/model/_deploy_client/snowservice/deploy.py +199 -0
  14. snowflake/ml/model/_deploy_client/snowservice/deploy_options.py +88 -0
  15. snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template +24 -0
  16. snowflake/ml/model/_deploy_client/utils/constants.py +47 -0
  17. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +178 -0
  18. snowflake/ml/model/_deploy_client/warehouse/deploy.py +25 -28
  19. snowflake/ml/model/_deploy_client/warehouse/infer_template.py +7 -4
  20. snowflake/ml/model/_deployer.py +14 -27
  21. snowflake/ml/model/_env.py +4 -4
  22. snowflake/ml/model/_handlers/_base.py +3 -1
  23. snowflake/ml/model/_handlers/custom.py +14 -2
  24. snowflake/ml/model/_handlers/pytorch.py +186 -0
  25. snowflake/ml/model/_handlers/sklearn.py +14 -8
  26. snowflake/ml/model/_handlers/snowmlmodel.py +14 -9
  27. snowflake/ml/model/_handlers/torchscript.py +180 -0
  28. snowflake/ml/model/_handlers/xgboost.py +19 -9
  29. snowflake/ml/model/_model.py +27 -21
  30. snowflake/ml/model/_model_meta.py +33 -19
  31. snowflake/ml/model/model_signature.py +446 -66
  32. snowflake/ml/model/type_hints.py +28 -15
  33. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +79 -43
  34. snowflake/ml/modeling/cluster/affinity_propagation.py +79 -43
  35. snowflake/ml/modeling/cluster/agglomerative_clustering.py +79 -43
  36. snowflake/ml/modeling/cluster/birch.py +79 -43
  37. snowflake/ml/modeling/cluster/bisecting_k_means.py +79 -43
  38. snowflake/ml/modeling/cluster/dbscan.py +79 -43
  39. snowflake/ml/modeling/cluster/feature_agglomeration.py +79 -43
  40. snowflake/ml/modeling/cluster/k_means.py +79 -43
  41. snowflake/ml/modeling/cluster/mean_shift.py +79 -43
  42. snowflake/ml/modeling/cluster/mini_batch_k_means.py +79 -43
  43. snowflake/ml/modeling/cluster/optics.py +79 -43
  44. snowflake/ml/modeling/cluster/spectral_biclustering.py +79 -43
  45. snowflake/ml/modeling/cluster/spectral_clustering.py +79 -43
  46. snowflake/ml/modeling/cluster/spectral_coclustering.py +79 -43
  47. snowflake/ml/modeling/compose/column_transformer.py +79 -43
  48. snowflake/ml/modeling/compose/transformed_target_regressor.py +79 -43
  49. snowflake/ml/modeling/covariance/elliptic_envelope.py +79 -43
  50. snowflake/ml/modeling/covariance/empirical_covariance.py +79 -43
  51. snowflake/ml/modeling/covariance/graphical_lasso.py +79 -43
  52. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +79 -43
  53. snowflake/ml/modeling/covariance/ledoit_wolf.py +79 -43
  54. snowflake/ml/modeling/covariance/min_cov_det.py +79 -43
  55. snowflake/ml/modeling/covariance/oas.py +79 -43
  56. snowflake/ml/modeling/covariance/shrunk_covariance.py +79 -43
  57. snowflake/ml/modeling/decomposition/dictionary_learning.py +79 -43
  58. snowflake/ml/modeling/decomposition/factor_analysis.py +79 -43
  59. snowflake/ml/modeling/decomposition/fast_ica.py +79 -43
  60. snowflake/ml/modeling/decomposition/incremental_pca.py +79 -43
  61. snowflake/ml/modeling/decomposition/kernel_pca.py +79 -43
  62. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +79 -43
  63. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +79 -43
  64. snowflake/ml/modeling/decomposition/pca.py +79 -43
  65. snowflake/ml/modeling/decomposition/sparse_pca.py +79 -43
  66. snowflake/ml/modeling/decomposition/truncated_svd.py +79 -43
  67. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +79 -43
  68. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +79 -43
  69. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +79 -43
  70. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +79 -43
  71. snowflake/ml/modeling/ensemble/bagging_classifier.py +79 -43
  72. snowflake/ml/modeling/ensemble/bagging_regressor.py +79 -43
  73. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +79 -43
  74. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +79 -43
  75. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +79 -43
  76. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +79 -43
  77. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +79 -43
  78. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +79 -43
  79. snowflake/ml/modeling/ensemble/isolation_forest.py +79 -43
  80. snowflake/ml/modeling/ensemble/random_forest_classifier.py +79 -43
  81. snowflake/ml/modeling/ensemble/random_forest_regressor.py +79 -43
  82. snowflake/ml/modeling/ensemble/stacking_regressor.py +79 -43
  83. snowflake/ml/modeling/ensemble/voting_classifier.py +79 -43
  84. snowflake/ml/modeling/ensemble/voting_regressor.py +79 -43
  85. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +79 -43
  86. snowflake/ml/modeling/feature_selection/select_fdr.py +79 -43
  87. snowflake/ml/modeling/feature_selection/select_fpr.py +79 -43
  88. snowflake/ml/modeling/feature_selection/select_fwe.py +79 -43
  89. snowflake/ml/modeling/feature_selection/select_k_best.py +79 -43
  90. snowflake/ml/modeling/feature_selection/select_percentile.py +79 -43
  91. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +79 -43
  92. snowflake/ml/modeling/feature_selection/variance_threshold.py +79 -43
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +79 -43
  94. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +79 -43
  95. snowflake/ml/modeling/impute/iterative_imputer.py +79 -43
  96. snowflake/ml/modeling/impute/knn_imputer.py +79 -43
  97. snowflake/ml/modeling/impute/missing_indicator.py +79 -43
  98. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +79 -43
  99. snowflake/ml/modeling/kernel_approximation/nystroem.py +79 -43
  100. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +79 -43
  101. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +79 -43
  102. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +79 -43
  103. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +79 -43
  104. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +79 -43
  105. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +79 -43
  106. snowflake/ml/modeling/linear_model/ard_regression.py +79 -43
  107. snowflake/ml/modeling/linear_model/bayesian_ridge.py +79 -43
  108. snowflake/ml/modeling/linear_model/elastic_net.py +79 -43
  109. snowflake/ml/modeling/linear_model/elastic_net_cv.py +79 -43
  110. snowflake/ml/modeling/linear_model/gamma_regressor.py +79 -43
  111. snowflake/ml/modeling/linear_model/huber_regressor.py +79 -43
  112. snowflake/ml/modeling/linear_model/lars.py +79 -43
  113. snowflake/ml/modeling/linear_model/lars_cv.py +79 -43
  114. snowflake/ml/modeling/linear_model/lasso.py +79 -43
  115. snowflake/ml/modeling/linear_model/lasso_cv.py +79 -43
  116. snowflake/ml/modeling/linear_model/lasso_lars.py +79 -43
  117. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +79 -43
  118. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +79 -43
  119. snowflake/ml/modeling/linear_model/linear_regression.py +79 -43
  120. snowflake/ml/modeling/linear_model/logistic_regression.py +79 -43
  121. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +79 -43
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +79 -43
  123. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +79 -43
  124. snowflake/ml/modeling/linear_model/multi_task_lasso.py +79 -43
  125. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +79 -43
  126. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +79 -43
  127. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +79 -43
  128. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +79 -43
  129. snowflake/ml/modeling/linear_model/perceptron.py +79 -43
  130. snowflake/ml/modeling/linear_model/poisson_regressor.py +79 -43
  131. snowflake/ml/modeling/linear_model/ransac_regressor.py +79 -43
  132. snowflake/ml/modeling/linear_model/ridge.py +79 -43
  133. snowflake/ml/modeling/linear_model/ridge_classifier.py +79 -43
  134. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +79 -43
  135. snowflake/ml/modeling/linear_model/ridge_cv.py +79 -43
  136. snowflake/ml/modeling/linear_model/sgd_classifier.py +79 -43
  137. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +79 -43
  138. snowflake/ml/modeling/linear_model/sgd_regressor.py +79 -43
  139. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +79 -43
  140. snowflake/ml/modeling/linear_model/tweedie_regressor.py +79 -43
  141. snowflake/ml/modeling/manifold/isomap.py +79 -43
  142. snowflake/ml/modeling/manifold/mds.py +79 -43
  143. snowflake/ml/modeling/manifold/spectral_embedding.py +79 -43
  144. snowflake/ml/modeling/manifold/tsne.py +79 -43
  145. snowflake/ml/modeling/metrics/classification.py +6 -1
  146. snowflake/ml/modeling/metrics/regression.py +517 -9
  147. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +79 -43
  148. snowflake/ml/modeling/mixture/gaussian_mixture.py +79 -43
  149. snowflake/ml/modeling/model_selection/grid_search_cv.py +79 -43
  150. snowflake/ml/modeling/model_selection/randomized_search_cv.py +79 -43
  151. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +79 -43
  152. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +79 -43
  153. snowflake/ml/modeling/multiclass/output_code_classifier.py +79 -43
  154. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +79 -43
  155. snowflake/ml/modeling/naive_bayes/categorical_nb.py +79 -43
  156. snowflake/ml/modeling/naive_bayes/complement_nb.py +79 -43
  157. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -43
  158. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +79 -43
  159. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +79 -43
  160. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +79 -43
  161. snowflake/ml/modeling/neighbors/kernel_density.py +79 -43
  162. snowflake/ml/modeling/neighbors/local_outlier_factor.py +79 -43
  163. snowflake/ml/modeling/neighbors/nearest_centroid.py +79 -43
  164. snowflake/ml/modeling/neighbors/nearest_neighbors.py +79 -43
  165. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +79 -43
  166. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +79 -43
  167. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +79 -43
  168. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +79 -43
  169. snowflake/ml/modeling/neural_network/mlp_classifier.py +79 -43
  170. snowflake/ml/modeling/neural_network/mlp_regressor.py +79 -43
  171. snowflake/ml/modeling/pipeline/pipeline.py +24 -0
  172. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +18 -19
  173. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +2 -0
  174. snowflake/ml/modeling/preprocessing/polynomial_features.py +79 -43
  175. snowflake/ml/modeling/semi_supervised/label_propagation.py +79 -43
  176. snowflake/ml/modeling/semi_supervised/label_spreading.py +79 -43
  177. snowflake/ml/modeling/svm/linear_svc.py +79 -43
  178. snowflake/ml/modeling/svm/linear_svr.py +79 -43
  179. snowflake/ml/modeling/svm/nu_svc.py +79 -43
  180. snowflake/ml/modeling/svm/nu_svr.py +79 -43
  181. snowflake/ml/modeling/svm/svc.py +79 -43
  182. snowflake/ml/modeling/svm/svr.py +79 -43
  183. snowflake/ml/modeling/tree/decision_tree_classifier.py +79 -43
  184. snowflake/ml/modeling/tree/decision_tree_regressor.py +79 -43
  185. snowflake/ml/modeling/tree/extra_tree_classifier.py +79 -43
  186. snowflake/ml/modeling/tree/extra_tree_regressor.py +79 -43
  187. snowflake/ml/modeling/xgboost/xgb_classifier.py +79 -43
  188. snowflake/ml/modeling/xgboost/xgb_regressor.py +79 -43
  189. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +79 -43
  190. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +79 -43
  191. snowflake/ml/registry/model_registry.py +123 -121
  192. snowflake/ml/version.py +1 -1
  193. {snowflake_ml_python-1.0.1.dist-info → snowflake_ml_python-1.0.3.dist-info}/METADATA +50 -8
  194. snowflake_ml_python-1.0.3.dist-info/RECORD +259 -0
  195. snowflake_ml_python-1.0.1.dist-info/RECORD +0 -246
  196. {snowflake_ml_python-1.0.1.dist-info → snowflake_ml_python-1.0.3.dist-info}/WHEEL +0 -0
@@ -7,6 +7,7 @@
7
7
  #
8
8
  import inspect
9
9
  import os
10
+ import posixpath
10
11
  from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
11
12
  from uuid import uuid4
12
13
 
@@ -28,6 +29,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
28
29
  from snowflake.snowpark import DataFrame, Session
29
30
  from snowflake.snowpark.functions import pandas_udf, sproc
30
31
  from snowflake.snowpark.types import PandasSeries
32
+ from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
31
33
 
32
34
  from snowflake.ml.model.model_signature import (
33
35
  DataType,
@@ -191,7 +193,6 @@ class SelectFwe(BaseTransformer):
191
193
  sample_weight_col: Optional[str] = None,
192
194
  ) -> None:
193
195
  super().__init__()
194
- self.id = str(uuid4()).replace("-", "_").upper()
195
196
  deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
196
197
 
197
198
  self._deps = list(deps)
@@ -212,6 +213,15 @@ class SelectFwe(BaseTransformer):
212
213
  self.set_drop_input_cols(drop_input_cols)
213
214
  self.set_sample_weight_col(sample_weight_col)
214
215
 
216
+ def _get_rand_id(self) -> str:
217
+ """
218
+ Generate random id to be used in sproc and stage names.
219
+
220
+ Returns:
221
+ Random id string usable in sproc, table, and stage names.
222
+ """
223
+ return str(uuid4()).replace("-", "_").upper()
224
+
215
225
  def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
216
226
  """
217
227
  Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
@@ -290,7 +300,7 @@ class SelectFwe(BaseTransformer):
290
300
  cp.dump(self._sklearn_object, local_transform_file)
291
301
 
292
302
  # Create temp stage to run fit.
293
- transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.id)
303
+ transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
294
304
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
295
305
  SqlResultValidator(
296
306
  session=session,
@@ -303,11 +313,12 @@ class SelectFwe(BaseTransformer):
303
313
  expected_value=f"Stage area {transform_stage_name} successfully created."
304
314
  ).validate()
305
315
 
306
- stage_transform_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
316
+ # Use posixpath to construct stage paths
317
+ stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
318
+ stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
307
319
  local_result_file_name = get_temp_file_path()
308
- stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
309
320
 
310
- fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.id)
321
+ fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
311
322
  statement_params = telemetry.get_function_usage_statement_params(
312
323
  project=_PROJECT,
313
324
  subproject=_SUBPROJECT,
@@ -333,6 +344,7 @@ class SelectFwe(BaseTransformer):
333
344
  replace=True,
334
345
  session=session,
335
346
  statement_params=statement_params,
347
+ anonymous=True
336
348
  )
337
349
  def fit_wrapper_sproc(
338
350
  session: Session,
@@ -341,7 +353,8 @@ class SelectFwe(BaseTransformer):
341
353
  stage_result_file_name: str,
342
354
  input_cols: List[str],
343
355
  label_cols: List[str],
344
- sample_weight_col: Optional[str]
356
+ sample_weight_col: Optional[str],
357
+ statement_params: Dict[str, str]
345
358
  ) -> str:
346
359
  import cloudpickle as cp
347
360
  import numpy as np
@@ -408,15 +421,15 @@ class SelectFwe(BaseTransformer):
408
421
  api_calls=[Session.call],
409
422
  custom_tags=dict([("autogen", True)]),
410
423
  )
411
- sproc_export_file_name = session.call(
412
- fit_sproc_name,
424
+ sproc_export_file_name = fit_wrapper_sproc(
425
+ session,
413
426
  query,
414
427
  stage_transform_file_name,
415
428
  stage_result_file_name,
416
429
  identifier.get_unescaped_names(self.input_cols),
417
430
  identifier.get_unescaped_names(self.label_cols),
418
431
  identifier.get_unescaped_names(self.sample_weight_col),
419
- statement_params=statement_params,
432
+ statement_params,
420
433
  )
421
434
 
422
435
  if "|" in sproc_export_file_name:
@@ -426,7 +439,7 @@ class SelectFwe(BaseTransformer):
426
439
  print("\n".join(fields[1:]))
427
440
 
428
441
  session.file.get(
429
- os.path.join(stage_result_file_name, sproc_export_file_name),
442
+ posixpath.join(stage_result_file_name, sproc_export_file_name),
430
443
  local_result_file_name,
431
444
  statement_params=statement_params
432
445
  )
@@ -472,7 +485,7 @@ class SelectFwe(BaseTransformer):
472
485
 
473
486
  # Register vectorized UDF for batch inference
474
487
  batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
475
- safe_id=self.id, method=inference_method)
488
+ safe_id=self._get_rand_id(), method=inference_method)
476
489
 
477
490
  # Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
478
491
  # will try to pickle all of self which fails.
@@ -564,7 +577,7 @@ class SelectFwe(BaseTransformer):
564
577
  return transformed_pandas_df.to_dict("records")
565
578
 
566
579
  batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
567
- safe_id=self.id
580
+ safe_id=self._get_rand_id()
568
581
  )
569
582
 
570
583
  pass_through_columns = self._get_pass_through_columns(dataset)
@@ -620,26 +633,37 @@ class SelectFwe(BaseTransformer):
620
633
  # input cols need to match unquoted / quoted
621
634
  input_cols = self.input_cols
622
635
  unquoted_input_cols = identifier.get_unescaped_names(self.input_cols)
636
+ quoted_input_cols = identifier.get_escaped_names(unquoted_input_cols)
623
637
 
624
638
  estimator = self._sklearn_object
625
639
 
626
- input_df = dataset[input_cols] # Select input columns with quoted column names.
627
- if hasattr(estimator, "feature_names_in_"):
628
- missing_features = []
629
- for i, f in enumerate(getattr(estimator, "feature_names_in_")):
630
- if i >= len(input_cols) or (input_cols[i] != f and unquoted_input_cols[i] != f):
631
- missing_features.append(f)
632
-
633
- if len(missing_features) > 0:
634
- raise ValueError(
635
- "The feature names should match with those that were passed during fit.\n"
636
- f"Features seen during fit call but not present in the input: {missing_features}\n"
637
- f"Features in the input dataframe : {input_cols}\n"
638
- )
639
- input_df.columns = getattr(estimator, "feature_names_in_")
640
- else:
641
- # Just rename the column names to unquoted identifiers.
642
- input_df.columns = unquoted_input_cols # Replace the quoted columns identifier with unquoted column ids.
640
+ features_required_by_estimator = getattr(estimator, "feature_names_in_") if hasattr(estimator, "feature_names_in_") else unquoted_input_cols
641
+ missing_features = []
642
+ features_in_dataset = set(dataset.columns)
643
+ columns_to_select = []
644
+ for i, f in enumerate(features_required_by_estimator):
645
+ if (
646
+ i >= len(input_cols)
647
+ or (input_cols[i] != f and unquoted_input_cols[i] != f and quoted_input_cols[i] != f)
648
+ or (input_cols[i] not in features_in_dataset and unquoted_input_cols[i] not in features_in_dataset
649
+ and quoted_input_cols[i] not in features_in_dataset)
650
+ ):
651
+ missing_features.append(f)
652
+ elif input_cols[i] in features_in_dataset:
653
+ columns_to_select.append(input_cols[i])
654
+ elif unquoted_input_cols[i] in features_in_dataset:
655
+ columns_to_select.append(unquoted_input_cols[i])
656
+ else:
657
+ columns_to_select.append(quoted_input_cols[i])
658
+
659
+ if len(missing_features) > 0:
660
+ raise ValueError(
661
+ "The feature names should match with those that were passed during fit.\n"
662
+ f"Features seen during fit call but not present in the input: {missing_features}\n"
663
+ f"Features in the input dataframe : {input_cols}\n"
664
+ )
665
+ input_df = dataset[columns_to_select]
666
+ input_df.columns = features_required_by_estimator
643
667
 
644
668
  transformed_numpy_array = getattr(estimator, inference_method)(
645
669
  input_df
@@ -718,11 +742,18 @@ class SelectFwe(BaseTransformer):
718
742
  Transformed dataset.
719
743
  """
720
744
  if isinstance(dataset, DataFrame):
745
+ expected_type_inferred = ""
746
+ # when it is classifier, infer the datatype from label columns
747
+ if expected_type_inferred == "" and 'predict' in self.model_signatures:
748
+ expected_type_inferred = convert_sp_to_sf_type(
749
+ self.model_signatures['predict'].outputs[0].as_snowpark_type()
750
+ )
751
+
721
752
  output_df = self._batch_inference(
722
753
  dataset=dataset,
723
754
  inference_method="predict",
724
755
  expected_output_cols_list=self.output_cols,
725
- expected_output_cols_type="",
756
+ expected_output_cols_type=expected_type_inferred,
726
757
  )
727
758
  elif isinstance(dataset, pd.DataFrame):
728
759
  output_df = self._sklearn_inference(
@@ -795,10 +826,10 @@ class SelectFwe(BaseTransformer):
795
826
 
796
827
  def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
797
828
  """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
798
- Returns an empty list if current object is not a classifier or not yet fitted.
829
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
799
830
  """
800
831
  if getattr(self._sklearn_object, "classes_", None) is None:
801
- return []
832
+ return [output_cols_prefix]
802
833
 
803
834
  classes = self._sklearn_object.classes_
804
835
  if isinstance(classes, numpy.ndarray):
@@ -1023,7 +1054,7 @@ class SelectFwe(BaseTransformer):
1023
1054
  cp.dump(self._sklearn_object, local_score_file)
1024
1055
 
1025
1056
  # Create temp stage to run score.
1026
- score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1057
+ score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1027
1058
  session = dataset._session
1028
1059
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
1029
1060
  SqlResultValidator(
@@ -1037,8 +1068,9 @@ class SelectFwe(BaseTransformer):
1037
1068
  expected_value=f"Stage area {score_stage_name} successfully created."
1038
1069
  ).validate()
1039
1070
 
1040
- stage_score_file_name = os.path.join(score_stage_name, os.path.basename(local_score_file_name))
1041
- score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1071
+ # Use posixpath to construct stage paths
1072
+ stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
1073
+ score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1042
1074
  statement_params = telemetry.get_function_usage_statement_params(
1043
1075
  project=_PROJECT,
1044
1076
  subproject=_SUBPROJECT,
@@ -1064,6 +1096,7 @@ class SelectFwe(BaseTransformer):
1064
1096
  replace=True,
1065
1097
  session=session,
1066
1098
  statement_params=statement_params,
1099
+ anonymous=True
1067
1100
  )
1068
1101
  def score_wrapper_sproc(
1069
1102
  session: Session,
@@ -1071,7 +1104,8 @@ class SelectFwe(BaseTransformer):
1071
1104
  stage_score_file_name: str,
1072
1105
  input_cols: List[str],
1073
1106
  label_cols: List[str],
1074
- sample_weight_col: Optional[str]
1107
+ sample_weight_col: Optional[str],
1108
+ statement_params: Dict[str, str]
1075
1109
  ) -> float:
1076
1110
  import cloudpickle as cp
1077
1111
  import numpy as np
@@ -1121,14 +1155,14 @@ class SelectFwe(BaseTransformer):
1121
1155
  api_calls=[Session.call],
1122
1156
  custom_tags=dict([("autogen", True)]),
1123
1157
  )
1124
- score = session.call(
1125
- score_sproc_name,
1158
+ score = score_wrapper_sproc(
1159
+ session,
1126
1160
  query,
1127
1161
  stage_score_file_name,
1128
1162
  identifier.get_unescaped_names(self.input_cols),
1129
1163
  identifier.get_unescaped_names(self.label_cols),
1130
1164
  identifier.get_unescaped_names(self.sample_weight_col),
1131
- statement_params=statement_params,
1165
+ statement_params,
1132
1166
  )
1133
1167
 
1134
1168
  cleanup_temp_files([local_score_file_name])
@@ -1146,18 +1180,20 @@ class SelectFwe(BaseTransformer):
1146
1180
  if self._sklearn_object._estimator_type == 'classifier':
1147
1181
  outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
1148
1182
  outputs = _rename_features(outputs, self.output_cols) # rename the output columns
1149
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1183
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1184
+ ([] if self._drop_input_cols else inputs) + outputs)
1150
1185
  # For regressor, the type of predict is float64
1151
1186
  elif self._sklearn_object._estimator_type == 'regressor':
1152
1187
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1153
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1154
-
1188
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1189
+ ([] if self._drop_input_cols else inputs) + outputs)
1155
1190
  for prob_func in PROB_FUNCTIONS:
1156
1191
  if hasattr(self, prob_func):
1157
1192
  output_cols_prefix: str = f"{prob_func}_"
1158
1193
  output_column_names = self._get_output_column_names(output_cols_prefix)
1159
1194
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1160
- self._model_signature_dict[prob_func] = ModelSignature(inputs, outputs)
1195
+ self._model_signature_dict[prob_func] = ModelSignature(inputs,
1196
+ ([] if self._drop_input_cols else inputs) + outputs)
1161
1197
 
1162
1198
  @property
1163
1199
  def model_signatures(self) -> Dict[str, ModelSignature]:
@@ -7,6 +7,7 @@
7
7
  #
8
8
  import inspect
9
9
  import os
10
+ import posixpath
10
11
  from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
11
12
  from uuid import uuid4
12
13
 
@@ -28,6 +29,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
28
29
  from snowflake.snowpark import DataFrame, Session
29
30
  from snowflake.snowpark.functions import pandas_udf, sproc
30
31
  from snowflake.snowpark.types import PandasSeries
32
+ from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
31
33
 
32
34
  from snowflake.ml.model.model_signature import (
33
35
  DataType,
@@ -192,7 +194,6 @@ class SelectKBest(BaseTransformer):
192
194
  sample_weight_col: Optional[str] = None,
193
195
  ) -> None:
194
196
  super().__init__()
195
- self.id = str(uuid4()).replace("-", "_").upper()
196
197
  deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
197
198
 
198
199
  self._deps = list(deps)
@@ -213,6 +214,15 @@ class SelectKBest(BaseTransformer):
213
214
  self.set_drop_input_cols(drop_input_cols)
214
215
  self.set_sample_weight_col(sample_weight_col)
215
216
 
217
+ def _get_rand_id(self) -> str:
218
+ """
219
+ Generate random id to be used in sproc and stage names.
220
+
221
+ Returns:
222
+ Random id string usable in sproc, table, and stage names.
223
+ """
224
+ return str(uuid4()).replace("-", "_").upper()
225
+
216
226
  def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
217
227
  """
218
228
  Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
@@ -291,7 +301,7 @@ class SelectKBest(BaseTransformer):
291
301
  cp.dump(self._sklearn_object, local_transform_file)
292
302
 
293
303
  # Create temp stage to run fit.
294
- transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.id)
304
+ transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
295
305
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
296
306
  SqlResultValidator(
297
307
  session=session,
@@ -304,11 +314,12 @@ class SelectKBest(BaseTransformer):
304
314
  expected_value=f"Stage area {transform_stage_name} successfully created."
305
315
  ).validate()
306
316
 
307
- stage_transform_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
317
+ # Use posixpath to construct stage paths
318
+ stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
319
+ stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
308
320
  local_result_file_name = get_temp_file_path()
309
- stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
310
321
 
311
- fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.id)
322
+ fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
312
323
  statement_params = telemetry.get_function_usage_statement_params(
313
324
  project=_PROJECT,
314
325
  subproject=_SUBPROJECT,
@@ -334,6 +345,7 @@ class SelectKBest(BaseTransformer):
334
345
  replace=True,
335
346
  session=session,
336
347
  statement_params=statement_params,
348
+ anonymous=True
337
349
  )
338
350
  def fit_wrapper_sproc(
339
351
  session: Session,
@@ -342,7 +354,8 @@ class SelectKBest(BaseTransformer):
342
354
  stage_result_file_name: str,
343
355
  input_cols: List[str],
344
356
  label_cols: List[str],
345
- sample_weight_col: Optional[str]
357
+ sample_weight_col: Optional[str],
358
+ statement_params: Dict[str, str]
346
359
  ) -> str:
347
360
  import cloudpickle as cp
348
361
  import numpy as np
@@ -409,15 +422,15 @@ class SelectKBest(BaseTransformer):
409
422
  api_calls=[Session.call],
410
423
  custom_tags=dict([("autogen", True)]),
411
424
  )
412
- sproc_export_file_name = session.call(
413
- fit_sproc_name,
425
+ sproc_export_file_name = fit_wrapper_sproc(
426
+ session,
414
427
  query,
415
428
  stage_transform_file_name,
416
429
  stage_result_file_name,
417
430
  identifier.get_unescaped_names(self.input_cols),
418
431
  identifier.get_unescaped_names(self.label_cols),
419
432
  identifier.get_unescaped_names(self.sample_weight_col),
420
- statement_params=statement_params,
433
+ statement_params,
421
434
  )
422
435
 
423
436
  if "|" in sproc_export_file_name:
@@ -427,7 +440,7 @@ class SelectKBest(BaseTransformer):
427
440
  print("\n".join(fields[1:]))
428
441
 
429
442
  session.file.get(
430
- os.path.join(stage_result_file_name, sproc_export_file_name),
443
+ posixpath.join(stage_result_file_name, sproc_export_file_name),
431
444
  local_result_file_name,
432
445
  statement_params=statement_params
433
446
  )
@@ -473,7 +486,7 @@ class SelectKBest(BaseTransformer):
473
486
 
474
487
  # Register vectorized UDF for batch inference
475
488
  batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
476
- safe_id=self.id, method=inference_method)
489
+ safe_id=self._get_rand_id(), method=inference_method)
477
490
 
478
491
  # Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
479
492
  # will try to pickle all of self which fails.
@@ -565,7 +578,7 @@ class SelectKBest(BaseTransformer):
565
578
  return transformed_pandas_df.to_dict("records")
566
579
 
567
580
  batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
568
- safe_id=self.id
581
+ safe_id=self._get_rand_id()
569
582
  )
570
583
 
571
584
  pass_through_columns = self._get_pass_through_columns(dataset)
@@ -621,26 +634,37 @@ class SelectKBest(BaseTransformer):
621
634
  # input cols need to match unquoted / quoted
622
635
  input_cols = self.input_cols
623
636
  unquoted_input_cols = identifier.get_unescaped_names(self.input_cols)
637
+ quoted_input_cols = identifier.get_escaped_names(unquoted_input_cols)
624
638
 
625
639
  estimator = self._sklearn_object
626
640
 
627
- input_df = dataset[input_cols] # Select input columns with quoted column names.
628
- if hasattr(estimator, "feature_names_in_"):
629
- missing_features = []
630
- for i, f in enumerate(getattr(estimator, "feature_names_in_")):
631
- if i >= len(input_cols) or (input_cols[i] != f and unquoted_input_cols[i] != f):
632
- missing_features.append(f)
633
-
634
- if len(missing_features) > 0:
635
- raise ValueError(
636
- "The feature names should match with those that were passed during fit.\n"
637
- f"Features seen during fit call but not present in the input: {missing_features}\n"
638
- f"Features in the input dataframe : {input_cols}\n"
639
- )
640
- input_df.columns = getattr(estimator, "feature_names_in_")
641
- else:
642
- # Just rename the column names to unquoted identifiers.
643
- input_df.columns = unquoted_input_cols # Replace the quoted columns identifier with unquoted column ids.
641
+ features_required_by_estimator = getattr(estimator, "feature_names_in_") if hasattr(estimator, "feature_names_in_") else unquoted_input_cols
642
+ missing_features = []
643
+ features_in_dataset = set(dataset.columns)
644
+ columns_to_select = []
645
+ for i, f in enumerate(features_required_by_estimator):
646
+ if (
647
+ i >= len(input_cols)
648
+ or (input_cols[i] != f and unquoted_input_cols[i] != f and quoted_input_cols[i] != f)
649
+ or (input_cols[i] not in features_in_dataset and unquoted_input_cols[i] not in features_in_dataset
650
+ and quoted_input_cols[i] not in features_in_dataset)
651
+ ):
652
+ missing_features.append(f)
653
+ elif input_cols[i] in features_in_dataset:
654
+ columns_to_select.append(input_cols[i])
655
+ elif unquoted_input_cols[i] in features_in_dataset:
656
+ columns_to_select.append(unquoted_input_cols[i])
657
+ else:
658
+ columns_to_select.append(quoted_input_cols[i])
659
+
660
+ if len(missing_features) > 0:
661
+ raise ValueError(
662
+ "The feature names should match with those that were passed during fit.\n"
663
+ f"Features seen during fit call but not present in the input: {missing_features}\n"
664
+ f"Features in the input dataframe : {input_cols}\n"
665
+ )
666
+ input_df = dataset[columns_to_select]
667
+ input_df.columns = features_required_by_estimator
644
668
 
645
669
  transformed_numpy_array = getattr(estimator, inference_method)(
646
670
  input_df
@@ -719,11 +743,18 @@ class SelectKBest(BaseTransformer):
719
743
  Transformed dataset.
720
744
  """
721
745
  if isinstance(dataset, DataFrame):
746
+ expected_type_inferred = ""
747
+ # when it is classifier, infer the datatype from label columns
748
+ if expected_type_inferred == "" and 'predict' in self.model_signatures:
749
+ expected_type_inferred = convert_sp_to_sf_type(
750
+ self.model_signatures['predict'].outputs[0].as_snowpark_type()
751
+ )
752
+
722
753
  output_df = self._batch_inference(
723
754
  dataset=dataset,
724
755
  inference_method="predict",
725
756
  expected_output_cols_list=self.output_cols,
726
- expected_output_cols_type="",
757
+ expected_output_cols_type=expected_type_inferred,
727
758
  )
728
759
  elif isinstance(dataset, pd.DataFrame):
729
760
  output_df = self._sklearn_inference(
@@ -796,10 +827,10 @@ class SelectKBest(BaseTransformer):
796
827
 
797
828
  def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
798
829
  """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
799
- Returns an empty list if current object is not a classifier or not yet fitted.
830
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
800
831
  """
801
832
  if getattr(self._sklearn_object, "classes_", None) is None:
802
- return []
833
+ return [output_cols_prefix]
803
834
 
804
835
  classes = self._sklearn_object.classes_
805
836
  if isinstance(classes, numpy.ndarray):
@@ -1024,7 +1055,7 @@ class SelectKBest(BaseTransformer):
1024
1055
  cp.dump(self._sklearn_object, local_score_file)
1025
1056
 
1026
1057
  # Create temp stage to run score.
1027
- score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1058
+ score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1028
1059
  session = dataset._session
1029
1060
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
1030
1061
  SqlResultValidator(
@@ -1038,8 +1069,9 @@ class SelectKBest(BaseTransformer):
1038
1069
  expected_value=f"Stage area {score_stage_name} successfully created."
1039
1070
  ).validate()
1040
1071
 
1041
- stage_score_file_name = os.path.join(score_stage_name, os.path.basename(local_score_file_name))
1042
- score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1072
+ # Use posixpath to construct stage paths
1073
+ stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
1074
+ score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1043
1075
  statement_params = telemetry.get_function_usage_statement_params(
1044
1076
  project=_PROJECT,
1045
1077
  subproject=_SUBPROJECT,
@@ -1065,6 +1097,7 @@ class SelectKBest(BaseTransformer):
1065
1097
  replace=True,
1066
1098
  session=session,
1067
1099
  statement_params=statement_params,
1100
+ anonymous=True
1068
1101
  )
1069
1102
  def score_wrapper_sproc(
1070
1103
  session: Session,
@@ -1072,7 +1105,8 @@ class SelectKBest(BaseTransformer):
1072
1105
  stage_score_file_name: str,
1073
1106
  input_cols: List[str],
1074
1107
  label_cols: List[str],
1075
- sample_weight_col: Optional[str]
1108
+ sample_weight_col: Optional[str],
1109
+ statement_params: Dict[str, str]
1076
1110
  ) -> float:
1077
1111
  import cloudpickle as cp
1078
1112
  import numpy as np
@@ -1122,14 +1156,14 @@ class SelectKBest(BaseTransformer):
1122
1156
  api_calls=[Session.call],
1123
1157
  custom_tags=dict([("autogen", True)]),
1124
1158
  )
1125
- score = session.call(
1126
- score_sproc_name,
1159
+ score = score_wrapper_sproc(
1160
+ session,
1127
1161
  query,
1128
1162
  stage_score_file_name,
1129
1163
  identifier.get_unescaped_names(self.input_cols),
1130
1164
  identifier.get_unescaped_names(self.label_cols),
1131
1165
  identifier.get_unescaped_names(self.sample_weight_col),
1132
- statement_params=statement_params,
1166
+ statement_params,
1133
1167
  )
1134
1168
 
1135
1169
  cleanup_temp_files([local_score_file_name])
@@ -1147,18 +1181,20 @@ class SelectKBest(BaseTransformer):
1147
1181
  if self._sklearn_object._estimator_type == 'classifier':
1148
1182
  outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
1149
1183
  outputs = _rename_features(outputs, self.output_cols) # rename the output columns
1150
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1184
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1185
+ ([] if self._drop_input_cols else inputs) + outputs)
1151
1186
  # For regressor, the type of predict is float64
1152
1187
  elif self._sklearn_object._estimator_type == 'regressor':
1153
1188
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1154
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1155
-
1189
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1190
+ ([] if self._drop_input_cols else inputs) + outputs)
1156
1191
  for prob_func in PROB_FUNCTIONS:
1157
1192
  if hasattr(self, prob_func):
1158
1193
  output_cols_prefix: str = f"{prob_func}_"
1159
1194
  output_column_names = self._get_output_column_names(output_cols_prefix)
1160
1195
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1161
- self._model_signature_dict[prob_func] = ModelSignature(inputs, outputs)
1196
+ self._model_signature_dict[prob_func] = ModelSignature(inputs,
1197
+ ([] if self._drop_input_cols else inputs) + outputs)
1162
1198
 
1163
1199
  @property
1164
1200
  def model_signatures(self) -> Dict[str, ModelSignature]: