sglang 0.5.1.post3__py3-none-any.whl → 0.5.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +3 -0
- sglang/bench_one_batch_server.py +10 -1
- sglang/bench_serving.py +251 -26
- sglang/lang/interpreter.py +1 -1
- sglang/srt/configs/__init__.py +4 -0
- sglang/srt/configs/internvl.py +6 -0
- sglang/srt/configs/longcat_flash.py +104 -0
- sglang/srt/configs/model_config.py +37 -7
- sglang/srt/configs/qwen3_next.py +326 -0
- sglang/srt/connector/__init__.py +1 -1
- sglang/srt/connector/base_connector.py +1 -2
- sglang/srt/connector/redis.py +2 -2
- sglang/srt/connector/serde/__init__.py +1 -1
- sglang/srt/connector/serde/safe_serde.py +4 -3
- sglang/srt/custom_op.py +11 -1
- sglang/srt/debug_utils/dump_comparator.py +81 -44
- sglang/srt/debug_utils/dump_loader.py +97 -0
- sglang/srt/debug_utils/dumper.py +11 -3
- sglang/srt/debug_utils/text_comparator.py +73 -11
- sglang/srt/disaggregation/ascend/conn.py +75 -0
- sglang/srt/disaggregation/base/conn.py +1 -1
- sglang/srt/disaggregation/common/conn.py +15 -12
- sglang/srt/disaggregation/decode.py +6 -4
- sglang/srt/disaggregation/fake/conn.py +1 -1
- sglang/srt/disaggregation/mini_lb.py +6 -420
- sglang/srt/disaggregation/mooncake/conn.py +18 -10
- sglang/srt/disaggregation/nixl/conn.py +180 -16
- sglang/srt/disaggregation/prefill.py +6 -4
- sglang/srt/disaggregation/utils.py +5 -50
- sglang/srt/distributed/parallel_state.py +94 -58
- sglang/srt/entrypoints/engine.py +34 -14
- sglang/srt/entrypoints/http_server.py +172 -47
- sglang/srt/entrypoints/openai/protocol.py +63 -3
- sglang/srt/entrypoints/openai/serving_base.py +6 -2
- sglang/srt/entrypoints/openai/serving_chat.py +34 -19
- sglang/srt/entrypoints/openai/serving_completions.py +10 -4
- sglang/srt/entrypoints/openai/serving_embedding.py +8 -4
- sglang/srt/entrypoints/openai/serving_responses.py +7 -4
- sglang/srt/eplb/eplb_manager.py +28 -4
- sglang/srt/eplb/expert_distribution.py +55 -15
- sglang/srt/eplb/expert_location.py +8 -3
- sglang/srt/eplb/expert_location_updater.py +1 -1
- sglang/srt/function_call/ebnf_composer.py +11 -9
- sglang/srt/function_call/glm4_moe_detector.py +1 -1
- sglang/srt/function_call/gpt_oss_detector.py +1 -1
- sglang/srt/function_call/qwen3_coder_detector.py +1 -1
- sglang/srt/hf_transformers_utils.py +12 -0
- sglang/srt/layers/activation.py +44 -9
- sglang/srt/layers/attention/aiter_backend.py +93 -68
- sglang/srt/layers/attention/ascend_backend.py +250 -112
- sglang/srt/layers/attention/fla/chunk.py +242 -0
- sglang/srt/layers/attention/fla/chunk_delta_h.py +314 -0
- sglang/srt/layers/attention/fla/chunk_o.py +178 -0
- sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +151 -0
- sglang/srt/layers/attention/fla/cumsum.py +300 -0
- sglang/srt/layers/attention/fla/fused_recurrent.py +640 -0
- sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +232 -0
- sglang/srt/layers/attention/fla/index.py +37 -0
- sglang/srt/layers/attention/fla/l2norm.py +150 -0
- sglang/srt/layers/attention/fla/layernorm_gated.py +326 -0
- sglang/srt/layers/attention/fla/op.py +66 -0
- sglang/srt/layers/attention/fla/solve_tril.py +465 -0
- sglang/srt/layers/attention/fla/utils.py +331 -0
- sglang/srt/layers/attention/fla/wy_fast.py +158 -0
- sglang/srt/layers/attention/flashinfer_backend.py +6 -4
- sglang/srt/layers/attention/flashinfer_mla_backend.py +16 -12
- sglang/srt/layers/attention/hybrid_attn_backend.py +47 -8
- sglang/srt/layers/attention/hybrid_linear_attn_backend.py +584 -0
- sglang/srt/layers/attention/intel_amx_backend.py +3 -0
- sglang/srt/layers/attention/mamba/causal_conv1d.py +128 -0
- sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +1052 -0
- sglang/srt/layers/attention/mamba/mamba.py +64 -0
- sglang/srt/layers/attention/torch_native_backend.py +12 -6
- sglang/srt/layers/attention/trtllm_mla_backend.py +126 -36
- sglang/srt/layers/attention/wave_ops/decode_attention.py +2 -4
- sglang/srt/layers/attention/wave_ops/extend_attention.py +1 -3
- sglang/srt/layers/communicator.py +45 -7
- sglang/srt/layers/layernorm.py +54 -12
- sglang/srt/layers/logits_processor.py +10 -3
- sglang/srt/layers/moe/__init__.py +2 -1
- sglang/srt/layers/moe/cutlass_w4a8_moe.py +4 -12
- sglang/srt/layers/moe/ep_moe/kernels.py +74 -0
- sglang/srt/layers/moe/ep_moe/layer.py +110 -49
- sglang/srt/layers/moe/fused_moe_native.py +5 -3
- sglang/srt/layers/moe/fused_moe_triton/__init__.py +5 -3
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=129,N=352,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/{E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → E=257,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json } +29 -29
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +9 -1049
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +212 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +799 -0
- sglang/srt/layers/moe/fused_moe_triton/layer.py +56 -45
- sglang/srt/layers/moe/fused_moe_triton/moe_align_block_size.py +87 -0
- sglang/srt/layers/moe/moe_runner/__init__.py +2 -1
- sglang/srt/layers/moe/moe_runner/base.py +274 -1
- sglang/srt/layers/moe/moe_runner/runner.py +80 -0
- sglang/srt/layers/moe/moe_runner/triton.py +448 -0
- sglang/srt/layers/moe/token_dispatcher/__init__.py +16 -4
- sglang/srt/layers/moe/token_dispatcher/{base_dispatcher.py → base.py} +67 -17
- sglang/srt/layers/moe/token_dispatcher/deepep.py +41 -38
- sglang/srt/layers/moe/token_dispatcher/standard.py +44 -2
- sglang/srt/layers/moe/topk.py +43 -12
- sglang/srt/layers/moe/utils.py +6 -5
- sglang/srt/layers/quantization/awq.py +19 -7
- sglang/srt/layers/quantization/base_config.py +11 -6
- sglang/srt/layers/quantization/blockwise_int8.py +38 -27
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +50 -30
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +13 -1
- sglang/srt/layers/quantization/deep_gemm_wrapper/compile_utils.py +9 -1
- sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -3
- sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +27 -0
- sglang/srt/layers/quantization/fp8.py +76 -47
- sglang/srt/layers/quantization/fp8_utils.py +43 -29
- sglang/srt/layers/quantization/gptq.py +25 -17
- sglang/srt/layers/quantization/modelopt_quant.py +107 -40
- sglang/srt/layers/quantization/moe_wna16.py +21 -18
- sglang/srt/layers/quantization/mxfp4.py +77 -45
- sglang/srt/layers/quantization/quark/quark_moe.py +32 -27
- sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +49 -30
- sglang/srt/layers/quantization/quark/utils.py +97 -0
- sglang/srt/layers/quantization/rocm_mxfp4_utils.py +13 -0
- sglang/srt/layers/quantization/unquant.py +135 -47
- sglang/srt/layers/quantization/utils.py +13 -0
- sglang/srt/layers/quantization/w4afp8.py +60 -42
- sglang/srt/layers/quantization/w8a8_fp8.py +35 -20
- sglang/srt/layers/quantization/w8a8_int8.py +83 -41
- sglang/srt/layers/rocm_linear_utils.py +44 -0
- sglang/srt/layers/rotary_embedding.py +28 -19
- sglang/srt/layers/sampler.py +29 -5
- sglang/srt/lora/backend/base_backend.py +50 -8
- sglang/srt/lora/backend/triton_backend.py +90 -2
- sglang/srt/lora/layers.py +32 -0
- sglang/srt/lora/lora.py +4 -1
- sglang/srt/lora/lora_manager.py +35 -112
- sglang/srt/lora/mem_pool.py +24 -10
- sglang/srt/lora/utils.py +18 -9
- sglang/srt/managers/cache_controller.py +242 -278
- sglang/srt/managers/data_parallel_controller.py +30 -15
- sglang/srt/managers/detokenizer_manager.py +13 -2
- sglang/srt/managers/disagg_service.py +46 -0
- sglang/srt/managers/io_struct.py +160 -11
- sglang/srt/managers/mm_utils.py +6 -1
- sglang/srt/managers/multi_tokenizer_mixin.py +579 -0
- sglang/srt/managers/schedule_batch.py +27 -44
- sglang/srt/managers/schedule_policy.py +4 -3
- sglang/srt/managers/scheduler.py +90 -115
- sglang/srt/managers/scheduler_metrics_mixin.py +114 -8
- sglang/srt/managers/scheduler_output_processor_mixin.py +29 -19
- sglang/srt/managers/scheduler_profiler_mixin.py +1 -1
- sglang/srt/managers/scheduler_update_weights_mixin.py +8 -1
- sglang/srt/managers/template_manager.py +3 -3
- sglang/srt/managers/tokenizer_communicator_mixin.py +491 -0
- sglang/srt/managers/tokenizer_manager.py +41 -477
- sglang/srt/managers/tp_worker.py +16 -4
- sglang/srt/managers/tp_worker_overlap_thread.py +8 -10
- sglang/srt/mem_cache/allocator.py +1 -1
- sglang/srt/mem_cache/chunk_cache.py +1 -1
- sglang/srt/mem_cache/hicache_storage.py +24 -22
- sglang/srt/mem_cache/hiradix_cache.py +184 -101
- sglang/srt/mem_cache/lora_radix_cache.py +1 -1
- sglang/srt/mem_cache/memory_pool.py +324 -41
- sglang/srt/mem_cache/memory_pool_host.py +25 -18
- sglang/srt/mem_cache/radix_cache.py +5 -6
- sglang/srt/mem_cache/radix_cache_cpp.py +1 -1
- sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +164 -0
- sglang/srt/mem_cache/storage/hf3fs/{client_hf3fs.py → hf3fs_usrbio_client.py} +5 -1
- sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +61 -34
- sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +149 -12
- sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +280 -0
- sglang/srt/mem_cache/storage/lmcache/unit_test.py +121 -0
- sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +74 -19
- sglang/srt/mem_cache/storage/mooncake_store/test_mooncake_store.py +161 -0
- sglang/srt/mem_cache/swa_radix_cache.py +1 -3
- sglang/srt/metrics/collector.py +484 -63
- sglang/srt/metrics/startup_func_log_and_timer.py +150 -0
- sglang/srt/metrics/utils.py +48 -0
- sglang/srt/model_executor/cpu_graph_runner.py +640 -0
- sglang/srt/model_executor/cuda_graph_runner.py +13 -5
- sglang/srt/model_executor/forward_batch_info.py +72 -18
- sglang/srt/model_executor/model_runner.py +189 -31
- sglang/srt/model_loader/__init__.py +9 -3
- sglang/srt/model_loader/loader.py +33 -28
- sglang/srt/model_loader/utils.py +12 -0
- sglang/srt/model_loader/weight_utils.py +2 -1
- sglang/srt/models/deepseek_v2.py +311 -50
- sglang/srt/models/gemma3n_mm.py +1 -1
- sglang/srt/models/glm4_moe.py +10 -1
- sglang/srt/models/glm4v.py +4 -2
- sglang/srt/models/gpt_oss.py +5 -18
- sglang/srt/models/internvl.py +28 -0
- sglang/srt/models/llama4.py +9 -0
- sglang/srt/models/llama_eagle3.py +17 -0
- sglang/srt/models/longcat_flash.py +1026 -0
- sglang/srt/models/longcat_flash_nextn.py +699 -0
- sglang/srt/models/minicpmv.py +165 -3
- sglang/srt/models/mllama4.py +25 -0
- sglang/srt/models/opt.py +637 -0
- sglang/srt/models/qwen2.py +33 -3
- sglang/srt/models/qwen2_5_vl.py +90 -42
- sglang/srt/models/qwen2_moe.py +79 -14
- sglang/srt/models/qwen3.py +8 -2
- sglang/srt/models/qwen3_moe.py +39 -8
- sglang/srt/models/qwen3_next.py +1039 -0
- sglang/srt/models/qwen3_next_mtp.py +109 -0
- sglang/srt/models/torch_native_llama.py +1 -1
- sglang/srt/models/transformers.py +1 -1
- sglang/srt/multimodal/processors/base_processor.py +4 -2
- sglang/srt/multimodal/processors/glm4v.py +9 -9
- sglang/srt/multimodal/processors/internvl.py +141 -129
- sglang/srt/{reasoning_parser.py → parser/reasoning_parser.py} +1 -1
- sglang/srt/sampling/penaltylib/orchestrator.py +14 -2
- sglang/srt/sampling/sampling_batch_info.py +18 -15
- sglang/srt/server_args.py +297 -79
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +5 -0
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +10 -1
- sglang/srt/speculative/eagle_worker.py +216 -120
- sglang/srt/speculative/spec_info.py +5 -0
- sglang/srt/speculative/standalone_worker.py +109 -0
- sglang/srt/utils.py +37 -2
- sglang/srt/weight_sync/utils.py +1 -1
- sglang/test/attention/test_trtllm_mla_backend.py +181 -8
- sglang/test/few_shot_gsm8k.py +1 -0
- sglang/test/runners.py +4 -0
- sglang/test/test_cutlass_moe.py +24 -6
- sglang/test/test_cutlass_w4a8_moe.py +24 -9
- sglang/test/test_disaggregation_utils.py +66 -0
- sglang/test/test_utils.py +25 -1
- sglang/utils.py +5 -0
- sglang/version.py +1 -1
- {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/METADATA +11 -9
- {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/RECORD +243 -194
- sglang/srt/disaggregation/launch_lb.py +0 -131
- sglang/srt/mem_cache/storage/mooncake_store/unit_test.py +0 -40
- /sglang/srt/{model_parallel.py → layers/model_parallel.py} +0 -0
- /sglang/srt/{code_completion_parser.py → parser/code_completion_parser.py} +0 -0
- /sglang/srt/{conversation.py → parser/conversation.py} +0 -0
- /sglang/srt/{harmony_parser.py → parser/harmony_parser.py} +0 -0
- /sglang/srt/{jinja_template_utils.py → parser/jinja_template_utils.py} +0 -0
- {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/WHEEL +0 -0
- {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/top_level.txt +0 -0
@@ -22,6 +22,8 @@ from typing import TYPE_CHECKING, List, Optional
|
|
22
22
|
import torch
|
23
23
|
from torch.nn.parameter import Parameter
|
24
24
|
|
25
|
+
from sglang.srt.layers.moe import MoeRunner, MoeRunnerBackend, MoeRunnerConfig
|
26
|
+
from sglang.srt.layers.moe.moe_runner.triton import TritonMoeQuantInfo
|
25
27
|
from sglang.srt.layers.moe.utils import get_moe_runner_backend
|
26
28
|
from sglang.srt.layers.quantization.base_config import (
|
27
29
|
FusedMoEMethodBase,
|
@@ -59,17 +61,24 @@ if is_flashinfer_available():
|
|
59
61
|
logger = logging.getLogger(__name__)
|
60
62
|
|
61
63
|
if TYPE_CHECKING:
|
62
|
-
from sglang.srt.layers.moe.
|
63
|
-
|
64
|
+
from sglang.srt.layers.moe.token_dispatcher import (
|
65
|
+
CombineInput,
|
66
|
+
StandardDispatchOutput,
|
67
|
+
)
|
64
68
|
|
65
69
|
_is_hip = is_hip()
|
66
70
|
|
67
71
|
if _is_hip:
|
68
72
|
# import aiter
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
+
try:
|
74
|
+
from aiter import ActivationType, QuantType, dtypes
|
75
|
+
from aiter.fused_moe import fused_moe
|
76
|
+
from aiter.ops.triton.quant import dynamic_mxfp4_quant
|
77
|
+
from aiter.utility.fp4_utils import e8m0_shuffle
|
78
|
+
except ImportError as err:
|
79
|
+
ActivationType = QuantType = dtypes = fused_moe = dynamic_mxfp4_quant = (
|
80
|
+
e8m0_shuffle
|
81
|
+
) = err
|
73
82
|
|
74
83
|
|
75
84
|
def _swizzle_mxfp4(quant_tensor, scale, num_warps):
|
@@ -278,7 +287,7 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
|
|
278
287
|
layer: torch.nn.Module,
|
279
288
|
num_experts: int,
|
280
289
|
hidden_size: int,
|
281
|
-
|
290
|
+
intermediate_size_per_partition: int,
|
282
291
|
params_dtype: torch.dtype,
|
283
292
|
with_bias: bool = False,
|
284
293
|
**extra_weight_attrs,
|
@@ -291,26 +300,26 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
|
|
291
300
|
|
292
301
|
# pad the intermediate size to be a multiple of 2 * mxfp4_block
|
293
302
|
# for to hold non-uniform sharded tensor as well as swizzling
|
294
|
-
intermediate_size_per_partition_after_pad =
|
303
|
+
intermediate_size_per_partition_after_pad = intermediate_size_per_partition
|
295
304
|
if _is_sm100_supported:
|
296
305
|
if self.use_flashinfer:
|
297
306
|
intermediate_size_per_partition_after_pad = round_up(
|
298
|
-
|
307
|
+
intermediate_size_per_partition, 256
|
299
308
|
)
|
300
309
|
hidden_size = round_up(hidden_size, 256)
|
301
310
|
else:
|
302
311
|
intermediate_size_per_partition_after_pad = round_up(
|
303
|
-
|
312
|
+
intermediate_size_per_partition, 64
|
304
313
|
)
|
305
314
|
elif has_triton_kernels:
|
306
315
|
# TODO: this is a hack to make
|
307
316
|
# intermediate_size_per_partition_after_pad the same as the
|
308
317
|
# per_rank_intermediate_size during weight loading
|
309
318
|
intermediate_size_per_partition_after_pad = round_up(
|
310
|
-
|
319
|
+
intermediate_size_per_partition, mxfp4_block
|
311
320
|
)
|
312
321
|
|
313
|
-
self.
|
322
|
+
self.intermediate_size_per_partition = intermediate_size_per_partition_after_pad
|
314
323
|
|
315
324
|
self.hidden_size = hidden_size
|
316
325
|
# Fused gate_up_proj (column parallel)
|
@@ -405,31 +414,35 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
|
|
405
414
|
assert (
|
406
415
|
layer.w13_weight.dim() == 3
|
407
416
|
and layer.w13_weight.shape[0] == self.num_experts
|
408
|
-
and layer.w13_weight.shape[1]
|
417
|
+
and layer.w13_weight.shape[1]
|
418
|
+
== self.intermediate_size_per_partition * 2
|
409
419
|
and layer.w13_weight.shape[2] == self.hidden_size // 2
|
410
420
|
)
|
411
421
|
assert (
|
412
422
|
layer.w13_weight_scale.dim() == 3
|
413
423
|
and layer.w13_weight_scale.shape[0] == self.num_experts
|
414
|
-
and layer.w13_weight_scale.shape[1]
|
424
|
+
and layer.w13_weight_scale.shape[1]
|
425
|
+
== self.intermediate_size_per_partition * 2
|
415
426
|
and layer.w13_weight_scale.shape[2] == self.hidden_size // sf_block_size
|
416
427
|
)
|
417
428
|
assert (
|
418
429
|
layer.w2_weight.dim() == 3
|
419
430
|
and layer.w2_weight.shape[0] == self.num_experts
|
420
431
|
and layer.w2_weight.shape[1] == self.hidden_size
|
421
|
-
and layer.w2_weight.shape[2]
|
432
|
+
and layer.w2_weight.shape[2]
|
433
|
+
== self.intermediate_size_per_partition // 2
|
422
434
|
)
|
423
435
|
assert (
|
424
436
|
layer.w2_weight_scale.dim() == 3
|
425
437
|
and layer.w2_weight_scale.shape[1] == self.hidden_size
|
426
438
|
and layer.w2_weight_scale.shape[2]
|
427
|
-
== self.
|
439
|
+
== self.intermediate_size_per_partition // sf_block_size
|
428
440
|
)
|
429
441
|
assert (
|
430
442
|
layer.w13_weight_bias.dim() == 2
|
431
443
|
and layer.w13_weight_bias.shape[0] == self.num_experts
|
432
|
-
and layer.w13_weight_bias.shape[1]
|
444
|
+
and layer.w13_weight_bias.shape[1]
|
445
|
+
== self.intermediate_size_per_partition * 2
|
433
446
|
)
|
434
447
|
assert (
|
435
448
|
layer.w2_weight_bias.dim() == 2
|
@@ -506,7 +519,7 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
|
|
506
519
|
torch.stack(gemm1_scales_mxfp4_shuffled)
|
507
520
|
.reshape(
|
508
521
|
self.num_experts,
|
509
|
-
2 * self.
|
522
|
+
2 * self.intermediate_size_per_partition,
|
510
523
|
self.hidden_size // sf_block_size,
|
511
524
|
)
|
512
525
|
.view(torch.float8_e4m3fn)
|
@@ -518,7 +531,7 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
|
|
518
531
|
.reshape(
|
519
532
|
self.num_experts,
|
520
533
|
self.hidden_size,
|
521
|
-
self.
|
534
|
+
self.intermediate_size_per_partition // sf_block_size,
|
522
535
|
)
|
523
536
|
.view(torch.float8_e4m3fn)
|
524
537
|
)
|
@@ -608,16 +621,26 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
|
|
608
621
|
|
609
622
|
return tile_tokens_dim
|
610
623
|
|
624
|
+
def create_moe_runner(
|
625
|
+
self, layer: torch.nn.Module, moe_runner_config: MoeRunnerConfig
|
626
|
+
):
|
627
|
+
self.moe_runner_config = moe_runner_config
|
628
|
+
self.runner = MoeRunner(MoeRunnerBackend.TRITON, moe_runner_config)
|
629
|
+
|
611
630
|
def apply(
|
612
631
|
self,
|
613
632
|
layer: torch.nn.Module,
|
614
|
-
|
615
|
-
|
616
|
-
moe_runner_config: MoeRunnerConfig,
|
617
|
-
) -> torch.Tensor:
|
633
|
+
dispatch_output: StandardDispatchOutput,
|
634
|
+
) -> CombineInput:
|
618
635
|
|
636
|
+
from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
|
619
637
|
from sglang.srt.layers.moe.topk import TopKOutputChecker
|
620
638
|
|
639
|
+
x = dispatch_output.hidden_states
|
640
|
+
topk_output = dispatch_output.topk_output
|
641
|
+
|
642
|
+
moe_runner_config = self.moe_runner_config
|
643
|
+
|
621
644
|
if self.use_flashinfer:
|
622
645
|
# When bf16 mode is enabled, we don't need to quantize the input,
|
623
646
|
# TRT-LLM automatically handles quantization in the kernel implementation and pipelines it with GEMM operations,
|
@@ -669,7 +692,7 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
|
|
669
692
|
top_k,
|
670
693
|
None, # n_group # TODO: support n_group
|
671
694
|
None, # topk_group # TODO: support topk_group
|
672
|
-
self.
|
695
|
+
self.intermediate_size_per_partition, # padded to multiple of 256
|
673
696
|
layer.moe_ep_rank * layer.num_local_experts, # local_expert_offset
|
674
697
|
layer.num_local_experts, # local num experts
|
675
698
|
None,
|
@@ -677,14 +700,14 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
|
|
677
700
|
1, # routing_method_type, renormalize
|
678
701
|
True, # do finalize
|
679
702
|
)[0]
|
680
|
-
return trtllm_gen_output
|
703
|
+
return StandardCombineInput(hidden_states=trtllm_gen_output)
|
681
704
|
|
682
705
|
if self.use_triton_kernels:
|
683
706
|
assert (
|
684
707
|
layer.moe_ep_size == 1
|
685
708
|
), "Expert parallel is not supported when using triton kernels"
|
686
709
|
if self.with_bias:
|
687
|
-
|
710
|
+
output = self.triton_kernel_moe_with_bias_forward(
|
688
711
|
hidden_states=x,
|
689
712
|
w1=self.w13_weight_triton_tensor,
|
690
713
|
w1_pcg=self.w13_precision_config,
|
@@ -696,25 +719,22 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
|
|
696
719
|
moe_runner_config=moe_runner_config,
|
697
720
|
)
|
698
721
|
else:
|
699
|
-
|
722
|
+
output = self.triton_kernel_moe_forward(
|
700
723
|
hidden_states=x,
|
701
724
|
w1=layer.w13_weight,
|
702
725
|
w2=layer.w2_weight,
|
703
726
|
topk_output=topk_output,
|
704
727
|
moe_runner_config=moe_runner_config,
|
705
728
|
)
|
729
|
+
return StandardCombineInput(hidden_states=output)
|
706
730
|
else:
|
707
|
-
|
708
|
-
|
709
|
-
|
710
|
-
|
711
|
-
|
712
|
-
w2=layer.w2_weight,
|
713
|
-
topk_output=topk_output,
|
714
|
-
moe_runner_config=moe_runner_config,
|
715
|
-
b1=layer.w13_weight_bias,
|
716
|
-
b2=layer.w2_weight_bias,
|
731
|
+
quant_info = TritonMoeQuantInfo(
|
732
|
+
w13_weight=layer.w13_weight,
|
733
|
+
w2_weight=layer.w2_weight,
|
734
|
+
w13_weight_bias=layer.w13_weight_bias,
|
735
|
+
w2_weight_bias=layer.w2_weight_bias,
|
717
736
|
)
|
737
|
+
return self.runner.run(dispatch_output, quant_info)
|
718
738
|
|
719
739
|
|
720
740
|
class Mxfp4DynamicQuantMoEMethod(FusedMoEMethodBase):
|
@@ -793,7 +813,7 @@ class Mxfp4DynamicQuantMoEMethod(FusedMoEMethodBase):
|
|
793
813
|
|
794
814
|
return w, mx_scales
|
795
815
|
|
796
|
-
def process_weights_after_loading(self, layer: Module) -> None:
|
816
|
+
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
|
797
817
|
w13, w13_mx_scales = self.mxfp4_quantize(layer.w13_weight.data)
|
798
818
|
w2, w2_mx_scales = self.mxfp4_quantize(layer.w2_weight.data)
|
799
819
|
|
@@ -803,16 +823,27 @@ class Mxfp4DynamicQuantMoEMethod(FusedMoEMethodBase):
|
|
803
823
|
layer.w2_weight = torch.nn.Parameter(w2, requires_grad=False)
|
804
824
|
layer.w2_weight_scale = torch.nn.Parameter(w2_mx_scales, requires_grad=False)
|
805
825
|
|
826
|
+
def create_moe_runner(
|
827
|
+
self, layer: torch.nn.Module, moe_runner_config: MoeRunnerConfig
|
828
|
+
):
|
829
|
+
self.moe_runner_config = moe_runner_config
|
830
|
+
|
806
831
|
def apply(
|
807
832
|
self,
|
808
833
|
layer: torch.nn.Module,
|
809
|
-
|
810
|
-
|
811
|
-
|
812
|
-
) -> torch.Tensor:
|
813
|
-
topk_weights, topk_ids, _ = topk_output
|
834
|
+
dispatch_output: StandardDispatchOutput,
|
835
|
+
) -> CombineInput:
|
836
|
+
from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
|
814
837
|
|
815
|
-
|
838
|
+
x = dispatch_output.hidden_states
|
839
|
+
topk_output = dispatch_output.topk_output
|
840
|
+
|
841
|
+
topk_weights, topk_ids, _ = topk_output
|
842
|
+
if _is_hip:
|
843
|
+
topk_weights = topk_weights.to(
|
844
|
+
torch.float32
|
845
|
+
) # aiter's moe_sorting requires topk_weights to be FP32
|
846
|
+
output = fused_moe(
|
816
847
|
x,
|
817
848
|
layer.w13_weight,
|
818
849
|
layer.w2_weight,
|
@@ -823,8 +854,9 @@ class Mxfp4DynamicQuantMoEMethod(FusedMoEMethodBase):
|
|
823
854
|
w2_scale=layer.w2_weight_scale,
|
824
855
|
activation=(
|
825
856
|
ActivationType.Silu
|
826
|
-
if moe_runner_config.activation == "silu"
|
857
|
+
if self.moe_runner_config.activation == "silu"
|
827
858
|
else ActivationType.Gelu
|
828
859
|
),
|
829
860
|
doweight_stage1=False,
|
830
861
|
)
|
862
|
+
return StandardCombineInput(hidden_states=output)
|
@@ -10,8 +10,17 @@ from aiter import ActivationType, QuantType, biased_grouped_topk
|
|
10
10
|
from aiter.fused_moe import fused_moe
|
11
11
|
from aiter.utility.fp4_utils import e8m0_shuffle
|
12
12
|
|
13
|
+
from sglang.srt.layers.moe import MoeRunnerConfig
|
14
|
+
from sglang.srt.layers.quantization.base_config import FusedMoEMethodBase
|
13
15
|
from sglang.srt.utils import get_bool_env_var, mxfp_supported, set_weight_attrs
|
14
16
|
|
17
|
+
if TYPE_CHECKING:
|
18
|
+
from sglang.srt.layers.moe.token_dispatcher import (
|
19
|
+
CombineInput,
|
20
|
+
StandardDispatchOutput,
|
21
|
+
)
|
22
|
+
from sglang.srt.layers.quantization.quark.quark import QuarkConfig
|
23
|
+
|
15
24
|
logger = logging.getLogger(__name__)
|
16
25
|
|
17
26
|
__all__ = ["QuarkMoEMethod", "QuarkW4A4MXFp4MoEMethod"]
|
@@ -19,31 +28,17 @@ __all__ = ["QuarkMoEMethod", "QuarkW4A4MXFp4MoEMethod"]
|
|
19
28
|
OCP_MX_BLOCK_SIZE = 32
|
20
29
|
|
21
30
|
if TYPE_CHECKING:
|
22
|
-
from sglang.srt.layers.
|
23
|
-
|
24
|
-
|
25
|
-
class QuarkMoEMethod:
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
if not hasattr(cls, "_initialized"):
|
30
|
-
original_init = cls.__init__
|
31
|
-
new_cls = type(
|
32
|
-
cls.__name__,
|
33
|
-
(FusedMoEMethodBase,),
|
34
|
-
{
|
35
|
-
"__init__": original_init,
|
36
|
-
**{k: v for k, v in cls.__dict__.items() if k != "__dict__"},
|
37
|
-
},
|
38
|
-
)
|
39
|
-
obj = super(new_cls, new_cls).__new__(new_cls)
|
40
|
-
obj.__init__(*args, **kwargs)
|
41
|
-
return obj
|
42
|
-
return super().__new__(cls)
|
31
|
+
from sglang.srt.layers.quantization import QuarkConfig
|
32
|
+
|
33
|
+
|
34
|
+
class QuarkMoEMethod(FusedMoEMethodBase):
|
35
|
+
|
36
|
+
def __init__(self, quant_config: QuarkConfig):
|
37
|
+
self.quant_config = quant_config
|
43
38
|
|
44
39
|
@staticmethod
|
45
40
|
def get_moe_method(
|
46
|
-
quant_config:
|
41
|
+
quant_config: QuarkConfig, # type: ignore # noqa E501 # noqa F821
|
47
42
|
module: torch.nn.Module,
|
48
43
|
layer_name: str,
|
49
44
|
) -> "QuarkMoEMethod":
|
@@ -170,16 +165,25 @@ class QuarkW4A4MXFp4MoEMethod(QuarkMoEMethod):
|
|
170
165
|
# layer.w2_weight_scale = torch.nn.Parameter(w2_weight_scale, requires_grad=False)
|
171
166
|
layer.w2_weight_scale.data = w2_weight_scale.view(s0, s1, -1)
|
172
167
|
|
168
|
+
def create_moe_runner(
|
169
|
+
self, layer: torch.nn.Module, moe_runner_config: MoeRunnerConfig
|
170
|
+
):
|
171
|
+
self.moe_runner_config = moe_runner_config
|
172
|
+
|
173
173
|
def apply(
|
174
174
|
self,
|
175
175
|
layer: torch.nn.Module,
|
176
|
-
|
177
|
-
|
178
|
-
|
179
|
-
|
176
|
+
dispatch_output: StandardDispatchOutput,
|
177
|
+
) -> CombineInput:
|
178
|
+
|
179
|
+
from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
|
180
|
+
|
181
|
+
x = dispatch_output.hidden_states
|
182
|
+
topk_output = dispatch_output.topk_output
|
183
|
+
moe_runner_config = self.moe_runner_config
|
180
184
|
topk_weights, topk_ids, _ = topk_output
|
181
185
|
|
182
|
-
|
186
|
+
output = fused_moe(
|
183
187
|
x,
|
184
188
|
layer.w13_weight,
|
185
189
|
layer.w2_weight,
|
@@ -195,3 +199,4 @@ class QuarkW4A4MXFp4MoEMethod(QuarkMoEMethod):
|
|
195
199
|
),
|
196
200
|
doweight_stage1=False,
|
197
201
|
)
|
202
|
+
return StandardCombineInput(hidden_states=output)
|
@@ -8,6 +8,7 @@ import torch.nn.functional as F
|
|
8
8
|
from aiter.ops.gemm_op_a4w4 import gemm_a4w4
|
9
9
|
from aiter.ops.shuffle import shuffle_weight
|
10
10
|
from aiter.ops.triton.gemm_afp4wfp4 import gemm_afp4wfp4
|
11
|
+
from aiter.ops.triton.gemm_afp4wfp4_pre_quant_atomic import gemm_afp4wfp4_pre_quant
|
11
12
|
from aiter.ops.triton.quant import dynamic_mxfp4_quant
|
12
13
|
from aiter.utility import dtypes
|
13
14
|
from aiter.utility.fp4_utils import e8m0_shuffle
|
@@ -38,15 +39,6 @@ class QuarkW4A4MXFP4(QuarkScheme):
|
|
38
39
|
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
|
39
40
|
return
|
40
41
|
|
41
|
-
# for aiter implement
|
42
|
-
# wshuffle = shuffle_weight(layer.weight.data, layout=(16, 16))
|
43
|
-
# w_scales_shuffle = e8m0_shuffle(layer.weight_scale.data).view(dtypes.fp8_e8m0)
|
44
|
-
|
45
|
-
# layer.weight = torch.nn.Parameter(wshuffle,
|
46
|
-
# requires_grad=False)
|
47
|
-
# layer.weight_scale = torch.nn.Parameter(w_scales_shuffle,
|
48
|
-
# requires_grad=False)
|
49
|
-
|
50
42
|
def create_weights(
|
51
43
|
self,
|
52
44
|
layer: torch.nn.Module,
|
@@ -93,26 +85,53 @@ class QuarkW4A4MXFP4(QuarkScheme):
|
|
93
85
|
x: torch.Tensor,
|
94
86
|
bias: Optional[torch.Tensor] = None,
|
95
87
|
) -> torch.Tensor:
|
96
|
-
|
97
|
-
|
98
|
-
|
99
|
-
|
100
|
-
|
101
|
-
|
102
|
-
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
|
88
|
+
# This path does not have support for bias currently
|
89
|
+
assert bias is None, "bias is not supported"
|
90
|
+
|
91
|
+
three_d = False
|
92
|
+
x_s = None
|
93
|
+
y = None
|
94
|
+
if isinstance(x, tuple):
|
95
|
+
assert len(x) in [
|
96
|
+
2,
|
97
|
+
3,
|
98
|
+
], "For tuple input, only (x, x_s) or (x, x_s, y) formats are accepted"
|
99
|
+
if len(x) == 2:
|
100
|
+
x, x_s = x
|
101
|
+
elif len(x) == 3:
|
102
|
+
x, x_s, y = x
|
103
|
+
|
104
|
+
use_fused_quant_gemm = (
|
105
|
+
x_s is None and y is not None and layer.weight.shape[0] == y.shape[1]
|
114
106
|
)
|
115
107
|
|
116
|
-
|
117
|
-
|
118
|
-
|
108
|
+
if x.dim() == 3:
|
109
|
+
three_d = True
|
110
|
+
x = x.view(-1, x.shape[-1])
|
111
|
+
output_shape = [*x.shape[:-1], layer.weight.shape[0]]
|
112
|
+
|
113
|
+
# use_fused_quant_gemm = true, x_q is a bf16/fp16 num
|
114
|
+
# x_s is not None = true, x_q is uint8 num
|
115
|
+
if use_fused_quant_gemm or x_s is not None:
|
116
|
+
x_q = x
|
117
|
+
else:
|
118
|
+
x_q, x_s = dynamic_mxfp4_quant(x)
|
119
|
+
|
120
|
+
if y is None:
|
121
|
+
y = torch.empty(
|
122
|
+
x_q.shape[0],
|
123
|
+
layer.weight.shape[0],
|
124
|
+
device=x_q.device,
|
125
|
+
dtype=self.out_dtype,
|
126
|
+
)
|
127
|
+
|
128
|
+
if use_fused_quant_gemm:
|
129
|
+
gemm_afp4wfp4_pre_quant(x_q, layer.weight, layer.weight_scale, y.dtype, y)
|
130
|
+
y = y.to(x.dtype)
|
131
|
+
else:
|
132
|
+
gemm_afp4wfp4(x_q, layer.weight, x_s, layer.weight_scale, self.out_dtype, y)
|
133
|
+
|
134
|
+
if three_d:
|
135
|
+
return y.view(*output_shape)
|
136
|
+
|
137
|
+
return y
|
@@ -5,6 +5,10 @@ from collections.abc import Iterable, Mapping
|
|
5
5
|
from types import MappingProxyType
|
6
6
|
from typing import Any, Optional
|
7
7
|
|
8
|
+
import torch
|
9
|
+
from aiter.ops.triton.quant import dynamic_mxfp4_quant
|
10
|
+
from torch import nn
|
11
|
+
|
8
12
|
|
9
13
|
def deep_compare(dict1: Any, dict2: Any) -> bool:
|
10
14
|
if type(dict1) is not type(dict2):
|
@@ -105,3 +109,96 @@ def _is_equal_or_regex_match(
|
|
105
109
|
elif target == value:
|
106
110
|
return True
|
107
111
|
return False
|
112
|
+
|
113
|
+
|
114
|
+
# utility for tensor dims > 2 cases
|
115
|
+
def b_dynamic_mxfp4_quant(x):
|
116
|
+
h, b, d = x.shape
|
117
|
+
x, x_scales = dynamic_mxfp4_quant(x.reshape(-1, d))
|
118
|
+
return x.view(h, b, d // 2), x_scales.view(h, b, d // 32)
|
119
|
+
|
120
|
+
|
121
|
+
def mxfp4_to_f32(x, is_threed):
|
122
|
+
# 2 because we pack fp4 in uint8.
|
123
|
+
x = x.repeat_interleave(2, dim=-1)
|
124
|
+
if is_threed:
|
125
|
+
x[..., ::2] = x[..., ::2] & 0xF
|
126
|
+
x[..., 1::2] = x[..., 1::2] >> 4
|
127
|
+
else:
|
128
|
+
x[:, ::2] = x[:, ::2] & 0xF
|
129
|
+
x[:, 1::2] = x[:, 1::2] >> 4
|
130
|
+
|
131
|
+
mxfp4_list = [
|
132
|
+
0.0,
|
133
|
+
0.5,
|
134
|
+
1.0,
|
135
|
+
1.5,
|
136
|
+
2.0,
|
137
|
+
3.0,
|
138
|
+
4.0,
|
139
|
+
6.0,
|
140
|
+
-0.0,
|
141
|
+
-0.5,
|
142
|
+
-1.0,
|
143
|
+
-1.5,
|
144
|
+
-2.0,
|
145
|
+
-3.0,
|
146
|
+
-4.0,
|
147
|
+
-6.0,
|
148
|
+
]
|
149
|
+
mxfp4_in_f32 = torch.tensor(mxfp4_list, dtype=torch.float32, device="cuda")
|
150
|
+
return mxfp4_in_f32[x.long()]
|
151
|
+
|
152
|
+
|
153
|
+
def e8m0_to_f32(x):
|
154
|
+
# Convert the input tensor `x` (assumed to be in e8m0 format) to float32.
|
155
|
+
# e8m0 is a custom 8-bit floating point format with 8 bits for exponent, 0 for mantissa.
|
156
|
+
# This means the value is essentially 2^(exponent - 127), similar to how IEEE-754 stores floats.
|
157
|
+
|
158
|
+
# Convert x to float32 for computation, and compute the power of 2 by subtracting the bias (127).
|
159
|
+
x_f32 = 2 ** ((x.to(torch.float32)) - 127)
|
160
|
+
|
161
|
+
# If the exponent value was 255 (i.e., 2^(128)), this is a special case usually used to represent NaN or Inf.
|
162
|
+
# Since this custom format has no mantissa, treat 2^128 as NaN.
|
163
|
+
x_f32[x_f32 == 128] = float("nan")
|
164
|
+
return x_f32
|
165
|
+
|
166
|
+
|
167
|
+
def quark_post_load_weights(self_attn: nn.Module, w: torch.Tensor, quant_format: str):
|
168
|
+
if "mxfp4" in quant_format:
|
169
|
+
# when dtype is bf16, the processing flow is to dynamic quantize bf16 tensor to uint8 tensor
|
170
|
+
# do w_kc (bf16) first to get the w_kc(uint8) w_s_kc(uint8)
|
171
|
+
# and w_vc repeating the same procedure of w_kc to get w_vc(uint8) w_s_vc(uint8)
|
172
|
+
if w.dtype == torch.bfloat16:
|
173
|
+
w_kc, w_vc = w.unflatten(
|
174
|
+
0, (-1, self_attn.qk_nope_head_dim + self_attn.v_head_dim)
|
175
|
+
).split([self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1)
|
176
|
+
w_kc, w_s_kc = b_dynamic_mxfp4_quant(w_kc.transpose(-2, -1))
|
177
|
+
w_kc = w_kc.transpose(-2, -1)
|
178
|
+
w_s_kc = w_s_kc.transpose(-2, -1)
|
179
|
+
w_vc, w_s_vc = b_dynamic_mxfp4_quant(w_vc)
|
180
|
+
w_s_kc = w_s_kc.transpose(1, 2).contiguous().transpose(1, 2)
|
181
|
+
w_s_vc = w_s_vc.contiguous().transpose(1, 2)
|
182
|
+
elif w.dtype == torch.uint8: # static quant for mxfp4
|
183
|
+
# when dtype is uint8, it means the w has been quantized to mxfp4 format
|
184
|
+
# but we must separate it to w_kc and w_vc.
|
185
|
+
# The quantized tensor size is only half of original tensor size
|
186
|
+
# and the scaling factor is 1/32, the transpose behavior will be not correct
|
187
|
+
# need to upcast it to fp32 to separate w to w_kc and w_vc
|
188
|
+
# to ensure the following transpose behavior is correct
|
189
|
+
# and then do mxfp4 quant again
|
190
|
+
w = mxfp4_to_f32(w, True).to(torch.bfloat16)
|
191
|
+
w_scales = self_attn.kv_b_proj.weight_scale.repeat_interleave(32, dim=-1)
|
192
|
+
w_scales = e8m0_to_f32(w_scales).to(torch.bfloat16)
|
193
|
+
w = w * w_scales
|
194
|
+
w_kc, w_vc = w.unflatten(
|
195
|
+
0, (-1, (self_attn.qk_nope_head_dim + self_attn.v_head_dim))
|
196
|
+
).split([self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1)
|
197
|
+
w_kc, w_s_kc = b_dynamic_mxfp4_quant(w_kc.transpose(-2, -1))
|
198
|
+
w_kc = w_kc.transpose(-2, -1)
|
199
|
+
w_s_kc = w_s_kc.transpose(-2, -1)
|
200
|
+
w_vc, w_s_vc = b_dynamic_mxfp4_quant(w_vc)
|
201
|
+
w_s_kc = w_s_kc.transpose(1, 2).contiguous().transpose(1, 2)
|
202
|
+
w_s_vc = w_s_vc.contiguous().transpose(1, 2)
|
203
|
+
|
204
|
+
return w_kc, w_s_kc, w_vc, w_s_vc
|
@@ -0,0 +1,13 @@
|
|
1
|
+
from aiter.ops.triton.batched_gemm_afp4wfp4_pre_quant import (
|
2
|
+
batched_gemm_afp4wfp4_pre_quant,
|
3
|
+
)
|
4
|
+
from aiter.ops.triton.fused_mxfp4_quant import (
|
5
|
+
fused_flatten_mxfp4_quant,
|
6
|
+
fused_rms_mxfp4_quant,
|
7
|
+
)
|
8
|
+
|
9
|
+
__all__ = [
|
10
|
+
"fused_rms_mxfp4_quant",
|
11
|
+
"fused_flatten_mxfp4_quant",
|
12
|
+
"batched_gemm_afp4wfp4_pre_quant",
|
13
|
+
]
|