sglang 0.5.1.post3__py3-none-any.whl → 0.5.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (245) hide show
  1. sglang/bench_one_batch.py +3 -0
  2. sglang/bench_one_batch_server.py +10 -1
  3. sglang/bench_serving.py +251 -26
  4. sglang/lang/interpreter.py +1 -1
  5. sglang/srt/configs/__init__.py +4 -0
  6. sglang/srt/configs/internvl.py +6 -0
  7. sglang/srt/configs/longcat_flash.py +104 -0
  8. sglang/srt/configs/model_config.py +37 -7
  9. sglang/srt/configs/qwen3_next.py +326 -0
  10. sglang/srt/connector/__init__.py +1 -1
  11. sglang/srt/connector/base_connector.py +1 -2
  12. sglang/srt/connector/redis.py +2 -2
  13. sglang/srt/connector/serde/__init__.py +1 -1
  14. sglang/srt/connector/serde/safe_serde.py +4 -3
  15. sglang/srt/custom_op.py +11 -1
  16. sglang/srt/debug_utils/dump_comparator.py +81 -44
  17. sglang/srt/debug_utils/dump_loader.py +97 -0
  18. sglang/srt/debug_utils/dumper.py +11 -3
  19. sglang/srt/debug_utils/text_comparator.py +73 -11
  20. sglang/srt/disaggregation/ascend/conn.py +75 -0
  21. sglang/srt/disaggregation/base/conn.py +1 -1
  22. sglang/srt/disaggregation/common/conn.py +15 -12
  23. sglang/srt/disaggregation/decode.py +6 -4
  24. sglang/srt/disaggregation/fake/conn.py +1 -1
  25. sglang/srt/disaggregation/mini_lb.py +6 -420
  26. sglang/srt/disaggregation/mooncake/conn.py +18 -10
  27. sglang/srt/disaggregation/nixl/conn.py +180 -16
  28. sglang/srt/disaggregation/prefill.py +6 -4
  29. sglang/srt/disaggregation/utils.py +5 -50
  30. sglang/srt/distributed/parallel_state.py +94 -58
  31. sglang/srt/entrypoints/engine.py +34 -14
  32. sglang/srt/entrypoints/http_server.py +172 -47
  33. sglang/srt/entrypoints/openai/protocol.py +63 -3
  34. sglang/srt/entrypoints/openai/serving_base.py +6 -2
  35. sglang/srt/entrypoints/openai/serving_chat.py +34 -19
  36. sglang/srt/entrypoints/openai/serving_completions.py +10 -4
  37. sglang/srt/entrypoints/openai/serving_embedding.py +8 -4
  38. sglang/srt/entrypoints/openai/serving_responses.py +7 -4
  39. sglang/srt/eplb/eplb_manager.py +28 -4
  40. sglang/srt/eplb/expert_distribution.py +55 -15
  41. sglang/srt/eplb/expert_location.py +8 -3
  42. sglang/srt/eplb/expert_location_updater.py +1 -1
  43. sglang/srt/function_call/ebnf_composer.py +11 -9
  44. sglang/srt/function_call/glm4_moe_detector.py +1 -1
  45. sglang/srt/function_call/gpt_oss_detector.py +1 -1
  46. sglang/srt/function_call/qwen3_coder_detector.py +1 -1
  47. sglang/srt/hf_transformers_utils.py +12 -0
  48. sglang/srt/layers/activation.py +44 -9
  49. sglang/srt/layers/attention/aiter_backend.py +93 -68
  50. sglang/srt/layers/attention/ascend_backend.py +250 -112
  51. sglang/srt/layers/attention/fla/chunk.py +242 -0
  52. sglang/srt/layers/attention/fla/chunk_delta_h.py +314 -0
  53. sglang/srt/layers/attention/fla/chunk_o.py +178 -0
  54. sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +151 -0
  55. sglang/srt/layers/attention/fla/cumsum.py +300 -0
  56. sglang/srt/layers/attention/fla/fused_recurrent.py +640 -0
  57. sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +232 -0
  58. sglang/srt/layers/attention/fla/index.py +37 -0
  59. sglang/srt/layers/attention/fla/l2norm.py +150 -0
  60. sglang/srt/layers/attention/fla/layernorm_gated.py +326 -0
  61. sglang/srt/layers/attention/fla/op.py +66 -0
  62. sglang/srt/layers/attention/fla/solve_tril.py +465 -0
  63. sglang/srt/layers/attention/fla/utils.py +331 -0
  64. sglang/srt/layers/attention/fla/wy_fast.py +158 -0
  65. sglang/srt/layers/attention/flashinfer_backend.py +6 -4
  66. sglang/srt/layers/attention/flashinfer_mla_backend.py +16 -12
  67. sglang/srt/layers/attention/hybrid_attn_backend.py +47 -8
  68. sglang/srt/layers/attention/hybrid_linear_attn_backend.py +584 -0
  69. sglang/srt/layers/attention/intel_amx_backend.py +3 -0
  70. sglang/srt/layers/attention/mamba/causal_conv1d.py +128 -0
  71. sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +1052 -0
  72. sglang/srt/layers/attention/mamba/mamba.py +64 -0
  73. sglang/srt/layers/attention/torch_native_backend.py +12 -6
  74. sglang/srt/layers/attention/trtllm_mla_backend.py +126 -36
  75. sglang/srt/layers/attention/wave_ops/decode_attention.py +2 -4
  76. sglang/srt/layers/attention/wave_ops/extend_attention.py +1 -3
  77. sglang/srt/layers/communicator.py +45 -7
  78. sglang/srt/layers/layernorm.py +54 -12
  79. sglang/srt/layers/logits_processor.py +10 -3
  80. sglang/srt/layers/moe/__init__.py +2 -1
  81. sglang/srt/layers/moe/cutlass_w4a8_moe.py +4 -12
  82. sglang/srt/layers/moe/ep_moe/kernels.py +74 -0
  83. sglang/srt/layers/moe/ep_moe/layer.py +110 -49
  84. sglang/srt/layers/moe/fused_moe_native.py +5 -3
  85. sglang/srt/layers/moe/fused_moe_triton/__init__.py +5 -3
  86. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  87. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=129,N=352,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  88. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/{E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → E=257,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json } +29 -29
  89. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  90. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  91. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  92. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  93. sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +9 -1049
  94. sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +212 -0
  95. sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +799 -0
  96. sglang/srt/layers/moe/fused_moe_triton/layer.py +56 -45
  97. sglang/srt/layers/moe/fused_moe_triton/moe_align_block_size.py +87 -0
  98. sglang/srt/layers/moe/moe_runner/__init__.py +2 -1
  99. sglang/srt/layers/moe/moe_runner/base.py +274 -1
  100. sglang/srt/layers/moe/moe_runner/runner.py +80 -0
  101. sglang/srt/layers/moe/moe_runner/triton.py +448 -0
  102. sglang/srt/layers/moe/token_dispatcher/__init__.py +16 -4
  103. sglang/srt/layers/moe/token_dispatcher/{base_dispatcher.py → base.py} +67 -17
  104. sglang/srt/layers/moe/token_dispatcher/deepep.py +41 -38
  105. sglang/srt/layers/moe/token_dispatcher/standard.py +44 -2
  106. sglang/srt/layers/moe/topk.py +43 -12
  107. sglang/srt/layers/moe/utils.py +6 -5
  108. sglang/srt/layers/quantization/awq.py +19 -7
  109. sglang/srt/layers/quantization/base_config.py +11 -6
  110. sglang/srt/layers/quantization/blockwise_int8.py +38 -27
  111. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +50 -30
  112. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +13 -1
  113. sglang/srt/layers/quantization/deep_gemm_wrapper/compile_utils.py +9 -1
  114. sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -3
  115. sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +27 -0
  116. sglang/srt/layers/quantization/fp8.py +76 -47
  117. sglang/srt/layers/quantization/fp8_utils.py +43 -29
  118. sglang/srt/layers/quantization/gptq.py +25 -17
  119. sglang/srt/layers/quantization/modelopt_quant.py +107 -40
  120. sglang/srt/layers/quantization/moe_wna16.py +21 -18
  121. sglang/srt/layers/quantization/mxfp4.py +77 -45
  122. sglang/srt/layers/quantization/quark/quark_moe.py +32 -27
  123. sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +49 -30
  124. sglang/srt/layers/quantization/quark/utils.py +97 -0
  125. sglang/srt/layers/quantization/rocm_mxfp4_utils.py +13 -0
  126. sglang/srt/layers/quantization/unquant.py +135 -47
  127. sglang/srt/layers/quantization/utils.py +13 -0
  128. sglang/srt/layers/quantization/w4afp8.py +60 -42
  129. sglang/srt/layers/quantization/w8a8_fp8.py +35 -20
  130. sglang/srt/layers/quantization/w8a8_int8.py +83 -41
  131. sglang/srt/layers/rocm_linear_utils.py +44 -0
  132. sglang/srt/layers/rotary_embedding.py +28 -19
  133. sglang/srt/layers/sampler.py +29 -5
  134. sglang/srt/lora/backend/base_backend.py +50 -8
  135. sglang/srt/lora/backend/triton_backend.py +90 -2
  136. sglang/srt/lora/layers.py +32 -0
  137. sglang/srt/lora/lora.py +4 -1
  138. sglang/srt/lora/lora_manager.py +35 -112
  139. sglang/srt/lora/mem_pool.py +24 -10
  140. sglang/srt/lora/utils.py +18 -9
  141. sglang/srt/managers/cache_controller.py +242 -278
  142. sglang/srt/managers/data_parallel_controller.py +30 -15
  143. sglang/srt/managers/detokenizer_manager.py +13 -2
  144. sglang/srt/managers/disagg_service.py +46 -0
  145. sglang/srt/managers/io_struct.py +160 -11
  146. sglang/srt/managers/mm_utils.py +6 -1
  147. sglang/srt/managers/multi_tokenizer_mixin.py +579 -0
  148. sglang/srt/managers/schedule_batch.py +27 -44
  149. sglang/srt/managers/schedule_policy.py +4 -3
  150. sglang/srt/managers/scheduler.py +90 -115
  151. sglang/srt/managers/scheduler_metrics_mixin.py +114 -8
  152. sglang/srt/managers/scheduler_output_processor_mixin.py +29 -19
  153. sglang/srt/managers/scheduler_profiler_mixin.py +1 -1
  154. sglang/srt/managers/scheduler_update_weights_mixin.py +8 -1
  155. sglang/srt/managers/template_manager.py +3 -3
  156. sglang/srt/managers/tokenizer_communicator_mixin.py +491 -0
  157. sglang/srt/managers/tokenizer_manager.py +41 -477
  158. sglang/srt/managers/tp_worker.py +16 -4
  159. sglang/srt/managers/tp_worker_overlap_thread.py +8 -10
  160. sglang/srt/mem_cache/allocator.py +1 -1
  161. sglang/srt/mem_cache/chunk_cache.py +1 -1
  162. sglang/srt/mem_cache/hicache_storage.py +24 -22
  163. sglang/srt/mem_cache/hiradix_cache.py +184 -101
  164. sglang/srt/mem_cache/lora_radix_cache.py +1 -1
  165. sglang/srt/mem_cache/memory_pool.py +324 -41
  166. sglang/srt/mem_cache/memory_pool_host.py +25 -18
  167. sglang/srt/mem_cache/radix_cache.py +5 -6
  168. sglang/srt/mem_cache/radix_cache_cpp.py +1 -1
  169. sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +164 -0
  170. sglang/srt/mem_cache/storage/hf3fs/{client_hf3fs.py → hf3fs_usrbio_client.py} +5 -1
  171. sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +61 -34
  172. sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +149 -12
  173. sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +280 -0
  174. sglang/srt/mem_cache/storage/lmcache/unit_test.py +121 -0
  175. sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +74 -19
  176. sglang/srt/mem_cache/storage/mooncake_store/test_mooncake_store.py +161 -0
  177. sglang/srt/mem_cache/swa_radix_cache.py +1 -3
  178. sglang/srt/metrics/collector.py +484 -63
  179. sglang/srt/metrics/startup_func_log_and_timer.py +150 -0
  180. sglang/srt/metrics/utils.py +48 -0
  181. sglang/srt/model_executor/cpu_graph_runner.py +640 -0
  182. sglang/srt/model_executor/cuda_graph_runner.py +13 -5
  183. sglang/srt/model_executor/forward_batch_info.py +72 -18
  184. sglang/srt/model_executor/model_runner.py +189 -31
  185. sglang/srt/model_loader/__init__.py +9 -3
  186. sglang/srt/model_loader/loader.py +33 -28
  187. sglang/srt/model_loader/utils.py +12 -0
  188. sglang/srt/model_loader/weight_utils.py +2 -1
  189. sglang/srt/models/deepseek_v2.py +311 -50
  190. sglang/srt/models/gemma3n_mm.py +1 -1
  191. sglang/srt/models/glm4_moe.py +10 -1
  192. sglang/srt/models/glm4v.py +4 -2
  193. sglang/srt/models/gpt_oss.py +5 -18
  194. sglang/srt/models/internvl.py +28 -0
  195. sglang/srt/models/llama4.py +9 -0
  196. sglang/srt/models/llama_eagle3.py +17 -0
  197. sglang/srt/models/longcat_flash.py +1026 -0
  198. sglang/srt/models/longcat_flash_nextn.py +699 -0
  199. sglang/srt/models/minicpmv.py +165 -3
  200. sglang/srt/models/mllama4.py +25 -0
  201. sglang/srt/models/opt.py +637 -0
  202. sglang/srt/models/qwen2.py +33 -3
  203. sglang/srt/models/qwen2_5_vl.py +90 -42
  204. sglang/srt/models/qwen2_moe.py +79 -14
  205. sglang/srt/models/qwen3.py +8 -2
  206. sglang/srt/models/qwen3_moe.py +39 -8
  207. sglang/srt/models/qwen3_next.py +1039 -0
  208. sglang/srt/models/qwen3_next_mtp.py +109 -0
  209. sglang/srt/models/torch_native_llama.py +1 -1
  210. sglang/srt/models/transformers.py +1 -1
  211. sglang/srt/multimodal/processors/base_processor.py +4 -2
  212. sglang/srt/multimodal/processors/glm4v.py +9 -9
  213. sglang/srt/multimodal/processors/internvl.py +141 -129
  214. sglang/srt/{reasoning_parser.py → parser/reasoning_parser.py} +1 -1
  215. sglang/srt/sampling/penaltylib/orchestrator.py +14 -2
  216. sglang/srt/sampling/sampling_batch_info.py +18 -15
  217. sglang/srt/server_args.py +297 -79
  218. sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +5 -0
  219. sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +10 -1
  220. sglang/srt/speculative/eagle_worker.py +216 -120
  221. sglang/srt/speculative/spec_info.py +5 -0
  222. sglang/srt/speculative/standalone_worker.py +109 -0
  223. sglang/srt/utils.py +37 -2
  224. sglang/srt/weight_sync/utils.py +1 -1
  225. sglang/test/attention/test_trtllm_mla_backend.py +181 -8
  226. sglang/test/few_shot_gsm8k.py +1 -0
  227. sglang/test/runners.py +4 -0
  228. sglang/test/test_cutlass_moe.py +24 -6
  229. sglang/test/test_cutlass_w4a8_moe.py +24 -9
  230. sglang/test/test_disaggregation_utils.py +66 -0
  231. sglang/test/test_utils.py +25 -1
  232. sglang/utils.py +5 -0
  233. sglang/version.py +1 -1
  234. {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/METADATA +11 -9
  235. {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/RECORD +243 -194
  236. sglang/srt/disaggregation/launch_lb.py +0 -131
  237. sglang/srt/mem_cache/storage/mooncake_store/unit_test.py +0 -40
  238. /sglang/srt/{model_parallel.py → layers/model_parallel.py} +0 -0
  239. /sglang/srt/{code_completion_parser.py → parser/code_completion_parser.py} +0 -0
  240. /sglang/srt/{conversation.py → parser/conversation.py} +0 -0
  241. /sglang/srt/{harmony_parser.py → parser/harmony_parser.py} +0 -0
  242. /sglang/srt/{jinja_template_utils.py → parser/jinja_template_utils.py} +0 -0
  243. {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/WHEEL +0 -0
  244. {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/licenses/LICENSE +0 -0
  245. {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,178 @@
1
+ # Adapted from https://github.com/fla-org/flash-linear-attention/blob/main/fla/ops/common/chunk_o.py
2
+ # -*- coding: utf-8 -*-
3
+ # Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
4
+
5
+ from typing import Optional, Tuple
6
+
7
+ import torch
8
+ import triton
9
+ import triton.language as tl
10
+
11
+ from sglang.srt.layers.attention.fla.index import prepare_chunk_indices
12
+ from sglang.srt.layers.attention.fla.op import exp, safe_exp
13
+ from sglang.srt.layers.attention.fla.utils import check_shared_mem, is_nvidia_hopper
14
+
15
+ BKV_LIST = [64, 128] if check_shared_mem() else [32, 64]
16
+ NUM_WARPS = [2, 4] if is_nvidia_hopper else [2, 4, 8]
17
+
18
+
19
+ @triton.heuristics(
20
+ {
21
+ "USE_G": lambda args: args["g"] is not None,
22
+ "IS_VARLEN": lambda args: args["cu_seqlens"] is not None,
23
+ }
24
+ )
25
+ # @triton.autotune(
26
+ # configs=[
27
+ # triton.Config({"BK": BK, "BV": BV}, num_warps=num_warps, num_stages=num_stages)
28
+ # for BK in BKV_LIST
29
+ # for BV in BKV_LIST
30
+ # for num_warps in NUM_WARPS
31
+ # for num_stages in [2, 3, 4]
32
+ # ],
33
+ # key=["H", "K", "V", "BT"],
34
+ # )
35
+ @triton.jit(do_not_specialize=["T"])
36
+ def chunk_fwd_kernel_o(
37
+ q,
38
+ k,
39
+ v,
40
+ h,
41
+ g,
42
+ o,
43
+ cu_seqlens,
44
+ chunk_indices,
45
+ scale,
46
+ T,
47
+ H: tl.constexpr,
48
+ Hg: tl.constexpr,
49
+ K: tl.constexpr,
50
+ V: tl.constexpr,
51
+ BT: tl.constexpr,
52
+ BK: tl.constexpr,
53
+ BV: tl.constexpr,
54
+ USE_G: tl.constexpr,
55
+ IS_VARLEN: tl.constexpr,
56
+ ):
57
+ i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
58
+ i_b, i_h = i_bh // H, i_bh % H
59
+
60
+ if IS_VARLEN:
61
+ i_tg = i_t
62
+ i_n, i_t = tl.load(chunk_indices + i_t * 2).to(tl.int32), tl.load(
63
+ chunk_indices + i_t * 2 + 1
64
+ ).to(tl.int32)
65
+ bos, eos = tl.load(cu_seqlens + i_n).to(tl.int32), tl.load(
66
+ cu_seqlens + i_n + 1
67
+ ).to(tl.int32)
68
+ T = eos - bos
69
+ NT = tl.cdiv(T, BT)
70
+ else:
71
+ NT = tl.cdiv(T, BT)
72
+ i_tg = i_b * NT + i_t
73
+ bos, eos = i_b * T, i_b * T + T
74
+
75
+ # offset calculation
76
+ q += (bos * Hg + i_h // (H // Hg)) * K
77
+ k += (bos * Hg + i_h // (H // Hg)) * K
78
+ v += (bos * H + i_h) * V
79
+ o += (bos * H + i_h) * V
80
+ h += (i_tg * H + i_h).to(tl.int64) * K * V
81
+
82
+ b_o = tl.zeros([BT, BV], dtype=tl.float32)
83
+ b_A = tl.zeros([BT, BT], dtype=tl.float32)
84
+
85
+ for i_k in range(tl.cdiv(K, BK)):
86
+ p_q = tl.make_block_ptr(
87
+ q, (T, K), (Hg * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)
88
+ )
89
+ p_k = tl.make_block_ptr(
90
+ k, (K, T), (1, Hg * K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)
91
+ )
92
+ p_h = tl.make_block_ptr(
93
+ h, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)
94
+ )
95
+ # [BT, BK]
96
+ b_q = tl.load(p_q, boundary_check=(0, 1))
97
+ # [BK, BT]
98
+ b_k = tl.load(p_k, boundary_check=(0, 1))
99
+ # [BK, BV]
100
+ b_h = tl.load(p_h, boundary_check=(0, 1))
101
+
102
+ # [BT, BK] @ [BK, BV] -> [BT, BV]
103
+ b_o += tl.dot(b_q, b_h)
104
+ # [BT, BK] @ [BK, BT] -> [BT, BT]
105
+ b_A += tl.dot(b_q, b_k)
106
+
107
+ if USE_G:
108
+ g += bos * H + i_h
109
+ p_g = tl.make_block_ptr(g, (T,), (H,), (i_t * BT,), (BT,), (0,))
110
+ b_g = tl.load(p_g, boundary_check=(0,))
111
+ b_o = b_o * exp(b_g)[:, None]
112
+ b_A = b_A * safe_exp(b_g[:, None] - b_g[None, :])
113
+
114
+ o_i = tl.arange(0, BT)
115
+ m_A = o_i[:, None] >= o_i[None, :]
116
+ b_A = tl.where(m_A, b_A, 0)
117
+
118
+ p_v = tl.make_block_ptr(
119
+ v, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)
120
+ )
121
+ p_o = tl.make_block_ptr(
122
+ o, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)
123
+ )
124
+ b_v = tl.load(p_v, boundary_check=(0, 1))
125
+
126
+ # to fix mma -> mma layout conversion
127
+ # already solved by triton v3.2 or higher
128
+ b_o = b_o * scale + tl.dot(b_A.to(b_v.dtype), b_v) * scale
129
+ tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
130
+
131
+
132
+ def chunk_fwd_o(
133
+ q: torch.Tensor,
134
+ k: torch.Tensor,
135
+ v: torch.Tensor,
136
+ h: torch.Tensor,
137
+ g: Optional[torch.Tensor] = None, # cumsum of log decay
138
+ scale: Optional[float] = None,
139
+ cu_seqlens: Optional[torch.LongTensor] = None,
140
+ chunk_size: int = 64,
141
+ ) -> torch.Tensor:
142
+ B, T, Hg, K, V = *q.shape, v.shape[-1]
143
+ H = v.shape[-2]
144
+ BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
145
+ chunk_indices = (
146
+ prepare_chunk_indices(cu_seqlens, BT) if cu_seqlens is not None else None
147
+ )
148
+ NT = triton.cdiv(T, BT) if cu_seqlens is None else len(chunk_indices)
149
+ if scale is None:
150
+ scale = k.shape[-1] ** -0.5
151
+
152
+ o = torch.empty_like(v)
153
+
154
+ def grid(meta):
155
+ return (triton.cdiv(V, meta["BV"]), NT, B * H)
156
+
157
+ chunk_fwd_kernel_o[grid](
158
+ q,
159
+ k,
160
+ v,
161
+ h,
162
+ g,
163
+ o,
164
+ cu_seqlens,
165
+ chunk_indices,
166
+ scale,
167
+ T=T,
168
+ H=H,
169
+ Hg=Hg,
170
+ K=K,
171
+ V=V,
172
+ BT=BT,
173
+ BK=128,
174
+ BV=64,
175
+ num_warps=4,
176
+ num_stages=2,
177
+ )
178
+ return o
@@ -0,0 +1,151 @@
1
+ # Adapted from https://github.com/fla-org/flash-linear-attention/blob/main/fla/ops/common/chunk_scaled_dot_kkt.py
2
+ # -*- coding: utf-8 -*-
3
+ # Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
4
+
5
+ from typing import Optional
6
+
7
+ import torch
8
+ import triton
9
+ import triton.language as tl
10
+
11
+ from sglang.srt.layers.attention.fla.index import prepare_chunk_indices
12
+ from sglang.srt.layers.attention.fla.op import safe_exp
13
+
14
+
15
+ @triton.heuristics(
16
+ {
17
+ "IS_VARLEN": lambda args: args["cu_seqlens"] is not None,
18
+ "USE_G": lambda args: args["g_cumsum"] is not None,
19
+ }
20
+ )
21
+ # @triton.autotune(
22
+ # configs=[
23
+ # triton.Config({"BK": BK}, num_warps=num_warps, num_stages=num_stages)
24
+ # for BK in [32, 64, 128]
25
+ # for num_warps in [2, 4, 8]
26
+ # for num_stages in [2, 3, 4]
27
+ # ],
28
+ # key=["H", "K", "BT", "IS_VARLEN"],
29
+ # )
30
+ @triton.jit(do_not_specialize=["T"])
31
+ def chunk_scaled_dot_kkt_fwd_kernel(
32
+ k,
33
+ beta,
34
+ g_cumsum,
35
+ A,
36
+ cu_seqlens,
37
+ chunk_indices,
38
+ T,
39
+ H: tl.constexpr,
40
+ Hg: tl.constexpr,
41
+ K: tl.constexpr,
42
+ BT: tl.constexpr,
43
+ BK: tl.constexpr,
44
+ IS_VARLEN: tl.constexpr,
45
+ USE_G: tl.constexpr,
46
+ ):
47
+ i_t, i_bh = tl.program_id(0), tl.program_id(1)
48
+ i_b, i_h = i_bh // H, i_bh % H
49
+ if IS_VARLEN:
50
+ i_n, i_t = tl.load(chunk_indices + i_t * 2).to(tl.int32), tl.load(
51
+ chunk_indices + i_t * 2 + 1
52
+ ).to(tl.int32)
53
+ bos, eos = tl.load(cu_seqlens + i_n).to(tl.int32), tl.load(
54
+ cu_seqlens + i_n + 1
55
+ ).to(tl.int32)
56
+ T = eos - bos
57
+ else:
58
+ bos, eos = i_b * T, i_b * T + T
59
+ o_t = tl.arange(0, BT)
60
+
61
+ p_beta = tl.make_block_ptr(
62
+ beta + bos * H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,)
63
+ )
64
+ b_beta = tl.load(p_beta, boundary_check=(0,))
65
+
66
+ b_A = tl.zeros([BT, BT], dtype=tl.float32)
67
+ for i_k in range(tl.cdiv(K, BK)):
68
+ p_k = tl.make_block_ptr(
69
+ k + (bos * Hg + i_h // (H // Hg)) * K,
70
+ (T, K),
71
+ (Hg * K, 1),
72
+ (i_t * BT, i_k * BK),
73
+ (BT, BK),
74
+ (1, 0),
75
+ )
76
+ b_k = tl.load(p_k, boundary_check=(0, 1))
77
+ b_kb = b_k * b_beta[:, None]
78
+ b_A += tl.dot(b_kb.to(b_k.dtype), tl.trans(b_k))
79
+
80
+ if USE_G:
81
+ p_g = tl.make_block_ptr(
82
+ g_cumsum + bos * H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,)
83
+ )
84
+ b_g = tl.load(p_g, boundary_check=(0,))
85
+ b_g_diff = b_g[:, None] - b_g[None, :]
86
+ b_A = b_A * safe_exp(b_g_diff)
87
+
88
+ b_A = tl.where(o_t[:, None] > o_t[None, :], b_A, 0)
89
+ p_A = tl.make_block_ptr(
90
+ A + (bos * H + i_h) * BT, (T, BT), (BT * H, 1), (i_t * BT, 0), (BT, BT), (1, 0)
91
+ )
92
+ tl.store(p_A, b_A.to(p_A.dtype.element_ty), boundary_check=(0, 1))
93
+
94
+
95
+ def chunk_scaled_dot_kkt_fwd(
96
+ k: torch.Tensor,
97
+ beta: torch.Tensor,
98
+ g_cumsum: Optional[torch.Tensor] = None,
99
+ cu_seqlens: Optional[torch.LongTensor] = None,
100
+ chunk_size: int = 64,
101
+ output_dtype: torch.dtype = torch.float32,
102
+ ) -> torch.Tensor:
103
+ r"""
104
+ Compute beta * K * K^T.
105
+
106
+ Args:
107
+ k (torch.Tensor):
108
+ The key tensor of shape `[B, T, H, K]`.
109
+ beta (torch.Tensor):
110
+ The beta tensor of shape `[B, T, H]`.
111
+ g_cumsum (torch.Tensor):
112
+ The cumulative sum of the gate tensor of shape `[B, T, H]`.
113
+ Default: None
114
+ cu_seqlens (torch.LongTensor):
115
+ The cumulative sequence lengths of the input tensor.
116
+ Default: None
117
+ chunk_size (int):
118
+ The chunk size. Default: 64.
119
+ output_dtype (torch.dtype):
120
+ The dtype of the output tensor. Default: `torch.float32`
121
+
122
+ Returns:
123
+ beta * K * K^T of shape `[B, T, H, BT]` where `BT` is the chunk size.
124
+ """
125
+
126
+ B, T, Hg, K = k.shape
127
+
128
+ H = beta.shape[-1]
129
+ BT = chunk_size
130
+ chunk_indices = (
131
+ prepare_chunk_indices(cu_seqlens, BT) if cu_seqlens is not None else None
132
+ )
133
+ NT = triton.cdiv(T, BT) if cu_seqlens is None else len(chunk_indices)
134
+ A = torch.empty(B, T, H, BT, device=k.device, dtype=output_dtype)
135
+ chunk_scaled_dot_kkt_fwd_kernel[(NT, B * H)](
136
+ k=k,
137
+ beta=beta,
138
+ g_cumsum=g_cumsum,
139
+ A=A,
140
+ cu_seqlens=cu_seqlens,
141
+ chunk_indices=chunk_indices,
142
+ T=T,
143
+ H=H,
144
+ Hg=Hg,
145
+ K=K,
146
+ BT=BT,
147
+ BK=64,
148
+ num_warps=8,
149
+ num_stages=3,
150
+ )
151
+ return A
@@ -0,0 +1,300 @@
1
+ # Adapt from https://github.com/fla-org/flash-linear-attention/blob/main/fla/ops/utils/cumsum.py
2
+ # -*- coding: utf-8 -*-
3
+ # Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
4
+
5
+ from typing import Optional
6
+
7
+ import torch
8
+ import triton
9
+ import triton.language as tl
10
+
11
+ from sglang.srt.layers.attention.fla.index import prepare_chunk_indices
12
+ from sglang.srt.layers.attention.fla.utils import check_shared_mem, input_guard
13
+
14
+ BS_LIST = [32, 64] if check_shared_mem() else [16, 32]
15
+
16
+
17
+ @triton.heuristics(
18
+ {
19
+ "HAS_SCALE": lambda args: args["scale"] is not None,
20
+ "IS_VARLEN": lambda args: args["cu_seqlens"] is not None,
21
+ }
22
+ )
23
+ # @triton.autotune(
24
+ # configs=[triton.Config({}, num_warps=num_warps) for num_warps in [1, 2, 4, 8]],
25
+ # key=["B", "H", "BT", "IS_VARLEN", "REVERSE"],
26
+ # )
27
+ @triton.jit(do_not_specialize=["T"])
28
+ def chunk_local_cumsum_scalar_kernel(
29
+ s,
30
+ o,
31
+ scale,
32
+ cu_seqlens,
33
+ chunk_indices,
34
+ T,
35
+ B: tl.constexpr,
36
+ H: tl.constexpr,
37
+ BT: tl.constexpr,
38
+ REVERSE: tl.constexpr,
39
+ HAS_SCALE: tl.constexpr,
40
+ IS_VARLEN: tl.constexpr,
41
+ HEAD_FIRST: tl.constexpr,
42
+ ):
43
+ i_t, i_bh = tl.program_id(0), tl.program_id(1)
44
+ i_b, i_h = i_bh // H, i_bh % H
45
+ if IS_VARLEN:
46
+ i_n, i_t = tl.load(chunk_indices + i_t * 2).to(tl.int32), tl.load(
47
+ chunk_indices + i_t * 2 + 1
48
+ ).to(tl.int32)
49
+ bos, eos = tl.load(cu_seqlens + i_n).to(tl.int32), tl.load(
50
+ cu_seqlens + i_n + 1
51
+ ).to(tl.int32)
52
+ T = eos - bos
53
+ else:
54
+ bos, eos = i_b * T, i_b * T + T
55
+
56
+ if HEAD_FIRST:
57
+ p_s = tl.make_block_ptr(
58
+ s + bos * H + i_h * T, (T,), (1,), (i_t * BT,), (BT,), (0,)
59
+ )
60
+ p_o = tl.make_block_ptr(
61
+ o + bos * H + i_h * T, (T,), (1,), (i_t * BT,), (BT,), (0,)
62
+ )
63
+ else:
64
+ p_s = tl.make_block_ptr(s + bos * H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,))
65
+ p_o = tl.make_block_ptr(o + bos * H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,))
66
+ # [BT]
67
+ b_s = tl.load(p_s, boundary_check=(0,)).to(tl.float32)
68
+ b_o = tl.cumsum(b_s, axis=0)
69
+ if REVERSE:
70
+ b_z = tl.sum(b_s, axis=0)
71
+ b_o = -b_o + b_z[None] + b_s
72
+ if HAS_SCALE:
73
+ b_o *= scale
74
+ tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0,))
75
+
76
+
77
+ @triton.heuristics(
78
+ {
79
+ "HAS_SCALE": lambda args: args["scale"] is not None,
80
+ "IS_VARLEN": lambda args: args["cu_seqlens"] is not None,
81
+ }
82
+ )
83
+ @triton.autotune(
84
+ configs=[
85
+ triton.Config({"BS": BS}, num_warps=num_warps)
86
+ for BS in BS_LIST
87
+ for num_warps in [2, 4, 8]
88
+ ],
89
+ key=["B", "H", "S", "BT", "IS_VARLEN", "REVERSE"],
90
+ )
91
+ @triton.jit(do_not_specialize=["T"])
92
+ def chunk_local_cumsum_vector_kernel(
93
+ s,
94
+ o,
95
+ scale,
96
+ cu_seqlens,
97
+ chunk_indices,
98
+ T,
99
+ B: tl.constexpr,
100
+ H: tl.constexpr,
101
+ S: tl.constexpr,
102
+ BT: tl.constexpr,
103
+ BS: tl.constexpr,
104
+ REVERSE: tl.constexpr,
105
+ HAS_SCALE: tl.constexpr,
106
+ IS_VARLEN: tl.constexpr,
107
+ HEAD_FIRST: tl.constexpr,
108
+ ):
109
+ i_s, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
110
+ i_b, i_h = i_bh // H, i_bh % H
111
+ if IS_VARLEN:
112
+ i_n, i_t = tl.load(chunk_indices + i_t * 2).to(tl.int32), tl.load(
113
+ chunk_indices + i_t * 2 + 1
114
+ ).to(tl.int32)
115
+ bos, eos = tl.load(cu_seqlens + i_n).to(tl.int32), tl.load(
116
+ cu_seqlens + i_n + 1
117
+ ).to(tl.int32)
118
+ T = eos - bos
119
+ else:
120
+ bos, eos = i_b * T, i_b * T + T
121
+
122
+ o_i = tl.arange(0, BT)
123
+ if REVERSE:
124
+ m_s = tl.where(o_i[:, None] <= o_i[None, :], 1.0, 0.0)
125
+ else:
126
+ m_s = tl.where(o_i[:, None] >= o_i[None, :], 1.0, 0.0)
127
+
128
+ if HEAD_FIRST:
129
+ p_s = tl.make_block_ptr(
130
+ s + (bos * H + i_h * T) * S,
131
+ (T, S),
132
+ (S, 1),
133
+ (i_t * BT, i_s * BS),
134
+ (BT, BS),
135
+ (1, 0),
136
+ )
137
+ p_o = tl.make_block_ptr(
138
+ o + (bos * H + i_h * T) * S,
139
+ (T, S),
140
+ (S, 1),
141
+ (i_t * BT, i_s * BS),
142
+ (BT, BS),
143
+ (1, 0),
144
+ )
145
+ else:
146
+ p_s = tl.make_block_ptr(
147
+ s + (bos * H + i_h) * S,
148
+ (T, S),
149
+ (H * S, 1),
150
+ (i_t * BT, i_s * BS),
151
+ (BT, BS),
152
+ (1, 0),
153
+ )
154
+ p_o = tl.make_block_ptr(
155
+ o + (bos * H + i_h) * S,
156
+ (T, S),
157
+ (H * S, 1),
158
+ (i_t * BT, i_s * BS),
159
+ (BT, BS),
160
+ (1, 0),
161
+ )
162
+ # [BT, BS]
163
+ b_s = tl.load(p_s, boundary_check=(0, 1)).to(tl.float32)
164
+ b_o = tl.dot(m_s, b_s, allow_tf32=False)
165
+ if HAS_SCALE:
166
+ b_o *= scale
167
+ tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
168
+
169
+
170
+ def chunk_local_cumsum_scalar(
171
+ g: torch.Tensor,
172
+ chunk_size: int,
173
+ reverse: bool = False,
174
+ scale: float = None,
175
+ cu_seqlens: Optional[torch.Tensor] = None,
176
+ head_first: bool = False,
177
+ output_dtype: Optional[torch.dtype] = torch.float,
178
+ ) -> torch.Tensor:
179
+ if head_first:
180
+ B, H, T = g.shape
181
+ else:
182
+ B, T, H = g.shape
183
+ assert chunk_size == 2 ** (
184
+ chunk_size.bit_length() - 1
185
+ ), "chunk_size must be a power of 2"
186
+ BT = chunk_size
187
+ chunk_indices = (
188
+ prepare_chunk_indices(cu_seqlens, BT) if cu_seqlens is not None else None
189
+ )
190
+ NT = triton.cdiv(T, BT) if cu_seqlens is None else len(chunk_indices)
191
+ g_org, g = g, torch.empty_like(g, dtype=output_dtype or g.dtype)
192
+ grid = (NT, B * H)
193
+ chunk_local_cumsum_scalar_kernel[grid](
194
+ s=g_org,
195
+ o=g,
196
+ scale=scale,
197
+ cu_seqlens=cu_seqlens,
198
+ chunk_indices=chunk_indices,
199
+ T=T,
200
+ B=B,
201
+ H=H,
202
+ BT=BT,
203
+ HEAD_FIRST=head_first,
204
+ REVERSE=reverse,
205
+ num_warps=8,
206
+ num_stages=3,
207
+ )
208
+ return g
209
+
210
+
211
+ def chunk_local_cumsum_vector(
212
+ g: torch.Tensor,
213
+ chunk_size: int,
214
+ reverse: bool = False,
215
+ scale: float = None,
216
+ cu_seqlens: Optional[torch.Tensor] = None,
217
+ head_first: bool = False,
218
+ output_dtype: Optional[torch.dtype] = torch.float,
219
+ ) -> torch.Tensor:
220
+ if head_first:
221
+ B, H, T, S = g.shape
222
+ else:
223
+ B, T, H, S = g.shape
224
+ BT = chunk_size
225
+ chunk_indices = (
226
+ prepare_chunk_indices(cu_seqlens, chunk_size)
227
+ if cu_seqlens is not None
228
+ else None
229
+ )
230
+ NT = triton.cdiv(T, BT) if cu_seqlens is None else len(chunk_indices)
231
+ assert chunk_size == 2 ** (
232
+ chunk_size.bit_length() - 1
233
+ ), "chunk_size must be a power of 2"
234
+
235
+ g_org, g = g, torch.empty_like(g, dtype=output_dtype or g.dtype)
236
+
237
+ def grid(meta):
238
+ return (triton.cdiv(meta["S"], meta["BS"]), NT, B * H)
239
+
240
+ # keep cumulative normalizer in fp32
241
+ # this kernel is equivalent to
242
+ # g = g.view(B, H, NT, BT, -1).cumsum(-2).view(B, H, T, -1)
243
+ chunk_local_cumsum_vector_kernel[grid](
244
+ s=g_org,
245
+ o=g,
246
+ scale=scale,
247
+ cu_seqlens=cu_seqlens,
248
+ chunk_indices=chunk_indices,
249
+ T=T,
250
+ B=B,
251
+ H=H,
252
+ S=S,
253
+ BT=BT,
254
+ HEAD_FIRST=head_first,
255
+ REVERSE=reverse,
256
+ )
257
+ return g
258
+
259
+
260
+ @input_guard
261
+ def chunk_local_cumsum(
262
+ g: torch.Tensor,
263
+ chunk_size: int,
264
+ reverse: bool = False,
265
+ scale: float = None,
266
+ cu_seqlens: Optional[torch.Tensor] = None,
267
+ head_first: bool = False,
268
+ output_dtype: Optional[torch.dtype] = torch.float,
269
+ **kwargs,
270
+ ) -> torch.Tensor:
271
+ if cu_seqlens is not None:
272
+ assert (
273
+ g.shape[0] == 1
274
+ ), "Only batch size 1 is supported when cu_seqlens are provided"
275
+ if len(g.shape) == 3:
276
+ return chunk_local_cumsum_scalar(
277
+ g=g,
278
+ chunk_size=chunk_size,
279
+ reverse=reverse,
280
+ scale=scale,
281
+ cu_seqlens=cu_seqlens,
282
+ head_first=head_first,
283
+ output_dtype=output_dtype,
284
+ )
285
+ elif len(g.shape) == 4:
286
+ return chunk_local_cumsum_vector(
287
+ g=g,
288
+ chunk_size=chunk_size,
289
+ reverse=reverse,
290
+ scale=scale,
291
+ cu_seqlens=cu_seqlens,
292
+ head_first=head_first,
293
+ output_dtype=output_dtype,
294
+ )
295
+ else:
296
+ raise ValueError(
297
+ f"Unsupported input shape {g.shape}, "
298
+ f"which should be (B, T, H, D) if `head_first=False` "
299
+ f"or (B, H, T, D) otherwise"
300
+ )