sglang 0.5.1.post3__py3-none-any.whl → 0.5.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +3 -0
- sglang/bench_one_batch_server.py +10 -1
- sglang/bench_serving.py +251 -26
- sglang/lang/interpreter.py +1 -1
- sglang/srt/configs/__init__.py +4 -0
- sglang/srt/configs/internvl.py +6 -0
- sglang/srt/configs/longcat_flash.py +104 -0
- sglang/srt/configs/model_config.py +37 -7
- sglang/srt/configs/qwen3_next.py +326 -0
- sglang/srt/connector/__init__.py +1 -1
- sglang/srt/connector/base_connector.py +1 -2
- sglang/srt/connector/redis.py +2 -2
- sglang/srt/connector/serde/__init__.py +1 -1
- sglang/srt/connector/serde/safe_serde.py +4 -3
- sglang/srt/custom_op.py +11 -1
- sglang/srt/debug_utils/dump_comparator.py +81 -44
- sglang/srt/debug_utils/dump_loader.py +97 -0
- sglang/srt/debug_utils/dumper.py +11 -3
- sglang/srt/debug_utils/text_comparator.py +73 -11
- sglang/srt/disaggregation/ascend/conn.py +75 -0
- sglang/srt/disaggregation/base/conn.py +1 -1
- sglang/srt/disaggregation/common/conn.py +15 -12
- sglang/srt/disaggregation/decode.py +6 -4
- sglang/srt/disaggregation/fake/conn.py +1 -1
- sglang/srt/disaggregation/mini_lb.py +6 -420
- sglang/srt/disaggregation/mooncake/conn.py +18 -10
- sglang/srt/disaggregation/nixl/conn.py +180 -16
- sglang/srt/disaggregation/prefill.py +6 -4
- sglang/srt/disaggregation/utils.py +5 -50
- sglang/srt/distributed/parallel_state.py +94 -58
- sglang/srt/entrypoints/engine.py +34 -14
- sglang/srt/entrypoints/http_server.py +172 -47
- sglang/srt/entrypoints/openai/protocol.py +63 -3
- sglang/srt/entrypoints/openai/serving_base.py +6 -2
- sglang/srt/entrypoints/openai/serving_chat.py +34 -19
- sglang/srt/entrypoints/openai/serving_completions.py +10 -4
- sglang/srt/entrypoints/openai/serving_embedding.py +8 -4
- sglang/srt/entrypoints/openai/serving_responses.py +7 -4
- sglang/srt/eplb/eplb_manager.py +28 -4
- sglang/srt/eplb/expert_distribution.py +55 -15
- sglang/srt/eplb/expert_location.py +8 -3
- sglang/srt/eplb/expert_location_updater.py +1 -1
- sglang/srt/function_call/ebnf_composer.py +11 -9
- sglang/srt/function_call/glm4_moe_detector.py +1 -1
- sglang/srt/function_call/gpt_oss_detector.py +1 -1
- sglang/srt/function_call/qwen3_coder_detector.py +1 -1
- sglang/srt/hf_transformers_utils.py +12 -0
- sglang/srt/layers/activation.py +44 -9
- sglang/srt/layers/attention/aiter_backend.py +93 -68
- sglang/srt/layers/attention/ascend_backend.py +250 -112
- sglang/srt/layers/attention/fla/chunk.py +242 -0
- sglang/srt/layers/attention/fla/chunk_delta_h.py +314 -0
- sglang/srt/layers/attention/fla/chunk_o.py +178 -0
- sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +151 -0
- sglang/srt/layers/attention/fla/cumsum.py +300 -0
- sglang/srt/layers/attention/fla/fused_recurrent.py +640 -0
- sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +232 -0
- sglang/srt/layers/attention/fla/index.py +37 -0
- sglang/srt/layers/attention/fla/l2norm.py +150 -0
- sglang/srt/layers/attention/fla/layernorm_gated.py +326 -0
- sglang/srt/layers/attention/fla/op.py +66 -0
- sglang/srt/layers/attention/fla/solve_tril.py +465 -0
- sglang/srt/layers/attention/fla/utils.py +331 -0
- sglang/srt/layers/attention/fla/wy_fast.py +158 -0
- sglang/srt/layers/attention/flashinfer_backend.py +6 -4
- sglang/srt/layers/attention/flashinfer_mla_backend.py +16 -12
- sglang/srt/layers/attention/hybrid_attn_backend.py +47 -8
- sglang/srt/layers/attention/hybrid_linear_attn_backend.py +584 -0
- sglang/srt/layers/attention/intel_amx_backend.py +3 -0
- sglang/srt/layers/attention/mamba/causal_conv1d.py +128 -0
- sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +1052 -0
- sglang/srt/layers/attention/mamba/mamba.py +64 -0
- sglang/srt/layers/attention/torch_native_backend.py +12 -6
- sglang/srt/layers/attention/trtllm_mla_backend.py +126 -36
- sglang/srt/layers/attention/wave_ops/decode_attention.py +2 -4
- sglang/srt/layers/attention/wave_ops/extend_attention.py +1 -3
- sglang/srt/layers/communicator.py +45 -7
- sglang/srt/layers/layernorm.py +54 -12
- sglang/srt/layers/logits_processor.py +10 -3
- sglang/srt/layers/moe/__init__.py +2 -1
- sglang/srt/layers/moe/cutlass_w4a8_moe.py +4 -12
- sglang/srt/layers/moe/ep_moe/kernels.py +74 -0
- sglang/srt/layers/moe/ep_moe/layer.py +110 -49
- sglang/srt/layers/moe/fused_moe_native.py +5 -3
- sglang/srt/layers/moe/fused_moe_triton/__init__.py +5 -3
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=129,N=352,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/{E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → E=257,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json } +29 -29
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +9 -1049
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +212 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +799 -0
- sglang/srt/layers/moe/fused_moe_triton/layer.py +56 -45
- sglang/srt/layers/moe/fused_moe_triton/moe_align_block_size.py +87 -0
- sglang/srt/layers/moe/moe_runner/__init__.py +2 -1
- sglang/srt/layers/moe/moe_runner/base.py +274 -1
- sglang/srt/layers/moe/moe_runner/runner.py +80 -0
- sglang/srt/layers/moe/moe_runner/triton.py +448 -0
- sglang/srt/layers/moe/token_dispatcher/__init__.py +16 -4
- sglang/srt/layers/moe/token_dispatcher/{base_dispatcher.py → base.py} +67 -17
- sglang/srt/layers/moe/token_dispatcher/deepep.py +41 -38
- sglang/srt/layers/moe/token_dispatcher/standard.py +44 -2
- sglang/srt/layers/moe/topk.py +43 -12
- sglang/srt/layers/moe/utils.py +6 -5
- sglang/srt/layers/quantization/awq.py +19 -7
- sglang/srt/layers/quantization/base_config.py +11 -6
- sglang/srt/layers/quantization/blockwise_int8.py +38 -27
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +50 -30
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +13 -1
- sglang/srt/layers/quantization/deep_gemm_wrapper/compile_utils.py +9 -1
- sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -3
- sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +27 -0
- sglang/srt/layers/quantization/fp8.py +76 -47
- sglang/srt/layers/quantization/fp8_utils.py +43 -29
- sglang/srt/layers/quantization/gptq.py +25 -17
- sglang/srt/layers/quantization/modelopt_quant.py +107 -40
- sglang/srt/layers/quantization/moe_wna16.py +21 -18
- sglang/srt/layers/quantization/mxfp4.py +77 -45
- sglang/srt/layers/quantization/quark/quark_moe.py +32 -27
- sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +49 -30
- sglang/srt/layers/quantization/quark/utils.py +97 -0
- sglang/srt/layers/quantization/rocm_mxfp4_utils.py +13 -0
- sglang/srt/layers/quantization/unquant.py +135 -47
- sglang/srt/layers/quantization/utils.py +13 -0
- sglang/srt/layers/quantization/w4afp8.py +60 -42
- sglang/srt/layers/quantization/w8a8_fp8.py +35 -20
- sglang/srt/layers/quantization/w8a8_int8.py +83 -41
- sglang/srt/layers/rocm_linear_utils.py +44 -0
- sglang/srt/layers/rotary_embedding.py +28 -19
- sglang/srt/layers/sampler.py +29 -5
- sglang/srt/lora/backend/base_backend.py +50 -8
- sglang/srt/lora/backend/triton_backend.py +90 -2
- sglang/srt/lora/layers.py +32 -0
- sglang/srt/lora/lora.py +4 -1
- sglang/srt/lora/lora_manager.py +35 -112
- sglang/srt/lora/mem_pool.py +24 -10
- sglang/srt/lora/utils.py +18 -9
- sglang/srt/managers/cache_controller.py +242 -278
- sglang/srt/managers/data_parallel_controller.py +30 -15
- sglang/srt/managers/detokenizer_manager.py +13 -2
- sglang/srt/managers/disagg_service.py +46 -0
- sglang/srt/managers/io_struct.py +160 -11
- sglang/srt/managers/mm_utils.py +6 -1
- sglang/srt/managers/multi_tokenizer_mixin.py +579 -0
- sglang/srt/managers/schedule_batch.py +27 -44
- sglang/srt/managers/schedule_policy.py +4 -3
- sglang/srt/managers/scheduler.py +90 -115
- sglang/srt/managers/scheduler_metrics_mixin.py +114 -8
- sglang/srt/managers/scheduler_output_processor_mixin.py +29 -19
- sglang/srt/managers/scheduler_profiler_mixin.py +1 -1
- sglang/srt/managers/scheduler_update_weights_mixin.py +8 -1
- sglang/srt/managers/template_manager.py +3 -3
- sglang/srt/managers/tokenizer_communicator_mixin.py +491 -0
- sglang/srt/managers/tokenizer_manager.py +41 -477
- sglang/srt/managers/tp_worker.py +16 -4
- sglang/srt/managers/tp_worker_overlap_thread.py +8 -10
- sglang/srt/mem_cache/allocator.py +1 -1
- sglang/srt/mem_cache/chunk_cache.py +1 -1
- sglang/srt/mem_cache/hicache_storage.py +24 -22
- sglang/srt/mem_cache/hiradix_cache.py +184 -101
- sglang/srt/mem_cache/lora_radix_cache.py +1 -1
- sglang/srt/mem_cache/memory_pool.py +324 -41
- sglang/srt/mem_cache/memory_pool_host.py +25 -18
- sglang/srt/mem_cache/radix_cache.py +5 -6
- sglang/srt/mem_cache/radix_cache_cpp.py +1 -1
- sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +164 -0
- sglang/srt/mem_cache/storage/hf3fs/{client_hf3fs.py → hf3fs_usrbio_client.py} +5 -1
- sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +61 -34
- sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +149 -12
- sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +280 -0
- sglang/srt/mem_cache/storage/lmcache/unit_test.py +121 -0
- sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +74 -19
- sglang/srt/mem_cache/storage/mooncake_store/test_mooncake_store.py +161 -0
- sglang/srt/mem_cache/swa_radix_cache.py +1 -3
- sglang/srt/metrics/collector.py +484 -63
- sglang/srt/metrics/startup_func_log_and_timer.py +150 -0
- sglang/srt/metrics/utils.py +48 -0
- sglang/srt/model_executor/cpu_graph_runner.py +640 -0
- sglang/srt/model_executor/cuda_graph_runner.py +13 -5
- sglang/srt/model_executor/forward_batch_info.py +72 -18
- sglang/srt/model_executor/model_runner.py +189 -31
- sglang/srt/model_loader/__init__.py +9 -3
- sglang/srt/model_loader/loader.py +33 -28
- sglang/srt/model_loader/utils.py +12 -0
- sglang/srt/model_loader/weight_utils.py +2 -1
- sglang/srt/models/deepseek_v2.py +311 -50
- sglang/srt/models/gemma3n_mm.py +1 -1
- sglang/srt/models/glm4_moe.py +10 -1
- sglang/srt/models/glm4v.py +4 -2
- sglang/srt/models/gpt_oss.py +5 -18
- sglang/srt/models/internvl.py +28 -0
- sglang/srt/models/llama4.py +9 -0
- sglang/srt/models/llama_eagle3.py +17 -0
- sglang/srt/models/longcat_flash.py +1026 -0
- sglang/srt/models/longcat_flash_nextn.py +699 -0
- sglang/srt/models/minicpmv.py +165 -3
- sglang/srt/models/mllama4.py +25 -0
- sglang/srt/models/opt.py +637 -0
- sglang/srt/models/qwen2.py +33 -3
- sglang/srt/models/qwen2_5_vl.py +90 -42
- sglang/srt/models/qwen2_moe.py +79 -14
- sglang/srt/models/qwen3.py +8 -2
- sglang/srt/models/qwen3_moe.py +39 -8
- sglang/srt/models/qwen3_next.py +1039 -0
- sglang/srt/models/qwen3_next_mtp.py +109 -0
- sglang/srt/models/torch_native_llama.py +1 -1
- sglang/srt/models/transformers.py +1 -1
- sglang/srt/multimodal/processors/base_processor.py +4 -2
- sglang/srt/multimodal/processors/glm4v.py +9 -9
- sglang/srt/multimodal/processors/internvl.py +141 -129
- sglang/srt/{reasoning_parser.py → parser/reasoning_parser.py} +1 -1
- sglang/srt/sampling/penaltylib/orchestrator.py +14 -2
- sglang/srt/sampling/sampling_batch_info.py +18 -15
- sglang/srt/server_args.py +297 -79
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +5 -0
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +10 -1
- sglang/srt/speculative/eagle_worker.py +216 -120
- sglang/srt/speculative/spec_info.py +5 -0
- sglang/srt/speculative/standalone_worker.py +109 -0
- sglang/srt/utils.py +37 -2
- sglang/srt/weight_sync/utils.py +1 -1
- sglang/test/attention/test_trtllm_mla_backend.py +181 -8
- sglang/test/few_shot_gsm8k.py +1 -0
- sglang/test/runners.py +4 -0
- sglang/test/test_cutlass_moe.py +24 -6
- sglang/test/test_cutlass_w4a8_moe.py +24 -9
- sglang/test/test_disaggregation_utils.py +66 -0
- sglang/test/test_utils.py +25 -1
- sglang/utils.py +5 -0
- sglang/version.py +1 -1
- {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/METADATA +11 -9
- {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/RECORD +243 -194
- sglang/srt/disaggregation/launch_lb.py +0 -131
- sglang/srt/mem_cache/storage/mooncake_store/unit_test.py +0 -40
- /sglang/srt/{model_parallel.py → layers/model_parallel.py} +0 -0
- /sglang/srt/{code_completion_parser.py → parser/code_completion_parser.py} +0 -0
- /sglang/srt/{conversation.py → parser/conversation.py} +0 -0
- /sglang/srt/{harmony_parser.py → parser/harmony_parser.py} +0 -0
- /sglang/srt/{jinja_template_utils.py → parser/jinja_template_utils.py} +0 -0
- {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/WHEEL +0 -0
- {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/top_level.txt +0 -0
@@ -91,18 +91,10 @@ def cutlass_w4a8_moe(
|
|
91
91
|
assert w1_q.shape[0] == w2_q.shape[0], "Expert number mismatch"
|
92
92
|
assert w1_q.shape[0] == w1_scale.shape[0], "w1 scales expert number mismatch"
|
93
93
|
assert w1_q.shape[0] == w2_scale.shape[0], "w2 scales expert number mismatch"
|
94
|
-
assert (
|
95
|
-
w1_scale.shape[1] == w1_q.shape[2] * 2 / 512
|
96
|
-
and w1_scale.shape[2] == w1_q.shape[1] * 4
|
97
|
-
), "W1 scale shape mismatch"
|
98
|
-
assert (
|
99
|
-
w2_scale.shape[1] == w2_q.shape[2] * 2 / 512
|
100
|
-
and w2_scale.shape[2] == w2_q.shape[1] * 4
|
101
|
-
), "W2 scale shape mismatch"
|
102
94
|
|
103
95
|
assert a_strides1.shape[0] == w1_q.shape[0], "A Strides 1 expert number mismatch"
|
104
96
|
assert b_strides1.shape[0] == w1_q.shape[0], "B Strides 1 expert number mismatch"
|
105
|
-
assert a_strides2.shape[0] == w2_q.shape[0], "A Strides 2 expert number
|
97
|
+
assert a_strides2.shape[0] == w2_q.shape[0], "A Strides 2 expert number mismatch"
|
106
98
|
assert b_strides2.shape[0] == w2_q.shape[0], "B Strides 2 expert number mismatch"
|
107
99
|
num_experts = w1_q.size(0)
|
108
100
|
m = a.size(0)
|
@@ -155,8 +147,8 @@ def cutlass_w4a8_moe(
|
|
155
147
|
k,
|
156
148
|
)
|
157
149
|
|
158
|
-
c1 = torch.empty((m * topk, n * 2), device=device, dtype=torch.
|
159
|
-
c2 = torch.zeros((m * topk, k), device=device, dtype=torch.
|
150
|
+
c1 = torch.empty((m * topk, n * 2), device=device, dtype=torch.bfloat16)
|
151
|
+
c2 = torch.zeros((m * topk, k), device=device, dtype=torch.bfloat16)
|
160
152
|
|
161
153
|
cutlass_w4a8_moe_mm(
|
162
154
|
c1,
|
@@ -174,7 +166,7 @@ def cutlass_w4a8_moe(
|
|
174
166
|
topk,
|
175
167
|
)
|
176
168
|
|
177
|
-
intermediate = torch.empty((m * topk, n), device=device, dtype=torch.
|
169
|
+
intermediate = torch.empty((m * topk, n), device=device, dtype=torch.bfloat16)
|
178
170
|
silu_and_mul(c1, intermediate)
|
179
171
|
|
180
172
|
intermediate_q = torch.empty(
|
@@ -1362,3 +1362,77 @@ def moe_ep_deepgemm_preprocess(
|
|
1362
1362
|
gateup_input,
|
1363
1363
|
gateup_input_scale,
|
1364
1364
|
)
|
1365
|
+
|
1366
|
+
|
1367
|
+
@triton.jit
|
1368
|
+
def compute_identity_kernel(
|
1369
|
+
top_k,
|
1370
|
+
hidden_states_ptr,
|
1371
|
+
expert_scales_ptr,
|
1372
|
+
num_tokens,
|
1373
|
+
output_ptr,
|
1374
|
+
hidden_dim,
|
1375
|
+
scales_stride,
|
1376
|
+
BLOCK_SIZE: tl.constexpr,
|
1377
|
+
):
|
1378
|
+
pid = tl.program_id(0)
|
1379
|
+
|
1380
|
+
batch_id = pid // (hidden_dim // BLOCK_SIZE)
|
1381
|
+
dim_offset = pid % (hidden_dim // BLOCK_SIZE) * BLOCK_SIZE
|
1382
|
+
|
1383
|
+
if batch_id >= num_tokens or dim_offset >= hidden_dim:
|
1384
|
+
return
|
1385
|
+
|
1386
|
+
h = tl.load(
|
1387
|
+
hidden_states_ptr
|
1388
|
+
+ batch_id * hidden_dim
|
1389
|
+
+ dim_offset
|
1390
|
+
+ tl.arange(0, BLOCK_SIZE),
|
1391
|
+
mask=(dim_offset + tl.arange(0, BLOCK_SIZE)) < hidden_dim,
|
1392
|
+
)
|
1393
|
+
|
1394
|
+
result = tl.zeros([BLOCK_SIZE], dtype=tl.float32)
|
1395
|
+
for i in range(top_k):
|
1396
|
+
scale = tl.load(expert_scales_ptr + batch_id * scales_stride + i)
|
1397
|
+
result += h * scale
|
1398
|
+
|
1399
|
+
tl.store(
|
1400
|
+
output_ptr + batch_id * hidden_dim + dim_offset + tl.arange(0, BLOCK_SIZE),
|
1401
|
+
result,
|
1402
|
+
mask=(dim_offset + tl.arange(0, BLOCK_SIZE)) < hidden_dim,
|
1403
|
+
)
|
1404
|
+
|
1405
|
+
|
1406
|
+
def zero_experts_compute_triton(
|
1407
|
+
expert_indices, expert_scales, num_experts, zero_expert_type, hidden_states
|
1408
|
+
):
|
1409
|
+
N = expert_indices.numel()
|
1410
|
+
top_k = expert_indices.size(-1)
|
1411
|
+
grid = lambda meta: (triton.cdiv(N, meta["BLOCK_SIZE"]),)
|
1412
|
+
|
1413
|
+
if zero_expert_type == "identity":
|
1414
|
+
zero_expert_mask = expert_indices < num_experts
|
1415
|
+
zero_expert_scales = expert_scales.clone()
|
1416
|
+
zero_expert_scales[zero_expert_mask] = 0.0
|
1417
|
+
|
1418
|
+
normal_expert_mask = expert_indices >= num_experts
|
1419
|
+
expert_indices[normal_expert_mask] = -1
|
1420
|
+
expert_scales[normal_expert_mask] = 0.0
|
1421
|
+
|
1422
|
+
output = torch.zeros_like(hidden_states).to(hidden_states.device)
|
1423
|
+
hidden_dim = hidden_states.size(-1)
|
1424
|
+
num_tokens = hidden_states.size(0)
|
1425
|
+
|
1426
|
+
grid = lambda meta: (num_tokens * (hidden_dim // meta["BLOCK_SIZE"]),)
|
1427
|
+
compute_identity_kernel[grid](
|
1428
|
+
top_k,
|
1429
|
+
hidden_states,
|
1430
|
+
zero_expert_scales,
|
1431
|
+
num_tokens,
|
1432
|
+
output,
|
1433
|
+
hidden_dim,
|
1434
|
+
zero_expert_scales.stride(0),
|
1435
|
+
BLOCK_SIZE=256,
|
1436
|
+
)
|
1437
|
+
|
1438
|
+
return output
|
@@ -35,7 +35,6 @@ from sglang.srt.utils import ceil_div, dispose_tensor, get_bool_env_var, is_hip,
|
|
35
35
|
|
36
36
|
if TYPE_CHECKING:
|
37
37
|
from sglang.srt.layers.moe.token_dispatcher import (
|
38
|
-
AscendDeepEPLLOutput,
|
39
38
|
DeepEPLLOutput,
|
40
39
|
DeepEPNormalOutput,
|
41
40
|
DispatchOutput,
|
@@ -114,9 +113,6 @@ class EPMoE(FusedMoE):
|
|
114
113
|
with_bias=with_bias,
|
115
114
|
)
|
116
115
|
|
117
|
-
self.start_expert_id = self.moe_ep_rank * self.num_local_experts
|
118
|
-
self.end_expert_id = self.start_expert_id + self.num_local_experts - 1
|
119
|
-
|
120
116
|
self.intermediate_size = intermediate_size
|
121
117
|
|
122
118
|
if isinstance(quant_config, Fp8Config):
|
@@ -232,7 +228,7 @@ class EPMoE(FusedMoE):
|
|
232
228
|
(
|
233
229
|
_cast_to_e8m0_with_rounding_up(gateup_input_scale)
|
234
230
|
if deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0
|
235
|
-
else deep_gemm_wrapper.
|
231
|
+
else deep_gemm_wrapper.get_mn_major_tma_aligned_tensor(
|
236
232
|
gateup_input_scale
|
237
233
|
)
|
238
234
|
),
|
@@ -289,9 +285,7 @@ class EPMoE(FusedMoE):
|
|
289
285
|
(
|
290
286
|
down_input_scale
|
291
287
|
if deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0
|
292
|
-
else deep_gemm_wrapper.
|
293
|
-
down_input_scale
|
294
|
-
)
|
288
|
+
else deep_gemm_wrapper.get_mn_major_tma_aligned_tensor(down_input_scale)
|
295
289
|
),
|
296
290
|
)
|
297
291
|
down_output = torch.empty(
|
@@ -459,7 +453,7 @@ class DeepEPMoE(EPMoE):
|
|
459
453
|
# in forward_aiter, we skip token permutation and unpermutation, which have been fused inside aiter kernel
|
460
454
|
return self.forward_aiter(dispatch_output)
|
461
455
|
if _is_npu:
|
462
|
-
assert DispatchOutputChecker.
|
456
|
+
assert DispatchOutputChecker.format_is_deepep(dispatch_output)
|
463
457
|
return self.forward_npu(dispatch_output)
|
464
458
|
if DispatchOutputChecker.format_is_deepep_normal(dispatch_output):
|
465
459
|
assert deep_gemm_wrapper.ENABLE_JIT_DEEPGEMM and self.use_fp8_w8a8
|
@@ -723,57 +717,124 @@ class DeepEPMoE(EPMoE):
|
|
723
717
|
|
724
718
|
def forward_npu(
|
725
719
|
self,
|
726
|
-
dispatch_output: DeepEPLLOutput,
|
720
|
+
dispatch_output: Union[DeepEPNormalOutput, DeepEPLLOutput],
|
727
721
|
):
|
728
|
-
if TYPE_CHECKING:
|
729
|
-
assert isinstance(dispatch_output, AscendDeepEPLLOutput)
|
730
|
-
hidden_states, topk_idx, topk_weights, _, seg_indptr, _ = dispatch_output
|
731
722
|
assert self.quant_method is not None
|
732
723
|
assert self.moe_runner_config.activation == "silu"
|
733
724
|
|
725
|
+
import torch_npu
|
726
|
+
|
727
|
+
from sglang.srt.layers.moe.token_dispatcher import DispatchOutputChecker
|
728
|
+
|
734
729
|
# NOTE: Ascend's Dispatch & Combine does not support FP16
|
735
730
|
output_dtype = torch.bfloat16
|
731
|
+
group_list_type = 1
|
736
732
|
|
737
|
-
|
738
|
-
|
733
|
+
def _forward_normal(dispatch_output: DeepEPNormalOutput):
|
734
|
+
if TYPE_CHECKING:
|
735
|
+
assert isinstance(dispatch_output, DeepEPNormalOutput)
|
736
|
+
hidden_states, _, _, num_recv_tokens_per_expert = dispatch_output
|
737
|
+
|
738
|
+
if isinstance(hidden_states, tuple):
|
739
|
+
per_token_scale = hidden_states[1]
|
740
|
+
hidden_states = hidden_states[0]
|
741
|
+
else:
|
742
|
+
# dynamic quant
|
743
|
+
hidden_states, per_token_scale = torch_npu.npu_dynamic_quant(
|
744
|
+
hidden_states
|
745
|
+
)
|
739
746
|
|
740
|
-
|
741
|
-
|
747
|
+
group_list = torch.tensor(num_recv_tokens_per_expert, dtype=torch.int64).to(
|
748
|
+
hidden_states.device
|
749
|
+
)
|
742
750
|
|
743
|
-
|
751
|
+
# gmm1: gate_up_proj
|
752
|
+
hidden_states = torch_npu.npu_grouped_matmul(
|
753
|
+
x=[hidden_states],
|
754
|
+
weight=[self.w13_weight],
|
755
|
+
scale=[self.w13_weight_scale.to(output_dtype)],
|
756
|
+
per_token_scale=[per_token_scale],
|
757
|
+
split_item=2,
|
758
|
+
group_list_type=group_list_type,
|
759
|
+
group_type=0,
|
760
|
+
group_list=group_list,
|
761
|
+
output_dtype=output_dtype,
|
762
|
+
)[0]
|
763
|
+
|
764
|
+
# act_fn: swiglu
|
765
|
+
hidden_states = torch_npu.npu_swiglu(hidden_states)
|
766
|
+
hidden_states, swiglu_out_scale = torch_npu.npu_dynamic_quant(hidden_states)
|
767
|
+
|
768
|
+
# gmm2: down_proj
|
769
|
+
hidden_states = torch_npu.npu_grouped_matmul(
|
770
|
+
x=[hidden_states],
|
771
|
+
weight=[self.w2_weight],
|
772
|
+
scale=[self.w2_weight_scale.to(output_dtype)],
|
773
|
+
per_token_scale=[swiglu_out_scale],
|
774
|
+
split_item=2,
|
775
|
+
group_list_type=group_list_type,
|
776
|
+
group_type=0,
|
777
|
+
group_list=group_list,
|
778
|
+
output_dtype=output_dtype,
|
779
|
+
)[0]
|
780
|
+
|
781
|
+
return hidden_states
|
744
782
|
|
745
|
-
|
746
|
-
|
747
|
-
|
748
|
-
|
749
|
-
|
750
|
-
per_token_scale=[
|
751
|
-
|
752
|
-
|
753
|
-
|
754
|
-
|
755
|
-
|
756
|
-
|
757
|
-
|
758
|
-
|
759
|
-
|
760
|
-
|
761
|
-
|
762
|
-
|
763
|
-
|
764
|
-
|
765
|
-
|
766
|
-
|
767
|
-
|
768
|
-
|
769
|
-
|
770
|
-
|
771
|
-
|
772
|
-
|
773
|
-
|
774
|
-
|
783
|
+
def _forward_ll(dispatch_output: DeepEPLLOutput):
|
784
|
+
if TYPE_CHECKING:
|
785
|
+
assert isinstance(dispatch_output, DeepEPLLOutput)
|
786
|
+
hidden_states, topk_idx, topk_weights, group_list, _ = dispatch_output
|
787
|
+
|
788
|
+
per_token_scale = hidden_states[1]
|
789
|
+
hidden_states = hidden_states[0]
|
790
|
+
|
791
|
+
group_list = group_list.to(torch.int64)
|
792
|
+
|
793
|
+
# gmm1: gate_up_proj
|
794
|
+
hidden_states = torch_npu.npu_grouped_matmul(
|
795
|
+
x=[hidden_states],
|
796
|
+
weight=[self.w13_weight],
|
797
|
+
split_item=2,
|
798
|
+
group_list_type=group_list_type,
|
799
|
+
group_type=0,
|
800
|
+
group_list=group_list,
|
801
|
+
output_dtype=torch.int32,
|
802
|
+
)[0]
|
803
|
+
|
804
|
+
# act_fn: swiglu
|
805
|
+
hidden_states, swiglu_out_scale = torch_npu.npu_dequant_swiglu_quant(
|
806
|
+
x=hidden_states,
|
807
|
+
weight_scale=self.w13_weight_scale.to(torch.float32),
|
808
|
+
activation_scale=per_token_scale,
|
809
|
+
bias=None,
|
810
|
+
quant_scale=None,
|
811
|
+
quant_offset=None,
|
812
|
+
group_index=group_list,
|
813
|
+
activate_left=True,
|
814
|
+
quant_mode=1,
|
815
|
+
)
|
775
816
|
|
776
|
-
|
817
|
+
# gmm2: down_proj
|
818
|
+
hidden_states = torch_npu.npu_grouped_matmul(
|
819
|
+
x=[hidden_states],
|
820
|
+
weight=[self.w2_weight],
|
821
|
+
scale=[self.w2_weight_scale.to(output_dtype)],
|
822
|
+
per_token_scale=[swiglu_out_scale],
|
823
|
+
split_item=2,
|
824
|
+
group_list_type=group_list_type,
|
825
|
+
group_type=0,
|
826
|
+
group_list=group_list,
|
827
|
+
output_dtype=output_dtype,
|
828
|
+
)[0]
|
829
|
+
|
830
|
+
return hidden_states
|
831
|
+
|
832
|
+
if DispatchOutputChecker.format_is_deepep_normal(dispatch_output):
|
833
|
+
return _forward_normal(dispatch_output)
|
834
|
+
elif DispatchOutputChecker.format_is_deepep_ll(dispatch_output):
|
835
|
+
return _forward_ll(dispatch_output)
|
836
|
+
else:
|
837
|
+
raise ValueError(f"Not Supported DeepEP format {dispatch_output.format}")
|
777
838
|
|
778
839
|
|
779
840
|
def get_moe_impl_class(quant_config: Optional[QuantizationConfig] = None):
|
@@ -8,16 +8,18 @@ from torch.nn import functional as F
|
|
8
8
|
|
9
9
|
from sglang.srt.layers.activation import GeluAndMul, SiluAndMul
|
10
10
|
from sglang.srt.layers.moe.moe_runner import MoeRunnerConfig
|
11
|
+
from sglang.srt.layers.moe.token_dispatcher import StandardDispatchOutput
|
11
12
|
from sglang.srt.layers.moe.topk import StandardTopKOutput
|
12
13
|
|
13
14
|
|
14
15
|
def fused_moe_forward_native(
|
15
16
|
layer: torch.nn.Module,
|
16
|
-
|
17
|
-
topk_output: StandardTopKOutput,
|
18
|
-
moe_runner_config: MoeRunnerConfig,
|
17
|
+
dispatch_output: StandardDispatchOutput,
|
19
18
|
) -> torch.Tensor:
|
20
19
|
|
20
|
+
x, topk_output = dispatch_output
|
21
|
+
moe_runner_config = layer.moe_runner_config
|
22
|
+
|
21
23
|
if moe_runner_config.apply_router_weight_on_input:
|
22
24
|
raise NotImplementedError()
|
23
25
|
|
@@ -1,16 +1,18 @@
|
|
1
1
|
from contextlib import contextmanager
|
2
2
|
from typing import Any, Dict, Optional
|
3
3
|
|
4
|
-
from sglang.srt.layers.moe.fused_moe_triton.fused_moe import
|
5
|
-
|
4
|
+
from sglang.srt.layers.moe.fused_moe_triton.fused_moe import fused_experts
|
5
|
+
from sglang.srt.layers.moe.fused_moe_triton.fused_moe_triton_config import (
|
6
6
|
get_config_file_name,
|
7
|
-
moe_align_block_size,
|
8
7
|
try_get_optimal_moe_config,
|
9
8
|
)
|
10
9
|
from sglang.srt.layers.moe.fused_moe_triton.layer import (
|
11
10
|
FusedMoE,
|
12
11
|
FusedMoeWeightScaleSupported,
|
13
12
|
)
|
13
|
+
from sglang.srt.layers.moe.fused_moe_triton.moe_align_block_size import (
|
14
|
+
moe_align_block_size,
|
15
|
+
)
|
14
16
|
|
15
17
|
_config: Optional[Dict[str, Any]] = None
|
16
18
|
|
@@ -0,0 +1,146 @@
|
|
1
|
+
{
|
2
|
+
"1": {
|
3
|
+
"BLOCK_SIZE_M": 16,
|
4
|
+
"BLOCK_SIZE_N": 64,
|
5
|
+
"BLOCK_SIZE_K": 128,
|
6
|
+
"GROUP_SIZE_M": 1,
|
7
|
+
"num_warps": 4,
|
8
|
+
"num_stages": 5
|
9
|
+
},
|
10
|
+
"2": {
|
11
|
+
"BLOCK_SIZE_M": 16,
|
12
|
+
"BLOCK_SIZE_N": 64,
|
13
|
+
"BLOCK_SIZE_K": 128,
|
14
|
+
"GROUP_SIZE_M": 1,
|
15
|
+
"num_warps": 4,
|
16
|
+
"num_stages": 3
|
17
|
+
},
|
18
|
+
"4": {
|
19
|
+
"BLOCK_SIZE_M": 16,
|
20
|
+
"BLOCK_SIZE_N": 128,
|
21
|
+
"BLOCK_SIZE_K": 128,
|
22
|
+
"GROUP_SIZE_M": 32,
|
23
|
+
"num_warps": 4,
|
24
|
+
"num_stages": 3
|
25
|
+
},
|
26
|
+
"8": {
|
27
|
+
"BLOCK_SIZE_M": 16,
|
28
|
+
"BLOCK_SIZE_N": 128,
|
29
|
+
"BLOCK_SIZE_K": 128,
|
30
|
+
"GROUP_SIZE_M": 1,
|
31
|
+
"num_warps": 4,
|
32
|
+
"num_stages": 3
|
33
|
+
},
|
34
|
+
"16": {
|
35
|
+
"BLOCK_SIZE_M": 16,
|
36
|
+
"BLOCK_SIZE_N": 128,
|
37
|
+
"BLOCK_SIZE_K": 128,
|
38
|
+
"GROUP_SIZE_M": 1,
|
39
|
+
"num_warps": 4,
|
40
|
+
"num_stages": 3
|
41
|
+
},
|
42
|
+
"24": {
|
43
|
+
"BLOCK_SIZE_M": 16,
|
44
|
+
"BLOCK_SIZE_N": 128,
|
45
|
+
"BLOCK_SIZE_K": 128,
|
46
|
+
"GROUP_SIZE_M": 1,
|
47
|
+
"num_warps": 4,
|
48
|
+
"num_stages": 3
|
49
|
+
},
|
50
|
+
"32": {
|
51
|
+
"BLOCK_SIZE_M": 16,
|
52
|
+
"BLOCK_SIZE_N": 128,
|
53
|
+
"BLOCK_SIZE_K": 128,
|
54
|
+
"GROUP_SIZE_M": 1,
|
55
|
+
"num_warps": 4,
|
56
|
+
"num_stages": 3
|
57
|
+
},
|
58
|
+
"48": {
|
59
|
+
"BLOCK_SIZE_M": 16,
|
60
|
+
"BLOCK_SIZE_N": 128,
|
61
|
+
"BLOCK_SIZE_K": 128,
|
62
|
+
"GROUP_SIZE_M": 1,
|
63
|
+
"num_warps": 4,
|
64
|
+
"num_stages": 3
|
65
|
+
},
|
66
|
+
"64": {
|
67
|
+
"BLOCK_SIZE_M": 16,
|
68
|
+
"BLOCK_SIZE_N": 128,
|
69
|
+
"BLOCK_SIZE_K": 128,
|
70
|
+
"GROUP_SIZE_M": 1,
|
71
|
+
"num_warps": 4,
|
72
|
+
"num_stages": 3
|
73
|
+
},
|
74
|
+
"96": {
|
75
|
+
"BLOCK_SIZE_M": 16,
|
76
|
+
"BLOCK_SIZE_N": 128,
|
77
|
+
"BLOCK_SIZE_K": 128,
|
78
|
+
"GROUP_SIZE_M": 1,
|
79
|
+
"num_warps": 4,
|
80
|
+
"num_stages": 3
|
81
|
+
},
|
82
|
+
"128": {
|
83
|
+
"BLOCK_SIZE_M": 16,
|
84
|
+
"BLOCK_SIZE_N": 128,
|
85
|
+
"BLOCK_SIZE_K": 128,
|
86
|
+
"GROUP_SIZE_M": 1,
|
87
|
+
"num_warps": 4,
|
88
|
+
"num_stages": 3
|
89
|
+
},
|
90
|
+
"256": {
|
91
|
+
"BLOCK_SIZE_M": 64,
|
92
|
+
"BLOCK_SIZE_N": 128,
|
93
|
+
"BLOCK_SIZE_K": 128,
|
94
|
+
"GROUP_SIZE_M": 32,
|
95
|
+
"num_warps": 4,
|
96
|
+
"num_stages": 3
|
97
|
+
},
|
98
|
+
"512": {
|
99
|
+
"BLOCK_SIZE_M": 64,
|
100
|
+
"BLOCK_SIZE_N": 128,
|
101
|
+
"BLOCK_SIZE_K": 128,
|
102
|
+
"GROUP_SIZE_M": 32,
|
103
|
+
"num_warps": 4,
|
104
|
+
"num_stages": 3
|
105
|
+
},
|
106
|
+
"1024": {
|
107
|
+
"BLOCK_SIZE_M": 64,
|
108
|
+
"BLOCK_SIZE_N": 128,
|
109
|
+
"BLOCK_SIZE_K": 128,
|
110
|
+
"GROUP_SIZE_M": 1,
|
111
|
+
"num_warps": 4,
|
112
|
+
"num_stages": 3
|
113
|
+
},
|
114
|
+
"1536": {
|
115
|
+
"BLOCK_SIZE_M": 64,
|
116
|
+
"BLOCK_SIZE_N": 128,
|
117
|
+
"BLOCK_SIZE_K": 128,
|
118
|
+
"GROUP_SIZE_M": 1,
|
119
|
+
"num_warps": 4,
|
120
|
+
"num_stages": 4
|
121
|
+
},
|
122
|
+
"2048": {
|
123
|
+
"BLOCK_SIZE_M": 64,
|
124
|
+
"BLOCK_SIZE_N": 128,
|
125
|
+
"BLOCK_SIZE_K": 128,
|
126
|
+
"GROUP_SIZE_M": 16,
|
127
|
+
"num_warps": 4,
|
128
|
+
"num_stages": 3
|
129
|
+
},
|
130
|
+
"3072": {
|
131
|
+
"BLOCK_SIZE_M": 64,
|
132
|
+
"BLOCK_SIZE_N": 128,
|
133
|
+
"BLOCK_SIZE_K": 128,
|
134
|
+
"GROUP_SIZE_M": 1,
|
135
|
+
"num_warps": 4,
|
136
|
+
"num_stages": 3
|
137
|
+
},
|
138
|
+
"4096": {
|
139
|
+
"BLOCK_SIZE_M": 64,
|
140
|
+
"BLOCK_SIZE_N": 128,
|
141
|
+
"BLOCK_SIZE_K": 128,
|
142
|
+
"GROUP_SIZE_M": 1,
|
143
|
+
"num_warps": 4,
|
144
|
+
"num_stages": 3
|
145
|
+
}
|
146
|
+
}
|
@@ -0,0 +1,146 @@
|
|
1
|
+
{
|
2
|
+
"1": {
|
3
|
+
"BLOCK_SIZE_M": 16,
|
4
|
+
"BLOCK_SIZE_N": 64,
|
5
|
+
"BLOCK_SIZE_K": 64,
|
6
|
+
"GROUP_SIZE_M": 1,
|
7
|
+
"num_warps": 4,
|
8
|
+
"num_stages": 5
|
9
|
+
},
|
10
|
+
"2": {
|
11
|
+
"BLOCK_SIZE_M": 16,
|
12
|
+
"BLOCK_SIZE_N": 128,
|
13
|
+
"BLOCK_SIZE_K": 128,
|
14
|
+
"GROUP_SIZE_M": 1,
|
15
|
+
"num_warps": 4,
|
16
|
+
"num_stages": 4
|
17
|
+
},
|
18
|
+
"4": {
|
19
|
+
"BLOCK_SIZE_M": 16,
|
20
|
+
"BLOCK_SIZE_N": 128,
|
21
|
+
"BLOCK_SIZE_K": 128,
|
22
|
+
"GROUP_SIZE_M": 1,
|
23
|
+
"num_warps": 4,
|
24
|
+
"num_stages": 5
|
25
|
+
},
|
26
|
+
"8": {
|
27
|
+
"BLOCK_SIZE_M": 16,
|
28
|
+
"BLOCK_SIZE_N": 128,
|
29
|
+
"BLOCK_SIZE_K": 128,
|
30
|
+
"GROUP_SIZE_M": 1,
|
31
|
+
"num_warps": 4,
|
32
|
+
"num_stages": 4
|
33
|
+
},
|
34
|
+
"16": {
|
35
|
+
"BLOCK_SIZE_M": 16,
|
36
|
+
"BLOCK_SIZE_N": 128,
|
37
|
+
"BLOCK_SIZE_K": 128,
|
38
|
+
"GROUP_SIZE_M": 1,
|
39
|
+
"num_warps": 4,
|
40
|
+
"num_stages": 3
|
41
|
+
},
|
42
|
+
"24": {
|
43
|
+
"BLOCK_SIZE_M": 16,
|
44
|
+
"BLOCK_SIZE_N": 128,
|
45
|
+
"BLOCK_SIZE_K": 128,
|
46
|
+
"GROUP_SIZE_M": 1,
|
47
|
+
"num_warps": 4,
|
48
|
+
"num_stages": 3
|
49
|
+
},
|
50
|
+
"32": {
|
51
|
+
"BLOCK_SIZE_M": 16,
|
52
|
+
"BLOCK_SIZE_N": 128,
|
53
|
+
"BLOCK_SIZE_K": 128,
|
54
|
+
"GROUP_SIZE_M": 1,
|
55
|
+
"num_warps": 4,
|
56
|
+
"num_stages": 3
|
57
|
+
},
|
58
|
+
"48": {
|
59
|
+
"BLOCK_SIZE_M": 16,
|
60
|
+
"BLOCK_SIZE_N": 256,
|
61
|
+
"BLOCK_SIZE_K": 128,
|
62
|
+
"GROUP_SIZE_M": 1,
|
63
|
+
"num_warps": 4,
|
64
|
+
"num_stages": 3
|
65
|
+
},
|
66
|
+
"64": {
|
67
|
+
"BLOCK_SIZE_M": 16,
|
68
|
+
"BLOCK_SIZE_N": 256,
|
69
|
+
"BLOCK_SIZE_K": 64,
|
70
|
+
"GROUP_SIZE_M": 1,
|
71
|
+
"num_warps": 4,
|
72
|
+
"num_stages": 3
|
73
|
+
},
|
74
|
+
"96": {
|
75
|
+
"BLOCK_SIZE_M": 16,
|
76
|
+
"BLOCK_SIZE_N": 256,
|
77
|
+
"BLOCK_SIZE_K": 64,
|
78
|
+
"GROUP_SIZE_M": 1,
|
79
|
+
"num_warps": 4,
|
80
|
+
"num_stages": 4
|
81
|
+
},
|
82
|
+
"128": {
|
83
|
+
"BLOCK_SIZE_M": 16,
|
84
|
+
"BLOCK_SIZE_N": 256,
|
85
|
+
"BLOCK_SIZE_K": 128,
|
86
|
+
"GROUP_SIZE_M": 1,
|
87
|
+
"num_warps": 4,
|
88
|
+
"num_stages": 3
|
89
|
+
},
|
90
|
+
"256": {
|
91
|
+
"BLOCK_SIZE_M": 16,
|
92
|
+
"BLOCK_SIZE_N": 256,
|
93
|
+
"BLOCK_SIZE_K": 64,
|
94
|
+
"GROUP_SIZE_M": 1,
|
95
|
+
"num_warps": 4,
|
96
|
+
"num_stages": 3
|
97
|
+
},
|
98
|
+
"512": {
|
99
|
+
"BLOCK_SIZE_M": 64,
|
100
|
+
"BLOCK_SIZE_N": 128,
|
101
|
+
"BLOCK_SIZE_K": 128,
|
102
|
+
"GROUP_SIZE_M": 1,
|
103
|
+
"num_warps": 8,
|
104
|
+
"num_stages": 3
|
105
|
+
},
|
106
|
+
"1024": {
|
107
|
+
"BLOCK_SIZE_M": 64,
|
108
|
+
"BLOCK_SIZE_N": 256,
|
109
|
+
"BLOCK_SIZE_K": 64,
|
110
|
+
"GROUP_SIZE_M": 16,
|
111
|
+
"num_warps": 8,
|
112
|
+
"num_stages": 5
|
113
|
+
},
|
114
|
+
"1536": {
|
115
|
+
"BLOCK_SIZE_M": 128,
|
116
|
+
"BLOCK_SIZE_N": 256,
|
117
|
+
"BLOCK_SIZE_K": 64,
|
118
|
+
"GROUP_SIZE_M": 16,
|
119
|
+
"num_warps": 4,
|
120
|
+
"num_stages": 4
|
121
|
+
},
|
122
|
+
"2048": {
|
123
|
+
"BLOCK_SIZE_M": 128,
|
124
|
+
"BLOCK_SIZE_N": 256,
|
125
|
+
"BLOCK_SIZE_K": 64,
|
126
|
+
"GROUP_SIZE_M": 1,
|
127
|
+
"num_warps": 4,
|
128
|
+
"num_stages": 4
|
129
|
+
},
|
130
|
+
"3072": {
|
131
|
+
"BLOCK_SIZE_M": 256,
|
132
|
+
"BLOCK_SIZE_N": 256,
|
133
|
+
"BLOCK_SIZE_K": 64,
|
134
|
+
"GROUP_SIZE_M": 16,
|
135
|
+
"num_warps": 8,
|
136
|
+
"num_stages": 5
|
137
|
+
},
|
138
|
+
"4096": {
|
139
|
+
"BLOCK_SIZE_M": 256,
|
140
|
+
"BLOCK_SIZE_N": 256,
|
141
|
+
"BLOCK_SIZE_K": 64,
|
142
|
+
"GROUP_SIZE_M": 16,
|
143
|
+
"num_warps": 8,
|
144
|
+
"num_stages": 5
|
145
|
+
}
|
146
|
+
}
|