snowflake-ml-python 1.0.1__py3-none-any.whl → 1.0.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +2 -1
- snowflake/ml/_internal/file_utils.py +35 -40
- snowflake/ml/_internal/telemetry.py +5 -8
- snowflake/ml/_internal/utils/identifier.py +74 -7
- snowflake/ml/_internal/utils/uri.py +7 -2
- snowflake/ml/model/_core_requirements.py +1 -1
- snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py +15 -0
- snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py +259 -0
- snowflake/ml/model/_deploy_client/image_builds/docker_context.py +89 -0
- snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh +24 -0
- snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py +118 -0
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +40 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +199 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy_options.py +88 -0
- snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template +24 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +47 -0
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +178 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +25 -28
- snowflake/ml/model/_deploy_client/warehouse/infer_template.py +7 -4
- snowflake/ml/model/_deployer.py +14 -27
- snowflake/ml/model/_env.py +4 -4
- snowflake/ml/model/_handlers/_base.py +3 -1
- snowflake/ml/model/_handlers/custom.py +14 -2
- snowflake/ml/model/_handlers/pytorch.py +186 -0
- snowflake/ml/model/_handlers/sklearn.py +14 -8
- snowflake/ml/model/_handlers/snowmlmodel.py +14 -9
- snowflake/ml/model/_handlers/torchscript.py +180 -0
- snowflake/ml/model/_handlers/xgboost.py +19 -9
- snowflake/ml/model/_model.py +27 -21
- snowflake/ml/model/_model_meta.py +33 -19
- snowflake/ml/model/model_signature.py +446 -66
- snowflake/ml/model/type_hints.py +28 -15
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +79 -43
- snowflake/ml/modeling/cluster/affinity_propagation.py +79 -43
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +79 -43
- snowflake/ml/modeling/cluster/birch.py +79 -43
- snowflake/ml/modeling/cluster/bisecting_k_means.py +79 -43
- snowflake/ml/modeling/cluster/dbscan.py +79 -43
- snowflake/ml/modeling/cluster/feature_agglomeration.py +79 -43
- snowflake/ml/modeling/cluster/k_means.py +79 -43
- snowflake/ml/modeling/cluster/mean_shift.py +79 -43
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +79 -43
- snowflake/ml/modeling/cluster/optics.py +79 -43
- snowflake/ml/modeling/cluster/spectral_biclustering.py +79 -43
- snowflake/ml/modeling/cluster/spectral_clustering.py +79 -43
- snowflake/ml/modeling/cluster/spectral_coclustering.py +79 -43
- snowflake/ml/modeling/compose/column_transformer.py +79 -43
- snowflake/ml/modeling/compose/transformed_target_regressor.py +79 -43
- snowflake/ml/modeling/covariance/elliptic_envelope.py +79 -43
- snowflake/ml/modeling/covariance/empirical_covariance.py +79 -43
- snowflake/ml/modeling/covariance/graphical_lasso.py +79 -43
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +79 -43
- snowflake/ml/modeling/covariance/ledoit_wolf.py +79 -43
- snowflake/ml/modeling/covariance/min_cov_det.py +79 -43
- snowflake/ml/modeling/covariance/oas.py +79 -43
- snowflake/ml/modeling/covariance/shrunk_covariance.py +79 -43
- snowflake/ml/modeling/decomposition/dictionary_learning.py +79 -43
- snowflake/ml/modeling/decomposition/factor_analysis.py +79 -43
- snowflake/ml/modeling/decomposition/fast_ica.py +79 -43
- snowflake/ml/modeling/decomposition/incremental_pca.py +79 -43
- snowflake/ml/modeling/decomposition/kernel_pca.py +79 -43
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +79 -43
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +79 -43
- snowflake/ml/modeling/decomposition/pca.py +79 -43
- snowflake/ml/modeling/decomposition/sparse_pca.py +79 -43
- snowflake/ml/modeling/decomposition/truncated_svd.py +79 -43
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +79 -43
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +79 -43
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +79 -43
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +79 -43
- snowflake/ml/modeling/ensemble/bagging_classifier.py +79 -43
- snowflake/ml/modeling/ensemble/bagging_regressor.py +79 -43
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +79 -43
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +79 -43
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +79 -43
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +79 -43
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +79 -43
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +79 -43
- snowflake/ml/modeling/ensemble/isolation_forest.py +79 -43
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +79 -43
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +79 -43
- snowflake/ml/modeling/ensemble/stacking_regressor.py +79 -43
- snowflake/ml/modeling/ensemble/voting_classifier.py +79 -43
- snowflake/ml/modeling/ensemble/voting_regressor.py +79 -43
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +79 -43
- snowflake/ml/modeling/feature_selection/select_fdr.py +79 -43
- snowflake/ml/modeling/feature_selection/select_fpr.py +79 -43
- snowflake/ml/modeling/feature_selection/select_fwe.py +79 -43
- snowflake/ml/modeling/feature_selection/select_k_best.py +79 -43
- snowflake/ml/modeling/feature_selection/select_percentile.py +79 -43
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +79 -43
- snowflake/ml/modeling/feature_selection/variance_threshold.py +79 -43
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +79 -43
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +79 -43
- snowflake/ml/modeling/impute/iterative_imputer.py +79 -43
- snowflake/ml/modeling/impute/knn_imputer.py +79 -43
- snowflake/ml/modeling/impute/missing_indicator.py +79 -43
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +79 -43
- snowflake/ml/modeling/kernel_approximation/nystroem.py +79 -43
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +79 -43
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +79 -43
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +79 -43
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +79 -43
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +79 -43
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +79 -43
- snowflake/ml/modeling/linear_model/ard_regression.py +79 -43
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +79 -43
- snowflake/ml/modeling/linear_model/elastic_net.py +79 -43
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +79 -43
- snowflake/ml/modeling/linear_model/gamma_regressor.py +79 -43
- snowflake/ml/modeling/linear_model/huber_regressor.py +79 -43
- snowflake/ml/modeling/linear_model/lars.py +79 -43
- snowflake/ml/modeling/linear_model/lars_cv.py +79 -43
- snowflake/ml/modeling/linear_model/lasso.py +79 -43
- snowflake/ml/modeling/linear_model/lasso_cv.py +79 -43
- snowflake/ml/modeling/linear_model/lasso_lars.py +79 -43
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +79 -43
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +79 -43
- snowflake/ml/modeling/linear_model/linear_regression.py +79 -43
- snowflake/ml/modeling/linear_model/logistic_regression.py +79 -43
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +79 -43
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +79 -43
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +79 -43
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +79 -43
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +79 -43
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +79 -43
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +79 -43
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +79 -43
- snowflake/ml/modeling/linear_model/perceptron.py +79 -43
- snowflake/ml/modeling/linear_model/poisson_regressor.py +79 -43
- snowflake/ml/modeling/linear_model/ransac_regressor.py +79 -43
- snowflake/ml/modeling/linear_model/ridge.py +79 -43
- snowflake/ml/modeling/linear_model/ridge_classifier.py +79 -43
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +79 -43
- snowflake/ml/modeling/linear_model/ridge_cv.py +79 -43
- snowflake/ml/modeling/linear_model/sgd_classifier.py +79 -43
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +79 -43
- snowflake/ml/modeling/linear_model/sgd_regressor.py +79 -43
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +79 -43
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +79 -43
- snowflake/ml/modeling/manifold/isomap.py +79 -43
- snowflake/ml/modeling/manifold/mds.py +79 -43
- snowflake/ml/modeling/manifold/spectral_embedding.py +79 -43
- snowflake/ml/modeling/manifold/tsne.py +79 -43
- snowflake/ml/modeling/metrics/classification.py +6 -1
- snowflake/ml/modeling/metrics/regression.py +517 -9
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +79 -43
- snowflake/ml/modeling/mixture/gaussian_mixture.py +79 -43
- snowflake/ml/modeling/model_selection/grid_search_cv.py +79 -43
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +79 -43
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +79 -43
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +79 -43
- snowflake/ml/modeling/multiclass/output_code_classifier.py +79 -43
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +79 -43
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +79 -43
- snowflake/ml/modeling/naive_bayes/complement_nb.py +79 -43
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -43
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +79 -43
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +79 -43
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +79 -43
- snowflake/ml/modeling/neighbors/kernel_density.py +79 -43
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +79 -43
- snowflake/ml/modeling/neighbors/nearest_centroid.py +79 -43
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +79 -43
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +79 -43
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +79 -43
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +79 -43
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +79 -43
- snowflake/ml/modeling/neural_network/mlp_classifier.py +79 -43
- snowflake/ml/modeling/neural_network/mlp_regressor.py +79 -43
- snowflake/ml/modeling/pipeline/pipeline.py +24 -0
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +18 -19
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +2 -0
- snowflake/ml/modeling/preprocessing/polynomial_features.py +79 -43
- snowflake/ml/modeling/semi_supervised/label_propagation.py +79 -43
- snowflake/ml/modeling/semi_supervised/label_spreading.py +79 -43
- snowflake/ml/modeling/svm/linear_svc.py +79 -43
- snowflake/ml/modeling/svm/linear_svr.py +79 -43
- snowflake/ml/modeling/svm/nu_svc.py +79 -43
- snowflake/ml/modeling/svm/nu_svr.py +79 -43
- snowflake/ml/modeling/svm/svc.py +79 -43
- snowflake/ml/modeling/svm/svr.py +79 -43
- snowflake/ml/modeling/tree/decision_tree_classifier.py +79 -43
- snowflake/ml/modeling/tree/decision_tree_regressor.py +79 -43
- snowflake/ml/modeling/tree/extra_tree_classifier.py +79 -43
- snowflake/ml/modeling/tree/extra_tree_regressor.py +79 -43
- snowflake/ml/modeling/xgboost/xgb_classifier.py +79 -43
- snowflake/ml/modeling/xgboost/xgb_regressor.py +79 -43
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +79 -43
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +79 -43
- snowflake/ml/registry/model_registry.py +123 -121
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.0.1.dist-info → snowflake_ml_python-1.0.3.dist-info}/METADATA +50 -8
- snowflake_ml_python-1.0.3.dist-info/RECORD +259 -0
- snowflake_ml_python-1.0.1.dist-info/RECORD +0 -246
- {snowflake_ml_python-1.0.1.dist-info → snowflake_ml_python-1.0.3.dist-info}/WHEEL +0 -0
@@ -7,6 +7,7 @@
|
|
7
7
|
#
|
8
8
|
import inspect
|
9
9
|
import os
|
10
|
+
import posixpath
|
10
11
|
from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
|
11
12
|
from uuid import uuid4
|
12
13
|
|
@@ -27,6 +28,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
|
|
27
28
|
from snowflake.snowpark import DataFrame, Session
|
28
29
|
from snowflake.snowpark.functions import pandas_udf, sproc
|
29
30
|
from snowflake.snowpark.types import PandasSeries
|
31
|
+
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
32
|
|
31
33
|
from snowflake.ml.model.model_signature import (
|
32
34
|
DataType,
|
@@ -241,7 +243,6 @@ class MDS(BaseTransformer):
|
|
241
243
|
sample_weight_col: Optional[str] = None,
|
242
244
|
) -> None:
|
243
245
|
super().__init__()
|
244
|
-
self.id = str(uuid4()).replace("-", "_").upper()
|
245
246
|
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
246
247
|
|
247
248
|
self._deps = list(deps)
|
@@ -270,6 +271,15 @@ class MDS(BaseTransformer):
|
|
270
271
|
self.set_drop_input_cols(drop_input_cols)
|
271
272
|
self.set_sample_weight_col(sample_weight_col)
|
272
273
|
|
274
|
+
def _get_rand_id(self) -> str:
|
275
|
+
"""
|
276
|
+
Generate random id to be used in sproc and stage names.
|
277
|
+
|
278
|
+
Returns:
|
279
|
+
Random id string usable in sproc, table, and stage names.
|
280
|
+
"""
|
281
|
+
return str(uuid4()).replace("-", "_").upper()
|
282
|
+
|
273
283
|
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
274
284
|
"""
|
275
285
|
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
@@ -348,7 +358,7 @@ class MDS(BaseTransformer):
|
|
348
358
|
cp.dump(self._sklearn_object, local_transform_file)
|
349
359
|
|
350
360
|
# Create temp stage to run fit.
|
351
|
-
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.
|
361
|
+
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
|
352
362
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
|
353
363
|
SqlResultValidator(
|
354
364
|
session=session,
|
@@ -361,11 +371,12 @@ class MDS(BaseTransformer):
|
|
361
371
|
expected_value=f"Stage area {transform_stage_name} successfully created."
|
362
372
|
).validate()
|
363
373
|
|
364
|
-
|
374
|
+
# Use posixpath to construct stage paths
|
375
|
+
stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
376
|
+
stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
365
377
|
local_result_file_name = get_temp_file_path()
|
366
|
-
stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
367
378
|
|
368
|
-
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.
|
379
|
+
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
|
369
380
|
statement_params = telemetry.get_function_usage_statement_params(
|
370
381
|
project=_PROJECT,
|
371
382
|
subproject=_SUBPROJECT,
|
@@ -391,6 +402,7 @@ class MDS(BaseTransformer):
|
|
391
402
|
replace=True,
|
392
403
|
session=session,
|
393
404
|
statement_params=statement_params,
|
405
|
+
anonymous=True
|
394
406
|
)
|
395
407
|
def fit_wrapper_sproc(
|
396
408
|
session: Session,
|
@@ -399,7 +411,8 @@ class MDS(BaseTransformer):
|
|
399
411
|
stage_result_file_name: str,
|
400
412
|
input_cols: List[str],
|
401
413
|
label_cols: List[str],
|
402
|
-
sample_weight_col: Optional[str]
|
414
|
+
sample_weight_col: Optional[str],
|
415
|
+
statement_params: Dict[str, str]
|
403
416
|
) -> str:
|
404
417
|
import cloudpickle as cp
|
405
418
|
import numpy as np
|
@@ -466,15 +479,15 @@ class MDS(BaseTransformer):
|
|
466
479
|
api_calls=[Session.call],
|
467
480
|
custom_tags=dict([("autogen", True)]),
|
468
481
|
)
|
469
|
-
sproc_export_file_name =
|
470
|
-
|
482
|
+
sproc_export_file_name = fit_wrapper_sproc(
|
483
|
+
session,
|
471
484
|
query,
|
472
485
|
stage_transform_file_name,
|
473
486
|
stage_result_file_name,
|
474
487
|
identifier.get_unescaped_names(self.input_cols),
|
475
488
|
identifier.get_unescaped_names(self.label_cols),
|
476
489
|
identifier.get_unescaped_names(self.sample_weight_col),
|
477
|
-
statement_params
|
490
|
+
statement_params,
|
478
491
|
)
|
479
492
|
|
480
493
|
if "|" in sproc_export_file_name:
|
@@ -484,7 +497,7 @@ class MDS(BaseTransformer):
|
|
484
497
|
print("\n".join(fields[1:]))
|
485
498
|
|
486
499
|
session.file.get(
|
487
|
-
|
500
|
+
posixpath.join(stage_result_file_name, sproc_export_file_name),
|
488
501
|
local_result_file_name,
|
489
502
|
statement_params=statement_params
|
490
503
|
)
|
@@ -530,7 +543,7 @@ class MDS(BaseTransformer):
|
|
530
543
|
|
531
544
|
# Register vectorized UDF for batch inference
|
532
545
|
batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
|
533
|
-
safe_id=self.
|
546
|
+
safe_id=self._get_rand_id(), method=inference_method)
|
534
547
|
|
535
548
|
# Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
|
536
549
|
# will try to pickle all of self which fails.
|
@@ -622,7 +635,7 @@ class MDS(BaseTransformer):
|
|
622
635
|
return transformed_pandas_df.to_dict("records")
|
623
636
|
|
624
637
|
batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
|
625
|
-
safe_id=self.
|
638
|
+
safe_id=self._get_rand_id()
|
626
639
|
)
|
627
640
|
|
628
641
|
pass_through_columns = self._get_pass_through_columns(dataset)
|
@@ -678,26 +691,37 @@ class MDS(BaseTransformer):
|
|
678
691
|
# input cols need to match unquoted / quoted
|
679
692
|
input_cols = self.input_cols
|
680
693
|
unquoted_input_cols = identifier.get_unescaped_names(self.input_cols)
|
694
|
+
quoted_input_cols = identifier.get_escaped_names(unquoted_input_cols)
|
681
695
|
|
682
696
|
estimator = self._sklearn_object
|
683
697
|
|
684
|
-
|
685
|
-
|
686
|
-
|
687
|
-
|
688
|
-
|
689
|
-
|
690
|
-
|
691
|
-
|
692
|
-
|
693
|
-
|
694
|
-
|
695
|
-
|
696
|
-
|
697
|
-
|
698
|
-
|
699
|
-
|
700
|
-
|
698
|
+
features_required_by_estimator = getattr(estimator, "feature_names_in_") if hasattr(estimator, "feature_names_in_") else unquoted_input_cols
|
699
|
+
missing_features = []
|
700
|
+
features_in_dataset = set(dataset.columns)
|
701
|
+
columns_to_select = []
|
702
|
+
for i, f in enumerate(features_required_by_estimator):
|
703
|
+
if (
|
704
|
+
i >= len(input_cols)
|
705
|
+
or (input_cols[i] != f and unquoted_input_cols[i] != f and quoted_input_cols[i] != f)
|
706
|
+
or (input_cols[i] not in features_in_dataset and unquoted_input_cols[i] not in features_in_dataset
|
707
|
+
and quoted_input_cols[i] not in features_in_dataset)
|
708
|
+
):
|
709
|
+
missing_features.append(f)
|
710
|
+
elif input_cols[i] in features_in_dataset:
|
711
|
+
columns_to_select.append(input_cols[i])
|
712
|
+
elif unquoted_input_cols[i] in features_in_dataset:
|
713
|
+
columns_to_select.append(unquoted_input_cols[i])
|
714
|
+
else:
|
715
|
+
columns_to_select.append(quoted_input_cols[i])
|
716
|
+
|
717
|
+
if len(missing_features) > 0:
|
718
|
+
raise ValueError(
|
719
|
+
"The feature names should match with those that were passed during fit.\n"
|
720
|
+
f"Features seen during fit call but not present in the input: {missing_features}\n"
|
721
|
+
f"Features in the input dataframe : {input_cols}\n"
|
722
|
+
)
|
723
|
+
input_df = dataset[columns_to_select]
|
724
|
+
input_df.columns = features_required_by_estimator
|
701
725
|
|
702
726
|
transformed_numpy_array = getattr(estimator, inference_method)(
|
703
727
|
input_df
|
@@ -776,11 +800,18 @@ class MDS(BaseTransformer):
|
|
776
800
|
Transformed dataset.
|
777
801
|
"""
|
778
802
|
if isinstance(dataset, DataFrame):
|
803
|
+
expected_type_inferred = ""
|
804
|
+
# when it is classifier, infer the datatype from label columns
|
805
|
+
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
806
|
+
expected_type_inferred = convert_sp_to_sf_type(
|
807
|
+
self.model_signatures['predict'].outputs[0].as_snowpark_type()
|
808
|
+
)
|
809
|
+
|
779
810
|
output_df = self._batch_inference(
|
780
811
|
dataset=dataset,
|
781
812
|
inference_method="predict",
|
782
813
|
expected_output_cols_list=self.output_cols,
|
783
|
-
expected_output_cols_type=
|
814
|
+
expected_output_cols_type=expected_type_inferred,
|
784
815
|
)
|
785
816
|
elif isinstance(dataset, pd.DataFrame):
|
786
817
|
output_df = self._sklearn_inference(
|
@@ -851,10 +882,10 @@ class MDS(BaseTransformer):
|
|
851
882
|
|
852
883
|
def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
|
853
884
|
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
854
|
-
Returns
|
885
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
855
886
|
"""
|
856
887
|
if getattr(self._sklearn_object, "classes_", None) is None:
|
857
|
-
return []
|
888
|
+
return [output_cols_prefix]
|
858
889
|
|
859
890
|
classes = self._sklearn_object.classes_
|
860
891
|
if isinstance(classes, numpy.ndarray):
|
@@ -1079,7 +1110,7 @@ class MDS(BaseTransformer):
|
|
1079
1110
|
cp.dump(self._sklearn_object, local_score_file)
|
1080
1111
|
|
1081
1112
|
# Create temp stage to run score.
|
1082
|
-
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.
|
1113
|
+
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1083
1114
|
session = dataset._session
|
1084
1115
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
|
1085
1116
|
SqlResultValidator(
|
@@ -1093,8 +1124,9 @@ class MDS(BaseTransformer):
|
|
1093
1124
|
expected_value=f"Stage area {score_stage_name} successfully created."
|
1094
1125
|
).validate()
|
1095
1126
|
|
1096
|
-
|
1097
|
-
|
1127
|
+
# Use posixpath to construct stage paths
|
1128
|
+
stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
|
1129
|
+
score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1098
1130
|
statement_params = telemetry.get_function_usage_statement_params(
|
1099
1131
|
project=_PROJECT,
|
1100
1132
|
subproject=_SUBPROJECT,
|
@@ -1120,6 +1152,7 @@ class MDS(BaseTransformer):
|
|
1120
1152
|
replace=True,
|
1121
1153
|
session=session,
|
1122
1154
|
statement_params=statement_params,
|
1155
|
+
anonymous=True
|
1123
1156
|
)
|
1124
1157
|
def score_wrapper_sproc(
|
1125
1158
|
session: Session,
|
@@ -1127,7 +1160,8 @@ class MDS(BaseTransformer):
|
|
1127
1160
|
stage_score_file_name: str,
|
1128
1161
|
input_cols: List[str],
|
1129
1162
|
label_cols: List[str],
|
1130
|
-
sample_weight_col: Optional[str]
|
1163
|
+
sample_weight_col: Optional[str],
|
1164
|
+
statement_params: Dict[str, str]
|
1131
1165
|
) -> float:
|
1132
1166
|
import cloudpickle as cp
|
1133
1167
|
import numpy as np
|
@@ -1177,14 +1211,14 @@ class MDS(BaseTransformer):
|
|
1177
1211
|
api_calls=[Session.call],
|
1178
1212
|
custom_tags=dict([("autogen", True)]),
|
1179
1213
|
)
|
1180
|
-
score =
|
1181
|
-
|
1214
|
+
score = score_wrapper_sproc(
|
1215
|
+
session,
|
1182
1216
|
query,
|
1183
1217
|
stage_score_file_name,
|
1184
1218
|
identifier.get_unescaped_names(self.input_cols),
|
1185
1219
|
identifier.get_unescaped_names(self.label_cols),
|
1186
1220
|
identifier.get_unescaped_names(self.sample_weight_col),
|
1187
|
-
statement_params
|
1221
|
+
statement_params,
|
1188
1222
|
)
|
1189
1223
|
|
1190
1224
|
cleanup_temp_files([local_score_file_name])
|
@@ -1202,18 +1236,20 @@ class MDS(BaseTransformer):
|
|
1202
1236
|
if self._sklearn_object._estimator_type == 'classifier':
|
1203
1237
|
outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
|
1204
1238
|
outputs = _rename_features(outputs, self.output_cols) # rename the output columns
|
1205
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1239
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1240
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1206
1241
|
# For regressor, the type of predict is float64
|
1207
1242
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1208
1243
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1209
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1210
|
-
|
1244
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1245
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1211
1246
|
for prob_func in PROB_FUNCTIONS:
|
1212
1247
|
if hasattr(self, prob_func):
|
1213
1248
|
output_cols_prefix: str = f"{prob_func}_"
|
1214
1249
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1215
1250
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1216
|
-
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1251
|
+
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1252
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1217
1253
|
|
1218
1254
|
@property
|
1219
1255
|
def model_signatures(self) -> Dict[str, ModelSignature]:
|
@@ -7,6 +7,7 @@
|
|
7
7
|
#
|
8
8
|
import inspect
|
9
9
|
import os
|
10
|
+
import posixpath
|
10
11
|
from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
|
11
12
|
from uuid import uuid4
|
12
13
|
|
@@ -27,6 +28,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
|
|
27
28
|
from snowflake.snowpark import DataFrame, Session
|
28
29
|
from snowflake.snowpark.functions import pandas_udf, sproc
|
29
30
|
from snowflake.snowpark.types import PandasSeries
|
31
|
+
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
32
|
|
31
33
|
from snowflake.ml.model.model_signature import (
|
32
34
|
DataType,
|
@@ -245,7 +247,6 @@ class SpectralEmbedding(BaseTransformer):
|
|
245
247
|
sample_weight_col: Optional[str] = None,
|
246
248
|
) -> None:
|
247
249
|
super().__init__()
|
248
|
-
self.id = str(uuid4()).replace("-", "_").upper()
|
249
250
|
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
250
251
|
|
251
252
|
self._deps = list(deps)
|
@@ -272,6 +273,15 @@ class SpectralEmbedding(BaseTransformer):
|
|
272
273
|
self.set_drop_input_cols(drop_input_cols)
|
273
274
|
self.set_sample_weight_col(sample_weight_col)
|
274
275
|
|
276
|
+
def _get_rand_id(self) -> str:
|
277
|
+
"""
|
278
|
+
Generate random id to be used in sproc and stage names.
|
279
|
+
|
280
|
+
Returns:
|
281
|
+
Random id string usable in sproc, table, and stage names.
|
282
|
+
"""
|
283
|
+
return str(uuid4()).replace("-", "_").upper()
|
284
|
+
|
275
285
|
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
276
286
|
"""
|
277
287
|
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
@@ -350,7 +360,7 @@ class SpectralEmbedding(BaseTransformer):
|
|
350
360
|
cp.dump(self._sklearn_object, local_transform_file)
|
351
361
|
|
352
362
|
# Create temp stage to run fit.
|
353
|
-
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.
|
363
|
+
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
|
354
364
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
|
355
365
|
SqlResultValidator(
|
356
366
|
session=session,
|
@@ -363,11 +373,12 @@ class SpectralEmbedding(BaseTransformer):
|
|
363
373
|
expected_value=f"Stage area {transform_stage_name} successfully created."
|
364
374
|
).validate()
|
365
375
|
|
366
|
-
|
376
|
+
# Use posixpath to construct stage paths
|
377
|
+
stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
378
|
+
stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
367
379
|
local_result_file_name = get_temp_file_path()
|
368
|
-
stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
369
380
|
|
370
|
-
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.
|
381
|
+
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
|
371
382
|
statement_params = telemetry.get_function_usage_statement_params(
|
372
383
|
project=_PROJECT,
|
373
384
|
subproject=_SUBPROJECT,
|
@@ -393,6 +404,7 @@ class SpectralEmbedding(BaseTransformer):
|
|
393
404
|
replace=True,
|
394
405
|
session=session,
|
395
406
|
statement_params=statement_params,
|
407
|
+
anonymous=True
|
396
408
|
)
|
397
409
|
def fit_wrapper_sproc(
|
398
410
|
session: Session,
|
@@ -401,7 +413,8 @@ class SpectralEmbedding(BaseTransformer):
|
|
401
413
|
stage_result_file_name: str,
|
402
414
|
input_cols: List[str],
|
403
415
|
label_cols: List[str],
|
404
|
-
sample_weight_col: Optional[str]
|
416
|
+
sample_weight_col: Optional[str],
|
417
|
+
statement_params: Dict[str, str]
|
405
418
|
) -> str:
|
406
419
|
import cloudpickle as cp
|
407
420
|
import numpy as np
|
@@ -468,15 +481,15 @@ class SpectralEmbedding(BaseTransformer):
|
|
468
481
|
api_calls=[Session.call],
|
469
482
|
custom_tags=dict([("autogen", True)]),
|
470
483
|
)
|
471
|
-
sproc_export_file_name =
|
472
|
-
|
484
|
+
sproc_export_file_name = fit_wrapper_sproc(
|
485
|
+
session,
|
473
486
|
query,
|
474
487
|
stage_transform_file_name,
|
475
488
|
stage_result_file_name,
|
476
489
|
identifier.get_unescaped_names(self.input_cols),
|
477
490
|
identifier.get_unescaped_names(self.label_cols),
|
478
491
|
identifier.get_unescaped_names(self.sample_weight_col),
|
479
|
-
statement_params
|
492
|
+
statement_params,
|
480
493
|
)
|
481
494
|
|
482
495
|
if "|" in sproc_export_file_name:
|
@@ -486,7 +499,7 @@ class SpectralEmbedding(BaseTransformer):
|
|
486
499
|
print("\n".join(fields[1:]))
|
487
500
|
|
488
501
|
session.file.get(
|
489
|
-
|
502
|
+
posixpath.join(stage_result_file_name, sproc_export_file_name),
|
490
503
|
local_result_file_name,
|
491
504
|
statement_params=statement_params
|
492
505
|
)
|
@@ -532,7 +545,7 @@ class SpectralEmbedding(BaseTransformer):
|
|
532
545
|
|
533
546
|
# Register vectorized UDF for batch inference
|
534
547
|
batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
|
535
|
-
safe_id=self.
|
548
|
+
safe_id=self._get_rand_id(), method=inference_method)
|
536
549
|
|
537
550
|
# Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
|
538
551
|
# will try to pickle all of self which fails.
|
@@ -624,7 +637,7 @@ class SpectralEmbedding(BaseTransformer):
|
|
624
637
|
return transformed_pandas_df.to_dict("records")
|
625
638
|
|
626
639
|
batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
|
627
|
-
safe_id=self.
|
640
|
+
safe_id=self._get_rand_id()
|
628
641
|
)
|
629
642
|
|
630
643
|
pass_through_columns = self._get_pass_through_columns(dataset)
|
@@ -680,26 +693,37 @@ class SpectralEmbedding(BaseTransformer):
|
|
680
693
|
# input cols need to match unquoted / quoted
|
681
694
|
input_cols = self.input_cols
|
682
695
|
unquoted_input_cols = identifier.get_unescaped_names(self.input_cols)
|
696
|
+
quoted_input_cols = identifier.get_escaped_names(unquoted_input_cols)
|
683
697
|
|
684
698
|
estimator = self._sklearn_object
|
685
699
|
|
686
|
-
|
687
|
-
|
688
|
-
|
689
|
-
|
690
|
-
|
691
|
-
|
692
|
-
|
693
|
-
|
694
|
-
|
695
|
-
|
696
|
-
|
697
|
-
|
698
|
-
|
699
|
-
|
700
|
-
|
701
|
-
|
702
|
-
|
700
|
+
features_required_by_estimator = getattr(estimator, "feature_names_in_") if hasattr(estimator, "feature_names_in_") else unquoted_input_cols
|
701
|
+
missing_features = []
|
702
|
+
features_in_dataset = set(dataset.columns)
|
703
|
+
columns_to_select = []
|
704
|
+
for i, f in enumerate(features_required_by_estimator):
|
705
|
+
if (
|
706
|
+
i >= len(input_cols)
|
707
|
+
or (input_cols[i] != f and unquoted_input_cols[i] != f and quoted_input_cols[i] != f)
|
708
|
+
or (input_cols[i] not in features_in_dataset and unquoted_input_cols[i] not in features_in_dataset
|
709
|
+
and quoted_input_cols[i] not in features_in_dataset)
|
710
|
+
):
|
711
|
+
missing_features.append(f)
|
712
|
+
elif input_cols[i] in features_in_dataset:
|
713
|
+
columns_to_select.append(input_cols[i])
|
714
|
+
elif unquoted_input_cols[i] in features_in_dataset:
|
715
|
+
columns_to_select.append(unquoted_input_cols[i])
|
716
|
+
else:
|
717
|
+
columns_to_select.append(quoted_input_cols[i])
|
718
|
+
|
719
|
+
if len(missing_features) > 0:
|
720
|
+
raise ValueError(
|
721
|
+
"The feature names should match with those that were passed during fit.\n"
|
722
|
+
f"Features seen during fit call but not present in the input: {missing_features}\n"
|
723
|
+
f"Features in the input dataframe : {input_cols}\n"
|
724
|
+
)
|
725
|
+
input_df = dataset[columns_to_select]
|
726
|
+
input_df.columns = features_required_by_estimator
|
703
727
|
|
704
728
|
transformed_numpy_array = getattr(estimator, inference_method)(
|
705
729
|
input_df
|
@@ -778,11 +802,18 @@ class SpectralEmbedding(BaseTransformer):
|
|
778
802
|
Transformed dataset.
|
779
803
|
"""
|
780
804
|
if isinstance(dataset, DataFrame):
|
805
|
+
expected_type_inferred = ""
|
806
|
+
# when it is classifier, infer the datatype from label columns
|
807
|
+
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
808
|
+
expected_type_inferred = convert_sp_to_sf_type(
|
809
|
+
self.model_signatures['predict'].outputs[0].as_snowpark_type()
|
810
|
+
)
|
811
|
+
|
781
812
|
output_df = self._batch_inference(
|
782
813
|
dataset=dataset,
|
783
814
|
inference_method="predict",
|
784
815
|
expected_output_cols_list=self.output_cols,
|
785
|
-
expected_output_cols_type=
|
816
|
+
expected_output_cols_type=expected_type_inferred,
|
786
817
|
)
|
787
818
|
elif isinstance(dataset, pd.DataFrame):
|
788
819
|
output_df = self._sklearn_inference(
|
@@ -853,10 +884,10 @@ class SpectralEmbedding(BaseTransformer):
|
|
853
884
|
|
854
885
|
def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
|
855
886
|
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
856
|
-
Returns
|
887
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
857
888
|
"""
|
858
889
|
if getattr(self._sklearn_object, "classes_", None) is None:
|
859
|
-
return []
|
890
|
+
return [output_cols_prefix]
|
860
891
|
|
861
892
|
classes = self._sklearn_object.classes_
|
862
893
|
if isinstance(classes, numpy.ndarray):
|
@@ -1081,7 +1112,7 @@ class SpectralEmbedding(BaseTransformer):
|
|
1081
1112
|
cp.dump(self._sklearn_object, local_score_file)
|
1082
1113
|
|
1083
1114
|
# Create temp stage to run score.
|
1084
|
-
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.
|
1115
|
+
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1085
1116
|
session = dataset._session
|
1086
1117
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
|
1087
1118
|
SqlResultValidator(
|
@@ -1095,8 +1126,9 @@ class SpectralEmbedding(BaseTransformer):
|
|
1095
1126
|
expected_value=f"Stage area {score_stage_name} successfully created."
|
1096
1127
|
).validate()
|
1097
1128
|
|
1098
|
-
|
1099
|
-
|
1129
|
+
# Use posixpath to construct stage paths
|
1130
|
+
stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
|
1131
|
+
score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1100
1132
|
statement_params = telemetry.get_function_usage_statement_params(
|
1101
1133
|
project=_PROJECT,
|
1102
1134
|
subproject=_SUBPROJECT,
|
@@ -1122,6 +1154,7 @@ class SpectralEmbedding(BaseTransformer):
|
|
1122
1154
|
replace=True,
|
1123
1155
|
session=session,
|
1124
1156
|
statement_params=statement_params,
|
1157
|
+
anonymous=True
|
1125
1158
|
)
|
1126
1159
|
def score_wrapper_sproc(
|
1127
1160
|
session: Session,
|
@@ -1129,7 +1162,8 @@ class SpectralEmbedding(BaseTransformer):
|
|
1129
1162
|
stage_score_file_name: str,
|
1130
1163
|
input_cols: List[str],
|
1131
1164
|
label_cols: List[str],
|
1132
|
-
sample_weight_col: Optional[str]
|
1165
|
+
sample_weight_col: Optional[str],
|
1166
|
+
statement_params: Dict[str, str]
|
1133
1167
|
) -> float:
|
1134
1168
|
import cloudpickle as cp
|
1135
1169
|
import numpy as np
|
@@ -1179,14 +1213,14 @@ class SpectralEmbedding(BaseTransformer):
|
|
1179
1213
|
api_calls=[Session.call],
|
1180
1214
|
custom_tags=dict([("autogen", True)]),
|
1181
1215
|
)
|
1182
|
-
score =
|
1183
|
-
|
1216
|
+
score = score_wrapper_sproc(
|
1217
|
+
session,
|
1184
1218
|
query,
|
1185
1219
|
stage_score_file_name,
|
1186
1220
|
identifier.get_unescaped_names(self.input_cols),
|
1187
1221
|
identifier.get_unescaped_names(self.label_cols),
|
1188
1222
|
identifier.get_unescaped_names(self.sample_weight_col),
|
1189
|
-
statement_params
|
1223
|
+
statement_params,
|
1190
1224
|
)
|
1191
1225
|
|
1192
1226
|
cleanup_temp_files([local_score_file_name])
|
@@ -1204,18 +1238,20 @@ class SpectralEmbedding(BaseTransformer):
|
|
1204
1238
|
if self._sklearn_object._estimator_type == 'classifier':
|
1205
1239
|
outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
|
1206
1240
|
outputs = _rename_features(outputs, self.output_cols) # rename the output columns
|
1207
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1241
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1242
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1208
1243
|
# For regressor, the type of predict is float64
|
1209
1244
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1210
1245
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1211
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1212
|
-
|
1246
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1247
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1213
1248
|
for prob_func in PROB_FUNCTIONS:
|
1214
1249
|
if hasattr(self, prob_func):
|
1215
1250
|
output_cols_prefix: str = f"{prob_func}_"
|
1216
1251
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1217
1252
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1218
|
-
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1253
|
+
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1254
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1219
1255
|
|
1220
1256
|
@property
|
1221
1257
|
def model_signatures(self) -> Dict[str, ModelSignature]:
|