sglang 0.5.1.post3__py3-none-any.whl → 0.5.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +3 -0
- sglang/bench_one_batch_server.py +10 -1
- sglang/bench_serving.py +251 -26
- sglang/lang/interpreter.py +1 -1
- sglang/srt/configs/__init__.py +4 -0
- sglang/srt/configs/internvl.py +6 -0
- sglang/srt/configs/longcat_flash.py +104 -0
- sglang/srt/configs/model_config.py +37 -7
- sglang/srt/configs/qwen3_next.py +326 -0
- sglang/srt/connector/__init__.py +1 -1
- sglang/srt/connector/base_connector.py +1 -2
- sglang/srt/connector/redis.py +2 -2
- sglang/srt/connector/serde/__init__.py +1 -1
- sglang/srt/connector/serde/safe_serde.py +4 -3
- sglang/srt/custom_op.py +11 -1
- sglang/srt/debug_utils/dump_comparator.py +81 -44
- sglang/srt/debug_utils/dump_loader.py +97 -0
- sglang/srt/debug_utils/dumper.py +11 -3
- sglang/srt/debug_utils/text_comparator.py +73 -11
- sglang/srt/disaggregation/ascend/conn.py +75 -0
- sglang/srt/disaggregation/base/conn.py +1 -1
- sglang/srt/disaggregation/common/conn.py +15 -12
- sglang/srt/disaggregation/decode.py +6 -4
- sglang/srt/disaggregation/fake/conn.py +1 -1
- sglang/srt/disaggregation/mini_lb.py +6 -420
- sglang/srt/disaggregation/mooncake/conn.py +18 -10
- sglang/srt/disaggregation/nixl/conn.py +180 -16
- sglang/srt/disaggregation/prefill.py +6 -4
- sglang/srt/disaggregation/utils.py +5 -50
- sglang/srt/distributed/parallel_state.py +94 -58
- sglang/srt/entrypoints/engine.py +34 -14
- sglang/srt/entrypoints/http_server.py +172 -47
- sglang/srt/entrypoints/openai/protocol.py +63 -3
- sglang/srt/entrypoints/openai/serving_base.py +6 -2
- sglang/srt/entrypoints/openai/serving_chat.py +34 -19
- sglang/srt/entrypoints/openai/serving_completions.py +10 -4
- sglang/srt/entrypoints/openai/serving_embedding.py +8 -4
- sglang/srt/entrypoints/openai/serving_responses.py +7 -4
- sglang/srt/eplb/eplb_manager.py +28 -4
- sglang/srt/eplb/expert_distribution.py +55 -15
- sglang/srt/eplb/expert_location.py +8 -3
- sglang/srt/eplb/expert_location_updater.py +1 -1
- sglang/srt/function_call/ebnf_composer.py +11 -9
- sglang/srt/function_call/glm4_moe_detector.py +1 -1
- sglang/srt/function_call/gpt_oss_detector.py +1 -1
- sglang/srt/function_call/qwen3_coder_detector.py +1 -1
- sglang/srt/hf_transformers_utils.py +12 -0
- sglang/srt/layers/activation.py +44 -9
- sglang/srt/layers/attention/aiter_backend.py +93 -68
- sglang/srt/layers/attention/ascend_backend.py +250 -112
- sglang/srt/layers/attention/fla/chunk.py +242 -0
- sglang/srt/layers/attention/fla/chunk_delta_h.py +314 -0
- sglang/srt/layers/attention/fla/chunk_o.py +178 -0
- sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +151 -0
- sglang/srt/layers/attention/fla/cumsum.py +300 -0
- sglang/srt/layers/attention/fla/fused_recurrent.py +640 -0
- sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +232 -0
- sglang/srt/layers/attention/fla/index.py +37 -0
- sglang/srt/layers/attention/fla/l2norm.py +150 -0
- sglang/srt/layers/attention/fla/layernorm_gated.py +326 -0
- sglang/srt/layers/attention/fla/op.py +66 -0
- sglang/srt/layers/attention/fla/solve_tril.py +465 -0
- sglang/srt/layers/attention/fla/utils.py +331 -0
- sglang/srt/layers/attention/fla/wy_fast.py +158 -0
- sglang/srt/layers/attention/flashinfer_backend.py +6 -4
- sglang/srt/layers/attention/flashinfer_mla_backend.py +16 -12
- sglang/srt/layers/attention/hybrid_attn_backend.py +47 -8
- sglang/srt/layers/attention/hybrid_linear_attn_backend.py +584 -0
- sglang/srt/layers/attention/intel_amx_backend.py +3 -0
- sglang/srt/layers/attention/mamba/causal_conv1d.py +128 -0
- sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +1052 -0
- sglang/srt/layers/attention/mamba/mamba.py +64 -0
- sglang/srt/layers/attention/torch_native_backend.py +12 -6
- sglang/srt/layers/attention/trtllm_mla_backend.py +126 -36
- sglang/srt/layers/attention/wave_ops/decode_attention.py +2 -4
- sglang/srt/layers/attention/wave_ops/extend_attention.py +1 -3
- sglang/srt/layers/communicator.py +45 -7
- sglang/srt/layers/layernorm.py +54 -12
- sglang/srt/layers/logits_processor.py +10 -3
- sglang/srt/layers/moe/__init__.py +2 -1
- sglang/srt/layers/moe/cutlass_w4a8_moe.py +4 -12
- sglang/srt/layers/moe/ep_moe/kernels.py +74 -0
- sglang/srt/layers/moe/ep_moe/layer.py +110 -49
- sglang/srt/layers/moe/fused_moe_native.py +5 -3
- sglang/srt/layers/moe/fused_moe_triton/__init__.py +5 -3
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=129,N=352,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/{E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → E=257,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json } +29 -29
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +9 -1049
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +212 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +799 -0
- sglang/srt/layers/moe/fused_moe_triton/layer.py +56 -45
- sglang/srt/layers/moe/fused_moe_triton/moe_align_block_size.py +87 -0
- sglang/srt/layers/moe/moe_runner/__init__.py +2 -1
- sglang/srt/layers/moe/moe_runner/base.py +274 -1
- sglang/srt/layers/moe/moe_runner/runner.py +80 -0
- sglang/srt/layers/moe/moe_runner/triton.py +448 -0
- sglang/srt/layers/moe/token_dispatcher/__init__.py +16 -4
- sglang/srt/layers/moe/token_dispatcher/{base_dispatcher.py → base.py} +67 -17
- sglang/srt/layers/moe/token_dispatcher/deepep.py +41 -38
- sglang/srt/layers/moe/token_dispatcher/standard.py +44 -2
- sglang/srt/layers/moe/topk.py +43 -12
- sglang/srt/layers/moe/utils.py +6 -5
- sglang/srt/layers/quantization/awq.py +19 -7
- sglang/srt/layers/quantization/base_config.py +11 -6
- sglang/srt/layers/quantization/blockwise_int8.py +38 -27
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +50 -30
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +13 -1
- sglang/srt/layers/quantization/deep_gemm_wrapper/compile_utils.py +9 -1
- sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -3
- sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +27 -0
- sglang/srt/layers/quantization/fp8.py +76 -47
- sglang/srt/layers/quantization/fp8_utils.py +43 -29
- sglang/srt/layers/quantization/gptq.py +25 -17
- sglang/srt/layers/quantization/modelopt_quant.py +107 -40
- sglang/srt/layers/quantization/moe_wna16.py +21 -18
- sglang/srt/layers/quantization/mxfp4.py +77 -45
- sglang/srt/layers/quantization/quark/quark_moe.py +32 -27
- sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +49 -30
- sglang/srt/layers/quantization/quark/utils.py +97 -0
- sglang/srt/layers/quantization/rocm_mxfp4_utils.py +13 -0
- sglang/srt/layers/quantization/unquant.py +135 -47
- sglang/srt/layers/quantization/utils.py +13 -0
- sglang/srt/layers/quantization/w4afp8.py +60 -42
- sglang/srt/layers/quantization/w8a8_fp8.py +35 -20
- sglang/srt/layers/quantization/w8a8_int8.py +83 -41
- sglang/srt/layers/rocm_linear_utils.py +44 -0
- sglang/srt/layers/rotary_embedding.py +28 -19
- sglang/srt/layers/sampler.py +29 -5
- sglang/srt/lora/backend/base_backend.py +50 -8
- sglang/srt/lora/backend/triton_backend.py +90 -2
- sglang/srt/lora/layers.py +32 -0
- sglang/srt/lora/lora.py +4 -1
- sglang/srt/lora/lora_manager.py +35 -112
- sglang/srt/lora/mem_pool.py +24 -10
- sglang/srt/lora/utils.py +18 -9
- sglang/srt/managers/cache_controller.py +242 -278
- sglang/srt/managers/data_parallel_controller.py +30 -15
- sglang/srt/managers/detokenizer_manager.py +13 -2
- sglang/srt/managers/disagg_service.py +46 -0
- sglang/srt/managers/io_struct.py +160 -11
- sglang/srt/managers/mm_utils.py +6 -1
- sglang/srt/managers/multi_tokenizer_mixin.py +579 -0
- sglang/srt/managers/schedule_batch.py +27 -44
- sglang/srt/managers/schedule_policy.py +4 -3
- sglang/srt/managers/scheduler.py +90 -115
- sglang/srt/managers/scheduler_metrics_mixin.py +114 -8
- sglang/srt/managers/scheduler_output_processor_mixin.py +29 -19
- sglang/srt/managers/scheduler_profiler_mixin.py +1 -1
- sglang/srt/managers/scheduler_update_weights_mixin.py +8 -1
- sglang/srt/managers/template_manager.py +3 -3
- sglang/srt/managers/tokenizer_communicator_mixin.py +491 -0
- sglang/srt/managers/tokenizer_manager.py +41 -477
- sglang/srt/managers/tp_worker.py +16 -4
- sglang/srt/managers/tp_worker_overlap_thread.py +8 -10
- sglang/srt/mem_cache/allocator.py +1 -1
- sglang/srt/mem_cache/chunk_cache.py +1 -1
- sglang/srt/mem_cache/hicache_storage.py +24 -22
- sglang/srt/mem_cache/hiradix_cache.py +184 -101
- sglang/srt/mem_cache/lora_radix_cache.py +1 -1
- sglang/srt/mem_cache/memory_pool.py +324 -41
- sglang/srt/mem_cache/memory_pool_host.py +25 -18
- sglang/srt/mem_cache/radix_cache.py +5 -6
- sglang/srt/mem_cache/radix_cache_cpp.py +1 -1
- sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +164 -0
- sglang/srt/mem_cache/storage/hf3fs/{client_hf3fs.py → hf3fs_usrbio_client.py} +5 -1
- sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +61 -34
- sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +149 -12
- sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +280 -0
- sglang/srt/mem_cache/storage/lmcache/unit_test.py +121 -0
- sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +74 -19
- sglang/srt/mem_cache/storage/mooncake_store/test_mooncake_store.py +161 -0
- sglang/srt/mem_cache/swa_radix_cache.py +1 -3
- sglang/srt/metrics/collector.py +484 -63
- sglang/srt/metrics/startup_func_log_and_timer.py +150 -0
- sglang/srt/metrics/utils.py +48 -0
- sglang/srt/model_executor/cpu_graph_runner.py +640 -0
- sglang/srt/model_executor/cuda_graph_runner.py +13 -5
- sglang/srt/model_executor/forward_batch_info.py +72 -18
- sglang/srt/model_executor/model_runner.py +189 -31
- sglang/srt/model_loader/__init__.py +9 -3
- sglang/srt/model_loader/loader.py +33 -28
- sglang/srt/model_loader/utils.py +12 -0
- sglang/srt/model_loader/weight_utils.py +2 -1
- sglang/srt/models/deepseek_v2.py +311 -50
- sglang/srt/models/gemma3n_mm.py +1 -1
- sglang/srt/models/glm4_moe.py +10 -1
- sglang/srt/models/glm4v.py +4 -2
- sglang/srt/models/gpt_oss.py +5 -18
- sglang/srt/models/internvl.py +28 -0
- sglang/srt/models/llama4.py +9 -0
- sglang/srt/models/llama_eagle3.py +17 -0
- sglang/srt/models/longcat_flash.py +1026 -0
- sglang/srt/models/longcat_flash_nextn.py +699 -0
- sglang/srt/models/minicpmv.py +165 -3
- sglang/srt/models/mllama4.py +25 -0
- sglang/srt/models/opt.py +637 -0
- sglang/srt/models/qwen2.py +33 -3
- sglang/srt/models/qwen2_5_vl.py +90 -42
- sglang/srt/models/qwen2_moe.py +79 -14
- sglang/srt/models/qwen3.py +8 -2
- sglang/srt/models/qwen3_moe.py +39 -8
- sglang/srt/models/qwen3_next.py +1039 -0
- sglang/srt/models/qwen3_next_mtp.py +109 -0
- sglang/srt/models/torch_native_llama.py +1 -1
- sglang/srt/models/transformers.py +1 -1
- sglang/srt/multimodal/processors/base_processor.py +4 -2
- sglang/srt/multimodal/processors/glm4v.py +9 -9
- sglang/srt/multimodal/processors/internvl.py +141 -129
- sglang/srt/{reasoning_parser.py → parser/reasoning_parser.py} +1 -1
- sglang/srt/sampling/penaltylib/orchestrator.py +14 -2
- sglang/srt/sampling/sampling_batch_info.py +18 -15
- sglang/srt/server_args.py +297 -79
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +5 -0
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +10 -1
- sglang/srt/speculative/eagle_worker.py +216 -120
- sglang/srt/speculative/spec_info.py +5 -0
- sglang/srt/speculative/standalone_worker.py +109 -0
- sglang/srt/utils.py +37 -2
- sglang/srt/weight_sync/utils.py +1 -1
- sglang/test/attention/test_trtllm_mla_backend.py +181 -8
- sglang/test/few_shot_gsm8k.py +1 -0
- sglang/test/runners.py +4 -0
- sglang/test/test_cutlass_moe.py +24 -6
- sglang/test/test_cutlass_w4a8_moe.py +24 -9
- sglang/test/test_disaggregation_utils.py +66 -0
- sglang/test/test_utils.py +25 -1
- sglang/utils.py +5 -0
- sglang/version.py +1 -1
- {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/METADATA +11 -9
- {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/RECORD +243 -194
- sglang/srt/disaggregation/launch_lb.py +0 -131
- sglang/srt/mem_cache/storage/mooncake_store/unit_test.py +0 -40
- /sglang/srt/{model_parallel.py → layers/model_parallel.py} +0 -0
- /sglang/srt/{code_completion_parser.py → parser/code_completion_parser.py} +0 -0
- /sglang/srt/{conversation.py → parser/conversation.py} +0 -0
- /sglang/srt/{harmony_parser.py → parser/harmony_parser.py} +0 -0
- /sglang/srt/{jinja_template_utils.py → parser/jinja_template_utils.py} +0 -0
- {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/WHEEL +0 -0
- {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1039 @@
|
|
1
|
+
import enum
|
2
|
+
import logging
|
3
|
+
from typing import Any, Dict, Iterable, Optional, Set, Tuple
|
4
|
+
|
5
|
+
import torch
|
6
|
+
import torch.nn.functional as F
|
7
|
+
from torch import nn
|
8
|
+
|
9
|
+
from sglang.srt.configs.qwen3_next import Qwen3NextConfig
|
10
|
+
from sglang.srt.distributed import (
|
11
|
+
divide,
|
12
|
+
get_pp_group,
|
13
|
+
get_tensor_model_parallel_rank,
|
14
|
+
get_tensor_model_parallel_world_size,
|
15
|
+
)
|
16
|
+
from sglang.srt.eplb.expert_location import ModelConfigForExpertLocation
|
17
|
+
from sglang.srt.layers.attention.fla.layernorm_gated import RMSNorm as RMSNormGated
|
18
|
+
from sglang.srt.layers.attention.mamba.mamba import mamba_v2_sharded_weight_loader
|
19
|
+
from sglang.srt.layers.communicator import LayerCommunicator, LayerScatterModes
|
20
|
+
from sglang.srt.layers.dp_attention import (
|
21
|
+
get_attention_tp_rank,
|
22
|
+
get_attention_tp_size,
|
23
|
+
is_dp_attention_enabled,
|
24
|
+
)
|
25
|
+
from sglang.srt.layers.layernorm import GemmaRMSNorm, RMSNorm
|
26
|
+
from sglang.srt.layers.linear import (
|
27
|
+
ColumnParallelLinear,
|
28
|
+
MergedColumnParallelLinear,
|
29
|
+
QKVParallelLinear,
|
30
|
+
RowParallelLinear,
|
31
|
+
)
|
32
|
+
from sglang.srt.layers.logits_processor import LogitsProcessor
|
33
|
+
from sglang.srt.layers.moe.ep_moe.layer import get_moe_impl_class
|
34
|
+
from sglang.srt.layers.quantization.base_config import QuantizationConfig
|
35
|
+
from sglang.srt.layers.radix_attention import RadixAttention
|
36
|
+
from sglang.srt.layers.rotary_embedding import get_rope
|
37
|
+
from sglang.srt.layers.vocab_parallel_embedding import (
|
38
|
+
ParallelLMHead,
|
39
|
+
VocabParallelEmbedding,
|
40
|
+
)
|
41
|
+
from sglang.srt.managers.schedule_batch import global_server_args_dict
|
42
|
+
from sglang.srt.model_executor.cuda_graph_runner import get_is_capture_mode
|
43
|
+
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
|
44
|
+
from sglang.srt.model_loader.weight_utils import (
|
45
|
+
default_weight_loader,
|
46
|
+
sharded_weight_loader,
|
47
|
+
)
|
48
|
+
from sglang.srt.models.qwen2_moe import Qwen2MoeMLP, Qwen2MoeSparseMoeBlock
|
49
|
+
from sglang.srt.utils import add_prefix, is_cuda, make_layers, set_weight_attrs
|
50
|
+
|
51
|
+
logger = logging.getLogger(__name__)
|
52
|
+
_is_cuda = is_cuda()
|
53
|
+
|
54
|
+
import triton
|
55
|
+
import triton.language as tl
|
56
|
+
|
57
|
+
|
58
|
+
@triton.jit
|
59
|
+
def fused_qkvzba_split_reshape_cat_kernel(
|
60
|
+
mixed_qkv,
|
61
|
+
z,
|
62
|
+
b,
|
63
|
+
a,
|
64
|
+
mixed_qkvz,
|
65
|
+
mixed_ba,
|
66
|
+
NUM_HEADS_QK: tl.constexpr,
|
67
|
+
NUM_HEADS_V: tl.constexpr,
|
68
|
+
HEAD_QK: tl.constexpr,
|
69
|
+
HEAD_V: tl.constexpr,
|
70
|
+
):
|
71
|
+
i_bs, i_qk = tl.program_id(0), tl.program_id(1)
|
72
|
+
QKVZ_DIM_T: tl.constexpr = HEAD_QK * 2 + NUM_HEADS_V // NUM_HEADS_QK * HEAD_V * 2
|
73
|
+
BA_DIM_T: tl.constexpr = NUM_HEADS_V // NUM_HEADS_QK * 2
|
74
|
+
QKV_DIM_T: tl.constexpr = HEAD_QK * 2 + NUM_HEADS_V // NUM_HEADS_QK * HEAD_V
|
75
|
+
q_end: tl.constexpr = HEAD_QK
|
76
|
+
blk_q_ptr = (
|
77
|
+
mixed_qkvz
|
78
|
+
+ i_bs * NUM_HEADS_QK * QKVZ_DIM_T
|
79
|
+
+ i_qk * QKVZ_DIM_T
|
80
|
+
+ tl.arange(0, q_end)
|
81
|
+
)
|
82
|
+
k_end: tl.constexpr = q_end + HEAD_QK
|
83
|
+
blk_k_ptr = (
|
84
|
+
mixed_qkvz
|
85
|
+
+ i_bs * NUM_HEADS_QK * QKVZ_DIM_T
|
86
|
+
+ i_qk * QKVZ_DIM_T
|
87
|
+
+ tl.arange(q_end, k_end)
|
88
|
+
)
|
89
|
+
v_end: tl.constexpr = k_end + NUM_HEADS_V // NUM_HEADS_QK * HEAD_V
|
90
|
+
blk_v_ptr = (
|
91
|
+
mixed_qkvz
|
92
|
+
+ i_bs * NUM_HEADS_QK * QKVZ_DIM_T
|
93
|
+
+ i_qk * QKVZ_DIM_T
|
94
|
+
+ tl.arange(k_end, v_end)
|
95
|
+
)
|
96
|
+
z_end: tl.constexpr = v_end + NUM_HEADS_V // NUM_HEADS_QK * HEAD_V
|
97
|
+
blk_z_ptr = (
|
98
|
+
mixed_qkvz
|
99
|
+
+ i_bs * NUM_HEADS_QK * QKVZ_DIM_T
|
100
|
+
+ i_qk * QKVZ_DIM_T
|
101
|
+
+ tl.arange(v_end, z_end)
|
102
|
+
)
|
103
|
+
blk_q_st_ptr = (
|
104
|
+
mixed_qkv
|
105
|
+
+ i_bs * NUM_HEADS_QK * QKV_DIM_T
|
106
|
+
+ i_qk * HEAD_QK
|
107
|
+
+ tl.arange(0, HEAD_QK)
|
108
|
+
)
|
109
|
+
blk_k_st_ptr = (
|
110
|
+
mixed_qkv
|
111
|
+
+ i_bs * NUM_HEADS_QK * QKV_DIM_T
|
112
|
+
+ NUM_HEADS_QK * HEAD_QK
|
113
|
+
+ i_qk * HEAD_QK
|
114
|
+
+ tl.arange(0, HEAD_QK)
|
115
|
+
)
|
116
|
+
blk_v_st_ptr = (
|
117
|
+
mixed_qkv
|
118
|
+
+ i_bs * NUM_HEADS_QK * QKV_DIM_T
|
119
|
+
+ NUM_HEADS_QK * HEAD_QK * 2
|
120
|
+
+ i_qk * HEAD_V * NUM_HEADS_V // NUM_HEADS_QK
|
121
|
+
+ tl.arange(0, HEAD_V * NUM_HEADS_V // NUM_HEADS_QK)
|
122
|
+
)
|
123
|
+
blk_z_st_ptr = (
|
124
|
+
z
|
125
|
+
+ i_bs * NUM_HEADS_V * HEAD_V
|
126
|
+
+ i_qk * HEAD_V * NUM_HEADS_V // NUM_HEADS_QK
|
127
|
+
+ tl.arange(0, HEAD_V * NUM_HEADS_V // NUM_HEADS_QK)
|
128
|
+
)
|
129
|
+
tl.store(blk_q_st_ptr, tl.load(blk_q_ptr))
|
130
|
+
tl.store(blk_k_st_ptr, tl.load(blk_k_ptr))
|
131
|
+
tl.store(blk_v_st_ptr, tl.load(blk_v_ptr))
|
132
|
+
tl.store(blk_z_st_ptr, tl.load(blk_z_ptr))
|
133
|
+
b_end: tl.constexpr = NUM_HEADS_V // NUM_HEADS_QK
|
134
|
+
a_end: tl.constexpr = b_end + NUM_HEADS_V // NUM_HEADS_QK
|
135
|
+
for i in tl.static_range(b_end):
|
136
|
+
blk_b_ptr = mixed_ba + i_bs * NUM_HEADS_QK * BA_DIM_T + i_qk * BA_DIM_T + i
|
137
|
+
blk_b_st_ptr = b + i_bs * NUM_HEADS_V + i_qk * NUM_HEADS_V // NUM_HEADS_QK + i
|
138
|
+
tl.store(blk_b_st_ptr, tl.load(blk_b_ptr))
|
139
|
+
for i in tl.static_range(b_end, a_end):
|
140
|
+
blk_a_ptr = mixed_ba + i_bs * NUM_HEADS_QK * BA_DIM_T + i_qk * BA_DIM_T + i
|
141
|
+
blk_a_st_ptr = (
|
142
|
+
a + i_bs * NUM_HEADS_V + i_qk * NUM_HEADS_V // NUM_HEADS_QK + (i - b_end)
|
143
|
+
)
|
144
|
+
tl.store(blk_a_st_ptr, tl.load(blk_a_ptr))
|
145
|
+
|
146
|
+
|
147
|
+
def fused_qkvzba_split_reshape_cat(
|
148
|
+
mixed_qkvz,
|
149
|
+
mixed_ba,
|
150
|
+
num_heads_qk,
|
151
|
+
num_heads_v,
|
152
|
+
head_qk,
|
153
|
+
head_v,
|
154
|
+
):
|
155
|
+
batch, seq_len = mixed_qkvz.shape[0], 1
|
156
|
+
qkv_dim_t = num_heads_qk * head_qk * 2 + num_heads_v * head_v
|
157
|
+
mixed_qkv = torch.empty(
|
158
|
+
[batch * seq_len, qkv_dim_t],
|
159
|
+
dtype=mixed_qkvz.dtype,
|
160
|
+
device=mixed_qkvz.device,
|
161
|
+
)
|
162
|
+
z = torch.empty(
|
163
|
+
[batch * seq_len, num_heads_v, head_v],
|
164
|
+
dtype=mixed_qkvz.dtype,
|
165
|
+
device=mixed_qkvz.device,
|
166
|
+
)
|
167
|
+
b = torch.empty(
|
168
|
+
[batch * seq_len, num_heads_v],
|
169
|
+
dtype=mixed_ba.dtype,
|
170
|
+
device=mixed_ba.device,
|
171
|
+
)
|
172
|
+
a = torch.empty_like(b)
|
173
|
+
grid = (batch * seq_len, num_heads_qk)
|
174
|
+
fused_qkvzba_split_reshape_cat_kernel[grid](
|
175
|
+
mixed_qkv,
|
176
|
+
z,
|
177
|
+
b,
|
178
|
+
a,
|
179
|
+
mixed_qkvz,
|
180
|
+
mixed_ba,
|
181
|
+
num_heads_qk,
|
182
|
+
num_heads_v,
|
183
|
+
head_qk,
|
184
|
+
head_v,
|
185
|
+
num_warps=1,
|
186
|
+
num_stages=3,
|
187
|
+
)
|
188
|
+
return mixed_qkv, z, b, a
|
189
|
+
|
190
|
+
|
191
|
+
# g = -self.A_log.float().exp() * F.softplus(a.float() + self.dt_bias)
|
192
|
+
@triton.jit
|
193
|
+
def fused_gdn_gating_kernel(
|
194
|
+
g,
|
195
|
+
A_log,
|
196
|
+
a,
|
197
|
+
dt_bias,
|
198
|
+
seq_len,
|
199
|
+
NUM_HEADS: tl.constexpr,
|
200
|
+
beta: tl.constexpr,
|
201
|
+
threshold: tl.constexpr,
|
202
|
+
BLK_HEADS: tl.constexpr,
|
203
|
+
):
|
204
|
+
i_b, i_s, i_d = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
205
|
+
head_off = i_d * BLK_HEADS + tl.arange(0, BLK_HEADS)
|
206
|
+
off = i_b * seq_len * NUM_HEADS + i_s * NUM_HEADS + head_off
|
207
|
+
mask = head_off < NUM_HEADS
|
208
|
+
blk_A_log = tl.load(A_log + head_off, mask=mask)
|
209
|
+
blk_a = tl.load(a + off, mask=mask)
|
210
|
+
blk_bias = tl.load(dt_bias + head_off, mask=mask)
|
211
|
+
x = blk_a.to(tl.float32) + blk_bias.to(tl.float32)
|
212
|
+
softplus_x = tl.where(
|
213
|
+
beta * x <= threshold, (1 / beta) * tl.log(1 + tl.exp(beta * x)), x
|
214
|
+
)
|
215
|
+
blk_g = -tl.exp(blk_A_log.to(tl.float32)) * softplus_x
|
216
|
+
tl.store(g + off, blk_g.to(g.dtype.element_ty), mask=mask)
|
217
|
+
|
218
|
+
|
219
|
+
def fused_gdn_gating(
|
220
|
+
A_log: torch.Tensor,
|
221
|
+
a: torch.Tensor,
|
222
|
+
dt_bias: torch.Tensor,
|
223
|
+
beta: float = 1.0,
|
224
|
+
threshold: float = 20.0,
|
225
|
+
) -> torch.Tensor:
|
226
|
+
batch, num_heads = a.shape
|
227
|
+
seq_len = 1
|
228
|
+
grid = (batch, seq_len, triton.cdiv(num_heads, 8))
|
229
|
+
g = torch.empty_like(a, dtype=torch.float32)
|
230
|
+
fused_gdn_gating_kernel[grid](
|
231
|
+
g, A_log, a, dt_bias, seq_len, num_heads, beta, threshold, 8, num_warps=1
|
232
|
+
)
|
233
|
+
return g
|
234
|
+
|
235
|
+
|
236
|
+
class Qwen3GatedDeltaNet(nn.Module):
|
237
|
+
def __init__(
|
238
|
+
self,
|
239
|
+
config: Qwen3NextConfig,
|
240
|
+
layer_id: int,
|
241
|
+
alt_stream: Optional[torch.cuda.Stream] = None,
|
242
|
+
) -> None:
|
243
|
+
super().__init__()
|
244
|
+
self.config = config
|
245
|
+
self.attn_tp_rank = get_attention_tp_rank()
|
246
|
+
self.attn_tp_size = get_attention_tp_size()
|
247
|
+
self.hidden_size = config.hidden_size
|
248
|
+
self.num_v_heads = config.linear_num_value_heads
|
249
|
+
self.num_k_heads = config.linear_num_key_heads
|
250
|
+
self.head_k_dim = config.linear_key_head_dim
|
251
|
+
self.head_v_dim = config.linear_value_head_dim
|
252
|
+
self.key_dim = self.head_k_dim * self.num_k_heads
|
253
|
+
self.value_dim = self.head_v_dim * self.num_v_heads
|
254
|
+
self.alt_stream = alt_stream
|
255
|
+
|
256
|
+
self.conv_kernel_size = config.linear_conv_kernel_dim
|
257
|
+
self.layer_id = layer_id
|
258
|
+
self.activation = config.hidden_act
|
259
|
+
self.layer_norm_epsilon = config.rms_norm_eps
|
260
|
+
|
261
|
+
# QKV
|
262
|
+
self.conv_dim = self.key_dim * 2 + self.value_dim
|
263
|
+
self.conv1d = ColumnParallelLinear(
|
264
|
+
input_size=self.conv_kernel_size,
|
265
|
+
output_size=self.conv_dim,
|
266
|
+
bias=False,
|
267
|
+
quant_config=None,
|
268
|
+
tp_rank=self.attn_tp_rank,
|
269
|
+
tp_size=self.attn_tp_size,
|
270
|
+
)
|
271
|
+
self.conv1d.weight.data = self.conv1d.weight.data.unsqueeze(1)
|
272
|
+
# projection of the input hidden states
|
273
|
+
projection_size_qkvz = self.key_dim * 2 + self.value_dim * 2
|
274
|
+
projection_size_ba = self.num_v_heads * 2
|
275
|
+
|
276
|
+
self.in_proj_qkvz = ColumnParallelLinear(
|
277
|
+
input_size=self.hidden_size,
|
278
|
+
output_size=projection_size_qkvz,
|
279
|
+
bias=False,
|
280
|
+
tp_rank=self.attn_tp_rank,
|
281
|
+
tp_size=self.attn_tp_size,
|
282
|
+
)
|
283
|
+
self.in_proj_ba = ColumnParallelLinear(
|
284
|
+
input_size=self.hidden_size,
|
285
|
+
output_size=projection_size_ba,
|
286
|
+
bias=False,
|
287
|
+
tp_rank=self.attn_tp_rank,
|
288
|
+
tp_size=self.attn_tp_size,
|
289
|
+
)
|
290
|
+
|
291
|
+
query_key_settings = (self.key_dim, 0, False)
|
292
|
+
value_settings = (self.value_dim, 0, False)
|
293
|
+
|
294
|
+
delattr(self.conv1d.weight, "weight_loader")
|
295
|
+
set_weight_attrs(
|
296
|
+
self.conv1d.weight,
|
297
|
+
{
|
298
|
+
"weight_loader": mamba_v2_sharded_weight_loader(
|
299
|
+
[
|
300
|
+
query_key_settings,
|
301
|
+
query_key_settings,
|
302
|
+
value_settings,
|
303
|
+
],
|
304
|
+
self.attn_tp_size,
|
305
|
+
self.attn_tp_rank,
|
306
|
+
)
|
307
|
+
},
|
308
|
+
)
|
309
|
+
|
310
|
+
# selective projection used to make dt, B and C input dependent
|
311
|
+
|
312
|
+
# time step projection (discretization)
|
313
|
+
# instantiate once and copy inv_dt in init_weights of PretrainedModel
|
314
|
+
self.dt_bias = nn.Parameter(torch.ones(self.num_v_heads // self.attn_tp_size))
|
315
|
+
|
316
|
+
A = torch.empty(
|
317
|
+
divide(self.num_v_heads, self.attn_tp_size), dtype=torch.float32
|
318
|
+
).uniform_(0, 16)
|
319
|
+
self.A_log = nn.Parameter(torch.log(A))
|
320
|
+
self.A_log._no_weight_decay = True
|
321
|
+
|
322
|
+
set_weight_attrs(self.A_log, {"weight_loader": sharded_weight_loader(0)})
|
323
|
+
set_weight_attrs(self.dt_bias, {"weight_loader": sharded_weight_loader(0)})
|
324
|
+
|
325
|
+
self.norm = RMSNormGated(
|
326
|
+
self.head_v_dim,
|
327
|
+
eps=self.layer_norm_epsilon,
|
328
|
+
group_size=None,
|
329
|
+
norm_before_gate=True,
|
330
|
+
device=torch.cuda.current_device(),
|
331
|
+
dtype=config.torch_dtype,
|
332
|
+
)
|
333
|
+
|
334
|
+
self.out_proj = RowParallelLinear(
|
335
|
+
self.value_dim,
|
336
|
+
self.hidden_size,
|
337
|
+
bias=False,
|
338
|
+
input_is_parallel=True,
|
339
|
+
reduce_results=False,
|
340
|
+
tp_rank=self.attn_tp_rank,
|
341
|
+
tp_size=self.attn_tp_size,
|
342
|
+
)
|
343
|
+
|
344
|
+
def fix_query_key_value_ordering(self, mixed_qkvz, mixed_ba):
|
345
|
+
"""
|
346
|
+
Derives `query`, `key` and `value` tensors from `mixed_qkvzba`.
|
347
|
+
"""
|
348
|
+
new_tensor_shape_qkvz = mixed_qkvz.size()[:-1] + (
|
349
|
+
self.num_k_heads // self.attn_tp_size,
|
350
|
+
(
|
351
|
+
self.head_k_dim
|
352
|
+
+ self.head_k_dim
|
353
|
+
+ (self.head_v_dim + self.head_v_dim)
|
354
|
+
* self.num_v_heads
|
355
|
+
// self.num_k_heads
|
356
|
+
),
|
357
|
+
)
|
358
|
+
new_tensor_shape_ba = mixed_ba.size()[:-1] + (
|
359
|
+
self.num_k_heads // self.attn_tp_size,
|
360
|
+
2 * self.num_v_heads // self.num_k_heads,
|
361
|
+
)
|
362
|
+
|
363
|
+
mixed_qkvz = mixed_qkvz.view(*new_tensor_shape_qkvz)
|
364
|
+
mixed_ba = mixed_ba.view(*new_tensor_shape_ba)
|
365
|
+
|
366
|
+
split_arg_list_qkvz = [
|
367
|
+
self.head_k_dim,
|
368
|
+
self.head_k_dim,
|
369
|
+
(self.num_v_heads // self.num_k_heads * self.head_v_dim),
|
370
|
+
(self.num_v_heads // self.num_k_heads * self.head_v_dim),
|
371
|
+
]
|
372
|
+
split_arg_list_ba = [
|
373
|
+
self.num_v_heads // self.num_k_heads,
|
374
|
+
self.num_v_heads // self.num_k_heads,
|
375
|
+
]
|
376
|
+
|
377
|
+
# [b, sq, ng, (hn + hn + np/ng * hn + np/ng + np/ng)]
|
378
|
+
# --> [b, sq, ng, hn], [b, sq, ng, hn], [b, sq, ng, np/ng * hn], [b, sq, ng, np/ng * hn], [b, sq, ng, np/ng], [b, sq, ng, np/ng]
|
379
|
+
(query, key, value, z) = torch.split(mixed_qkvz, split_arg_list_qkvz, dim=2)
|
380
|
+
(b, a) = torch.split(mixed_ba, split_arg_list_ba, dim=2)
|
381
|
+
|
382
|
+
# [b, sq, ng, np/ng * hn] -> [b, sq, np, hn]
|
383
|
+
value = value.reshape(value.size(0), -1, self.head_v_dim)
|
384
|
+
z = z.reshape(z.size(0), -1, self.head_v_dim)
|
385
|
+
b = b.reshape(b.size(0), self.num_v_heads // self.attn_tp_size)
|
386
|
+
a = a.reshape(a.size(0), self.num_v_heads // self.attn_tp_size)
|
387
|
+
|
388
|
+
return query, key, value, z, b, a
|
389
|
+
|
390
|
+
def _forward_input_proj(self, hidden_states: torch.Tensor):
|
391
|
+
DUAL_STREAM_TOKEN_THRESHOLD = 1024
|
392
|
+
seq_len, _ = hidden_states.shape
|
393
|
+
if seq_len < DUAL_STREAM_TOKEN_THRESHOLD:
|
394
|
+
current_stream = torch.cuda.current_stream()
|
395
|
+
self.alt_stream.wait_stream(current_stream)
|
396
|
+
projected_states_qkvz, _ = self.in_proj_qkvz(hidden_states)
|
397
|
+
with torch.cuda.stream(self.alt_stream):
|
398
|
+
projected_states_ba, _ = self.in_proj_ba(hidden_states)
|
399
|
+
current_stream.wait_stream(self.alt_stream)
|
400
|
+
else:
|
401
|
+
projected_states_qkvz, _ = self.in_proj_qkvz(hidden_states)
|
402
|
+
projected_states_ba, _ = self.in_proj_ba(hidden_states)
|
403
|
+
return projected_states_qkvz, projected_states_ba
|
404
|
+
|
405
|
+
def forward(
|
406
|
+
self,
|
407
|
+
hidden_states: torch.Tensor,
|
408
|
+
forward_batch: ForwardBatch,
|
409
|
+
):
|
410
|
+
seq_len, _ = hidden_states.shape
|
411
|
+
is_cuda_graph = forward_batch.forward_mode.is_cuda_graph()
|
412
|
+
|
413
|
+
projected_states_qkvz, projected_states_ba = self._forward_input_proj(
|
414
|
+
hidden_states
|
415
|
+
)
|
416
|
+
|
417
|
+
if self.num_v_heads // self.num_k_heads in [1, 2, 4] and is_cuda_graph:
|
418
|
+
mixed_qkv, z, b, a = fused_qkvzba_split_reshape_cat(
|
419
|
+
projected_states_qkvz,
|
420
|
+
projected_states_ba,
|
421
|
+
triton.cdiv(self.num_k_heads, self.attn_tp_size),
|
422
|
+
triton.cdiv(self.num_v_heads, self.attn_tp_size),
|
423
|
+
self.head_k_dim,
|
424
|
+
self.head_v_dim,
|
425
|
+
)
|
426
|
+
else:
|
427
|
+
query, key, value, z, b, a = self.fix_query_key_value_ordering(
|
428
|
+
projected_states_qkvz, projected_states_ba
|
429
|
+
)
|
430
|
+
query, key, value = map(
|
431
|
+
lambda x: x.reshape(x.shape[0], -1), (query, key, value)
|
432
|
+
)
|
433
|
+
mixed_qkv = torch.cat((query, key, value), dim=-1)
|
434
|
+
# mixed_qkv = rearrange(mixed_qkv, "b l d -> b d l")
|
435
|
+
|
436
|
+
# 2. Convolution sequence transformation
|
437
|
+
conv_weights = self.conv1d.weight.view(
|
438
|
+
self.conv1d.weight.size(0), self.conv1d.weight.size(2)
|
439
|
+
)
|
440
|
+
|
441
|
+
kwargs = {
|
442
|
+
"mixed_qkv": mixed_qkv,
|
443
|
+
"conv_weights": conv_weights,
|
444
|
+
"bias": self.conv1d.bias,
|
445
|
+
"activation": self.activation,
|
446
|
+
"key_dim": self.key_dim,
|
447
|
+
"value_dim": self.value_dim,
|
448
|
+
"attention_tp_size": self.attn_tp_size,
|
449
|
+
"head_k_dim": self.head_k_dim,
|
450
|
+
"head_v_dim": self.head_v_dim,
|
451
|
+
"a": a,
|
452
|
+
"b": b,
|
453
|
+
"A_log": self.A_log,
|
454
|
+
"dt_bias": self.dt_bias,
|
455
|
+
"layer_id": self.layer_id,
|
456
|
+
"seq_len": seq_len,
|
457
|
+
"z": z,
|
458
|
+
}
|
459
|
+
|
460
|
+
core_attn_out = forward_batch.attn_backend.forward(
|
461
|
+
q=None,
|
462
|
+
k=None,
|
463
|
+
v=None,
|
464
|
+
layer=None,
|
465
|
+
forward_batch=forward_batch,
|
466
|
+
**kwargs,
|
467
|
+
)
|
468
|
+
|
469
|
+
z_shape_og = z.shape
|
470
|
+
# reshape input data into 2D tensor
|
471
|
+
core_attn_out = core_attn_out.reshape(-1, core_attn_out.shape[-1])
|
472
|
+
z = z.reshape(-1, z.shape[-1])
|
473
|
+
core_attn_out = self.norm(core_attn_out, z)
|
474
|
+
core_attn_out = core_attn_out.reshape(z_shape_og)
|
475
|
+
core_attn_out = core_attn_out.reshape(*core_attn_out.shape[:-2], -1)
|
476
|
+
|
477
|
+
output, _ = self.out_proj(core_attn_out)
|
478
|
+
return output
|
479
|
+
|
480
|
+
|
481
|
+
class Qwen3HybridLinearDecoderLayer(nn.Module):
|
482
|
+
|
483
|
+
def __init__(
|
484
|
+
self,
|
485
|
+
config: Qwen3NextConfig,
|
486
|
+
layer_id: int,
|
487
|
+
quant_config: Optional[QuantizationConfig] = None,
|
488
|
+
prefix: str = "",
|
489
|
+
alt_stream: Optional[torch.cuda.Stream] = None,
|
490
|
+
) -> None:
|
491
|
+
super().__init__()
|
492
|
+
self.config = config
|
493
|
+
self.linear_attn = Qwen3GatedDeltaNet(config, layer_id, alt_stream)
|
494
|
+
|
495
|
+
# Qwen3Next all layers are sparse and have no nextn now
|
496
|
+
self.is_layer_sparse = True
|
497
|
+
is_previous_layer_sparse = True
|
498
|
+
self.layer_id = layer_id
|
499
|
+
|
500
|
+
self.layer_scatter_modes = LayerScatterModes.init_new(
|
501
|
+
layer_id=layer_id,
|
502
|
+
num_layers=config.num_hidden_layers,
|
503
|
+
is_layer_sparse=self.is_layer_sparse,
|
504
|
+
is_previous_layer_sparse=is_previous_layer_sparse,
|
505
|
+
)
|
506
|
+
|
507
|
+
if self.is_layer_sparse:
|
508
|
+
self.mlp = Qwen2MoeSparseMoeBlock(
|
509
|
+
layer_id=layer_id,
|
510
|
+
config=config,
|
511
|
+
quant_config=quant_config,
|
512
|
+
alt_stream=alt_stream,
|
513
|
+
)
|
514
|
+
else:
|
515
|
+
self.mlp = Qwen2MoeMLP(
|
516
|
+
hidden_size=config.hidden_size,
|
517
|
+
intermediate_size=config.intermediate_size,
|
518
|
+
hidden_act=config.hidden_act,
|
519
|
+
quant_config=quant_config,
|
520
|
+
)
|
521
|
+
self.input_layernorm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
522
|
+
self.post_attention_layernorm = GemmaRMSNorm(
|
523
|
+
config.hidden_size, eps=config.rms_norm_eps
|
524
|
+
)
|
525
|
+
self.layer_communicator = LayerCommunicator(
|
526
|
+
layer_scatter_modes=self.layer_scatter_modes,
|
527
|
+
input_layernorm=self.input_layernorm,
|
528
|
+
post_attention_layernorm=self.post_attention_layernorm,
|
529
|
+
allow_reduce_scatter=True,
|
530
|
+
)
|
531
|
+
|
532
|
+
def forward(
|
533
|
+
self,
|
534
|
+
hidden_states: torch.Tensor,
|
535
|
+
residual: Optional[torch.Tensor],
|
536
|
+
**kwargs,
|
537
|
+
):
|
538
|
+
forward_batch = kwargs.get("forward_batch", None)
|
539
|
+
|
540
|
+
hidden_states, residual = self.layer_communicator.prepare_attn(
|
541
|
+
hidden_states, residual, forward_batch
|
542
|
+
)
|
543
|
+
|
544
|
+
if not forward_batch.forward_mode.is_idle():
|
545
|
+
hidden_states = self.linear_attn(
|
546
|
+
hidden_states,
|
547
|
+
forward_batch,
|
548
|
+
)
|
549
|
+
# Fully Connected
|
550
|
+
hidden_states, residual = self.layer_communicator.prepare_mlp(
|
551
|
+
hidden_states, residual, forward_batch
|
552
|
+
)
|
553
|
+
|
554
|
+
use_reduce_scatter = self.layer_communicator.should_use_reduce_scatter(
|
555
|
+
forward_batch
|
556
|
+
)
|
557
|
+
hidden_states = self.mlp(hidden_states, forward_batch, use_reduce_scatter)
|
558
|
+
|
559
|
+
hidden_states, residual = self.layer_communicator.postprocess_layer(
|
560
|
+
hidden_states, residual, forward_batch
|
561
|
+
)
|
562
|
+
|
563
|
+
return hidden_states, residual
|
564
|
+
|
565
|
+
|
566
|
+
class Qwen3HybridAttentionDecoderLayer(nn.Module):
|
567
|
+
|
568
|
+
def __init__(
|
569
|
+
self,
|
570
|
+
config: Qwen3NextConfig,
|
571
|
+
layer_id: int,
|
572
|
+
quant_config: Optional[QuantizationConfig] = None,
|
573
|
+
prefix: str = "",
|
574
|
+
alt_stream: Optional[torch.cuda.Stream] = None,
|
575
|
+
) -> None:
|
576
|
+
super().__init__()
|
577
|
+
self.config = config
|
578
|
+
self.hidden_size = config.hidden_size
|
579
|
+
self.attn_tp_rank = get_attention_tp_rank()
|
580
|
+
self.attn_tp_size = get_attention_tp_size()
|
581
|
+
self.total_num_heads = config.num_attention_heads
|
582
|
+
assert self.total_num_heads % self.attn_tp_size == 0
|
583
|
+
self.num_heads = self.total_num_heads // self.attn_tp_size
|
584
|
+
self.total_num_kv_heads = config.num_key_value_heads
|
585
|
+
if self.total_num_kv_heads >= self.attn_tp_size:
|
586
|
+
# Number of KV heads is greater than TP size, so we partition
|
587
|
+
# the KV heads across multiple tensor parallel GPUs.
|
588
|
+
assert self.total_num_kv_heads % self.attn_tp_size == 0
|
589
|
+
else:
|
590
|
+
# Number of KV heads is less than TP size, so we replicate
|
591
|
+
# the KV heads across multiple tensor parallel GPUs.
|
592
|
+
assert self.attn_tp_size % self.total_num_kv_heads == 0
|
593
|
+
self.num_kv_heads = max(1, self.total_num_kv_heads // self.attn_tp_size)
|
594
|
+
self.head_dim = config.head_dim or (self.hidden_size // self.num_heads)
|
595
|
+
self.q_size = self.num_heads * self.head_dim
|
596
|
+
self.kv_size = self.num_kv_heads * self.head_dim
|
597
|
+
self.scaling = self.head_dim**-0.5
|
598
|
+
self.rope_theta = getattr(config, "rope_theta", 10000)
|
599
|
+
self.max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
|
600
|
+
self.rope_scaling = getattr(config, "rope_scaling", None)
|
601
|
+
self.partial_rotary_factor = config.partial_rotary_factor
|
602
|
+
self.layer_id = layer_id
|
603
|
+
|
604
|
+
self.attn_output_gate = getattr(config, "attn_output_gate", True)
|
605
|
+
if self.attn_output_gate:
|
606
|
+
logger.warning_once("using attn output gate!")
|
607
|
+
|
608
|
+
self.rotary_emb = get_rope(
|
609
|
+
head_size=self.head_dim,
|
610
|
+
rotary_dim=self.head_dim,
|
611
|
+
max_position=self.max_position_embeddings,
|
612
|
+
rope_scaling=self.rope_scaling,
|
613
|
+
base=self.rope_theta,
|
614
|
+
partial_rotary_factor=self.partial_rotary_factor,
|
615
|
+
is_neox_style=True,
|
616
|
+
dtype=torch.get_default_dtype(), # see impl of get_rope
|
617
|
+
)
|
618
|
+
|
619
|
+
self.qkv_proj = QKVParallelLinear(
|
620
|
+
config.hidden_size,
|
621
|
+
self.head_dim,
|
622
|
+
self.total_num_heads * (1 + self.attn_output_gate),
|
623
|
+
self.total_num_kv_heads,
|
624
|
+
bias=False,
|
625
|
+
quant_config=quant_config,
|
626
|
+
tp_rank=self.attn_tp_rank,
|
627
|
+
tp_size=self.attn_tp_size,
|
628
|
+
)
|
629
|
+
|
630
|
+
self.o_proj = RowParallelLinear(
|
631
|
+
self.total_num_heads * self.head_dim,
|
632
|
+
config.hidden_size,
|
633
|
+
bias=False,
|
634
|
+
quant_config=quant_config,
|
635
|
+
reduce_results=False,
|
636
|
+
tp_rank=self.attn_tp_rank,
|
637
|
+
tp_size=self.attn_tp_size,
|
638
|
+
)
|
639
|
+
|
640
|
+
self.attn = RadixAttention(
|
641
|
+
self.num_heads,
|
642
|
+
self.head_dim,
|
643
|
+
self.scaling,
|
644
|
+
num_kv_heads=self.num_kv_heads,
|
645
|
+
layer_id=layer_id,
|
646
|
+
prefix=f"{prefix}.attn",
|
647
|
+
)
|
648
|
+
|
649
|
+
# Qwen3Next all layers are sparse and have no nextn now
|
650
|
+
self.is_layer_sparse = True
|
651
|
+
is_previous_layer_sparse = True
|
652
|
+
|
653
|
+
self.layer_scatter_modes = LayerScatterModes.init_new(
|
654
|
+
layer_id=layer_id,
|
655
|
+
num_layers=config.num_hidden_layers,
|
656
|
+
is_layer_sparse=self.is_layer_sparse,
|
657
|
+
is_previous_layer_sparse=is_previous_layer_sparse,
|
658
|
+
)
|
659
|
+
|
660
|
+
if self.is_layer_sparse:
|
661
|
+
self.mlp = Qwen2MoeSparseMoeBlock(
|
662
|
+
layer_id=layer_id,
|
663
|
+
config=config,
|
664
|
+
quant_config=quant_config,
|
665
|
+
alt_stream=alt_stream,
|
666
|
+
)
|
667
|
+
else:
|
668
|
+
self.mlp = Qwen2MoeMLP(
|
669
|
+
hidden_size=config.hidden_size,
|
670
|
+
intermediate_size=config.intermediate_size,
|
671
|
+
hidden_act=config.hidden_act,
|
672
|
+
quant_config=quant_config,
|
673
|
+
)
|
674
|
+
self.input_layernorm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
675
|
+
self.post_attention_layernorm = GemmaRMSNorm(
|
676
|
+
config.hidden_size, eps=config.rms_norm_eps
|
677
|
+
)
|
678
|
+
|
679
|
+
self.q_norm = GemmaRMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
680
|
+
self.k_norm = GemmaRMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
681
|
+
|
682
|
+
self.layer_communicator = LayerCommunicator(
|
683
|
+
layer_scatter_modes=self.layer_scatter_modes,
|
684
|
+
input_layernorm=self.input_layernorm,
|
685
|
+
post_attention_layernorm=self.post_attention_layernorm,
|
686
|
+
allow_reduce_scatter=True,
|
687
|
+
)
|
688
|
+
|
689
|
+
self.alt_stream = alt_stream
|
690
|
+
|
691
|
+
def _apply_qk_norm(
|
692
|
+
self, q: torch.Tensor, k: torch.Tensor
|
693
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
694
|
+
# overlap qk norm
|
695
|
+
if self.alt_stream is not None and get_is_capture_mode():
|
696
|
+
current_stream = torch.cuda.current_stream()
|
697
|
+
self.alt_stream.wait_stream(current_stream)
|
698
|
+
q_by_head = q.reshape(-1, self.head_dim)
|
699
|
+
q_by_head = self.q_norm(q_by_head)
|
700
|
+
with torch.cuda.stream(self.alt_stream):
|
701
|
+
k_by_head = k.reshape(-1, self.head_dim)
|
702
|
+
k_by_head = self.k_norm(k_by_head)
|
703
|
+
current_stream.wait_stream(self.alt_stream)
|
704
|
+
else:
|
705
|
+
q_by_head = q.reshape(-1, self.head_dim)
|
706
|
+
q_by_head = self.q_norm(q_by_head)
|
707
|
+
k_by_head = k.reshape(-1, self.head_dim)
|
708
|
+
k_by_head = self.k_norm(k_by_head)
|
709
|
+
q = q_by_head.view(q.shape)
|
710
|
+
k = k_by_head.view(k.shape)
|
711
|
+
return q, k
|
712
|
+
|
713
|
+
def self_attention(
|
714
|
+
self,
|
715
|
+
positions: torch.Tensor,
|
716
|
+
hidden_states: torch.Tensor,
|
717
|
+
forward_batch: ForwardBatch,
|
718
|
+
) -> torch.Tensor:
|
719
|
+
qkv, _ = self.qkv_proj(hidden_states)
|
720
|
+
|
721
|
+
if self.attn_output_gate:
|
722
|
+
q_gate, k, v = qkv.split(
|
723
|
+
[self.q_size * 2, self.kv_size, self.kv_size], dim=-1
|
724
|
+
)
|
725
|
+
orig_shape = q_gate.shape[:-1]
|
726
|
+
q_gate = q_gate.view(*orig_shape, self.num_heads, -1)
|
727
|
+
q, gate = torch.chunk(q_gate, 2, dim=-1)
|
728
|
+
q = q.reshape(*orig_shape, -1)
|
729
|
+
gate = gate.reshape(*orig_shape, -1)
|
730
|
+
else:
|
731
|
+
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
732
|
+
|
733
|
+
q, k = self._apply_qk_norm(q, k)
|
734
|
+
|
735
|
+
q, k = self.rotary_emb(positions, q, k)
|
736
|
+
|
737
|
+
attn_output = self.attn(q, k, v, forward_batch)
|
738
|
+
|
739
|
+
if self.attn_output_gate:
|
740
|
+
gate = torch.sigmoid(gate)
|
741
|
+
attn_output = attn_output * gate
|
742
|
+
|
743
|
+
output, _ = self.o_proj(attn_output)
|
744
|
+
return output
|
745
|
+
|
746
|
+
def forward(
|
747
|
+
self,
|
748
|
+
positions: torch.Tensor,
|
749
|
+
hidden_states: torch.Tensor,
|
750
|
+
residual: Optional[torch.Tensor],
|
751
|
+
forward_batch: ForwardBatch,
|
752
|
+
**kwargs: Any,
|
753
|
+
):
|
754
|
+
hidden_states, residual = self.layer_communicator.prepare_attn(
|
755
|
+
hidden_states, residual, forward_batch
|
756
|
+
)
|
757
|
+
|
758
|
+
if not forward_batch.forward_mode.is_idle():
|
759
|
+
hidden_states = self.self_attention(
|
760
|
+
positions=positions,
|
761
|
+
hidden_states=hidden_states,
|
762
|
+
forward_batch=forward_batch,
|
763
|
+
)
|
764
|
+
|
765
|
+
# Fully Connected
|
766
|
+
hidden_states, residual = self.layer_communicator.prepare_mlp(
|
767
|
+
hidden_states, residual, forward_batch
|
768
|
+
)
|
769
|
+
use_reduce_scatter = self.layer_communicator.should_use_reduce_scatter(
|
770
|
+
forward_batch
|
771
|
+
)
|
772
|
+
hidden_states = self.mlp(hidden_states, forward_batch, use_reduce_scatter)
|
773
|
+
|
774
|
+
hidden_states, residual = self.layer_communicator.postprocess_layer(
|
775
|
+
hidden_states, residual, forward_batch
|
776
|
+
)
|
777
|
+
|
778
|
+
return hidden_states, residual
|
779
|
+
|
780
|
+
|
781
|
+
ALL_DECODER_LAYER_TYPES = {
|
782
|
+
"attention": Qwen3HybridAttentionDecoderLayer,
|
783
|
+
"linear_attention": Qwen3HybridLinearDecoderLayer,
|
784
|
+
}
|
785
|
+
|
786
|
+
|
787
|
+
class Qwen3NextModel(nn.Module):
|
788
|
+
def __init__(
|
789
|
+
self,
|
790
|
+
config: Qwen3NextConfig,
|
791
|
+
quant_config: Optional[QuantizationConfig] = None,
|
792
|
+
prefix: str = "",
|
793
|
+
) -> None:
|
794
|
+
super().__init__()
|
795
|
+
self.config = config
|
796
|
+
|
797
|
+
alt_stream = torch.cuda.Stream() if _is_cuda else None
|
798
|
+
|
799
|
+
self.embed_tokens = VocabParallelEmbedding(
|
800
|
+
config.vocab_size,
|
801
|
+
config.hidden_size,
|
802
|
+
org_num_embeddings=config.vocab_size,
|
803
|
+
enable_tp=not is_dp_attention_enabled(),
|
804
|
+
)
|
805
|
+
|
806
|
+
def get_layer(idx: int, prefix: str):
|
807
|
+
layer_class = ALL_DECODER_LAYER_TYPES[config.layers_block_type[idx]]
|
808
|
+
return layer_class(
|
809
|
+
config,
|
810
|
+
idx,
|
811
|
+
quant_config=quant_config,
|
812
|
+
prefix=prefix,
|
813
|
+
alt_stream=alt_stream,
|
814
|
+
)
|
815
|
+
|
816
|
+
self.layers = make_layers(
|
817
|
+
config.num_hidden_layers, get_layer, prefix=f"{prefix}.layers"
|
818
|
+
)
|
819
|
+
|
820
|
+
self.norm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
821
|
+
self.infer_count = 0
|
822
|
+
|
823
|
+
def forward(
|
824
|
+
self,
|
825
|
+
input_ids: torch.Tensor,
|
826
|
+
positions: torch.Tensor,
|
827
|
+
forward_batch: ForwardBatch,
|
828
|
+
# mamba_cache_params: MambaCacheParams,
|
829
|
+
inputs_embeds: Optional[torch.Tensor] = None,
|
830
|
+
) -> torch.Tensor:
|
831
|
+
|
832
|
+
# pass a sequence index tensor, that is required for
|
833
|
+
# proper continuous batching computation including
|
834
|
+
# chunked prefill
|
835
|
+
if inputs_embeds is not None:
|
836
|
+
hidden_states = inputs_embeds
|
837
|
+
else:
|
838
|
+
hidden_states = self.embed_tokens(input_ids)
|
839
|
+
|
840
|
+
residual = None
|
841
|
+
for i in range(len(self.layers)):
|
842
|
+
layer = self.layers[i]
|
843
|
+
hidden_states, residual = layer(
|
844
|
+
layer_id=i,
|
845
|
+
positions=positions,
|
846
|
+
hidden_states=hidden_states,
|
847
|
+
residual=residual,
|
848
|
+
forward_batch=forward_batch,
|
849
|
+
)
|
850
|
+
|
851
|
+
if not forward_batch.forward_mode.is_idle():
|
852
|
+
if residual is None:
|
853
|
+
hidden_states = self.norm(hidden_states)
|
854
|
+
else:
|
855
|
+
hidden_states, _ = self.norm(hidden_states, residual)
|
856
|
+
|
857
|
+
return hidden_states
|
858
|
+
|
859
|
+
|
860
|
+
class HybridLayerType(enum.Enum):
|
861
|
+
full_attention = "attention"
|
862
|
+
swa_attention = "swa_attention"
|
863
|
+
linear_attention = "linear_attention"
|
864
|
+
mamba2 = "mamba"
|
865
|
+
|
866
|
+
|
867
|
+
class Qwen3NextForCausalLM(nn.Module):
|
868
|
+
fall_back_to_pt_during_load = False
|
869
|
+
|
870
|
+
def __init__(
|
871
|
+
self,
|
872
|
+
config: Qwen3NextConfig,
|
873
|
+
quant_config: Optional[QuantizationConfig] = None,
|
874
|
+
prefix: str = "",
|
875
|
+
) -> None:
|
876
|
+
super().__init__()
|
877
|
+
self.config = config
|
878
|
+
self.pp_group = get_pp_group()
|
879
|
+
assert self.pp_group.is_first_rank and self.pp_group.is_last_rank
|
880
|
+
self.quant_config = quant_config
|
881
|
+
self.model = Qwen3NextModel(
|
882
|
+
config, quant_config, prefix=add_prefix("model", prefix)
|
883
|
+
)
|
884
|
+
self.lm_head = ParallelLMHead(
|
885
|
+
config.vocab_size,
|
886
|
+
config.hidden_size,
|
887
|
+
quant_config=quant_config,
|
888
|
+
org_num_embeddings=config.vocab_size,
|
889
|
+
prefix=add_prefix("lm_head", prefix),
|
890
|
+
use_attn_tp_group=global_server_args_dict["enable_dp_lm_head"],
|
891
|
+
)
|
892
|
+
self.lm_head = self.lm_head.float()
|
893
|
+
self.logits_processor = LogitsProcessor(config)
|
894
|
+
|
895
|
+
@torch.no_grad()
|
896
|
+
def forward(
|
897
|
+
self,
|
898
|
+
input_ids: torch.Tensor,
|
899
|
+
positions: torch.Tensor,
|
900
|
+
forward_batch: ForwardBatch,
|
901
|
+
inputs_embeds: Optional[torch.Tensor] = None,
|
902
|
+
**kwargs,
|
903
|
+
):
|
904
|
+
hidden_states = self.model(input_ids, positions, forward_batch, inputs_embeds)
|
905
|
+
|
906
|
+
return self.logits_processor(
|
907
|
+
input_ids, hidden_states, self.lm_head, forward_batch
|
908
|
+
)
|
909
|
+
|
910
|
+
def get_embed_and_head(self):
|
911
|
+
return self.model.embed_tokens.weight, self.lm_head.weight
|
912
|
+
|
913
|
+
def set_embed_and_head(self, embed, head):
|
914
|
+
del self.model.embed_tokens.weight
|
915
|
+
del self.lm_head.weight
|
916
|
+
self.model.embed_tokens.weight = embed
|
917
|
+
self.lm_head.weight = head
|
918
|
+
torch.cuda.empty_cache()
|
919
|
+
torch.cuda.synchronize()
|
920
|
+
|
921
|
+
def load_weights(
|
922
|
+
self, weights: Iterable[Tuple[str, torch.Tensor]], is_mtp: bool = False
|
923
|
+
) -> Set[str]:
|
924
|
+
stacked_params_mapping = [
|
925
|
+
# (param_name, shard_name, shard_id)
|
926
|
+
("qkv_proj", "q_proj", "q"),
|
927
|
+
("qkv_proj", "k_proj", "k"),
|
928
|
+
("qkv_proj", "v_proj", "v"),
|
929
|
+
("gate_up_proj", "gate_proj", 0),
|
930
|
+
("gate_up_proj", "up_proj", 1),
|
931
|
+
]
|
932
|
+
|
933
|
+
# Params for weights, fp8 weight scales, fp8 activation scales
|
934
|
+
# (param_name, weight_name, expert_id, shard_id)
|
935
|
+
expert_params_mapping = get_moe_impl_class().make_expert_params_mapping(
|
936
|
+
ckpt_gate_proj_name="gate_proj",
|
937
|
+
ckpt_down_proj_name="down_proj",
|
938
|
+
ckpt_up_proj_name="up_proj",
|
939
|
+
num_experts=self.config.num_experts,
|
940
|
+
)
|
941
|
+
|
942
|
+
params_dict = dict(self.named_parameters())
|
943
|
+
loaded_params: Set[str] = set()
|
944
|
+
for name, loaded_weight in weights:
|
945
|
+
|
946
|
+
if is_mtp:
|
947
|
+
|
948
|
+
if "mtp" not in name:
|
949
|
+
continue
|
950
|
+
|
951
|
+
if name in [
|
952
|
+
"mtp.fc.weight",
|
953
|
+
"mtp.pre_fc_norm_embedding.weight",
|
954
|
+
"mtp.pre_fc_norm_hidden.weight",
|
955
|
+
]:
|
956
|
+
name = name.replace("mtp.", "")
|
957
|
+
else:
|
958
|
+
name = name.replace("mtp", "model")
|
959
|
+
|
960
|
+
if not is_mtp and "mtp" in name:
|
961
|
+
continue
|
962
|
+
|
963
|
+
if "rotary_emb.inv_freq" in name:
|
964
|
+
continue
|
965
|
+
|
966
|
+
if ".self_attn." in name:
|
967
|
+
name = name.replace(".self_attn", "")
|
968
|
+
|
969
|
+
for param_name, weight_name, shard_id in stacked_params_mapping:
|
970
|
+
if weight_name not in name:
|
971
|
+
continue
|
972
|
+
|
973
|
+
# TODO(fix mtp loading)
|
974
|
+
if "mlp.experts" in name:
|
975
|
+
continue
|
976
|
+
|
977
|
+
name = name.replace(weight_name, param_name)
|
978
|
+
# Skip loading extra bias for GPTQ models.
|
979
|
+
if name.endswith(".bias") and name not in params_dict:
|
980
|
+
continue
|
981
|
+
# Skip layers on other devices.
|
982
|
+
# if is_pp_missing_parameter(name, self):
|
983
|
+
# continue
|
984
|
+
if name not in params_dict:
|
985
|
+
continue
|
986
|
+
param = params_dict[name]
|
987
|
+
weight_loader = getattr(param, "weight_loader")
|
988
|
+
weight_loader(param, loaded_weight, shard_id)
|
989
|
+
break
|
990
|
+
else:
|
991
|
+
for mapping in expert_params_mapping:
|
992
|
+
param_name, weight_name, expert_id, shard_id = mapping
|
993
|
+
if weight_name not in name:
|
994
|
+
continue
|
995
|
+
name = name.replace(weight_name, param_name)
|
996
|
+
# Skip layers on other devices.
|
997
|
+
# if is_pp_missing_parameter(name, self):
|
998
|
+
# continue
|
999
|
+
# Skip loading extra bias for GPTQ models.
|
1000
|
+
if (
|
1001
|
+
name.endswith(".bias") or name.endswith("_bias")
|
1002
|
+
) and name not in params_dict:
|
1003
|
+
continue
|
1004
|
+
param = params_dict[name]
|
1005
|
+
|
1006
|
+
weight_loader = getattr(param, "weight_loader")
|
1007
|
+
weight_loader(
|
1008
|
+
param,
|
1009
|
+
loaded_weight,
|
1010
|
+
name,
|
1011
|
+
shard_id=shard_id,
|
1012
|
+
expert_id=expert_id,
|
1013
|
+
)
|
1014
|
+
break
|
1015
|
+
else:
|
1016
|
+
# Skip loading extra bias for GPTQ models.
|
1017
|
+
if name.endswith(".bias") and name not in params_dict:
|
1018
|
+
continue
|
1019
|
+
# if is_pp_missing_parameter(name, self):
|
1020
|
+
# continue
|
1021
|
+
|
1022
|
+
param = params_dict[name]
|
1023
|
+
weight_loader = getattr(
|
1024
|
+
param, "weight_loader", default_weight_loader
|
1025
|
+
)
|
1026
|
+
weight_loader(param, loaded_weight)
|
1027
|
+
loaded_params.add(name)
|
1028
|
+
return loaded_params
|
1029
|
+
|
1030
|
+
@classmethod
|
1031
|
+
def get_model_config_for_expert_location(cls, config):
|
1032
|
+
return ModelConfigForExpertLocation(
|
1033
|
+
num_layers=config.num_hidden_layers,
|
1034
|
+
num_logical_experts=config.num_experts,
|
1035
|
+
num_groups=None,
|
1036
|
+
)
|
1037
|
+
|
1038
|
+
|
1039
|
+
EntryClass = Qwen3NextForCausalLM
|