snowflake-ml-python 1.0.1__py3-none-any.whl → 1.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. snowflake/ml/_internal/env_utils.py +2 -1
  2. snowflake/ml/_internal/file_utils.py +35 -40
  3. snowflake/ml/_internal/telemetry.py +5 -8
  4. snowflake/ml/_internal/utils/identifier.py +74 -7
  5. snowflake/ml/_internal/utils/uri.py +7 -2
  6. snowflake/ml/model/_core_requirements.py +1 -1
  7. snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py +15 -0
  8. snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py +259 -0
  9. snowflake/ml/model/_deploy_client/image_builds/docker_context.py +89 -0
  10. snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh +24 -0
  11. snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py +118 -0
  12. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +40 -0
  13. snowflake/ml/model/_deploy_client/snowservice/deploy.py +199 -0
  14. snowflake/ml/model/_deploy_client/snowservice/deploy_options.py +88 -0
  15. snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template +24 -0
  16. snowflake/ml/model/_deploy_client/utils/constants.py +47 -0
  17. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +178 -0
  18. snowflake/ml/model/_deploy_client/warehouse/deploy.py +25 -28
  19. snowflake/ml/model/_deploy_client/warehouse/infer_template.py +7 -4
  20. snowflake/ml/model/_deployer.py +14 -27
  21. snowflake/ml/model/_env.py +4 -4
  22. snowflake/ml/model/_handlers/_base.py +3 -1
  23. snowflake/ml/model/_handlers/custom.py +14 -2
  24. snowflake/ml/model/_handlers/pytorch.py +186 -0
  25. snowflake/ml/model/_handlers/sklearn.py +14 -8
  26. snowflake/ml/model/_handlers/snowmlmodel.py +14 -9
  27. snowflake/ml/model/_handlers/torchscript.py +180 -0
  28. snowflake/ml/model/_handlers/xgboost.py +19 -9
  29. snowflake/ml/model/_model.py +27 -21
  30. snowflake/ml/model/_model_meta.py +33 -19
  31. snowflake/ml/model/model_signature.py +446 -66
  32. snowflake/ml/model/type_hints.py +28 -15
  33. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +79 -43
  34. snowflake/ml/modeling/cluster/affinity_propagation.py +79 -43
  35. snowflake/ml/modeling/cluster/agglomerative_clustering.py +79 -43
  36. snowflake/ml/modeling/cluster/birch.py +79 -43
  37. snowflake/ml/modeling/cluster/bisecting_k_means.py +79 -43
  38. snowflake/ml/modeling/cluster/dbscan.py +79 -43
  39. snowflake/ml/modeling/cluster/feature_agglomeration.py +79 -43
  40. snowflake/ml/modeling/cluster/k_means.py +79 -43
  41. snowflake/ml/modeling/cluster/mean_shift.py +79 -43
  42. snowflake/ml/modeling/cluster/mini_batch_k_means.py +79 -43
  43. snowflake/ml/modeling/cluster/optics.py +79 -43
  44. snowflake/ml/modeling/cluster/spectral_biclustering.py +79 -43
  45. snowflake/ml/modeling/cluster/spectral_clustering.py +79 -43
  46. snowflake/ml/modeling/cluster/spectral_coclustering.py +79 -43
  47. snowflake/ml/modeling/compose/column_transformer.py +79 -43
  48. snowflake/ml/modeling/compose/transformed_target_regressor.py +79 -43
  49. snowflake/ml/modeling/covariance/elliptic_envelope.py +79 -43
  50. snowflake/ml/modeling/covariance/empirical_covariance.py +79 -43
  51. snowflake/ml/modeling/covariance/graphical_lasso.py +79 -43
  52. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +79 -43
  53. snowflake/ml/modeling/covariance/ledoit_wolf.py +79 -43
  54. snowflake/ml/modeling/covariance/min_cov_det.py +79 -43
  55. snowflake/ml/modeling/covariance/oas.py +79 -43
  56. snowflake/ml/modeling/covariance/shrunk_covariance.py +79 -43
  57. snowflake/ml/modeling/decomposition/dictionary_learning.py +79 -43
  58. snowflake/ml/modeling/decomposition/factor_analysis.py +79 -43
  59. snowflake/ml/modeling/decomposition/fast_ica.py +79 -43
  60. snowflake/ml/modeling/decomposition/incremental_pca.py +79 -43
  61. snowflake/ml/modeling/decomposition/kernel_pca.py +79 -43
  62. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +79 -43
  63. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +79 -43
  64. snowflake/ml/modeling/decomposition/pca.py +79 -43
  65. snowflake/ml/modeling/decomposition/sparse_pca.py +79 -43
  66. snowflake/ml/modeling/decomposition/truncated_svd.py +79 -43
  67. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +79 -43
  68. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +79 -43
  69. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +79 -43
  70. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +79 -43
  71. snowflake/ml/modeling/ensemble/bagging_classifier.py +79 -43
  72. snowflake/ml/modeling/ensemble/bagging_regressor.py +79 -43
  73. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +79 -43
  74. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +79 -43
  75. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +79 -43
  76. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +79 -43
  77. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +79 -43
  78. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +79 -43
  79. snowflake/ml/modeling/ensemble/isolation_forest.py +79 -43
  80. snowflake/ml/modeling/ensemble/random_forest_classifier.py +79 -43
  81. snowflake/ml/modeling/ensemble/random_forest_regressor.py +79 -43
  82. snowflake/ml/modeling/ensemble/stacking_regressor.py +79 -43
  83. snowflake/ml/modeling/ensemble/voting_classifier.py +79 -43
  84. snowflake/ml/modeling/ensemble/voting_regressor.py +79 -43
  85. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +79 -43
  86. snowflake/ml/modeling/feature_selection/select_fdr.py +79 -43
  87. snowflake/ml/modeling/feature_selection/select_fpr.py +79 -43
  88. snowflake/ml/modeling/feature_selection/select_fwe.py +79 -43
  89. snowflake/ml/modeling/feature_selection/select_k_best.py +79 -43
  90. snowflake/ml/modeling/feature_selection/select_percentile.py +79 -43
  91. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +79 -43
  92. snowflake/ml/modeling/feature_selection/variance_threshold.py +79 -43
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +79 -43
  94. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +79 -43
  95. snowflake/ml/modeling/impute/iterative_imputer.py +79 -43
  96. snowflake/ml/modeling/impute/knn_imputer.py +79 -43
  97. snowflake/ml/modeling/impute/missing_indicator.py +79 -43
  98. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +79 -43
  99. snowflake/ml/modeling/kernel_approximation/nystroem.py +79 -43
  100. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +79 -43
  101. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +79 -43
  102. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +79 -43
  103. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +79 -43
  104. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +79 -43
  105. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +79 -43
  106. snowflake/ml/modeling/linear_model/ard_regression.py +79 -43
  107. snowflake/ml/modeling/linear_model/bayesian_ridge.py +79 -43
  108. snowflake/ml/modeling/linear_model/elastic_net.py +79 -43
  109. snowflake/ml/modeling/linear_model/elastic_net_cv.py +79 -43
  110. snowflake/ml/modeling/linear_model/gamma_regressor.py +79 -43
  111. snowflake/ml/modeling/linear_model/huber_regressor.py +79 -43
  112. snowflake/ml/modeling/linear_model/lars.py +79 -43
  113. snowflake/ml/modeling/linear_model/lars_cv.py +79 -43
  114. snowflake/ml/modeling/linear_model/lasso.py +79 -43
  115. snowflake/ml/modeling/linear_model/lasso_cv.py +79 -43
  116. snowflake/ml/modeling/linear_model/lasso_lars.py +79 -43
  117. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +79 -43
  118. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +79 -43
  119. snowflake/ml/modeling/linear_model/linear_regression.py +79 -43
  120. snowflake/ml/modeling/linear_model/logistic_regression.py +79 -43
  121. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +79 -43
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +79 -43
  123. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +79 -43
  124. snowflake/ml/modeling/linear_model/multi_task_lasso.py +79 -43
  125. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +79 -43
  126. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +79 -43
  127. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +79 -43
  128. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +79 -43
  129. snowflake/ml/modeling/linear_model/perceptron.py +79 -43
  130. snowflake/ml/modeling/linear_model/poisson_regressor.py +79 -43
  131. snowflake/ml/modeling/linear_model/ransac_regressor.py +79 -43
  132. snowflake/ml/modeling/linear_model/ridge.py +79 -43
  133. snowflake/ml/modeling/linear_model/ridge_classifier.py +79 -43
  134. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +79 -43
  135. snowflake/ml/modeling/linear_model/ridge_cv.py +79 -43
  136. snowflake/ml/modeling/linear_model/sgd_classifier.py +79 -43
  137. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +79 -43
  138. snowflake/ml/modeling/linear_model/sgd_regressor.py +79 -43
  139. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +79 -43
  140. snowflake/ml/modeling/linear_model/tweedie_regressor.py +79 -43
  141. snowflake/ml/modeling/manifold/isomap.py +79 -43
  142. snowflake/ml/modeling/manifold/mds.py +79 -43
  143. snowflake/ml/modeling/manifold/spectral_embedding.py +79 -43
  144. snowflake/ml/modeling/manifold/tsne.py +79 -43
  145. snowflake/ml/modeling/metrics/classification.py +6 -1
  146. snowflake/ml/modeling/metrics/regression.py +517 -9
  147. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +79 -43
  148. snowflake/ml/modeling/mixture/gaussian_mixture.py +79 -43
  149. snowflake/ml/modeling/model_selection/grid_search_cv.py +79 -43
  150. snowflake/ml/modeling/model_selection/randomized_search_cv.py +79 -43
  151. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +79 -43
  152. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +79 -43
  153. snowflake/ml/modeling/multiclass/output_code_classifier.py +79 -43
  154. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +79 -43
  155. snowflake/ml/modeling/naive_bayes/categorical_nb.py +79 -43
  156. snowflake/ml/modeling/naive_bayes/complement_nb.py +79 -43
  157. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -43
  158. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +79 -43
  159. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +79 -43
  160. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +79 -43
  161. snowflake/ml/modeling/neighbors/kernel_density.py +79 -43
  162. snowflake/ml/modeling/neighbors/local_outlier_factor.py +79 -43
  163. snowflake/ml/modeling/neighbors/nearest_centroid.py +79 -43
  164. snowflake/ml/modeling/neighbors/nearest_neighbors.py +79 -43
  165. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +79 -43
  166. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +79 -43
  167. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +79 -43
  168. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +79 -43
  169. snowflake/ml/modeling/neural_network/mlp_classifier.py +79 -43
  170. snowflake/ml/modeling/neural_network/mlp_regressor.py +79 -43
  171. snowflake/ml/modeling/pipeline/pipeline.py +24 -0
  172. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +18 -19
  173. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +2 -0
  174. snowflake/ml/modeling/preprocessing/polynomial_features.py +79 -43
  175. snowflake/ml/modeling/semi_supervised/label_propagation.py +79 -43
  176. snowflake/ml/modeling/semi_supervised/label_spreading.py +79 -43
  177. snowflake/ml/modeling/svm/linear_svc.py +79 -43
  178. snowflake/ml/modeling/svm/linear_svr.py +79 -43
  179. snowflake/ml/modeling/svm/nu_svc.py +79 -43
  180. snowflake/ml/modeling/svm/nu_svr.py +79 -43
  181. snowflake/ml/modeling/svm/svc.py +79 -43
  182. snowflake/ml/modeling/svm/svr.py +79 -43
  183. snowflake/ml/modeling/tree/decision_tree_classifier.py +79 -43
  184. snowflake/ml/modeling/tree/decision_tree_regressor.py +79 -43
  185. snowflake/ml/modeling/tree/extra_tree_classifier.py +79 -43
  186. snowflake/ml/modeling/tree/extra_tree_regressor.py +79 -43
  187. snowflake/ml/modeling/xgboost/xgb_classifier.py +79 -43
  188. snowflake/ml/modeling/xgboost/xgb_regressor.py +79 -43
  189. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +79 -43
  190. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +79 -43
  191. snowflake/ml/registry/model_registry.py +123 -121
  192. snowflake/ml/version.py +1 -1
  193. {snowflake_ml_python-1.0.1.dist-info → snowflake_ml_python-1.0.3.dist-info}/METADATA +50 -8
  194. snowflake_ml_python-1.0.3.dist-info/RECORD +259 -0
  195. snowflake_ml_python-1.0.1.dist-info/RECORD +0 -246
  196. {snowflake_ml_python-1.0.1.dist-info → snowflake_ml_python-1.0.3.dist-info}/WHEEL +0 -0
@@ -7,6 +7,7 @@
7
7
  #
8
8
  import inspect
9
9
  import os
10
+ import posixpath
10
11
  from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
11
12
  from uuid import uuid4
12
13
 
@@ -27,6 +28,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
27
28
  from snowflake.snowpark import DataFrame, Session
28
29
  from snowflake.snowpark.functions import pandas_udf, sproc
29
30
  from snowflake.snowpark.types import PandasSeries
31
+ from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
30
32
 
31
33
  from snowflake.ml.model.model_signature import (
32
34
  DataType,
@@ -232,7 +234,6 @@ class DBSCAN(BaseTransformer):
232
234
  sample_weight_col: Optional[str] = None,
233
235
  ) -> None:
234
236
  super().__init__()
235
- self.id = str(uuid4()).replace("-", "_").upper()
236
237
  deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
237
238
 
238
239
  self._deps = list(deps)
@@ -259,6 +260,15 @@ class DBSCAN(BaseTransformer):
259
260
  self.set_drop_input_cols(drop_input_cols)
260
261
  self.set_sample_weight_col(sample_weight_col)
261
262
 
263
+ def _get_rand_id(self) -> str:
264
+ """
265
+ Generate random id to be used in sproc and stage names.
266
+
267
+ Returns:
268
+ Random id string usable in sproc, table, and stage names.
269
+ """
270
+ return str(uuid4()).replace("-", "_").upper()
271
+
262
272
  def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
263
273
  """
264
274
  Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
@@ -337,7 +347,7 @@ class DBSCAN(BaseTransformer):
337
347
  cp.dump(self._sklearn_object, local_transform_file)
338
348
 
339
349
  # Create temp stage to run fit.
340
- transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.id)
350
+ transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
341
351
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
342
352
  SqlResultValidator(
343
353
  session=session,
@@ -350,11 +360,12 @@ class DBSCAN(BaseTransformer):
350
360
  expected_value=f"Stage area {transform_stage_name} successfully created."
351
361
  ).validate()
352
362
 
353
- stage_transform_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
363
+ # Use posixpath to construct stage paths
364
+ stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
365
+ stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
354
366
  local_result_file_name = get_temp_file_path()
355
- stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
356
367
 
357
- fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.id)
368
+ fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
358
369
  statement_params = telemetry.get_function_usage_statement_params(
359
370
  project=_PROJECT,
360
371
  subproject=_SUBPROJECT,
@@ -380,6 +391,7 @@ class DBSCAN(BaseTransformer):
380
391
  replace=True,
381
392
  session=session,
382
393
  statement_params=statement_params,
394
+ anonymous=True
383
395
  )
384
396
  def fit_wrapper_sproc(
385
397
  session: Session,
@@ -388,7 +400,8 @@ class DBSCAN(BaseTransformer):
388
400
  stage_result_file_name: str,
389
401
  input_cols: List[str],
390
402
  label_cols: List[str],
391
- sample_weight_col: Optional[str]
403
+ sample_weight_col: Optional[str],
404
+ statement_params: Dict[str, str]
392
405
  ) -> str:
393
406
  import cloudpickle as cp
394
407
  import numpy as np
@@ -455,15 +468,15 @@ class DBSCAN(BaseTransformer):
455
468
  api_calls=[Session.call],
456
469
  custom_tags=dict([("autogen", True)]),
457
470
  )
458
- sproc_export_file_name = session.call(
459
- fit_sproc_name,
471
+ sproc_export_file_name = fit_wrapper_sproc(
472
+ session,
460
473
  query,
461
474
  stage_transform_file_name,
462
475
  stage_result_file_name,
463
476
  identifier.get_unescaped_names(self.input_cols),
464
477
  identifier.get_unescaped_names(self.label_cols),
465
478
  identifier.get_unescaped_names(self.sample_weight_col),
466
- statement_params=statement_params,
479
+ statement_params,
467
480
  )
468
481
 
469
482
  if "|" in sproc_export_file_name:
@@ -473,7 +486,7 @@ class DBSCAN(BaseTransformer):
473
486
  print("\n".join(fields[1:]))
474
487
 
475
488
  session.file.get(
476
- os.path.join(stage_result_file_name, sproc_export_file_name),
489
+ posixpath.join(stage_result_file_name, sproc_export_file_name),
477
490
  local_result_file_name,
478
491
  statement_params=statement_params
479
492
  )
@@ -519,7 +532,7 @@ class DBSCAN(BaseTransformer):
519
532
 
520
533
  # Register vectorized UDF for batch inference
521
534
  batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
522
- safe_id=self.id, method=inference_method)
535
+ safe_id=self._get_rand_id(), method=inference_method)
523
536
 
524
537
  # Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
525
538
  # will try to pickle all of self which fails.
@@ -611,7 +624,7 @@ class DBSCAN(BaseTransformer):
611
624
  return transformed_pandas_df.to_dict("records")
612
625
 
613
626
  batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
614
- safe_id=self.id
627
+ safe_id=self._get_rand_id()
615
628
  )
616
629
 
617
630
  pass_through_columns = self._get_pass_through_columns(dataset)
@@ -667,26 +680,37 @@ class DBSCAN(BaseTransformer):
667
680
  # input cols need to match unquoted / quoted
668
681
  input_cols = self.input_cols
669
682
  unquoted_input_cols = identifier.get_unescaped_names(self.input_cols)
683
+ quoted_input_cols = identifier.get_escaped_names(unquoted_input_cols)
670
684
 
671
685
  estimator = self._sklearn_object
672
686
 
673
- input_df = dataset[input_cols] # Select input columns with quoted column names.
674
- if hasattr(estimator, "feature_names_in_"):
675
- missing_features = []
676
- for i, f in enumerate(getattr(estimator, "feature_names_in_")):
677
- if i >= len(input_cols) or (input_cols[i] != f and unquoted_input_cols[i] != f):
678
- missing_features.append(f)
679
-
680
- if len(missing_features) > 0:
681
- raise ValueError(
682
- "The feature names should match with those that were passed during fit.\n"
683
- f"Features seen during fit call but not present in the input: {missing_features}\n"
684
- f"Features in the input dataframe : {input_cols}\n"
685
- )
686
- input_df.columns = getattr(estimator, "feature_names_in_")
687
- else:
688
- # Just rename the column names to unquoted identifiers.
689
- input_df.columns = unquoted_input_cols # Replace the quoted columns identifier with unquoted column ids.
687
+ features_required_by_estimator = getattr(estimator, "feature_names_in_") if hasattr(estimator, "feature_names_in_") else unquoted_input_cols
688
+ missing_features = []
689
+ features_in_dataset = set(dataset.columns)
690
+ columns_to_select = []
691
+ for i, f in enumerate(features_required_by_estimator):
692
+ if (
693
+ i >= len(input_cols)
694
+ or (input_cols[i] != f and unquoted_input_cols[i] != f and quoted_input_cols[i] != f)
695
+ or (input_cols[i] not in features_in_dataset and unquoted_input_cols[i] not in features_in_dataset
696
+ and quoted_input_cols[i] not in features_in_dataset)
697
+ ):
698
+ missing_features.append(f)
699
+ elif input_cols[i] in features_in_dataset:
700
+ columns_to_select.append(input_cols[i])
701
+ elif unquoted_input_cols[i] in features_in_dataset:
702
+ columns_to_select.append(unquoted_input_cols[i])
703
+ else:
704
+ columns_to_select.append(quoted_input_cols[i])
705
+
706
+ if len(missing_features) > 0:
707
+ raise ValueError(
708
+ "The feature names should match with those that were passed during fit.\n"
709
+ f"Features seen during fit call but not present in the input: {missing_features}\n"
710
+ f"Features in the input dataframe : {input_cols}\n"
711
+ )
712
+ input_df = dataset[columns_to_select]
713
+ input_df.columns = features_required_by_estimator
690
714
 
691
715
  transformed_numpy_array = getattr(estimator, inference_method)(
692
716
  input_df
@@ -765,11 +789,18 @@ class DBSCAN(BaseTransformer):
765
789
  Transformed dataset.
766
790
  """
767
791
  if isinstance(dataset, DataFrame):
792
+ expected_type_inferred = ""
793
+ # when it is classifier, infer the datatype from label columns
794
+ if expected_type_inferred == "" and 'predict' in self.model_signatures:
795
+ expected_type_inferred = convert_sp_to_sf_type(
796
+ self.model_signatures['predict'].outputs[0].as_snowpark_type()
797
+ )
798
+
768
799
  output_df = self._batch_inference(
769
800
  dataset=dataset,
770
801
  inference_method="predict",
771
802
  expected_output_cols_list=self.output_cols,
772
- expected_output_cols_type="",
803
+ expected_output_cols_type=expected_type_inferred,
773
804
  )
774
805
  elif isinstance(dataset, pd.DataFrame):
775
806
  output_df = self._sklearn_inference(
@@ -840,10 +871,10 @@ class DBSCAN(BaseTransformer):
840
871
 
841
872
  def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
842
873
  """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
843
- Returns an empty list if current object is not a classifier or not yet fitted.
874
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
844
875
  """
845
876
  if getattr(self._sklearn_object, "classes_", None) is None:
846
- return []
877
+ return [output_cols_prefix]
847
878
 
848
879
  classes = self._sklearn_object.classes_
849
880
  if isinstance(classes, numpy.ndarray):
@@ -1068,7 +1099,7 @@ class DBSCAN(BaseTransformer):
1068
1099
  cp.dump(self._sklearn_object, local_score_file)
1069
1100
 
1070
1101
  # Create temp stage to run score.
1071
- score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1102
+ score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1072
1103
  session = dataset._session
1073
1104
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
1074
1105
  SqlResultValidator(
@@ -1082,8 +1113,9 @@ class DBSCAN(BaseTransformer):
1082
1113
  expected_value=f"Stage area {score_stage_name} successfully created."
1083
1114
  ).validate()
1084
1115
 
1085
- stage_score_file_name = os.path.join(score_stage_name, os.path.basename(local_score_file_name))
1086
- score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1116
+ # Use posixpath to construct stage paths
1117
+ stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
1118
+ score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1087
1119
  statement_params = telemetry.get_function_usage_statement_params(
1088
1120
  project=_PROJECT,
1089
1121
  subproject=_SUBPROJECT,
@@ -1109,6 +1141,7 @@ class DBSCAN(BaseTransformer):
1109
1141
  replace=True,
1110
1142
  session=session,
1111
1143
  statement_params=statement_params,
1144
+ anonymous=True
1112
1145
  )
1113
1146
  def score_wrapper_sproc(
1114
1147
  session: Session,
@@ -1116,7 +1149,8 @@ class DBSCAN(BaseTransformer):
1116
1149
  stage_score_file_name: str,
1117
1150
  input_cols: List[str],
1118
1151
  label_cols: List[str],
1119
- sample_weight_col: Optional[str]
1152
+ sample_weight_col: Optional[str],
1153
+ statement_params: Dict[str, str]
1120
1154
  ) -> float:
1121
1155
  import cloudpickle as cp
1122
1156
  import numpy as np
@@ -1166,14 +1200,14 @@ class DBSCAN(BaseTransformer):
1166
1200
  api_calls=[Session.call],
1167
1201
  custom_tags=dict([("autogen", True)]),
1168
1202
  )
1169
- score = session.call(
1170
- score_sproc_name,
1203
+ score = score_wrapper_sproc(
1204
+ session,
1171
1205
  query,
1172
1206
  stage_score_file_name,
1173
1207
  identifier.get_unescaped_names(self.input_cols),
1174
1208
  identifier.get_unescaped_names(self.label_cols),
1175
1209
  identifier.get_unescaped_names(self.sample_weight_col),
1176
- statement_params=statement_params,
1210
+ statement_params,
1177
1211
  )
1178
1212
 
1179
1213
  cleanup_temp_files([local_score_file_name])
@@ -1191,18 +1225,20 @@ class DBSCAN(BaseTransformer):
1191
1225
  if self._sklearn_object._estimator_type == 'classifier':
1192
1226
  outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
1193
1227
  outputs = _rename_features(outputs, self.output_cols) # rename the output columns
1194
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1228
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1229
+ ([] if self._drop_input_cols else inputs) + outputs)
1195
1230
  # For regressor, the type of predict is float64
1196
1231
  elif self._sklearn_object._estimator_type == 'regressor':
1197
1232
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1198
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1199
-
1233
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1234
+ ([] if self._drop_input_cols else inputs) + outputs)
1200
1235
  for prob_func in PROB_FUNCTIONS:
1201
1236
  if hasattr(self, prob_func):
1202
1237
  output_cols_prefix: str = f"{prob_func}_"
1203
1238
  output_column_names = self._get_output_column_names(output_cols_prefix)
1204
1239
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1205
- self._model_signature_dict[prob_func] = ModelSignature(inputs, outputs)
1240
+ self._model_signature_dict[prob_func] = ModelSignature(inputs,
1241
+ ([] if self._drop_input_cols else inputs) + outputs)
1206
1242
 
1207
1243
  @property
1208
1244
  def model_signatures(self) -> Dict[str, ModelSignature]:
@@ -7,6 +7,7 @@
7
7
  #
8
8
  import inspect
9
9
  import os
10
+ import posixpath
10
11
  from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
11
12
  from uuid import uuid4
12
13
 
@@ -27,6 +28,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
27
28
  from snowflake.snowpark import DataFrame, Session
28
29
  from snowflake.snowpark.functions import pandas_udf, sproc
29
30
  from snowflake.snowpark.types import PandasSeries
31
+ from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
30
32
 
31
33
  from snowflake.ml.model.model_signature import (
32
34
  DataType,
@@ -262,7 +264,6 @@ class FeatureAgglomeration(BaseTransformer):
262
264
  sample_weight_col: Optional[str] = None,
263
265
  ) -> None:
264
266
  super().__init__()
265
- self.id = str(uuid4()).replace("-", "_").upper()
266
267
  deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
267
268
 
268
269
  self._deps = list(deps)
@@ -291,6 +292,15 @@ class FeatureAgglomeration(BaseTransformer):
291
292
  self.set_drop_input_cols(drop_input_cols)
292
293
  self.set_sample_weight_col(sample_weight_col)
293
294
 
295
+ def _get_rand_id(self) -> str:
296
+ """
297
+ Generate random id to be used in sproc and stage names.
298
+
299
+ Returns:
300
+ Random id string usable in sproc, table, and stage names.
301
+ """
302
+ return str(uuid4()).replace("-", "_").upper()
303
+
294
304
  def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
295
305
  """
296
306
  Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
@@ -369,7 +379,7 @@ class FeatureAgglomeration(BaseTransformer):
369
379
  cp.dump(self._sklearn_object, local_transform_file)
370
380
 
371
381
  # Create temp stage to run fit.
372
- transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.id)
382
+ transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
373
383
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
374
384
  SqlResultValidator(
375
385
  session=session,
@@ -382,11 +392,12 @@ class FeatureAgglomeration(BaseTransformer):
382
392
  expected_value=f"Stage area {transform_stage_name} successfully created."
383
393
  ).validate()
384
394
 
385
- stage_transform_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
395
+ # Use posixpath to construct stage paths
396
+ stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
397
+ stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
386
398
  local_result_file_name = get_temp_file_path()
387
- stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
388
399
 
389
- fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.id)
400
+ fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
390
401
  statement_params = telemetry.get_function_usage_statement_params(
391
402
  project=_PROJECT,
392
403
  subproject=_SUBPROJECT,
@@ -412,6 +423,7 @@ class FeatureAgglomeration(BaseTransformer):
412
423
  replace=True,
413
424
  session=session,
414
425
  statement_params=statement_params,
426
+ anonymous=True
415
427
  )
416
428
  def fit_wrapper_sproc(
417
429
  session: Session,
@@ -420,7 +432,8 @@ class FeatureAgglomeration(BaseTransformer):
420
432
  stage_result_file_name: str,
421
433
  input_cols: List[str],
422
434
  label_cols: List[str],
423
- sample_weight_col: Optional[str]
435
+ sample_weight_col: Optional[str],
436
+ statement_params: Dict[str, str]
424
437
  ) -> str:
425
438
  import cloudpickle as cp
426
439
  import numpy as np
@@ -487,15 +500,15 @@ class FeatureAgglomeration(BaseTransformer):
487
500
  api_calls=[Session.call],
488
501
  custom_tags=dict([("autogen", True)]),
489
502
  )
490
- sproc_export_file_name = session.call(
491
- fit_sproc_name,
503
+ sproc_export_file_name = fit_wrapper_sproc(
504
+ session,
492
505
  query,
493
506
  stage_transform_file_name,
494
507
  stage_result_file_name,
495
508
  identifier.get_unescaped_names(self.input_cols),
496
509
  identifier.get_unescaped_names(self.label_cols),
497
510
  identifier.get_unescaped_names(self.sample_weight_col),
498
- statement_params=statement_params,
511
+ statement_params,
499
512
  )
500
513
 
501
514
  if "|" in sproc_export_file_name:
@@ -505,7 +518,7 @@ class FeatureAgglomeration(BaseTransformer):
505
518
  print("\n".join(fields[1:]))
506
519
 
507
520
  session.file.get(
508
- os.path.join(stage_result_file_name, sproc_export_file_name),
521
+ posixpath.join(stage_result_file_name, sproc_export_file_name),
509
522
  local_result_file_name,
510
523
  statement_params=statement_params
511
524
  )
@@ -551,7 +564,7 @@ class FeatureAgglomeration(BaseTransformer):
551
564
 
552
565
  # Register vectorized UDF for batch inference
553
566
  batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
554
- safe_id=self.id, method=inference_method)
567
+ safe_id=self._get_rand_id(), method=inference_method)
555
568
 
556
569
  # Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
557
570
  # will try to pickle all of self which fails.
@@ -643,7 +656,7 @@ class FeatureAgglomeration(BaseTransformer):
643
656
  return transformed_pandas_df.to_dict("records")
644
657
 
645
658
  batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
646
- safe_id=self.id
659
+ safe_id=self._get_rand_id()
647
660
  )
648
661
 
649
662
  pass_through_columns = self._get_pass_through_columns(dataset)
@@ -699,26 +712,37 @@ class FeatureAgglomeration(BaseTransformer):
699
712
  # input cols need to match unquoted / quoted
700
713
  input_cols = self.input_cols
701
714
  unquoted_input_cols = identifier.get_unescaped_names(self.input_cols)
715
+ quoted_input_cols = identifier.get_escaped_names(unquoted_input_cols)
702
716
 
703
717
  estimator = self._sklearn_object
704
718
 
705
- input_df = dataset[input_cols] # Select input columns with quoted column names.
706
- if hasattr(estimator, "feature_names_in_"):
707
- missing_features = []
708
- for i, f in enumerate(getattr(estimator, "feature_names_in_")):
709
- if i >= len(input_cols) or (input_cols[i] != f and unquoted_input_cols[i] != f):
710
- missing_features.append(f)
711
-
712
- if len(missing_features) > 0:
713
- raise ValueError(
714
- "The feature names should match with those that were passed during fit.\n"
715
- f"Features seen during fit call but not present in the input: {missing_features}\n"
716
- f"Features in the input dataframe : {input_cols}\n"
717
- )
718
- input_df.columns = getattr(estimator, "feature_names_in_")
719
- else:
720
- # Just rename the column names to unquoted identifiers.
721
- input_df.columns = unquoted_input_cols # Replace the quoted columns identifier with unquoted column ids.
719
+ features_required_by_estimator = getattr(estimator, "feature_names_in_") if hasattr(estimator, "feature_names_in_") else unquoted_input_cols
720
+ missing_features = []
721
+ features_in_dataset = set(dataset.columns)
722
+ columns_to_select = []
723
+ for i, f in enumerate(features_required_by_estimator):
724
+ if (
725
+ i >= len(input_cols)
726
+ or (input_cols[i] != f and unquoted_input_cols[i] != f and quoted_input_cols[i] != f)
727
+ or (input_cols[i] not in features_in_dataset and unquoted_input_cols[i] not in features_in_dataset
728
+ and quoted_input_cols[i] not in features_in_dataset)
729
+ ):
730
+ missing_features.append(f)
731
+ elif input_cols[i] in features_in_dataset:
732
+ columns_to_select.append(input_cols[i])
733
+ elif unquoted_input_cols[i] in features_in_dataset:
734
+ columns_to_select.append(unquoted_input_cols[i])
735
+ else:
736
+ columns_to_select.append(quoted_input_cols[i])
737
+
738
+ if len(missing_features) > 0:
739
+ raise ValueError(
740
+ "The feature names should match with those that were passed during fit.\n"
741
+ f"Features seen during fit call but not present in the input: {missing_features}\n"
742
+ f"Features in the input dataframe : {input_cols}\n"
743
+ )
744
+ input_df = dataset[columns_to_select]
745
+ input_df.columns = features_required_by_estimator
722
746
 
723
747
  transformed_numpy_array = getattr(estimator, inference_method)(
724
748
  input_df
@@ -797,11 +821,18 @@ class FeatureAgglomeration(BaseTransformer):
797
821
  Transformed dataset.
798
822
  """
799
823
  if isinstance(dataset, DataFrame):
824
+ expected_type_inferred = ""
825
+ # when it is classifier, infer the datatype from label columns
826
+ if expected_type_inferred == "" and 'predict' in self.model_signatures:
827
+ expected_type_inferred = convert_sp_to_sf_type(
828
+ self.model_signatures['predict'].outputs[0].as_snowpark_type()
829
+ )
830
+
800
831
  output_df = self._batch_inference(
801
832
  dataset=dataset,
802
833
  inference_method="predict",
803
834
  expected_output_cols_list=self.output_cols,
804
- expected_output_cols_type="",
835
+ expected_output_cols_type=expected_type_inferred,
805
836
  )
806
837
  elif isinstance(dataset, pd.DataFrame):
807
838
  output_df = self._sklearn_inference(
@@ -874,10 +905,10 @@ class FeatureAgglomeration(BaseTransformer):
874
905
 
875
906
  def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
876
907
  """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
877
- Returns an empty list if current object is not a classifier or not yet fitted.
908
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
878
909
  """
879
910
  if getattr(self._sklearn_object, "classes_", None) is None:
880
- return []
911
+ return [output_cols_prefix]
881
912
 
882
913
  classes = self._sklearn_object.classes_
883
914
  if isinstance(classes, numpy.ndarray):
@@ -1102,7 +1133,7 @@ class FeatureAgglomeration(BaseTransformer):
1102
1133
  cp.dump(self._sklearn_object, local_score_file)
1103
1134
 
1104
1135
  # Create temp stage to run score.
1105
- score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1136
+ score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1106
1137
  session = dataset._session
1107
1138
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
1108
1139
  SqlResultValidator(
@@ -1116,8 +1147,9 @@ class FeatureAgglomeration(BaseTransformer):
1116
1147
  expected_value=f"Stage area {score_stage_name} successfully created."
1117
1148
  ).validate()
1118
1149
 
1119
- stage_score_file_name = os.path.join(score_stage_name, os.path.basename(local_score_file_name))
1120
- score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1150
+ # Use posixpath to construct stage paths
1151
+ stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
1152
+ score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1121
1153
  statement_params = telemetry.get_function_usage_statement_params(
1122
1154
  project=_PROJECT,
1123
1155
  subproject=_SUBPROJECT,
@@ -1143,6 +1175,7 @@ class FeatureAgglomeration(BaseTransformer):
1143
1175
  replace=True,
1144
1176
  session=session,
1145
1177
  statement_params=statement_params,
1178
+ anonymous=True
1146
1179
  )
1147
1180
  def score_wrapper_sproc(
1148
1181
  session: Session,
@@ -1150,7 +1183,8 @@ class FeatureAgglomeration(BaseTransformer):
1150
1183
  stage_score_file_name: str,
1151
1184
  input_cols: List[str],
1152
1185
  label_cols: List[str],
1153
- sample_weight_col: Optional[str]
1186
+ sample_weight_col: Optional[str],
1187
+ statement_params: Dict[str, str]
1154
1188
  ) -> float:
1155
1189
  import cloudpickle as cp
1156
1190
  import numpy as np
@@ -1200,14 +1234,14 @@ class FeatureAgglomeration(BaseTransformer):
1200
1234
  api_calls=[Session.call],
1201
1235
  custom_tags=dict([("autogen", True)]),
1202
1236
  )
1203
- score = session.call(
1204
- score_sproc_name,
1237
+ score = score_wrapper_sproc(
1238
+ session,
1205
1239
  query,
1206
1240
  stage_score_file_name,
1207
1241
  identifier.get_unescaped_names(self.input_cols),
1208
1242
  identifier.get_unescaped_names(self.label_cols),
1209
1243
  identifier.get_unescaped_names(self.sample_weight_col),
1210
- statement_params=statement_params,
1244
+ statement_params,
1211
1245
  )
1212
1246
 
1213
1247
  cleanup_temp_files([local_score_file_name])
@@ -1225,18 +1259,20 @@ class FeatureAgglomeration(BaseTransformer):
1225
1259
  if self._sklearn_object._estimator_type == 'classifier':
1226
1260
  outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
1227
1261
  outputs = _rename_features(outputs, self.output_cols) # rename the output columns
1228
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1262
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1263
+ ([] if self._drop_input_cols else inputs) + outputs)
1229
1264
  # For regressor, the type of predict is float64
1230
1265
  elif self._sklearn_object._estimator_type == 'regressor':
1231
1266
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1232
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1233
-
1267
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1268
+ ([] if self._drop_input_cols else inputs) + outputs)
1234
1269
  for prob_func in PROB_FUNCTIONS:
1235
1270
  if hasattr(self, prob_func):
1236
1271
  output_cols_prefix: str = f"{prob_func}_"
1237
1272
  output_column_names = self._get_output_column_names(output_cols_prefix)
1238
1273
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1239
- self._model_signature_dict[prob_func] = ModelSignature(inputs, outputs)
1274
+ self._model_signature_dict[prob_func] = ModelSignature(inputs,
1275
+ ([] if self._drop_input_cols else inputs) + outputs)
1240
1276
 
1241
1277
  @property
1242
1278
  def model_signatures(self) -> Dict[str, ModelSignature]: