snowflake-ml-python 1.0.1__py3-none-any.whl → 1.0.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +2 -1
- snowflake/ml/_internal/file_utils.py +35 -40
- snowflake/ml/_internal/telemetry.py +5 -8
- snowflake/ml/_internal/utils/identifier.py +74 -7
- snowflake/ml/_internal/utils/uri.py +7 -2
- snowflake/ml/model/_core_requirements.py +1 -1
- snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py +15 -0
- snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py +259 -0
- snowflake/ml/model/_deploy_client/image_builds/docker_context.py +89 -0
- snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh +24 -0
- snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py +118 -0
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +40 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +199 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy_options.py +88 -0
- snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template +24 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +47 -0
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +178 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +25 -28
- snowflake/ml/model/_deploy_client/warehouse/infer_template.py +7 -4
- snowflake/ml/model/_deployer.py +14 -27
- snowflake/ml/model/_env.py +4 -4
- snowflake/ml/model/_handlers/_base.py +3 -1
- snowflake/ml/model/_handlers/custom.py +14 -2
- snowflake/ml/model/_handlers/pytorch.py +186 -0
- snowflake/ml/model/_handlers/sklearn.py +14 -8
- snowflake/ml/model/_handlers/snowmlmodel.py +14 -9
- snowflake/ml/model/_handlers/torchscript.py +180 -0
- snowflake/ml/model/_handlers/xgboost.py +19 -9
- snowflake/ml/model/_model.py +27 -21
- snowflake/ml/model/_model_meta.py +33 -19
- snowflake/ml/model/model_signature.py +446 -66
- snowflake/ml/model/type_hints.py +28 -15
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +79 -43
- snowflake/ml/modeling/cluster/affinity_propagation.py +79 -43
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +79 -43
- snowflake/ml/modeling/cluster/birch.py +79 -43
- snowflake/ml/modeling/cluster/bisecting_k_means.py +79 -43
- snowflake/ml/modeling/cluster/dbscan.py +79 -43
- snowflake/ml/modeling/cluster/feature_agglomeration.py +79 -43
- snowflake/ml/modeling/cluster/k_means.py +79 -43
- snowflake/ml/modeling/cluster/mean_shift.py +79 -43
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +79 -43
- snowflake/ml/modeling/cluster/optics.py +79 -43
- snowflake/ml/modeling/cluster/spectral_biclustering.py +79 -43
- snowflake/ml/modeling/cluster/spectral_clustering.py +79 -43
- snowflake/ml/modeling/cluster/spectral_coclustering.py +79 -43
- snowflake/ml/modeling/compose/column_transformer.py +79 -43
- snowflake/ml/modeling/compose/transformed_target_regressor.py +79 -43
- snowflake/ml/modeling/covariance/elliptic_envelope.py +79 -43
- snowflake/ml/modeling/covariance/empirical_covariance.py +79 -43
- snowflake/ml/modeling/covariance/graphical_lasso.py +79 -43
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +79 -43
- snowflake/ml/modeling/covariance/ledoit_wolf.py +79 -43
- snowflake/ml/modeling/covariance/min_cov_det.py +79 -43
- snowflake/ml/modeling/covariance/oas.py +79 -43
- snowflake/ml/modeling/covariance/shrunk_covariance.py +79 -43
- snowflake/ml/modeling/decomposition/dictionary_learning.py +79 -43
- snowflake/ml/modeling/decomposition/factor_analysis.py +79 -43
- snowflake/ml/modeling/decomposition/fast_ica.py +79 -43
- snowflake/ml/modeling/decomposition/incremental_pca.py +79 -43
- snowflake/ml/modeling/decomposition/kernel_pca.py +79 -43
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +79 -43
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +79 -43
- snowflake/ml/modeling/decomposition/pca.py +79 -43
- snowflake/ml/modeling/decomposition/sparse_pca.py +79 -43
- snowflake/ml/modeling/decomposition/truncated_svd.py +79 -43
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +79 -43
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +79 -43
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +79 -43
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +79 -43
- snowflake/ml/modeling/ensemble/bagging_classifier.py +79 -43
- snowflake/ml/modeling/ensemble/bagging_regressor.py +79 -43
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +79 -43
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +79 -43
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +79 -43
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +79 -43
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +79 -43
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +79 -43
- snowflake/ml/modeling/ensemble/isolation_forest.py +79 -43
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +79 -43
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +79 -43
- snowflake/ml/modeling/ensemble/stacking_regressor.py +79 -43
- snowflake/ml/modeling/ensemble/voting_classifier.py +79 -43
- snowflake/ml/modeling/ensemble/voting_regressor.py +79 -43
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +79 -43
- snowflake/ml/modeling/feature_selection/select_fdr.py +79 -43
- snowflake/ml/modeling/feature_selection/select_fpr.py +79 -43
- snowflake/ml/modeling/feature_selection/select_fwe.py +79 -43
- snowflake/ml/modeling/feature_selection/select_k_best.py +79 -43
- snowflake/ml/modeling/feature_selection/select_percentile.py +79 -43
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +79 -43
- snowflake/ml/modeling/feature_selection/variance_threshold.py +79 -43
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +79 -43
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +79 -43
- snowflake/ml/modeling/impute/iterative_imputer.py +79 -43
- snowflake/ml/modeling/impute/knn_imputer.py +79 -43
- snowflake/ml/modeling/impute/missing_indicator.py +79 -43
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +79 -43
- snowflake/ml/modeling/kernel_approximation/nystroem.py +79 -43
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +79 -43
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +79 -43
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +79 -43
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +79 -43
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +79 -43
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +79 -43
- snowflake/ml/modeling/linear_model/ard_regression.py +79 -43
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +79 -43
- snowflake/ml/modeling/linear_model/elastic_net.py +79 -43
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +79 -43
- snowflake/ml/modeling/linear_model/gamma_regressor.py +79 -43
- snowflake/ml/modeling/linear_model/huber_regressor.py +79 -43
- snowflake/ml/modeling/linear_model/lars.py +79 -43
- snowflake/ml/modeling/linear_model/lars_cv.py +79 -43
- snowflake/ml/modeling/linear_model/lasso.py +79 -43
- snowflake/ml/modeling/linear_model/lasso_cv.py +79 -43
- snowflake/ml/modeling/linear_model/lasso_lars.py +79 -43
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +79 -43
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +79 -43
- snowflake/ml/modeling/linear_model/linear_regression.py +79 -43
- snowflake/ml/modeling/linear_model/logistic_regression.py +79 -43
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +79 -43
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +79 -43
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +79 -43
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +79 -43
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +79 -43
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +79 -43
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +79 -43
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +79 -43
- snowflake/ml/modeling/linear_model/perceptron.py +79 -43
- snowflake/ml/modeling/linear_model/poisson_regressor.py +79 -43
- snowflake/ml/modeling/linear_model/ransac_regressor.py +79 -43
- snowflake/ml/modeling/linear_model/ridge.py +79 -43
- snowflake/ml/modeling/linear_model/ridge_classifier.py +79 -43
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +79 -43
- snowflake/ml/modeling/linear_model/ridge_cv.py +79 -43
- snowflake/ml/modeling/linear_model/sgd_classifier.py +79 -43
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +79 -43
- snowflake/ml/modeling/linear_model/sgd_regressor.py +79 -43
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +79 -43
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +79 -43
- snowflake/ml/modeling/manifold/isomap.py +79 -43
- snowflake/ml/modeling/manifold/mds.py +79 -43
- snowflake/ml/modeling/manifold/spectral_embedding.py +79 -43
- snowflake/ml/modeling/manifold/tsne.py +79 -43
- snowflake/ml/modeling/metrics/classification.py +6 -1
- snowflake/ml/modeling/metrics/regression.py +517 -9
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +79 -43
- snowflake/ml/modeling/mixture/gaussian_mixture.py +79 -43
- snowflake/ml/modeling/model_selection/grid_search_cv.py +79 -43
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +79 -43
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +79 -43
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +79 -43
- snowflake/ml/modeling/multiclass/output_code_classifier.py +79 -43
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +79 -43
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +79 -43
- snowflake/ml/modeling/naive_bayes/complement_nb.py +79 -43
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -43
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +79 -43
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +79 -43
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +79 -43
- snowflake/ml/modeling/neighbors/kernel_density.py +79 -43
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +79 -43
- snowflake/ml/modeling/neighbors/nearest_centroid.py +79 -43
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +79 -43
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +79 -43
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +79 -43
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +79 -43
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +79 -43
- snowflake/ml/modeling/neural_network/mlp_classifier.py +79 -43
- snowflake/ml/modeling/neural_network/mlp_regressor.py +79 -43
- snowflake/ml/modeling/pipeline/pipeline.py +24 -0
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +18 -19
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +2 -0
- snowflake/ml/modeling/preprocessing/polynomial_features.py +79 -43
- snowflake/ml/modeling/semi_supervised/label_propagation.py +79 -43
- snowflake/ml/modeling/semi_supervised/label_spreading.py +79 -43
- snowflake/ml/modeling/svm/linear_svc.py +79 -43
- snowflake/ml/modeling/svm/linear_svr.py +79 -43
- snowflake/ml/modeling/svm/nu_svc.py +79 -43
- snowflake/ml/modeling/svm/nu_svr.py +79 -43
- snowflake/ml/modeling/svm/svc.py +79 -43
- snowflake/ml/modeling/svm/svr.py +79 -43
- snowflake/ml/modeling/tree/decision_tree_classifier.py +79 -43
- snowflake/ml/modeling/tree/decision_tree_regressor.py +79 -43
- snowflake/ml/modeling/tree/extra_tree_classifier.py +79 -43
- snowflake/ml/modeling/tree/extra_tree_regressor.py +79 -43
- snowflake/ml/modeling/xgboost/xgb_classifier.py +79 -43
- snowflake/ml/modeling/xgboost/xgb_regressor.py +79 -43
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +79 -43
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +79 -43
- snowflake/ml/registry/model_registry.py +123 -121
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.0.1.dist-info → snowflake_ml_python-1.0.3.dist-info}/METADATA +50 -8
- snowflake_ml_python-1.0.3.dist-info/RECORD +259 -0
- snowflake_ml_python-1.0.1.dist-info/RECORD +0 -246
- {snowflake_ml_python-1.0.1.dist-info → snowflake_ml_python-1.0.3.dist-info}/WHEEL +0 -0
@@ -7,6 +7,7 @@
|
|
7
7
|
#
|
8
8
|
import inspect
|
9
9
|
import os
|
10
|
+
import posixpath
|
10
11
|
from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
|
11
12
|
from uuid import uuid4
|
12
13
|
|
@@ -28,6 +29,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
|
|
28
29
|
from snowflake.snowpark import DataFrame, Session
|
29
30
|
from snowflake.snowpark.functions import pandas_udf, sproc
|
30
31
|
from snowflake.snowpark.types import PandasSeries
|
32
|
+
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
31
33
|
|
32
34
|
from snowflake.ml.model.model_signature import (
|
33
35
|
DataType,
|
@@ -191,7 +193,6 @@ class SelectFwe(BaseTransformer):
|
|
191
193
|
sample_weight_col: Optional[str] = None,
|
192
194
|
) -> None:
|
193
195
|
super().__init__()
|
194
|
-
self.id = str(uuid4()).replace("-", "_").upper()
|
195
196
|
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
196
197
|
|
197
198
|
self._deps = list(deps)
|
@@ -212,6 +213,15 @@ class SelectFwe(BaseTransformer):
|
|
212
213
|
self.set_drop_input_cols(drop_input_cols)
|
213
214
|
self.set_sample_weight_col(sample_weight_col)
|
214
215
|
|
216
|
+
def _get_rand_id(self) -> str:
|
217
|
+
"""
|
218
|
+
Generate random id to be used in sproc and stage names.
|
219
|
+
|
220
|
+
Returns:
|
221
|
+
Random id string usable in sproc, table, and stage names.
|
222
|
+
"""
|
223
|
+
return str(uuid4()).replace("-", "_").upper()
|
224
|
+
|
215
225
|
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
216
226
|
"""
|
217
227
|
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
@@ -290,7 +300,7 @@ class SelectFwe(BaseTransformer):
|
|
290
300
|
cp.dump(self._sklearn_object, local_transform_file)
|
291
301
|
|
292
302
|
# Create temp stage to run fit.
|
293
|
-
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.
|
303
|
+
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
|
294
304
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
|
295
305
|
SqlResultValidator(
|
296
306
|
session=session,
|
@@ -303,11 +313,12 @@ class SelectFwe(BaseTransformer):
|
|
303
313
|
expected_value=f"Stage area {transform_stage_name} successfully created."
|
304
314
|
).validate()
|
305
315
|
|
306
|
-
|
316
|
+
# Use posixpath to construct stage paths
|
317
|
+
stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
318
|
+
stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
307
319
|
local_result_file_name = get_temp_file_path()
|
308
|
-
stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
309
320
|
|
310
|
-
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.
|
321
|
+
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
|
311
322
|
statement_params = telemetry.get_function_usage_statement_params(
|
312
323
|
project=_PROJECT,
|
313
324
|
subproject=_SUBPROJECT,
|
@@ -333,6 +344,7 @@ class SelectFwe(BaseTransformer):
|
|
333
344
|
replace=True,
|
334
345
|
session=session,
|
335
346
|
statement_params=statement_params,
|
347
|
+
anonymous=True
|
336
348
|
)
|
337
349
|
def fit_wrapper_sproc(
|
338
350
|
session: Session,
|
@@ -341,7 +353,8 @@ class SelectFwe(BaseTransformer):
|
|
341
353
|
stage_result_file_name: str,
|
342
354
|
input_cols: List[str],
|
343
355
|
label_cols: List[str],
|
344
|
-
sample_weight_col: Optional[str]
|
356
|
+
sample_weight_col: Optional[str],
|
357
|
+
statement_params: Dict[str, str]
|
345
358
|
) -> str:
|
346
359
|
import cloudpickle as cp
|
347
360
|
import numpy as np
|
@@ -408,15 +421,15 @@ class SelectFwe(BaseTransformer):
|
|
408
421
|
api_calls=[Session.call],
|
409
422
|
custom_tags=dict([("autogen", True)]),
|
410
423
|
)
|
411
|
-
sproc_export_file_name =
|
412
|
-
|
424
|
+
sproc_export_file_name = fit_wrapper_sproc(
|
425
|
+
session,
|
413
426
|
query,
|
414
427
|
stage_transform_file_name,
|
415
428
|
stage_result_file_name,
|
416
429
|
identifier.get_unescaped_names(self.input_cols),
|
417
430
|
identifier.get_unescaped_names(self.label_cols),
|
418
431
|
identifier.get_unescaped_names(self.sample_weight_col),
|
419
|
-
statement_params
|
432
|
+
statement_params,
|
420
433
|
)
|
421
434
|
|
422
435
|
if "|" in sproc_export_file_name:
|
@@ -426,7 +439,7 @@ class SelectFwe(BaseTransformer):
|
|
426
439
|
print("\n".join(fields[1:]))
|
427
440
|
|
428
441
|
session.file.get(
|
429
|
-
|
442
|
+
posixpath.join(stage_result_file_name, sproc_export_file_name),
|
430
443
|
local_result_file_name,
|
431
444
|
statement_params=statement_params
|
432
445
|
)
|
@@ -472,7 +485,7 @@ class SelectFwe(BaseTransformer):
|
|
472
485
|
|
473
486
|
# Register vectorized UDF for batch inference
|
474
487
|
batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
|
475
|
-
safe_id=self.
|
488
|
+
safe_id=self._get_rand_id(), method=inference_method)
|
476
489
|
|
477
490
|
# Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
|
478
491
|
# will try to pickle all of self which fails.
|
@@ -564,7 +577,7 @@ class SelectFwe(BaseTransformer):
|
|
564
577
|
return transformed_pandas_df.to_dict("records")
|
565
578
|
|
566
579
|
batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
|
567
|
-
safe_id=self.
|
580
|
+
safe_id=self._get_rand_id()
|
568
581
|
)
|
569
582
|
|
570
583
|
pass_through_columns = self._get_pass_through_columns(dataset)
|
@@ -620,26 +633,37 @@ class SelectFwe(BaseTransformer):
|
|
620
633
|
# input cols need to match unquoted / quoted
|
621
634
|
input_cols = self.input_cols
|
622
635
|
unquoted_input_cols = identifier.get_unescaped_names(self.input_cols)
|
636
|
+
quoted_input_cols = identifier.get_escaped_names(unquoted_input_cols)
|
623
637
|
|
624
638
|
estimator = self._sklearn_object
|
625
639
|
|
626
|
-
|
627
|
-
|
628
|
-
|
629
|
-
|
630
|
-
|
631
|
-
|
632
|
-
|
633
|
-
|
634
|
-
|
635
|
-
|
636
|
-
|
637
|
-
|
638
|
-
|
639
|
-
|
640
|
-
|
641
|
-
|
642
|
-
|
640
|
+
features_required_by_estimator = getattr(estimator, "feature_names_in_") if hasattr(estimator, "feature_names_in_") else unquoted_input_cols
|
641
|
+
missing_features = []
|
642
|
+
features_in_dataset = set(dataset.columns)
|
643
|
+
columns_to_select = []
|
644
|
+
for i, f in enumerate(features_required_by_estimator):
|
645
|
+
if (
|
646
|
+
i >= len(input_cols)
|
647
|
+
or (input_cols[i] != f and unquoted_input_cols[i] != f and quoted_input_cols[i] != f)
|
648
|
+
or (input_cols[i] not in features_in_dataset and unquoted_input_cols[i] not in features_in_dataset
|
649
|
+
and quoted_input_cols[i] not in features_in_dataset)
|
650
|
+
):
|
651
|
+
missing_features.append(f)
|
652
|
+
elif input_cols[i] in features_in_dataset:
|
653
|
+
columns_to_select.append(input_cols[i])
|
654
|
+
elif unquoted_input_cols[i] in features_in_dataset:
|
655
|
+
columns_to_select.append(unquoted_input_cols[i])
|
656
|
+
else:
|
657
|
+
columns_to_select.append(quoted_input_cols[i])
|
658
|
+
|
659
|
+
if len(missing_features) > 0:
|
660
|
+
raise ValueError(
|
661
|
+
"The feature names should match with those that were passed during fit.\n"
|
662
|
+
f"Features seen during fit call but not present in the input: {missing_features}\n"
|
663
|
+
f"Features in the input dataframe : {input_cols}\n"
|
664
|
+
)
|
665
|
+
input_df = dataset[columns_to_select]
|
666
|
+
input_df.columns = features_required_by_estimator
|
643
667
|
|
644
668
|
transformed_numpy_array = getattr(estimator, inference_method)(
|
645
669
|
input_df
|
@@ -718,11 +742,18 @@ class SelectFwe(BaseTransformer):
|
|
718
742
|
Transformed dataset.
|
719
743
|
"""
|
720
744
|
if isinstance(dataset, DataFrame):
|
745
|
+
expected_type_inferred = ""
|
746
|
+
# when it is classifier, infer the datatype from label columns
|
747
|
+
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
748
|
+
expected_type_inferred = convert_sp_to_sf_type(
|
749
|
+
self.model_signatures['predict'].outputs[0].as_snowpark_type()
|
750
|
+
)
|
751
|
+
|
721
752
|
output_df = self._batch_inference(
|
722
753
|
dataset=dataset,
|
723
754
|
inference_method="predict",
|
724
755
|
expected_output_cols_list=self.output_cols,
|
725
|
-
expected_output_cols_type=
|
756
|
+
expected_output_cols_type=expected_type_inferred,
|
726
757
|
)
|
727
758
|
elif isinstance(dataset, pd.DataFrame):
|
728
759
|
output_df = self._sklearn_inference(
|
@@ -795,10 +826,10 @@ class SelectFwe(BaseTransformer):
|
|
795
826
|
|
796
827
|
def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
|
797
828
|
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
798
|
-
Returns
|
829
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
799
830
|
"""
|
800
831
|
if getattr(self._sklearn_object, "classes_", None) is None:
|
801
|
-
return []
|
832
|
+
return [output_cols_prefix]
|
802
833
|
|
803
834
|
classes = self._sklearn_object.classes_
|
804
835
|
if isinstance(classes, numpy.ndarray):
|
@@ -1023,7 +1054,7 @@ class SelectFwe(BaseTransformer):
|
|
1023
1054
|
cp.dump(self._sklearn_object, local_score_file)
|
1024
1055
|
|
1025
1056
|
# Create temp stage to run score.
|
1026
|
-
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.
|
1057
|
+
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1027
1058
|
session = dataset._session
|
1028
1059
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
|
1029
1060
|
SqlResultValidator(
|
@@ -1037,8 +1068,9 @@ class SelectFwe(BaseTransformer):
|
|
1037
1068
|
expected_value=f"Stage area {score_stage_name} successfully created."
|
1038
1069
|
).validate()
|
1039
1070
|
|
1040
|
-
|
1041
|
-
|
1071
|
+
# Use posixpath to construct stage paths
|
1072
|
+
stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
|
1073
|
+
score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1042
1074
|
statement_params = telemetry.get_function_usage_statement_params(
|
1043
1075
|
project=_PROJECT,
|
1044
1076
|
subproject=_SUBPROJECT,
|
@@ -1064,6 +1096,7 @@ class SelectFwe(BaseTransformer):
|
|
1064
1096
|
replace=True,
|
1065
1097
|
session=session,
|
1066
1098
|
statement_params=statement_params,
|
1099
|
+
anonymous=True
|
1067
1100
|
)
|
1068
1101
|
def score_wrapper_sproc(
|
1069
1102
|
session: Session,
|
@@ -1071,7 +1104,8 @@ class SelectFwe(BaseTransformer):
|
|
1071
1104
|
stage_score_file_name: str,
|
1072
1105
|
input_cols: List[str],
|
1073
1106
|
label_cols: List[str],
|
1074
|
-
sample_weight_col: Optional[str]
|
1107
|
+
sample_weight_col: Optional[str],
|
1108
|
+
statement_params: Dict[str, str]
|
1075
1109
|
) -> float:
|
1076
1110
|
import cloudpickle as cp
|
1077
1111
|
import numpy as np
|
@@ -1121,14 +1155,14 @@ class SelectFwe(BaseTransformer):
|
|
1121
1155
|
api_calls=[Session.call],
|
1122
1156
|
custom_tags=dict([("autogen", True)]),
|
1123
1157
|
)
|
1124
|
-
score =
|
1125
|
-
|
1158
|
+
score = score_wrapper_sproc(
|
1159
|
+
session,
|
1126
1160
|
query,
|
1127
1161
|
stage_score_file_name,
|
1128
1162
|
identifier.get_unescaped_names(self.input_cols),
|
1129
1163
|
identifier.get_unescaped_names(self.label_cols),
|
1130
1164
|
identifier.get_unescaped_names(self.sample_weight_col),
|
1131
|
-
statement_params
|
1165
|
+
statement_params,
|
1132
1166
|
)
|
1133
1167
|
|
1134
1168
|
cleanup_temp_files([local_score_file_name])
|
@@ -1146,18 +1180,20 @@ class SelectFwe(BaseTransformer):
|
|
1146
1180
|
if self._sklearn_object._estimator_type == 'classifier':
|
1147
1181
|
outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
|
1148
1182
|
outputs = _rename_features(outputs, self.output_cols) # rename the output columns
|
1149
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1183
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1184
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1150
1185
|
# For regressor, the type of predict is float64
|
1151
1186
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1152
1187
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1153
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1154
|
-
|
1188
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1189
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1155
1190
|
for prob_func in PROB_FUNCTIONS:
|
1156
1191
|
if hasattr(self, prob_func):
|
1157
1192
|
output_cols_prefix: str = f"{prob_func}_"
|
1158
1193
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1159
1194
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1160
|
-
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1195
|
+
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1196
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1161
1197
|
|
1162
1198
|
@property
|
1163
1199
|
def model_signatures(self) -> Dict[str, ModelSignature]:
|
@@ -7,6 +7,7 @@
|
|
7
7
|
#
|
8
8
|
import inspect
|
9
9
|
import os
|
10
|
+
import posixpath
|
10
11
|
from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
|
11
12
|
from uuid import uuid4
|
12
13
|
|
@@ -28,6 +29,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
|
|
28
29
|
from snowflake.snowpark import DataFrame, Session
|
29
30
|
from snowflake.snowpark.functions import pandas_udf, sproc
|
30
31
|
from snowflake.snowpark.types import PandasSeries
|
32
|
+
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
31
33
|
|
32
34
|
from snowflake.ml.model.model_signature import (
|
33
35
|
DataType,
|
@@ -192,7 +194,6 @@ class SelectKBest(BaseTransformer):
|
|
192
194
|
sample_weight_col: Optional[str] = None,
|
193
195
|
) -> None:
|
194
196
|
super().__init__()
|
195
|
-
self.id = str(uuid4()).replace("-", "_").upper()
|
196
197
|
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
197
198
|
|
198
199
|
self._deps = list(deps)
|
@@ -213,6 +214,15 @@ class SelectKBest(BaseTransformer):
|
|
213
214
|
self.set_drop_input_cols(drop_input_cols)
|
214
215
|
self.set_sample_weight_col(sample_weight_col)
|
215
216
|
|
217
|
+
def _get_rand_id(self) -> str:
|
218
|
+
"""
|
219
|
+
Generate random id to be used in sproc and stage names.
|
220
|
+
|
221
|
+
Returns:
|
222
|
+
Random id string usable in sproc, table, and stage names.
|
223
|
+
"""
|
224
|
+
return str(uuid4()).replace("-", "_").upper()
|
225
|
+
|
216
226
|
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
217
227
|
"""
|
218
228
|
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
@@ -291,7 +301,7 @@ class SelectKBest(BaseTransformer):
|
|
291
301
|
cp.dump(self._sklearn_object, local_transform_file)
|
292
302
|
|
293
303
|
# Create temp stage to run fit.
|
294
|
-
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.
|
304
|
+
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
|
295
305
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
|
296
306
|
SqlResultValidator(
|
297
307
|
session=session,
|
@@ -304,11 +314,12 @@ class SelectKBest(BaseTransformer):
|
|
304
314
|
expected_value=f"Stage area {transform_stage_name} successfully created."
|
305
315
|
).validate()
|
306
316
|
|
307
|
-
|
317
|
+
# Use posixpath to construct stage paths
|
318
|
+
stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
319
|
+
stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
308
320
|
local_result_file_name = get_temp_file_path()
|
309
|
-
stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
310
321
|
|
311
|
-
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.
|
322
|
+
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
|
312
323
|
statement_params = telemetry.get_function_usage_statement_params(
|
313
324
|
project=_PROJECT,
|
314
325
|
subproject=_SUBPROJECT,
|
@@ -334,6 +345,7 @@ class SelectKBest(BaseTransformer):
|
|
334
345
|
replace=True,
|
335
346
|
session=session,
|
336
347
|
statement_params=statement_params,
|
348
|
+
anonymous=True
|
337
349
|
)
|
338
350
|
def fit_wrapper_sproc(
|
339
351
|
session: Session,
|
@@ -342,7 +354,8 @@ class SelectKBest(BaseTransformer):
|
|
342
354
|
stage_result_file_name: str,
|
343
355
|
input_cols: List[str],
|
344
356
|
label_cols: List[str],
|
345
|
-
sample_weight_col: Optional[str]
|
357
|
+
sample_weight_col: Optional[str],
|
358
|
+
statement_params: Dict[str, str]
|
346
359
|
) -> str:
|
347
360
|
import cloudpickle as cp
|
348
361
|
import numpy as np
|
@@ -409,15 +422,15 @@ class SelectKBest(BaseTransformer):
|
|
409
422
|
api_calls=[Session.call],
|
410
423
|
custom_tags=dict([("autogen", True)]),
|
411
424
|
)
|
412
|
-
sproc_export_file_name =
|
413
|
-
|
425
|
+
sproc_export_file_name = fit_wrapper_sproc(
|
426
|
+
session,
|
414
427
|
query,
|
415
428
|
stage_transform_file_name,
|
416
429
|
stage_result_file_name,
|
417
430
|
identifier.get_unescaped_names(self.input_cols),
|
418
431
|
identifier.get_unescaped_names(self.label_cols),
|
419
432
|
identifier.get_unescaped_names(self.sample_weight_col),
|
420
|
-
statement_params
|
433
|
+
statement_params,
|
421
434
|
)
|
422
435
|
|
423
436
|
if "|" in sproc_export_file_name:
|
@@ -427,7 +440,7 @@ class SelectKBest(BaseTransformer):
|
|
427
440
|
print("\n".join(fields[1:]))
|
428
441
|
|
429
442
|
session.file.get(
|
430
|
-
|
443
|
+
posixpath.join(stage_result_file_name, sproc_export_file_name),
|
431
444
|
local_result_file_name,
|
432
445
|
statement_params=statement_params
|
433
446
|
)
|
@@ -473,7 +486,7 @@ class SelectKBest(BaseTransformer):
|
|
473
486
|
|
474
487
|
# Register vectorized UDF for batch inference
|
475
488
|
batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
|
476
|
-
safe_id=self.
|
489
|
+
safe_id=self._get_rand_id(), method=inference_method)
|
477
490
|
|
478
491
|
# Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
|
479
492
|
# will try to pickle all of self which fails.
|
@@ -565,7 +578,7 @@ class SelectKBest(BaseTransformer):
|
|
565
578
|
return transformed_pandas_df.to_dict("records")
|
566
579
|
|
567
580
|
batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
|
568
|
-
safe_id=self.
|
581
|
+
safe_id=self._get_rand_id()
|
569
582
|
)
|
570
583
|
|
571
584
|
pass_through_columns = self._get_pass_through_columns(dataset)
|
@@ -621,26 +634,37 @@ class SelectKBest(BaseTransformer):
|
|
621
634
|
# input cols need to match unquoted / quoted
|
622
635
|
input_cols = self.input_cols
|
623
636
|
unquoted_input_cols = identifier.get_unescaped_names(self.input_cols)
|
637
|
+
quoted_input_cols = identifier.get_escaped_names(unquoted_input_cols)
|
624
638
|
|
625
639
|
estimator = self._sklearn_object
|
626
640
|
|
627
|
-
|
628
|
-
|
629
|
-
|
630
|
-
|
631
|
-
|
632
|
-
|
633
|
-
|
634
|
-
|
635
|
-
|
636
|
-
|
637
|
-
|
638
|
-
|
639
|
-
|
640
|
-
|
641
|
-
|
642
|
-
|
643
|
-
|
641
|
+
features_required_by_estimator = getattr(estimator, "feature_names_in_") if hasattr(estimator, "feature_names_in_") else unquoted_input_cols
|
642
|
+
missing_features = []
|
643
|
+
features_in_dataset = set(dataset.columns)
|
644
|
+
columns_to_select = []
|
645
|
+
for i, f in enumerate(features_required_by_estimator):
|
646
|
+
if (
|
647
|
+
i >= len(input_cols)
|
648
|
+
or (input_cols[i] != f and unquoted_input_cols[i] != f and quoted_input_cols[i] != f)
|
649
|
+
or (input_cols[i] not in features_in_dataset and unquoted_input_cols[i] not in features_in_dataset
|
650
|
+
and quoted_input_cols[i] not in features_in_dataset)
|
651
|
+
):
|
652
|
+
missing_features.append(f)
|
653
|
+
elif input_cols[i] in features_in_dataset:
|
654
|
+
columns_to_select.append(input_cols[i])
|
655
|
+
elif unquoted_input_cols[i] in features_in_dataset:
|
656
|
+
columns_to_select.append(unquoted_input_cols[i])
|
657
|
+
else:
|
658
|
+
columns_to_select.append(quoted_input_cols[i])
|
659
|
+
|
660
|
+
if len(missing_features) > 0:
|
661
|
+
raise ValueError(
|
662
|
+
"The feature names should match with those that were passed during fit.\n"
|
663
|
+
f"Features seen during fit call but not present in the input: {missing_features}\n"
|
664
|
+
f"Features in the input dataframe : {input_cols}\n"
|
665
|
+
)
|
666
|
+
input_df = dataset[columns_to_select]
|
667
|
+
input_df.columns = features_required_by_estimator
|
644
668
|
|
645
669
|
transformed_numpy_array = getattr(estimator, inference_method)(
|
646
670
|
input_df
|
@@ -719,11 +743,18 @@ class SelectKBest(BaseTransformer):
|
|
719
743
|
Transformed dataset.
|
720
744
|
"""
|
721
745
|
if isinstance(dataset, DataFrame):
|
746
|
+
expected_type_inferred = ""
|
747
|
+
# when it is classifier, infer the datatype from label columns
|
748
|
+
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
749
|
+
expected_type_inferred = convert_sp_to_sf_type(
|
750
|
+
self.model_signatures['predict'].outputs[0].as_snowpark_type()
|
751
|
+
)
|
752
|
+
|
722
753
|
output_df = self._batch_inference(
|
723
754
|
dataset=dataset,
|
724
755
|
inference_method="predict",
|
725
756
|
expected_output_cols_list=self.output_cols,
|
726
|
-
expected_output_cols_type=
|
757
|
+
expected_output_cols_type=expected_type_inferred,
|
727
758
|
)
|
728
759
|
elif isinstance(dataset, pd.DataFrame):
|
729
760
|
output_df = self._sklearn_inference(
|
@@ -796,10 +827,10 @@ class SelectKBest(BaseTransformer):
|
|
796
827
|
|
797
828
|
def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
|
798
829
|
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
799
|
-
Returns
|
830
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
800
831
|
"""
|
801
832
|
if getattr(self._sklearn_object, "classes_", None) is None:
|
802
|
-
return []
|
833
|
+
return [output_cols_prefix]
|
803
834
|
|
804
835
|
classes = self._sklearn_object.classes_
|
805
836
|
if isinstance(classes, numpy.ndarray):
|
@@ -1024,7 +1055,7 @@ class SelectKBest(BaseTransformer):
|
|
1024
1055
|
cp.dump(self._sklearn_object, local_score_file)
|
1025
1056
|
|
1026
1057
|
# Create temp stage to run score.
|
1027
|
-
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.
|
1058
|
+
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1028
1059
|
session = dataset._session
|
1029
1060
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
|
1030
1061
|
SqlResultValidator(
|
@@ -1038,8 +1069,9 @@ class SelectKBest(BaseTransformer):
|
|
1038
1069
|
expected_value=f"Stage area {score_stage_name} successfully created."
|
1039
1070
|
).validate()
|
1040
1071
|
|
1041
|
-
|
1042
|
-
|
1072
|
+
# Use posixpath to construct stage paths
|
1073
|
+
stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
|
1074
|
+
score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1043
1075
|
statement_params = telemetry.get_function_usage_statement_params(
|
1044
1076
|
project=_PROJECT,
|
1045
1077
|
subproject=_SUBPROJECT,
|
@@ -1065,6 +1097,7 @@ class SelectKBest(BaseTransformer):
|
|
1065
1097
|
replace=True,
|
1066
1098
|
session=session,
|
1067
1099
|
statement_params=statement_params,
|
1100
|
+
anonymous=True
|
1068
1101
|
)
|
1069
1102
|
def score_wrapper_sproc(
|
1070
1103
|
session: Session,
|
@@ -1072,7 +1105,8 @@ class SelectKBest(BaseTransformer):
|
|
1072
1105
|
stage_score_file_name: str,
|
1073
1106
|
input_cols: List[str],
|
1074
1107
|
label_cols: List[str],
|
1075
|
-
sample_weight_col: Optional[str]
|
1108
|
+
sample_weight_col: Optional[str],
|
1109
|
+
statement_params: Dict[str, str]
|
1076
1110
|
) -> float:
|
1077
1111
|
import cloudpickle as cp
|
1078
1112
|
import numpy as np
|
@@ -1122,14 +1156,14 @@ class SelectKBest(BaseTransformer):
|
|
1122
1156
|
api_calls=[Session.call],
|
1123
1157
|
custom_tags=dict([("autogen", True)]),
|
1124
1158
|
)
|
1125
|
-
score =
|
1126
|
-
|
1159
|
+
score = score_wrapper_sproc(
|
1160
|
+
session,
|
1127
1161
|
query,
|
1128
1162
|
stage_score_file_name,
|
1129
1163
|
identifier.get_unescaped_names(self.input_cols),
|
1130
1164
|
identifier.get_unescaped_names(self.label_cols),
|
1131
1165
|
identifier.get_unescaped_names(self.sample_weight_col),
|
1132
|
-
statement_params
|
1166
|
+
statement_params,
|
1133
1167
|
)
|
1134
1168
|
|
1135
1169
|
cleanup_temp_files([local_score_file_name])
|
@@ -1147,18 +1181,20 @@ class SelectKBest(BaseTransformer):
|
|
1147
1181
|
if self._sklearn_object._estimator_type == 'classifier':
|
1148
1182
|
outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
|
1149
1183
|
outputs = _rename_features(outputs, self.output_cols) # rename the output columns
|
1150
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1184
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1185
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1151
1186
|
# For regressor, the type of predict is float64
|
1152
1187
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1153
1188
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1154
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1155
|
-
|
1189
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1190
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1156
1191
|
for prob_func in PROB_FUNCTIONS:
|
1157
1192
|
if hasattr(self, prob_func):
|
1158
1193
|
output_cols_prefix: str = f"{prob_func}_"
|
1159
1194
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1160
1195
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1161
|
-
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1196
|
+
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1197
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1162
1198
|
|
1163
1199
|
@property
|
1164
1200
|
def model_signatures(self) -> Dict[str, ModelSignature]:
|