sglang 0.5.1.post3__py3-none-any.whl → 0.5.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +3 -0
- sglang/bench_one_batch_server.py +10 -1
- sglang/bench_serving.py +251 -26
- sglang/lang/interpreter.py +1 -1
- sglang/srt/configs/__init__.py +4 -0
- sglang/srt/configs/internvl.py +6 -0
- sglang/srt/configs/longcat_flash.py +104 -0
- sglang/srt/configs/model_config.py +37 -7
- sglang/srt/configs/qwen3_next.py +326 -0
- sglang/srt/connector/__init__.py +1 -1
- sglang/srt/connector/base_connector.py +1 -2
- sglang/srt/connector/redis.py +2 -2
- sglang/srt/connector/serde/__init__.py +1 -1
- sglang/srt/connector/serde/safe_serde.py +4 -3
- sglang/srt/custom_op.py +11 -1
- sglang/srt/debug_utils/dump_comparator.py +81 -44
- sglang/srt/debug_utils/dump_loader.py +97 -0
- sglang/srt/debug_utils/dumper.py +11 -3
- sglang/srt/debug_utils/text_comparator.py +73 -11
- sglang/srt/disaggregation/ascend/conn.py +75 -0
- sglang/srt/disaggregation/base/conn.py +1 -1
- sglang/srt/disaggregation/common/conn.py +15 -12
- sglang/srt/disaggregation/decode.py +6 -4
- sglang/srt/disaggregation/fake/conn.py +1 -1
- sglang/srt/disaggregation/mini_lb.py +6 -420
- sglang/srt/disaggregation/mooncake/conn.py +18 -10
- sglang/srt/disaggregation/nixl/conn.py +180 -16
- sglang/srt/disaggregation/prefill.py +6 -4
- sglang/srt/disaggregation/utils.py +5 -50
- sglang/srt/distributed/parallel_state.py +94 -58
- sglang/srt/entrypoints/engine.py +34 -14
- sglang/srt/entrypoints/http_server.py +172 -47
- sglang/srt/entrypoints/openai/protocol.py +63 -3
- sglang/srt/entrypoints/openai/serving_base.py +6 -2
- sglang/srt/entrypoints/openai/serving_chat.py +34 -19
- sglang/srt/entrypoints/openai/serving_completions.py +10 -4
- sglang/srt/entrypoints/openai/serving_embedding.py +8 -4
- sglang/srt/entrypoints/openai/serving_responses.py +7 -4
- sglang/srt/eplb/eplb_manager.py +28 -4
- sglang/srt/eplb/expert_distribution.py +55 -15
- sglang/srt/eplb/expert_location.py +8 -3
- sglang/srt/eplb/expert_location_updater.py +1 -1
- sglang/srt/function_call/ebnf_composer.py +11 -9
- sglang/srt/function_call/glm4_moe_detector.py +1 -1
- sglang/srt/function_call/gpt_oss_detector.py +1 -1
- sglang/srt/function_call/qwen3_coder_detector.py +1 -1
- sglang/srt/hf_transformers_utils.py +12 -0
- sglang/srt/layers/activation.py +44 -9
- sglang/srt/layers/attention/aiter_backend.py +93 -68
- sglang/srt/layers/attention/ascend_backend.py +250 -112
- sglang/srt/layers/attention/fla/chunk.py +242 -0
- sglang/srt/layers/attention/fla/chunk_delta_h.py +314 -0
- sglang/srt/layers/attention/fla/chunk_o.py +178 -0
- sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +151 -0
- sglang/srt/layers/attention/fla/cumsum.py +300 -0
- sglang/srt/layers/attention/fla/fused_recurrent.py +640 -0
- sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +232 -0
- sglang/srt/layers/attention/fla/index.py +37 -0
- sglang/srt/layers/attention/fla/l2norm.py +150 -0
- sglang/srt/layers/attention/fla/layernorm_gated.py +326 -0
- sglang/srt/layers/attention/fla/op.py +66 -0
- sglang/srt/layers/attention/fla/solve_tril.py +465 -0
- sglang/srt/layers/attention/fla/utils.py +331 -0
- sglang/srt/layers/attention/fla/wy_fast.py +158 -0
- sglang/srt/layers/attention/flashinfer_backend.py +6 -4
- sglang/srt/layers/attention/flashinfer_mla_backend.py +16 -12
- sglang/srt/layers/attention/hybrid_attn_backend.py +47 -8
- sglang/srt/layers/attention/hybrid_linear_attn_backend.py +584 -0
- sglang/srt/layers/attention/intel_amx_backend.py +3 -0
- sglang/srt/layers/attention/mamba/causal_conv1d.py +128 -0
- sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +1052 -0
- sglang/srt/layers/attention/mamba/mamba.py +64 -0
- sglang/srt/layers/attention/torch_native_backend.py +12 -6
- sglang/srt/layers/attention/trtllm_mla_backend.py +126 -36
- sglang/srt/layers/attention/wave_ops/decode_attention.py +2 -4
- sglang/srt/layers/attention/wave_ops/extend_attention.py +1 -3
- sglang/srt/layers/communicator.py +45 -7
- sglang/srt/layers/layernorm.py +54 -12
- sglang/srt/layers/logits_processor.py +10 -3
- sglang/srt/layers/moe/__init__.py +2 -1
- sglang/srt/layers/moe/cutlass_w4a8_moe.py +4 -12
- sglang/srt/layers/moe/ep_moe/kernels.py +74 -0
- sglang/srt/layers/moe/ep_moe/layer.py +110 -49
- sglang/srt/layers/moe/fused_moe_native.py +5 -3
- sglang/srt/layers/moe/fused_moe_triton/__init__.py +5 -3
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=129,N=352,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/{E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → E=257,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json } +29 -29
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +9 -1049
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +212 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +799 -0
- sglang/srt/layers/moe/fused_moe_triton/layer.py +56 -45
- sglang/srt/layers/moe/fused_moe_triton/moe_align_block_size.py +87 -0
- sglang/srt/layers/moe/moe_runner/__init__.py +2 -1
- sglang/srt/layers/moe/moe_runner/base.py +274 -1
- sglang/srt/layers/moe/moe_runner/runner.py +80 -0
- sglang/srt/layers/moe/moe_runner/triton.py +448 -0
- sglang/srt/layers/moe/token_dispatcher/__init__.py +16 -4
- sglang/srt/layers/moe/token_dispatcher/{base_dispatcher.py → base.py} +67 -17
- sglang/srt/layers/moe/token_dispatcher/deepep.py +41 -38
- sglang/srt/layers/moe/token_dispatcher/standard.py +44 -2
- sglang/srt/layers/moe/topk.py +43 -12
- sglang/srt/layers/moe/utils.py +6 -5
- sglang/srt/layers/quantization/awq.py +19 -7
- sglang/srt/layers/quantization/base_config.py +11 -6
- sglang/srt/layers/quantization/blockwise_int8.py +38 -27
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +50 -30
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +13 -1
- sglang/srt/layers/quantization/deep_gemm_wrapper/compile_utils.py +9 -1
- sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -3
- sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +27 -0
- sglang/srt/layers/quantization/fp8.py +76 -47
- sglang/srt/layers/quantization/fp8_utils.py +43 -29
- sglang/srt/layers/quantization/gptq.py +25 -17
- sglang/srt/layers/quantization/modelopt_quant.py +107 -40
- sglang/srt/layers/quantization/moe_wna16.py +21 -18
- sglang/srt/layers/quantization/mxfp4.py +77 -45
- sglang/srt/layers/quantization/quark/quark_moe.py +32 -27
- sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +49 -30
- sglang/srt/layers/quantization/quark/utils.py +97 -0
- sglang/srt/layers/quantization/rocm_mxfp4_utils.py +13 -0
- sglang/srt/layers/quantization/unquant.py +135 -47
- sglang/srt/layers/quantization/utils.py +13 -0
- sglang/srt/layers/quantization/w4afp8.py +60 -42
- sglang/srt/layers/quantization/w8a8_fp8.py +35 -20
- sglang/srt/layers/quantization/w8a8_int8.py +83 -41
- sglang/srt/layers/rocm_linear_utils.py +44 -0
- sglang/srt/layers/rotary_embedding.py +28 -19
- sglang/srt/layers/sampler.py +29 -5
- sglang/srt/lora/backend/base_backend.py +50 -8
- sglang/srt/lora/backend/triton_backend.py +90 -2
- sglang/srt/lora/layers.py +32 -0
- sglang/srt/lora/lora.py +4 -1
- sglang/srt/lora/lora_manager.py +35 -112
- sglang/srt/lora/mem_pool.py +24 -10
- sglang/srt/lora/utils.py +18 -9
- sglang/srt/managers/cache_controller.py +242 -278
- sglang/srt/managers/data_parallel_controller.py +30 -15
- sglang/srt/managers/detokenizer_manager.py +13 -2
- sglang/srt/managers/disagg_service.py +46 -0
- sglang/srt/managers/io_struct.py +160 -11
- sglang/srt/managers/mm_utils.py +6 -1
- sglang/srt/managers/multi_tokenizer_mixin.py +579 -0
- sglang/srt/managers/schedule_batch.py +27 -44
- sglang/srt/managers/schedule_policy.py +4 -3
- sglang/srt/managers/scheduler.py +90 -115
- sglang/srt/managers/scheduler_metrics_mixin.py +114 -8
- sglang/srt/managers/scheduler_output_processor_mixin.py +29 -19
- sglang/srt/managers/scheduler_profiler_mixin.py +1 -1
- sglang/srt/managers/scheduler_update_weights_mixin.py +8 -1
- sglang/srt/managers/template_manager.py +3 -3
- sglang/srt/managers/tokenizer_communicator_mixin.py +491 -0
- sglang/srt/managers/tokenizer_manager.py +41 -477
- sglang/srt/managers/tp_worker.py +16 -4
- sglang/srt/managers/tp_worker_overlap_thread.py +8 -10
- sglang/srt/mem_cache/allocator.py +1 -1
- sglang/srt/mem_cache/chunk_cache.py +1 -1
- sglang/srt/mem_cache/hicache_storage.py +24 -22
- sglang/srt/mem_cache/hiradix_cache.py +184 -101
- sglang/srt/mem_cache/lora_radix_cache.py +1 -1
- sglang/srt/mem_cache/memory_pool.py +324 -41
- sglang/srt/mem_cache/memory_pool_host.py +25 -18
- sglang/srt/mem_cache/radix_cache.py +5 -6
- sglang/srt/mem_cache/radix_cache_cpp.py +1 -1
- sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +164 -0
- sglang/srt/mem_cache/storage/hf3fs/{client_hf3fs.py → hf3fs_usrbio_client.py} +5 -1
- sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +61 -34
- sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +149 -12
- sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +280 -0
- sglang/srt/mem_cache/storage/lmcache/unit_test.py +121 -0
- sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +74 -19
- sglang/srt/mem_cache/storage/mooncake_store/test_mooncake_store.py +161 -0
- sglang/srt/mem_cache/swa_radix_cache.py +1 -3
- sglang/srt/metrics/collector.py +484 -63
- sglang/srt/metrics/startup_func_log_and_timer.py +150 -0
- sglang/srt/metrics/utils.py +48 -0
- sglang/srt/model_executor/cpu_graph_runner.py +640 -0
- sglang/srt/model_executor/cuda_graph_runner.py +13 -5
- sglang/srt/model_executor/forward_batch_info.py +72 -18
- sglang/srt/model_executor/model_runner.py +189 -31
- sglang/srt/model_loader/__init__.py +9 -3
- sglang/srt/model_loader/loader.py +33 -28
- sglang/srt/model_loader/utils.py +12 -0
- sglang/srt/model_loader/weight_utils.py +2 -1
- sglang/srt/models/deepseek_v2.py +311 -50
- sglang/srt/models/gemma3n_mm.py +1 -1
- sglang/srt/models/glm4_moe.py +10 -1
- sglang/srt/models/glm4v.py +4 -2
- sglang/srt/models/gpt_oss.py +5 -18
- sglang/srt/models/internvl.py +28 -0
- sglang/srt/models/llama4.py +9 -0
- sglang/srt/models/llama_eagle3.py +17 -0
- sglang/srt/models/longcat_flash.py +1026 -0
- sglang/srt/models/longcat_flash_nextn.py +699 -0
- sglang/srt/models/minicpmv.py +165 -3
- sglang/srt/models/mllama4.py +25 -0
- sglang/srt/models/opt.py +637 -0
- sglang/srt/models/qwen2.py +33 -3
- sglang/srt/models/qwen2_5_vl.py +90 -42
- sglang/srt/models/qwen2_moe.py +79 -14
- sglang/srt/models/qwen3.py +8 -2
- sglang/srt/models/qwen3_moe.py +39 -8
- sglang/srt/models/qwen3_next.py +1039 -0
- sglang/srt/models/qwen3_next_mtp.py +109 -0
- sglang/srt/models/torch_native_llama.py +1 -1
- sglang/srt/models/transformers.py +1 -1
- sglang/srt/multimodal/processors/base_processor.py +4 -2
- sglang/srt/multimodal/processors/glm4v.py +9 -9
- sglang/srt/multimodal/processors/internvl.py +141 -129
- sglang/srt/{reasoning_parser.py → parser/reasoning_parser.py} +1 -1
- sglang/srt/sampling/penaltylib/orchestrator.py +14 -2
- sglang/srt/sampling/sampling_batch_info.py +18 -15
- sglang/srt/server_args.py +297 -79
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +5 -0
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +10 -1
- sglang/srt/speculative/eagle_worker.py +216 -120
- sglang/srt/speculative/spec_info.py +5 -0
- sglang/srt/speculative/standalone_worker.py +109 -0
- sglang/srt/utils.py +37 -2
- sglang/srt/weight_sync/utils.py +1 -1
- sglang/test/attention/test_trtllm_mla_backend.py +181 -8
- sglang/test/few_shot_gsm8k.py +1 -0
- sglang/test/runners.py +4 -0
- sglang/test/test_cutlass_moe.py +24 -6
- sglang/test/test_cutlass_w4a8_moe.py +24 -9
- sglang/test/test_disaggregation_utils.py +66 -0
- sglang/test/test_utils.py +25 -1
- sglang/utils.py +5 -0
- sglang/version.py +1 -1
- {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/METADATA +11 -9
- {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/RECORD +243 -194
- sglang/srt/disaggregation/launch_lb.py +0 -131
- sglang/srt/mem_cache/storage/mooncake_store/unit_test.py +0 -40
- /sglang/srt/{model_parallel.py → layers/model_parallel.py} +0 -0
- /sglang/srt/{code_completion_parser.py → parser/code_completion_parser.py} +0 -0
- /sglang/srt/{conversation.py → parser/conversation.py} +0 -0
- /sglang/srt/{harmony_parser.py → parser/harmony_parser.py} +0 -0
- /sglang/srt/{jinja_template_utils.py → parser/jinja_template_utils.py} +0 -0
- {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/WHEEL +0 -0
- {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,178 @@
|
|
1
|
+
# Adapted from https://github.com/fla-org/flash-linear-attention/blob/main/fla/ops/common/chunk_o.py
|
2
|
+
# -*- coding: utf-8 -*-
|
3
|
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
4
|
+
|
5
|
+
from typing import Optional, Tuple
|
6
|
+
|
7
|
+
import torch
|
8
|
+
import triton
|
9
|
+
import triton.language as tl
|
10
|
+
|
11
|
+
from sglang.srt.layers.attention.fla.index import prepare_chunk_indices
|
12
|
+
from sglang.srt.layers.attention.fla.op import exp, safe_exp
|
13
|
+
from sglang.srt.layers.attention.fla.utils import check_shared_mem, is_nvidia_hopper
|
14
|
+
|
15
|
+
BKV_LIST = [64, 128] if check_shared_mem() else [32, 64]
|
16
|
+
NUM_WARPS = [2, 4] if is_nvidia_hopper else [2, 4, 8]
|
17
|
+
|
18
|
+
|
19
|
+
@triton.heuristics(
|
20
|
+
{
|
21
|
+
"USE_G": lambda args: args["g"] is not None,
|
22
|
+
"IS_VARLEN": lambda args: args["cu_seqlens"] is not None,
|
23
|
+
}
|
24
|
+
)
|
25
|
+
# @triton.autotune(
|
26
|
+
# configs=[
|
27
|
+
# triton.Config({"BK": BK, "BV": BV}, num_warps=num_warps, num_stages=num_stages)
|
28
|
+
# for BK in BKV_LIST
|
29
|
+
# for BV in BKV_LIST
|
30
|
+
# for num_warps in NUM_WARPS
|
31
|
+
# for num_stages in [2, 3, 4]
|
32
|
+
# ],
|
33
|
+
# key=["H", "K", "V", "BT"],
|
34
|
+
# )
|
35
|
+
@triton.jit(do_not_specialize=["T"])
|
36
|
+
def chunk_fwd_kernel_o(
|
37
|
+
q,
|
38
|
+
k,
|
39
|
+
v,
|
40
|
+
h,
|
41
|
+
g,
|
42
|
+
o,
|
43
|
+
cu_seqlens,
|
44
|
+
chunk_indices,
|
45
|
+
scale,
|
46
|
+
T,
|
47
|
+
H: tl.constexpr,
|
48
|
+
Hg: tl.constexpr,
|
49
|
+
K: tl.constexpr,
|
50
|
+
V: tl.constexpr,
|
51
|
+
BT: tl.constexpr,
|
52
|
+
BK: tl.constexpr,
|
53
|
+
BV: tl.constexpr,
|
54
|
+
USE_G: tl.constexpr,
|
55
|
+
IS_VARLEN: tl.constexpr,
|
56
|
+
):
|
57
|
+
i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
58
|
+
i_b, i_h = i_bh // H, i_bh % H
|
59
|
+
|
60
|
+
if IS_VARLEN:
|
61
|
+
i_tg = i_t
|
62
|
+
i_n, i_t = tl.load(chunk_indices + i_t * 2).to(tl.int32), tl.load(
|
63
|
+
chunk_indices + i_t * 2 + 1
|
64
|
+
).to(tl.int32)
|
65
|
+
bos, eos = tl.load(cu_seqlens + i_n).to(tl.int32), tl.load(
|
66
|
+
cu_seqlens + i_n + 1
|
67
|
+
).to(tl.int32)
|
68
|
+
T = eos - bos
|
69
|
+
NT = tl.cdiv(T, BT)
|
70
|
+
else:
|
71
|
+
NT = tl.cdiv(T, BT)
|
72
|
+
i_tg = i_b * NT + i_t
|
73
|
+
bos, eos = i_b * T, i_b * T + T
|
74
|
+
|
75
|
+
# offset calculation
|
76
|
+
q += (bos * Hg + i_h // (H // Hg)) * K
|
77
|
+
k += (bos * Hg + i_h // (H // Hg)) * K
|
78
|
+
v += (bos * H + i_h) * V
|
79
|
+
o += (bos * H + i_h) * V
|
80
|
+
h += (i_tg * H + i_h).to(tl.int64) * K * V
|
81
|
+
|
82
|
+
b_o = tl.zeros([BT, BV], dtype=tl.float32)
|
83
|
+
b_A = tl.zeros([BT, BT], dtype=tl.float32)
|
84
|
+
|
85
|
+
for i_k in range(tl.cdiv(K, BK)):
|
86
|
+
p_q = tl.make_block_ptr(
|
87
|
+
q, (T, K), (Hg * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)
|
88
|
+
)
|
89
|
+
p_k = tl.make_block_ptr(
|
90
|
+
k, (K, T), (1, Hg * K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)
|
91
|
+
)
|
92
|
+
p_h = tl.make_block_ptr(
|
93
|
+
h, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)
|
94
|
+
)
|
95
|
+
# [BT, BK]
|
96
|
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
97
|
+
# [BK, BT]
|
98
|
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
99
|
+
# [BK, BV]
|
100
|
+
b_h = tl.load(p_h, boundary_check=(0, 1))
|
101
|
+
|
102
|
+
# [BT, BK] @ [BK, BV] -> [BT, BV]
|
103
|
+
b_o += tl.dot(b_q, b_h)
|
104
|
+
# [BT, BK] @ [BK, BT] -> [BT, BT]
|
105
|
+
b_A += tl.dot(b_q, b_k)
|
106
|
+
|
107
|
+
if USE_G:
|
108
|
+
g += bos * H + i_h
|
109
|
+
p_g = tl.make_block_ptr(g, (T,), (H,), (i_t * BT,), (BT,), (0,))
|
110
|
+
b_g = tl.load(p_g, boundary_check=(0,))
|
111
|
+
b_o = b_o * exp(b_g)[:, None]
|
112
|
+
b_A = b_A * safe_exp(b_g[:, None] - b_g[None, :])
|
113
|
+
|
114
|
+
o_i = tl.arange(0, BT)
|
115
|
+
m_A = o_i[:, None] >= o_i[None, :]
|
116
|
+
b_A = tl.where(m_A, b_A, 0)
|
117
|
+
|
118
|
+
p_v = tl.make_block_ptr(
|
119
|
+
v, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)
|
120
|
+
)
|
121
|
+
p_o = tl.make_block_ptr(
|
122
|
+
o, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)
|
123
|
+
)
|
124
|
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
125
|
+
|
126
|
+
# to fix mma -> mma layout conversion
|
127
|
+
# already solved by triton v3.2 or higher
|
128
|
+
b_o = b_o * scale + tl.dot(b_A.to(b_v.dtype), b_v) * scale
|
129
|
+
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
|
130
|
+
|
131
|
+
|
132
|
+
def chunk_fwd_o(
|
133
|
+
q: torch.Tensor,
|
134
|
+
k: torch.Tensor,
|
135
|
+
v: torch.Tensor,
|
136
|
+
h: torch.Tensor,
|
137
|
+
g: Optional[torch.Tensor] = None, # cumsum of log decay
|
138
|
+
scale: Optional[float] = None,
|
139
|
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
140
|
+
chunk_size: int = 64,
|
141
|
+
) -> torch.Tensor:
|
142
|
+
B, T, Hg, K, V = *q.shape, v.shape[-1]
|
143
|
+
H = v.shape[-2]
|
144
|
+
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
|
145
|
+
chunk_indices = (
|
146
|
+
prepare_chunk_indices(cu_seqlens, BT) if cu_seqlens is not None else None
|
147
|
+
)
|
148
|
+
NT = triton.cdiv(T, BT) if cu_seqlens is None else len(chunk_indices)
|
149
|
+
if scale is None:
|
150
|
+
scale = k.shape[-1] ** -0.5
|
151
|
+
|
152
|
+
o = torch.empty_like(v)
|
153
|
+
|
154
|
+
def grid(meta):
|
155
|
+
return (triton.cdiv(V, meta["BV"]), NT, B * H)
|
156
|
+
|
157
|
+
chunk_fwd_kernel_o[grid](
|
158
|
+
q,
|
159
|
+
k,
|
160
|
+
v,
|
161
|
+
h,
|
162
|
+
g,
|
163
|
+
o,
|
164
|
+
cu_seqlens,
|
165
|
+
chunk_indices,
|
166
|
+
scale,
|
167
|
+
T=T,
|
168
|
+
H=H,
|
169
|
+
Hg=Hg,
|
170
|
+
K=K,
|
171
|
+
V=V,
|
172
|
+
BT=BT,
|
173
|
+
BK=128,
|
174
|
+
BV=64,
|
175
|
+
num_warps=4,
|
176
|
+
num_stages=2,
|
177
|
+
)
|
178
|
+
return o
|
@@ -0,0 +1,151 @@
|
|
1
|
+
# Adapted from https://github.com/fla-org/flash-linear-attention/blob/main/fla/ops/common/chunk_scaled_dot_kkt.py
|
2
|
+
# -*- coding: utf-8 -*-
|
3
|
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
4
|
+
|
5
|
+
from typing import Optional
|
6
|
+
|
7
|
+
import torch
|
8
|
+
import triton
|
9
|
+
import triton.language as tl
|
10
|
+
|
11
|
+
from sglang.srt.layers.attention.fla.index import prepare_chunk_indices
|
12
|
+
from sglang.srt.layers.attention.fla.op import safe_exp
|
13
|
+
|
14
|
+
|
15
|
+
@triton.heuristics(
|
16
|
+
{
|
17
|
+
"IS_VARLEN": lambda args: args["cu_seqlens"] is not None,
|
18
|
+
"USE_G": lambda args: args["g_cumsum"] is not None,
|
19
|
+
}
|
20
|
+
)
|
21
|
+
# @triton.autotune(
|
22
|
+
# configs=[
|
23
|
+
# triton.Config({"BK": BK}, num_warps=num_warps, num_stages=num_stages)
|
24
|
+
# for BK in [32, 64, 128]
|
25
|
+
# for num_warps in [2, 4, 8]
|
26
|
+
# for num_stages in [2, 3, 4]
|
27
|
+
# ],
|
28
|
+
# key=["H", "K", "BT", "IS_VARLEN"],
|
29
|
+
# )
|
30
|
+
@triton.jit(do_not_specialize=["T"])
|
31
|
+
def chunk_scaled_dot_kkt_fwd_kernel(
|
32
|
+
k,
|
33
|
+
beta,
|
34
|
+
g_cumsum,
|
35
|
+
A,
|
36
|
+
cu_seqlens,
|
37
|
+
chunk_indices,
|
38
|
+
T,
|
39
|
+
H: tl.constexpr,
|
40
|
+
Hg: tl.constexpr,
|
41
|
+
K: tl.constexpr,
|
42
|
+
BT: tl.constexpr,
|
43
|
+
BK: tl.constexpr,
|
44
|
+
IS_VARLEN: tl.constexpr,
|
45
|
+
USE_G: tl.constexpr,
|
46
|
+
):
|
47
|
+
i_t, i_bh = tl.program_id(0), tl.program_id(1)
|
48
|
+
i_b, i_h = i_bh // H, i_bh % H
|
49
|
+
if IS_VARLEN:
|
50
|
+
i_n, i_t = tl.load(chunk_indices + i_t * 2).to(tl.int32), tl.load(
|
51
|
+
chunk_indices + i_t * 2 + 1
|
52
|
+
).to(tl.int32)
|
53
|
+
bos, eos = tl.load(cu_seqlens + i_n).to(tl.int32), tl.load(
|
54
|
+
cu_seqlens + i_n + 1
|
55
|
+
).to(tl.int32)
|
56
|
+
T = eos - bos
|
57
|
+
else:
|
58
|
+
bos, eos = i_b * T, i_b * T + T
|
59
|
+
o_t = tl.arange(0, BT)
|
60
|
+
|
61
|
+
p_beta = tl.make_block_ptr(
|
62
|
+
beta + bos * H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,)
|
63
|
+
)
|
64
|
+
b_beta = tl.load(p_beta, boundary_check=(0,))
|
65
|
+
|
66
|
+
b_A = tl.zeros([BT, BT], dtype=tl.float32)
|
67
|
+
for i_k in range(tl.cdiv(K, BK)):
|
68
|
+
p_k = tl.make_block_ptr(
|
69
|
+
k + (bos * Hg + i_h // (H // Hg)) * K,
|
70
|
+
(T, K),
|
71
|
+
(Hg * K, 1),
|
72
|
+
(i_t * BT, i_k * BK),
|
73
|
+
(BT, BK),
|
74
|
+
(1, 0),
|
75
|
+
)
|
76
|
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
77
|
+
b_kb = b_k * b_beta[:, None]
|
78
|
+
b_A += tl.dot(b_kb.to(b_k.dtype), tl.trans(b_k))
|
79
|
+
|
80
|
+
if USE_G:
|
81
|
+
p_g = tl.make_block_ptr(
|
82
|
+
g_cumsum + bos * H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,)
|
83
|
+
)
|
84
|
+
b_g = tl.load(p_g, boundary_check=(0,))
|
85
|
+
b_g_diff = b_g[:, None] - b_g[None, :]
|
86
|
+
b_A = b_A * safe_exp(b_g_diff)
|
87
|
+
|
88
|
+
b_A = tl.where(o_t[:, None] > o_t[None, :], b_A, 0)
|
89
|
+
p_A = tl.make_block_ptr(
|
90
|
+
A + (bos * H + i_h) * BT, (T, BT), (BT * H, 1), (i_t * BT, 0), (BT, BT), (1, 0)
|
91
|
+
)
|
92
|
+
tl.store(p_A, b_A.to(p_A.dtype.element_ty), boundary_check=(0, 1))
|
93
|
+
|
94
|
+
|
95
|
+
def chunk_scaled_dot_kkt_fwd(
|
96
|
+
k: torch.Tensor,
|
97
|
+
beta: torch.Tensor,
|
98
|
+
g_cumsum: Optional[torch.Tensor] = None,
|
99
|
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
100
|
+
chunk_size: int = 64,
|
101
|
+
output_dtype: torch.dtype = torch.float32,
|
102
|
+
) -> torch.Tensor:
|
103
|
+
r"""
|
104
|
+
Compute beta * K * K^T.
|
105
|
+
|
106
|
+
Args:
|
107
|
+
k (torch.Tensor):
|
108
|
+
The key tensor of shape `[B, T, H, K]`.
|
109
|
+
beta (torch.Tensor):
|
110
|
+
The beta tensor of shape `[B, T, H]`.
|
111
|
+
g_cumsum (torch.Tensor):
|
112
|
+
The cumulative sum of the gate tensor of shape `[B, T, H]`.
|
113
|
+
Default: None
|
114
|
+
cu_seqlens (torch.LongTensor):
|
115
|
+
The cumulative sequence lengths of the input tensor.
|
116
|
+
Default: None
|
117
|
+
chunk_size (int):
|
118
|
+
The chunk size. Default: 64.
|
119
|
+
output_dtype (torch.dtype):
|
120
|
+
The dtype of the output tensor. Default: `torch.float32`
|
121
|
+
|
122
|
+
Returns:
|
123
|
+
beta * K * K^T of shape `[B, T, H, BT]` where `BT` is the chunk size.
|
124
|
+
"""
|
125
|
+
|
126
|
+
B, T, Hg, K = k.shape
|
127
|
+
|
128
|
+
H = beta.shape[-1]
|
129
|
+
BT = chunk_size
|
130
|
+
chunk_indices = (
|
131
|
+
prepare_chunk_indices(cu_seqlens, BT) if cu_seqlens is not None else None
|
132
|
+
)
|
133
|
+
NT = triton.cdiv(T, BT) if cu_seqlens is None else len(chunk_indices)
|
134
|
+
A = torch.empty(B, T, H, BT, device=k.device, dtype=output_dtype)
|
135
|
+
chunk_scaled_dot_kkt_fwd_kernel[(NT, B * H)](
|
136
|
+
k=k,
|
137
|
+
beta=beta,
|
138
|
+
g_cumsum=g_cumsum,
|
139
|
+
A=A,
|
140
|
+
cu_seqlens=cu_seqlens,
|
141
|
+
chunk_indices=chunk_indices,
|
142
|
+
T=T,
|
143
|
+
H=H,
|
144
|
+
Hg=Hg,
|
145
|
+
K=K,
|
146
|
+
BT=BT,
|
147
|
+
BK=64,
|
148
|
+
num_warps=8,
|
149
|
+
num_stages=3,
|
150
|
+
)
|
151
|
+
return A
|
@@ -0,0 +1,300 @@
|
|
1
|
+
# Adapt from https://github.com/fla-org/flash-linear-attention/blob/main/fla/ops/utils/cumsum.py
|
2
|
+
# -*- coding: utf-8 -*-
|
3
|
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
4
|
+
|
5
|
+
from typing import Optional
|
6
|
+
|
7
|
+
import torch
|
8
|
+
import triton
|
9
|
+
import triton.language as tl
|
10
|
+
|
11
|
+
from sglang.srt.layers.attention.fla.index import prepare_chunk_indices
|
12
|
+
from sglang.srt.layers.attention.fla.utils import check_shared_mem, input_guard
|
13
|
+
|
14
|
+
BS_LIST = [32, 64] if check_shared_mem() else [16, 32]
|
15
|
+
|
16
|
+
|
17
|
+
@triton.heuristics(
|
18
|
+
{
|
19
|
+
"HAS_SCALE": lambda args: args["scale"] is not None,
|
20
|
+
"IS_VARLEN": lambda args: args["cu_seqlens"] is not None,
|
21
|
+
}
|
22
|
+
)
|
23
|
+
# @triton.autotune(
|
24
|
+
# configs=[triton.Config({}, num_warps=num_warps) for num_warps in [1, 2, 4, 8]],
|
25
|
+
# key=["B", "H", "BT", "IS_VARLEN", "REVERSE"],
|
26
|
+
# )
|
27
|
+
@triton.jit(do_not_specialize=["T"])
|
28
|
+
def chunk_local_cumsum_scalar_kernel(
|
29
|
+
s,
|
30
|
+
o,
|
31
|
+
scale,
|
32
|
+
cu_seqlens,
|
33
|
+
chunk_indices,
|
34
|
+
T,
|
35
|
+
B: tl.constexpr,
|
36
|
+
H: tl.constexpr,
|
37
|
+
BT: tl.constexpr,
|
38
|
+
REVERSE: tl.constexpr,
|
39
|
+
HAS_SCALE: tl.constexpr,
|
40
|
+
IS_VARLEN: tl.constexpr,
|
41
|
+
HEAD_FIRST: tl.constexpr,
|
42
|
+
):
|
43
|
+
i_t, i_bh = tl.program_id(0), tl.program_id(1)
|
44
|
+
i_b, i_h = i_bh // H, i_bh % H
|
45
|
+
if IS_VARLEN:
|
46
|
+
i_n, i_t = tl.load(chunk_indices + i_t * 2).to(tl.int32), tl.load(
|
47
|
+
chunk_indices + i_t * 2 + 1
|
48
|
+
).to(tl.int32)
|
49
|
+
bos, eos = tl.load(cu_seqlens + i_n).to(tl.int32), tl.load(
|
50
|
+
cu_seqlens + i_n + 1
|
51
|
+
).to(tl.int32)
|
52
|
+
T = eos - bos
|
53
|
+
else:
|
54
|
+
bos, eos = i_b * T, i_b * T + T
|
55
|
+
|
56
|
+
if HEAD_FIRST:
|
57
|
+
p_s = tl.make_block_ptr(
|
58
|
+
s + bos * H + i_h * T, (T,), (1,), (i_t * BT,), (BT,), (0,)
|
59
|
+
)
|
60
|
+
p_o = tl.make_block_ptr(
|
61
|
+
o + bos * H + i_h * T, (T,), (1,), (i_t * BT,), (BT,), (0,)
|
62
|
+
)
|
63
|
+
else:
|
64
|
+
p_s = tl.make_block_ptr(s + bos * H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,))
|
65
|
+
p_o = tl.make_block_ptr(o + bos * H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,))
|
66
|
+
# [BT]
|
67
|
+
b_s = tl.load(p_s, boundary_check=(0,)).to(tl.float32)
|
68
|
+
b_o = tl.cumsum(b_s, axis=0)
|
69
|
+
if REVERSE:
|
70
|
+
b_z = tl.sum(b_s, axis=0)
|
71
|
+
b_o = -b_o + b_z[None] + b_s
|
72
|
+
if HAS_SCALE:
|
73
|
+
b_o *= scale
|
74
|
+
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0,))
|
75
|
+
|
76
|
+
|
77
|
+
@triton.heuristics(
|
78
|
+
{
|
79
|
+
"HAS_SCALE": lambda args: args["scale"] is not None,
|
80
|
+
"IS_VARLEN": lambda args: args["cu_seqlens"] is not None,
|
81
|
+
}
|
82
|
+
)
|
83
|
+
@triton.autotune(
|
84
|
+
configs=[
|
85
|
+
triton.Config({"BS": BS}, num_warps=num_warps)
|
86
|
+
for BS in BS_LIST
|
87
|
+
for num_warps in [2, 4, 8]
|
88
|
+
],
|
89
|
+
key=["B", "H", "S", "BT", "IS_VARLEN", "REVERSE"],
|
90
|
+
)
|
91
|
+
@triton.jit(do_not_specialize=["T"])
|
92
|
+
def chunk_local_cumsum_vector_kernel(
|
93
|
+
s,
|
94
|
+
o,
|
95
|
+
scale,
|
96
|
+
cu_seqlens,
|
97
|
+
chunk_indices,
|
98
|
+
T,
|
99
|
+
B: tl.constexpr,
|
100
|
+
H: tl.constexpr,
|
101
|
+
S: tl.constexpr,
|
102
|
+
BT: tl.constexpr,
|
103
|
+
BS: tl.constexpr,
|
104
|
+
REVERSE: tl.constexpr,
|
105
|
+
HAS_SCALE: tl.constexpr,
|
106
|
+
IS_VARLEN: tl.constexpr,
|
107
|
+
HEAD_FIRST: tl.constexpr,
|
108
|
+
):
|
109
|
+
i_s, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
110
|
+
i_b, i_h = i_bh // H, i_bh % H
|
111
|
+
if IS_VARLEN:
|
112
|
+
i_n, i_t = tl.load(chunk_indices + i_t * 2).to(tl.int32), tl.load(
|
113
|
+
chunk_indices + i_t * 2 + 1
|
114
|
+
).to(tl.int32)
|
115
|
+
bos, eos = tl.load(cu_seqlens + i_n).to(tl.int32), tl.load(
|
116
|
+
cu_seqlens + i_n + 1
|
117
|
+
).to(tl.int32)
|
118
|
+
T = eos - bos
|
119
|
+
else:
|
120
|
+
bos, eos = i_b * T, i_b * T + T
|
121
|
+
|
122
|
+
o_i = tl.arange(0, BT)
|
123
|
+
if REVERSE:
|
124
|
+
m_s = tl.where(o_i[:, None] <= o_i[None, :], 1.0, 0.0)
|
125
|
+
else:
|
126
|
+
m_s = tl.where(o_i[:, None] >= o_i[None, :], 1.0, 0.0)
|
127
|
+
|
128
|
+
if HEAD_FIRST:
|
129
|
+
p_s = tl.make_block_ptr(
|
130
|
+
s + (bos * H + i_h * T) * S,
|
131
|
+
(T, S),
|
132
|
+
(S, 1),
|
133
|
+
(i_t * BT, i_s * BS),
|
134
|
+
(BT, BS),
|
135
|
+
(1, 0),
|
136
|
+
)
|
137
|
+
p_o = tl.make_block_ptr(
|
138
|
+
o + (bos * H + i_h * T) * S,
|
139
|
+
(T, S),
|
140
|
+
(S, 1),
|
141
|
+
(i_t * BT, i_s * BS),
|
142
|
+
(BT, BS),
|
143
|
+
(1, 0),
|
144
|
+
)
|
145
|
+
else:
|
146
|
+
p_s = tl.make_block_ptr(
|
147
|
+
s + (bos * H + i_h) * S,
|
148
|
+
(T, S),
|
149
|
+
(H * S, 1),
|
150
|
+
(i_t * BT, i_s * BS),
|
151
|
+
(BT, BS),
|
152
|
+
(1, 0),
|
153
|
+
)
|
154
|
+
p_o = tl.make_block_ptr(
|
155
|
+
o + (bos * H + i_h) * S,
|
156
|
+
(T, S),
|
157
|
+
(H * S, 1),
|
158
|
+
(i_t * BT, i_s * BS),
|
159
|
+
(BT, BS),
|
160
|
+
(1, 0),
|
161
|
+
)
|
162
|
+
# [BT, BS]
|
163
|
+
b_s = tl.load(p_s, boundary_check=(0, 1)).to(tl.float32)
|
164
|
+
b_o = tl.dot(m_s, b_s, allow_tf32=False)
|
165
|
+
if HAS_SCALE:
|
166
|
+
b_o *= scale
|
167
|
+
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
|
168
|
+
|
169
|
+
|
170
|
+
def chunk_local_cumsum_scalar(
|
171
|
+
g: torch.Tensor,
|
172
|
+
chunk_size: int,
|
173
|
+
reverse: bool = False,
|
174
|
+
scale: float = None,
|
175
|
+
cu_seqlens: Optional[torch.Tensor] = None,
|
176
|
+
head_first: bool = False,
|
177
|
+
output_dtype: Optional[torch.dtype] = torch.float,
|
178
|
+
) -> torch.Tensor:
|
179
|
+
if head_first:
|
180
|
+
B, H, T = g.shape
|
181
|
+
else:
|
182
|
+
B, T, H = g.shape
|
183
|
+
assert chunk_size == 2 ** (
|
184
|
+
chunk_size.bit_length() - 1
|
185
|
+
), "chunk_size must be a power of 2"
|
186
|
+
BT = chunk_size
|
187
|
+
chunk_indices = (
|
188
|
+
prepare_chunk_indices(cu_seqlens, BT) if cu_seqlens is not None else None
|
189
|
+
)
|
190
|
+
NT = triton.cdiv(T, BT) if cu_seqlens is None else len(chunk_indices)
|
191
|
+
g_org, g = g, torch.empty_like(g, dtype=output_dtype or g.dtype)
|
192
|
+
grid = (NT, B * H)
|
193
|
+
chunk_local_cumsum_scalar_kernel[grid](
|
194
|
+
s=g_org,
|
195
|
+
o=g,
|
196
|
+
scale=scale,
|
197
|
+
cu_seqlens=cu_seqlens,
|
198
|
+
chunk_indices=chunk_indices,
|
199
|
+
T=T,
|
200
|
+
B=B,
|
201
|
+
H=H,
|
202
|
+
BT=BT,
|
203
|
+
HEAD_FIRST=head_first,
|
204
|
+
REVERSE=reverse,
|
205
|
+
num_warps=8,
|
206
|
+
num_stages=3,
|
207
|
+
)
|
208
|
+
return g
|
209
|
+
|
210
|
+
|
211
|
+
def chunk_local_cumsum_vector(
|
212
|
+
g: torch.Tensor,
|
213
|
+
chunk_size: int,
|
214
|
+
reverse: bool = False,
|
215
|
+
scale: float = None,
|
216
|
+
cu_seqlens: Optional[torch.Tensor] = None,
|
217
|
+
head_first: bool = False,
|
218
|
+
output_dtype: Optional[torch.dtype] = torch.float,
|
219
|
+
) -> torch.Tensor:
|
220
|
+
if head_first:
|
221
|
+
B, H, T, S = g.shape
|
222
|
+
else:
|
223
|
+
B, T, H, S = g.shape
|
224
|
+
BT = chunk_size
|
225
|
+
chunk_indices = (
|
226
|
+
prepare_chunk_indices(cu_seqlens, chunk_size)
|
227
|
+
if cu_seqlens is not None
|
228
|
+
else None
|
229
|
+
)
|
230
|
+
NT = triton.cdiv(T, BT) if cu_seqlens is None else len(chunk_indices)
|
231
|
+
assert chunk_size == 2 ** (
|
232
|
+
chunk_size.bit_length() - 1
|
233
|
+
), "chunk_size must be a power of 2"
|
234
|
+
|
235
|
+
g_org, g = g, torch.empty_like(g, dtype=output_dtype or g.dtype)
|
236
|
+
|
237
|
+
def grid(meta):
|
238
|
+
return (triton.cdiv(meta["S"], meta["BS"]), NT, B * H)
|
239
|
+
|
240
|
+
# keep cumulative normalizer in fp32
|
241
|
+
# this kernel is equivalent to
|
242
|
+
# g = g.view(B, H, NT, BT, -1).cumsum(-2).view(B, H, T, -1)
|
243
|
+
chunk_local_cumsum_vector_kernel[grid](
|
244
|
+
s=g_org,
|
245
|
+
o=g,
|
246
|
+
scale=scale,
|
247
|
+
cu_seqlens=cu_seqlens,
|
248
|
+
chunk_indices=chunk_indices,
|
249
|
+
T=T,
|
250
|
+
B=B,
|
251
|
+
H=H,
|
252
|
+
S=S,
|
253
|
+
BT=BT,
|
254
|
+
HEAD_FIRST=head_first,
|
255
|
+
REVERSE=reverse,
|
256
|
+
)
|
257
|
+
return g
|
258
|
+
|
259
|
+
|
260
|
+
@input_guard
|
261
|
+
def chunk_local_cumsum(
|
262
|
+
g: torch.Tensor,
|
263
|
+
chunk_size: int,
|
264
|
+
reverse: bool = False,
|
265
|
+
scale: float = None,
|
266
|
+
cu_seqlens: Optional[torch.Tensor] = None,
|
267
|
+
head_first: bool = False,
|
268
|
+
output_dtype: Optional[torch.dtype] = torch.float,
|
269
|
+
**kwargs,
|
270
|
+
) -> torch.Tensor:
|
271
|
+
if cu_seqlens is not None:
|
272
|
+
assert (
|
273
|
+
g.shape[0] == 1
|
274
|
+
), "Only batch size 1 is supported when cu_seqlens are provided"
|
275
|
+
if len(g.shape) == 3:
|
276
|
+
return chunk_local_cumsum_scalar(
|
277
|
+
g=g,
|
278
|
+
chunk_size=chunk_size,
|
279
|
+
reverse=reverse,
|
280
|
+
scale=scale,
|
281
|
+
cu_seqlens=cu_seqlens,
|
282
|
+
head_first=head_first,
|
283
|
+
output_dtype=output_dtype,
|
284
|
+
)
|
285
|
+
elif len(g.shape) == 4:
|
286
|
+
return chunk_local_cumsum_vector(
|
287
|
+
g=g,
|
288
|
+
chunk_size=chunk_size,
|
289
|
+
reverse=reverse,
|
290
|
+
scale=scale,
|
291
|
+
cu_seqlens=cu_seqlens,
|
292
|
+
head_first=head_first,
|
293
|
+
output_dtype=output_dtype,
|
294
|
+
)
|
295
|
+
else:
|
296
|
+
raise ValueError(
|
297
|
+
f"Unsupported input shape {g.shape}, "
|
298
|
+
f"which should be (B, T, H, D) if `head_first=False` "
|
299
|
+
f"or (B, H, T, D) otherwise"
|
300
|
+
)
|