sglang 0.5.1.post3__py3-none-any.whl → 0.5.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (245) hide show
  1. sglang/bench_one_batch.py +3 -0
  2. sglang/bench_one_batch_server.py +10 -1
  3. sglang/bench_serving.py +251 -26
  4. sglang/lang/interpreter.py +1 -1
  5. sglang/srt/configs/__init__.py +4 -0
  6. sglang/srt/configs/internvl.py +6 -0
  7. sglang/srt/configs/longcat_flash.py +104 -0
  8. sglang/srt/configs/model_config.py +37 -7
  9. sglang/srt/configs/qwen3_next.py +326 -0
  10. sglang/srt/connector/__init__.py +1 -1
  11. sglang/srt/connector/base_connector.py +1 -2
  12. sglang/srt/connector/redis.py +2 -2
  13. sglang/srt/connector/serde/__init__.py +1 -1
  14. sglang/srt/connector/serde/safe_serde.py +4 -3
  15. sglang/srt/custom_op.py +11 -1
  16. sglang/srt/debug_utils/dump_comparator.py +81 -44
  17. sglang/srt/debug_utils/dump_loader.py +97 -0
  18. sglang/srt/debug_utils/dumper.py +11 -3
  19. sglang/srt/debug_utils/text_comparator.py +73 -11
  20. sglang/srt/disaggregation/ascend/conn.py +75 -0
  21. sglang/srt/disaggregation/base/conn.py +1 -1
  22. sglang/srt/disaggregation/common/conn.py +15 -12
  23. sglang/srt/disaggregation/decode.py +6 -4
  24. sglang/srt/disaggregation/fake/conn.py +1 -1
  25. sglang/srt/disaggregation/mini_lb.py +6 -420
  26. sglang/srt/disaggregation/mooncake/conn.py +18 -10
  27. sglang/srt/disaggregation/nixl/conn.py +180 -16
  28. sglang/srt/disaggregation/prefill.py +6 -4
  29. sglang/srt/disaggregation/utils.py +5 -50
  30. sglang/srt/distributed/parallel_state.py +94 -58
  31. sglang/srt/entrypoints/engine.py +34 -14
  32. sglang/srt/entrypoints/http_server.py +172 -47
  33. sglang/srt/entrypoints/openai/protocol.py +63 -3
  34. sglang/srt/entrypoints/openai/serving_base.py +6 -2
  35. sglang/srt/entrypoints/openai/serving_chat.py +34 -19
  36. sglang/srt/entrypoints/openai/serving_completions.py +10 -4
  37. sglang/srt/entrypoints/openai/serving_embedding.py +8 -4
  38. sglang/srt/entrypoints/openai/serving_responses.py +7 -4
  39. sglang/srt/eplb/eplb_manager.py +28 -4
  40. sglang/srt/eplb/expert_distribution.py +55 -15
  41. sglang/srt/eplb/expert_location.py +8 -3
  42. sglang/srt/eplb/expert_location_updater.py +1 -1
  43. sglang/srt/function_call/ebnf_composer.py +11 -9
  44. sglang/srt/function_call/glm4_moe_detector.py +1 -1
  45. sglang/srt/function_call/gpt_oss_detector.py +1 -1
  46. sglang/srt/function_call/qwen3_coder_detector.py +1 -1
  47. sglang/srt/hf_transformers_utils.py +12 -0
  48. sglang/srt/layers/activation.py +44 -9
  49. sglang/srt/layers/attention/aiter_backend.py +93 -68
  50. sglang/srt/layers/attention/ascend_backend.py +250 -112
  51. sglang/srt/layers/attention/fla/chunk.py +242 -0
  52. sglang/srt/layers/attention/fla/chunk_delta_h.py +314 -0
  53. sglang/srt/layers/attention/fla/chunk_o.py +178 -0
  54. sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +151 -0
  55. sglang/srt/layers/attention/fla/cumsum.py +300 -0
  56. sglang/srt/layers/attention/fla/fused_recurrent.py +640 -0
  57. sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +232 -0
  58. sglang/srt/layers/attention/fla/index.py +37 -0
  59. sglang/srt/layers/attention/fla/l2norm.py +150 -0
  60. sglang/srt/layers/attention/fla/layernorm_gated.py +326 -0
  61. sglang/srt/layers/attention/fla/op.py +66 -0
  62. sglang/srt/layers/attention/fla/solve_tril.py +465 -0
  63. sglang/srt/layers/attention/fla/utils.py +331 -0
  64. sglang/srt/layers/attention/fla/wy_fast.py +158 -0
  65. sglang/srt/layers/attention/flashinfer_backend.py +6 -4
  66. sglang/srt/layers/attention/flashinfer_mla_backend.py +16 -12
  67. sglang/srt/layers/attention/hybrid_attn_backend.py +47 -8
  68. sglang/srt/layers/attention/hybrid_linear_attn_backend.py +584 -0
  69. sglang/srt/layers/attention/intel_amx_backend.py +3 -0
  70. sglang/srt/layers/attention/mamba/causal_conv1d.py +128 -0
  71. sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +1052 -0
  72. sglang/srt/layers/attention/mamba/mamba.py +64 -0
  73. sglang/srt/layers/attention/torch_native_backend.py +12 -6
  74. sglang/srt/layers/attention/trtllm_mla_backend.py +126 -36
  75. sglang/srt/layers/attention/wave_ops/decode_attention.py +2 -4
  76. sglang/srt/layers/attention/wave_ops/extend_attention.py +1 -3
  77. sglang/srt/layers/communicator.py +45 -7
  78. sglang/srt/layers/layernorm.py +54 -12
  79. sglang/srt/layers/logits_processor.py +10 -3
  80. sglang/srt/layers/moe/__init__.py +2 -1
  81. sglang/srt/layers/moe/cutlass_w4a8_moe.py +4 -12
  82. sglang/srt/layers/moe/ep_moe/kernels.py +74 -0
  83. sglang/srt/layers/moe/ep_moe/layer.py +110 -49
  84. sglang/srt/layers/moe/fused_moe_native.py +5 -3
  85. sglang/srt/layers/moe/fused_moe_triton/__init__.py +5 -3
  86. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  87. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=129,N=352,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  88. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/{E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → E=257,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json } +29 -29
  89. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  90. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  91. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  92. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  93. sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +9 -1049
  94. sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +212 -0
  95. sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +799 -0
  96. sglang/srt/layers/moe/fused_moe_triton/layer.py +56 -45
  97. sglang/srt/layers/moe/fused_moe_triton/moe_align_block_size.py +87 -0
  98. sglang/srt/layers/moe/moe_runner/__init__.py +2 -1
  99. sglang/srt/layers/moe/moe_runner/base.py +274 -1
  100. sglang/srt/layers/moe/moe_runner/runner.py +80 -0
  101. sglang/srt/layers/moe/moe_runner/triton.py +448 -0
  102. sglang/srt/layers/moe/token_dispatcher/__init__.py +16 -4
  103. sglang/srt/layers/moe/token_dispatcher/{base_dispatcher.py → base.py} +67 -17
  104. sglang/srt/layers/moe/token_dispatcher/deepep.py +41 -38
  105. sglang/srt/layers/moe/token_dispatcher/standard.py +44 -2
  106. sglang/srt/layers/moe/topk.py +43 -12
  107. sglang/srt/layers/moe/utils.py +6 -5
  108. sglang/srt/layers/quantization/awq.py +19 -7
  109. sglang/srt/layers/quantization/base_config.py +11 -6
  110. sglang/srt/layers/quantization/blockwise_int8.py +38 -27
  111. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +50 -30
  112. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +13 -1
  113. sglang/srt/layers/quantization/deep_gemm_wrapper/compile_utils.py +9 -1
  114. sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -3
  115. sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +27 -0
  116. sglang/srt/layers/quantization/fp8.py +76 -47
  117. sglang/srt/layers/quantization/fp8_utils.py +43 -29
  118. sglang/srt/layers/quantization/gptq.py +25 -17
  119. sglang/srt/layers/quantization/modelopt_quant.py +107 -40
  120. sglang/srt/layers/quantization/moe_wna16.py +21 -18
  121. sglang/srt/layers/quantization/mxfp4.py +77 -45
  122. sglang/srt/layers/quantization/quark/quark_moe.py +32 -27
  123. sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +49 -30
  124. sglang/srt/layers/quantization/quark/utils.py +97 -0
  125. sglang/srt/layers/quantization/rocm_mxfp4_utils.py +13 -0
  126. sglang/srt/layers/quantization/unquant.py +135 -47
  127. sglang/srt/layers/quantization/utils.py +13 -0
  128. sglang/srt/layers/quantization/w4afp8.py +60 -42
  129. sglang/srt/layers/quantization/w8a8_fp8.py +35 -20
  130. sglang/srt/layers/quantization/w8a8_int8.py +83 -41
  131. sglang/srt/layers/rocm_linear_utils.py +44 -0
  132. sglang/srt/layers/rotary_embedding.py +28 -19
  133. sglang/srt/layers/sampler.py +29 -5
  134. sglang/srt/lora/backend/base_backend.py +50 -8
  135. sglang/srt/lora/backend/triton_backend.py +90 -2
  136. sglang/srt/lora/layers.py +32 -0
  137. sglang/srt/lora/lora.py +4 -1
  138. sglang/srt/lora/lora_manager.py +35 -112
  139. sglang/srt/lora/mem_pool.py +24 -10
  140. sglang/srt/lora/utils.py +18 -9
  141. sglang/srt/managers/cache_controller.py +242 -278
  142. sglang/srt/managers/data_parallel_controller.py +30 -15
  143. sglang/srt/managers/detokenizer_manager.py +13 -2
  144. sglang/srt/managers/disagg_service.py +46 -0
  145. sglang/srt/managers/io_struct.py +160 -11
  146. sglang/srt/managers/mm_utils.py +6 -1
  147. sglang/srt/managers/multi_tokenizer_mixin.py +579 -0
  148. sglang/srt/managers/schedule_batch.py +27 -44
  149. sglang/srt/managers/schedule_policy.py +4 -3
  150. sglang/srt/managers/scheduler.py +90 -115
  151. sglang/srt/managers/scheduler_metrics_mixin.py +114 -8
  152. sglang/srt/managers/scheduler_output_processor_mixin.py +29 -19
  153. sglang/srt/managers/scheduler_profiler_mixin.py +1 -1
  154. sglang/srt/managers/scheduler_update_weights_mixin.py +8 -1
  155. sglang/srt/managers/template_manager.py +3 -3
  156. sglang/srt/managers/tokenizer_communicator_mixin.py +491 -0
  157. sglang/srt/managers/tokenizer_manager.py +41 -477
  158. sglang/srt/managers/tp_worker.py +16 -4
  159. sglang/srt/managers/tp_worker_overlap_thread.py +8 -10
  160. sglang/srt/mem_cache/allocator.py +1 -1
  161. sglang/srt/mem_cache/chunk_cache.py +1 -1
  162. sglang/srt/mem_cache/hicache_storage.py +24 -22
  163. sglang/srt/mem_cache/hiradix_cache.py +184 -101
  164. sglang/srt/mem_cache/lora_radix_cache.py +1 -1
  165. sglang/srt/mem_cache/memory_pool.py +324 -41
  166. sglang/srt/mem_cache/memory_pool_host.py +25 -18
  167. sglang/srt/mem_cache/radix_cache.py +5 -6
  168. sglang/srt/mem_cache/radix_cache_cpp.py +1 -1
  169. sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +164 -0
  170. sglang/srt/mem_cache/storage/hf3fs/{client_hf3fs.py → hf3fs_usrbio_client.py} +5 -1
  171. sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +61 -34
  172. sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +149 -12
  173. sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +280 -0
  174. sglang/srt/mem_cache/storage/lmcache/unit_test.py +121 -0
  175. sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +74 -19
  176. sglang/srt/mem_cache/storage/mooncake_store/test_mooncake_store.py +161 -0
  177. sglang/srt/mem_cache/swa_radix_cache.py +1 -3
  178. sglang/srt/metrics/collector.py +484 -63
  179. sglang/srt/metrics/startup_func_log_and_timer.py +150 -0
  180. sglang/srt/metrics/utils.py +48 -0
  181. sglang/srt/model_executor/cpu_graph_runner.py +640 -0
  182. sglang/srt/model_executor/cuda_graph_runner.py +13 -5
  183. sglang/srt/model_executor/forward_batch_info.py +72 -18
  184. sglang/srt/model_executor/model_runner.py +189 -31
  185. sglang/srt/model_loader/__init__.py +9 -3
  186. sglang/srt/model_loader/loader.py +33 -28
  187. sglang/srt/model_loader/utils.py +12 -0
  188. sglang/srt/model_loader/weight_utils.py +2 -1
  189. sglang/srt/models/deepseek_v2.py +311 -50
  190. sglang/srt/models/gemma3n_mm.py +1 -1
  191. sglang/srt/models/glm4_moe.py +10 -1
  192. sglang/srt/models/glm4v.py +4 -2
  193. sglang/srt/models/gpt_oss.py +5 -18
  194. sglang/srt/models/internvl.py +28 -0
  195. sglang/srt/models/llama4.py +9 -0
  196. sglang/srt/models/llama_eagle3.py +17 -0
  197. sglang/srt/models/longcat_flash.py +1026 -0
  198. sglang/srt/models/longcat_flash_nextn.py +699 -0
  199. sglang/srt/models/minicpmv.py +165 -3
  200. sglang/srt/models/mllama4.py +25 -0
  201. sglang/srt/models/opt.py +637 -0
  202. sglang/srt/models/qwen2.py +33 -3
  203. sglang/srt/models/qwen2_5_vl.py +90 -42
  204. sglang/srt/models/qwen2_moe.py +79 -14
  205. sglang/srt/models/qwen3.py +8 -2
  206. sglang/srt/models/qwen3_moe.py +39 -8
  207. sglang/srt/models/qwen3_next.py +1039 -0
  208. sglang/srt/models/qwen3_next_mtp.py +109 -0
  209. sglang/srt/models/torch_native_llama.py +1 -1
  210. sglang/srt/models/transformers.py +1 -1
  211. sglang/srt/multimodal/processors/base_processor.py +4 -2
  212. sglang/srt/multimodal/processors/glm4v.py +9 -9
  213. sglang/srt/multimodal/processors/internvl.py +141 -129
  214. sglang/srt/{reasoning_parser.py → parser/reasoning_parser.py} +1 -1
  215. sglang/srt/sampling/penaltylib/orchestrator.py +14 -2
  216. sglang/srt/sampling/sampling_batch_info.py +18 -15
  217. sglang/srt/server_args.py +297 -79
  218. sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +5 -0
  219. sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +10 -1
  220. sglang/srt/speculative/eagle_worker.py +216 -120
  221. sglang/srt/speculative/spec_info.py +5 -0
  222. sglang/srt/speculative/standalone_worker.py +109 -0
  223. sglang/srt/utils.py +37 -2
  224. sglang/srt/weight_sync/utils.py +1 -1
  225. sglang/test/attention/test_trtllm_mla_backend.py +181 -8
  226. sglang/test/few_shot_gsm8k.py +1 -0
  227. sglang/test/runners.py +4 -0
  228. sglang/test/test_cutlass_moe.py +24 -6
  229. sglang/test/test_cutlass_w4a8_moe.py +24 -9
  230. sglang/test/test_disaggregation_utils.py +66 -0
  231. sglang/test/test_utils.py +25 -1
  232. sglang/utils.py +5 -0
  233. sglang/version.py +1 -1
  234. {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/METADATA +11 -9
  235. {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/RECORD +243 -194
  236. sglang/srt/disaggregation/launch_lb.py +0 -131
  237. sglang/srt/mem_cache/storage/mooncake_store/unit_test.py +0 -40
  238. /sglang/srt/{model_parallel.py → layers/model_parallel.py} +0 -0
  239. /sglang/srt/{code_completion_parser.py → parser/code_completion_parser.py} +0 -0
  240. /sglang/srt/{conversation.py → parser/conversation.py} +0 -0
  241. /sglang/srt/{harmony_parser.py → parser/harmony_parser.py} +0 -0
  242. /sglang/srt/{jinja_template_utils.py → parser/jinja_template_utils.py} +0 -0
  243. {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/WHEEL +0 -0
  244. {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/licenses/LICENSE +0 -0
  245. {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,465 @@
1
+ # Adapt from https://github.com/fla-org/flash-linear-attention/blob/main/fla/ops/utils/solve_tril.py
2
+ # -*- coding: utf-8 -*-
3
+ # Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
4
+
5
+ from typing import Optional
6
+
7
+ import torch
8
+ import triton
9
+ import triton.language as tl
10
+
11
+ from sglang.srt.layers.attention.fla.index import prepare_chunk_indices
12
+ from sglang.srt.layers.attention.fla.utils import input_guard
13
+
14
+
15
+ @triton.heuristics({"IS_VARLEN": lambda args: args["cu_seqlens"] is not None})
16
+ # @triton.autotune(
17
+ # configs=[
18
+ # triton.Config({}, num_warps=num_warps, num_stages=num_stages)
19
+ # for num_warps in [1, 2, 4, 8]
20
+ # for num_stages in [2, 3, 4, 5]
21
+ # ],
22
+ # key=["BT"],
23
+ # )
24
+ @triton.jit(do_not_specialize=["T"])
25
+ def solve_tril_16x16_kernel(
26
+ A,
27
+ Ad,
28
+ cu_seqlens,
29
+ chunk_indices,
30
+ T,
31
+ H: tl.constexpr,
32
+ BT: tl.constexpr,
33
+ IS_VARLEN: tl.constexpr,
34
+ ):
35
+ i_t, i_bh = tl.program_id(0), tl.program_id(1)
36
+ i_b, i_h = i_bh // H, i_bh % H
37
+ if IS_VARLEN:
38
+ i_n, i_t = tl.load(chunk_indices + i_t * 2).to(tl.int32), tl.load(
39
+ chunk_indices + i_t * 2 + 1
40
+ ).to(tl.int32)
41
+ bos, eos = tl.load(cu_seqlens + i_n).to(tl.int32), tl.load(
42
+ cu_seqlens + i_n + 1
43
+ ).to(tl.int32)
44
+ T = eos - bos
45
+ else:
46
+ bos, eos = i_b * T, i_b * T + T
47
+
48
+ A = A + (bos * H + i_h) * BT
49
+ Ad = Ad + (bos * H + i_h) * 16
50
+
51
+ offset = (i_t * 16) % BT
52
+ p_A = tl.make_block_ptr(
53
+ A, (T, BT), (H * BT, 1), (i_t * 16, offset), (16, 16), (1, 0)
54
+ )
55
+ p_Ai = tl.make_block_ptr(Ad, (T, 16), (H * 16, 1), (i_t * 16, 0), (16, 16), (1, 0))
56
+ b_A = tl.load(p_A, boundary_check=(0, 1)).to(tl.float32)
57
+ b_A = -tl.where(tl.arange(0, 16)[:, None] > tl.arange(0, 16)[None, :], b_A, 0)
58
+
59
+ o_i = tl.arange(0, 16)
60
+ for i in range(1, min(16, T - i_t * 16)):
61
+ b_a = -tl.load(A + (i_t * 16 + i) * H * BT + o_i + offset)
62
+ b_a = b_a + tl.sum(b_a[:, None] * b_A, 0)
63
+ mask = o_i == i
64
+ b_A = tl.where(mask[:, None], b_a, b_A)
65
+ b_A += o_i[:, None] == o_i[None, :]
66
+ tl.store(
67
+ p_Ai,
68
+ b_A.to(p_Ai.dtype.element_ty, fp_downcast_rounding="rtne"),
69
+ boundary_check=(0, 1),
70
+ )
71
+
72
+
73
+ @triton.heuristics({"IS_VARLEN": lambda args: args["cu_seqlens"] is not None})
74
+ # @triton.autotune(
75
+ # configs=[
76
+ # triton.Config({}, num_warps=num_warps, num_stages=num_stages)
77
+ # for num_warps in [1, 2, 4, 8]
78
+ # for num_stages in [2, 3, 4, 5]
79
+ # ],
80
+ # key=["H", "BT", "IS_VARLEN"],
81
+ # )
82
+ @triton.jit(do_not_specialize=["T"])
83
+ def merge_16x16_to_32x32_inverse_kernel(
84
+ A,
85
+ Ad,
86
+ Ai,
87
+ cu_seqlens,
88
+ chunk_indices,
89
+ T,
90
+ H: tl.constexpr,
91
+ BT: tl.constexpr,
92
+ IS_VARLEN: tl.constexpr,
93
+ ):
94
+ i_t, i_bh = tl.program_id(0), tl.program_id(1)
95
+ i_b, i_h = i_bh // H, i_bh % H
96
+ if IS_VARLEN:
97
+ i_n, i_t = tl.load(chunk_indices + i_t * 2).to(tl.int32), tl.load(
98
+ chunk_indices + i_t * 2 + 1
99
+ ).to(tl.int32)
100
+ bos, eos = tl.load(cu_seqlens + i_n).to(tl.int32), tl.load(
101
+ cu_seqlens + i_n + 1
102
+ ).to(tl.int32)
103
+ T = eos - bos
104
+ else:
105
+ bos, eos = i_b * T, i_b * T + T
106
+
107
+ A += (bos * H + i_h) * 32
108
+ Ad += (bos * H + i_h) * 16
109
+ Ai += (bos * H + i_h) * 32
110
+
111
+ p_A_21 = tl.make_block_ptr(
112
+ A, (T, 32), (H * 32, 1), (i_t * 32 + 16, 0), (16, 16), (1, 0)
113
+ )
114
+ p_Ad_11 = tl.make_block_ptr(
115
+ Ad, (T, 16), (H * 16, 1), (i_t * 32, 0), (16, 16), (1, 0)
116
+ )
117
+ p_Ad_22 = tl.make_block_ptr(
118
+ Ad, (T, 16), (H * 16, 1), (i_t * 32 + 16, 0), (16, 16), (1, 0)
119
+ )
120
+ p_Ai_11 = tl.make_block_ptr(
121
+ Ai, (T, 32), (H * 32, 1), (i_t * 32, 0), (16, 16), (1, 0)
122
+ )
123
+ p_Ai_22 = tl.make_block_ptr(
124
+ Ai, (T, 32), (H * 32, 1), (i_t * 32 + 16, 16), (16, 16), (1, 0)
125
+ )
126
+ p_Ai_21 = tl.make_block_ptr(
127
+ Ai, (T, 32), (H * 32, 1), (i_t * 32 + 16, 0), (16, 16), (1, 0)
128
+ )
129
+
130
+ A_21 = tl.load(p_A_21, boundary_check=(0, 1)).to(tl.float32)
131
+ Ai_11 = tl.load(p_Ad_11, boundary_check=(0, 1)).to(tl.float32)
132
+ Ai_22 = tl.load(p_Ad_22, boundary_check=(0, 1)).to(tl.float32)
133
+ Ai_21 = -tl.dot(
134
+ tl.dot(Ai_22, A_21, input_precision="ieee"), Ai_11, input_precision="ieee"
135
+ )
136
+ tl.store(
137
+ p_Ai_11,
138
+ Ai_11.to(p_Ai_11.dtype.element_ty, fp_downcast_rounding="rtne"),
139
+ boundary_check=(0, 1),
140
+ )
141
+ tl.store(
142
+ p_Ai_22,
143
+ Ai_22.to(p_Ai_22.dtype.element_ty, fp_downcast_rounding="rtne"),
144
+ boundary_check=(0, 1),
145
+ )
146
+ tl.store(
147
+ p_Ai_21,
148
+ Ai_21.to(p_Ai_21.dtype.element_ty, fp_downcast_rounding="rtne"),
149
+ boundary_check=(0, 1),
150
+ )
151
+
152
+
153
+ @triton.heuristics({"IS_VARLEN": lambda args: args["cu_seqlens"] is not None})
154
+ # @triton.autotune(
155
+ # configs=[
156
+ # triton.Config({}, num_warps=num_warps, num_stages=num_stages)
157
+ # for num_warps in [2, 4, 8]
158
+ # for num_stages in [2, 3, 4, 5]
159
+ # ],
160
+ # key=["H", "BT", "IS_VARLEN"],
161
+ # )
162
+ @triton.jit(do_not_specialize=["T"])
163
+ def merge_16x16_to_64x64_inverse_kernel(
164
+ A,
165
+ Ad,
166
+ Ai,
167
+ cu_seqlens,
168
+ chunk_indices,
169
+ T,
170
+ H: tl.constexpr,
171
+ BT: tl.constexpr,
172
+ IS_VARLEN: tl.constexpr,
173
+ ):
174
+ i_t, i_bh = tl.program_id(0), tl.program_id(1)
175
+ i_b, i_h = i_bh // H, i_bh % H
176
+ if IS_VARLEN:
177
+ i_n, i_t = tl.load(chunk_indices + i_t * 2).to(tl.int32), tl.load(
178
+ chunk_indices + i_t * 2 + 1
179
+ ).to(tl.int32)
180
+ bos, eos = tl.load(cu_seqlens + i_n).to(tl.int32), tl.load(
181
+ cu_seqlens + i_n + 1
182
+ ).to(tl.int32)
183
+ T = eos - bos
184
+ else:
185
+ bos, eos = i_b * T, i_b * T + T
186
+
187
+ A += (bos * H + i_h) * 64
188
+ Ad += (bos * H + i_h) * 16
189
+ Ai += (bos * H + i_h) * 64
190
+
191
+ p_A_21 = tl.make_block_ptr(
192
+ A, (T, 64), (H * 64, 1), (i_t * 64 + 16, 0), (16, 16), (1, 0)
193
+ )
194
+ p_A_32 = tl.make_block_ptr(
195
+ A, (T, 64), (H * 64, 1), (i_t * 64 + 32, 16), (16, 16), (1, 0)
196
+ )
197
+ p_A_31 = tl.make_block_ptr(
198
+ A, (T, 64), (H * 64, 1), (i_t * 64 + 32, 0), (16, 16), (1, 0)
199
+ )
200
+ p_A_43 = tl.make_block_ptr(
201
+ A, (T, 64), (H * 64, 1), (i_t * 64 + 48, 32), (16, 16), (1, 0)
202
+ )
203
+ p_A_42 = tl.make_block_ptr(
204
+ A, (T, 64), (H * 64, 1), (i_t * 64 + 48, 16), (16, 16), (1, 0)
205
+ )
206
+ p_A_41 = tl.make_block_ptr(
207
+ A, (T, 64), (H * 64, 1), (i_t * 64 + 48, 0), (16, 16), (1, 0)
208
+ )
209
+ p_Ad_11 = tl.make_block_ptr(
210
+ Ad, (T, 16), (H * 16, 1), (i_t * 64, 0), (16, 16), (1, 0)
211
+ )
212
+ p_Ad_22 = tl.make_block_ptr(
213
+ Ad, (T, 16), (H * 16, 1), (i_t * 64 + 16, 0), (16, 16), (1, 0)
214
+ )
215
+ p_Ad_33 = tl.make_block_ptr(
216
+ Ad, (T, 16), (H * 16, 1), (i_t * 64 + 32, 0), (16, 16), (1, 0)
217
+ )
218
+ p_Ad_44 = tl.make_block_ptr(
219
+ Ad, (T, 16), (H * 16, 1), (i_t * 64 + 48, 0), (16, 16), (1, 0)
220
+ )
221
+
222
+ A_21 = tl.load(p_A_21, boundary_check=(0, 1)).to(tl.float32)
223
+ A_32 = tl.load(p_A_32, boundary_check=(0, 1)).to(tl.float32)
224
+ A_31 = tl.load(p_A_31, boundary_check=(0, 1)).to(tl.float32)
225
+ A_43 = tl.load(p_A_43, boundary_check=(0, 1)).to(tl.float32)
226
+ A_42 = tl.load(p_A_42, boundary_check=(0, 1)).to(tl.float32)
227
+ A_41 = tl.load(p_A_41, boundary_check=(0, 1)).to(tl.float32)
228
+
229
+ Ai_11 = tl.load(p_Ad_11, boundary_check=(0, 1)).to(tl.float32)
230
+ Ai_22 = tl.load(p_Ad_22, boundary_check=(0, 1)).to(tl.float32)
231
+ Ai_33 = tl.load(p_Ad_33, boundary_check=(0, 1)).to(tl.float32)
232
+ Ai_44 = tl.load(p_Ad_44, boundary_check=(0, 1)).to(tl.float32)
233
+
234
+ Ai_21 = -tl.dot(
235
+ tl.dot(Ai_22, A_21, input_precision="ieee"), Ai_11, input_precision="ieee"
236
+ )
237
+ Ai_32 = -tl.dot(
238
+ tl.dot(Ai_33, A_32, input_precision="ieee"), Ai_22, input_precision="ieee"
239
+ )
240
+ Ai_43 = -tl.dot(
241
+ tl.dot(Ai_44, A_43, input_precision="ieee"), Ai_33, input_precision="ieee"
242
+ )
243
+
244
+ Ai_31 = -tl.dot(
245
+ Ai_33,
246
+ tl.dot(A_31, Ai_11, input_precision="ieee")
247
+ + tl.dot(A_32, Ai_21, input_precision="ieee"),
248
+ input_precision="ieee",
249
+ )
250
+ Ai_42 = -tl.dot(
251
+ Ai_44,
252
+ tl.dot(A_42, Ai_22, input_precision="ieee")
253
+ + tl.dot(A_43, Ai_32, input_precision="ieee"),
254
+ input_precision="ieee",
255
+ )
256
+ Ai_41 = -tl.dot(
257
+ Ai_44,
258
+ tl.dot(A_41, Ai_11, input_precision="ieee")
259
+ + tl.dot(A_42, Ai_21, input_precision="ieee")
260
+ + tl.dot(A_43, Ai_31, input_precision="ieee"),
261
+ input_precision="ieee",
262
+ )
263
+
264
+ p_Ai_11 = tl.make_block_ptr(
265
+ Ai, (T, 64), (H * 64, 1), (i_t * 64, 0), (16, 16), (1, 0)
266
+ )
267
+ p_Ai_22 = tl.make_block_ptr(
268
+ Ai, (T, 64), (H * 64, 1), (i_t * 64 + 16, 16), (16, 16), (1, 0)
269
+ )
270
+ p_Ai_33 = tl.make_block_ptr(
271
+ Ai, (T, 64), (H * 64, 1), (i_t * 64 + 32, 32), (16, 16), (1, 0)
272
+ )
273
+ p_Ai_44 = tl.make_block_ptr(
274
+ Ai, (T, 64), (H * 64, 1), (i_t * 64 + 48, 48), (16, 16), (1, 0)
275
+ )
276
+ p_Ai_21 = tl.make_block_ptr(
277
+ Ai, (T, 64), (H * 64, 1), (i_t * 64 + 16, 0), (16, 16), (1, 0)
278
+ )
279
+ p_Ai_31 = tl.make_block_ptr(
280
+ Ai, (T, 64), (H * 64, 1), (i_t * 64 + 32, 0), (16, 16), (1, 0)
281
+ )
282
+ p_Ai_32 = tl.make_block_ptr(
283
+ Ai, (T, 64), (H * 64, 1), (i_t * 64 + 32, 16), (16, 16), (1, 0)
284
+ )
285
+ p_Ai_41 = tl.make_block_ptr(
286
+ Ai, (T, 64), (H * 64, 1), (i_t * 64 + 48, 0), (16, 16), (1, 0)
287
+ )
288
+ p_Ai_42 = tl.make_block_ptr(
289
+ Ai, (T, 64), (H * 64, 1), (i_t * 64 + 48, 16), (16, 16), (1, 0)
290
+ )
291
+ p_Ai_43 = tl.make_block_ptr(
292
+ Ai, (T, 64), (H * 64, 1), (i_t * 64 + 48, 32), (16, 16), (1, 0)
293
+ )
294
+ tl.store(
295
+ p_Ai_11,
296
+ Ai_11.to(p_Ai_11.dtype.element_ty, fp_downcast_rounding="rtne"),
297
+ boundary_check=(0, 1),
298
+ )
299
+ tl.store(
300
+ p_Ai_22,
301
+ Ai_22.to(p_Ai_22.dtype.element_ty, fp_downcast_rounding="rtne"),
302
+ boundary_check=(0, 1),
303
+ )
304
+ tl.store(
305
+ p_Ai_33,
306
+ Ai_33.to(p_Ai_33.dtype.element_ty, fp_downcast_rounding="rtne"),
307
+ boundary_check=(0, 1),
308
+ )
309
+ tl.store(
310
+ p_Ai_44,
311
+ Ai_44.to(p_Ai_44.dtype.element_ty, fp_downcast_rounding="rtne"),
312
+ boundary_check=(0, 1),
313
+ )
314
+ tl.store(
315
+ p_Ai_21,
316
+ Ai_21.to(p_Ai_21.dtype.element_ty, fp_downcast_rounding="rtne"),
317
+ boundary_check=(0, 1),
318
+ )
319
+ tl.store(
320
+ p_Ai_31,
321
+ Ai_31.to(p_Ai_31.dtype.element_ty, fp_downcast_rounding="rtne"),
322
+ boundary_check=(0, 1),
323
+ )
324
+ tl.store(
325
+ p_Ai_32,
326
+ Ai_32.to(p_Ai_32.dtype.element_ty, fp_downcast_rounding="rtne"),
327
+ boundary_check=(0, 1),
328
+ )
329
+ tl.store(
330
+ p_Ai_41,
331
+ Ai_41.to(p_Ai_41.dtype.element_ty, fp_downcast_rounding="rtne"),
332
+ boundary_check=(0, 1),
333
+ )
334
+ tl.store(
335
+ p_Ai_42,
336
+ Ai_42.to(p_Ai_42.dtype.element_ty, fp_downcast_rounding="rtne"),
337
+ boundary_check=(0, 1),
338
+ )
339
+ tl.store(
340
+ p_Ai_43,
341
+ Ai_43.to(p_Ai_43.dtype.element_ty, fp_downcast_rounding="rtne"),
342
+ boundary_check=(0, 1),
343
+ )
344
+
345
+ fill_zeros = tl.zeros((16, 16), dtype=tl.float32)
346
+ p_Ai_12 = tl.make_block_ptr(
347
+ Ai, (T, 64), (H * 64, 1), (i_t * 64, 16), (16, 16), (1, 0)
348
+ )
349
+ p_Ai_13 = tl.make_block_ptr(
350
+ Ai, (T, 64), (H * 64, 1), (i_t * 64, 32), (16, 16), (1, 0)
351
+ )
352
+ p_Ai_14 = tl.make_block_ptr(
353
+ Ai, (T, 64), (H * 64, 1), (i_t * 64, 48), (16, 16), (1, 0)
354
+ )
355
+ p_Ai_23 = tl.make_block_ptr(
356
+ Ai, (T, 64), (H * 64, 1), (i_t * 64 + 16, 32), (16, 16), (1, 0)
357
+ )
358
+ p_Ai_24 = tl.make_block_ptr(
359
+ Ai, (T, 64), (H * 64, 1), (i_t * 64 + 16, 48), (16, 16), (1, 0)
360
+ )
361
+ p_Ai_34 = tl.make_block_ptr(
362
+ Ai, (T, 64), (H * 64, 1), (i_t * 64 + 32, 48), (16, 16), (1, 0)
363
+ )
364
+ tl.store(
365
+ p_Ai_12,
366
+ fill_zeros.to(p_Ai_12.dtype.element_ty, fp_downcast_rounding="rtne"),
367
+ boundary_check=(0, 1),
368
+ )
369
+ tl.store(
370
+ p_Ai_13,
371
+ fill_zeros.to(p_Ai_13.dtype.element_ty, fp_downcast_rounding="rtne"),
372
+ boundary_check=(0, 1),
373
+ )
374
+ tl.store(
375
+ p_Ai_14,
376
+ fill_zeros.to(p_Ai_14.dtype.element_ty, fp_downcast_rounding="rtne"),
377
+ boundary_check=(0, 1),
378
+ )
379
+ tl.store(
380
+ p_Ai_23,
381
+ fill_zeros.to(p_Ai_23.dtype.element_ty, fp_downcast_rounding="rtne"),
382
+ boundary_check=(0, 1),
383
+ )
384
+ tl.store(
385
+ p_Ai_24,
386
+ fill_zeros.to(p_Ai_24.dtype.element_ty, fp_downcast_rounding="rtne"),
387
+ boundary_check=(0, 1),
388
+ )
389
+ tl.store(
390
+ p_Ai_34,
391
+ fill_zeros.to(p_Ai_34.dtype.element_ty, fp_downcast_rounding="rtne"),
392
+ boundary_check=(0, 1),
393
+ )
394
+
395
+
396
+ @input_guard
397
+ def solve_tril(
398
+ A: torch.Tensor,
399
+ cu_seqlens: Optional[torch.Tensor] = None,
400
+ output_dtype: torch.dtype = torch.float,
401
+ ) -> torch.Tensor:
402
+ """
403
+ Compute the inverse of the lower triangular matrix
404
+ A should be strictly lower triangular, i.e., A.triu() == 0.
405
+
406
+ Args:
407
+ A (torch.Tensor):
408
+ [B, T, H, K]
409
+ cu_seqlens (torch.Tensor):
410
+ The cumulative sequence lengths of the input tensor.
411
+ Default: None.
412
+ output_dtype (torch.dtype):
413
+ The dtype of the output tensor. Default: `torch.float`
414
+
415
+ Returns:
416
+ (I + A)^-1 with the same shape as A
417
+ """
418
+ assert A.shape[-1] in [16, 32, 64]
419
+
420
+ B, T, H, BT = A.shape
421
+ Ad = torch.empty(
422
+ B, T, H, 16, device=A.device, dtype=torch.float if BT != 16 else output_dtype
423
+ )
424
+
425
+ chunk_indices = (
426
+ prepare_chunk_indices(cu_seqlens, 16) if cu_seqlens is not None else None
427
+ )
428
+ NT = len(chunk_indices) if cu_seqlens is not None else triton.cdiv(T, 16)
429
+ solve_tril_16x16_kernel[NT, B * H](
430
+ A=A,
431
+ Ad=Ad,
432
+ cu_seqlens=cu_seqlens,
433
+ chunk_indices=chunk_indices,
434
+ T=T,
435
+ H=H,
436
+ BT=BT,
437
+ num_warps=1,
438
+ num_stages=4,
439
+ )
440
+ if BT == 16:
441
+ return Ad
442
+
443
+ Ai = torch.empty(B, T, H, BT, device=A.device, dtype=output_dtype)
444
+ merge_fn = (
445
+ merge_16x16_to_32x32_inverse_kernel
446
+ if BT == 32
447
+ else merge_16x16_to_64x64_inverse_kernel
448
+ )
449
+ chunk_indices = (
450
+ prepare_chunk_indices(cu_seqlens, BT) if cu_seqlens is not None else None
451
+ )
452
+ NT = len(chunk_indices) if cu_seqlens is not None else triton.cdiv(T, BT)
453
+ merge_fn[NT, B * H](
454
+ A=A,
455
+ Ad=Ad,
456
+ Ai=Ai,
457
+ cu_seqlens=cu_seqlens,
458
+ chunk_indices=chunk_indices,
459
+ T=T,
460
+ H=H,
461
+ BT=BT,
462
+ num_warps=4,
463
+ num_stages=3,
464
+ )
465
+ return Ai