sglang 0.5.1.post3__py3-none-any.whl → 0.5.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +3 -0
- sglang/bench_one_batch_server.py +10 -1
- sglang/bench_serving.py +251 -26
- sglang/lang/interpreter.py +1 -1
- sglang/srt/configs/__init__.py +4 -0
- sglang/srt/configs/internvl.py +6 -0
- sglang/srt/configs/longcat_flash.py +104 -0
- sglang/srt/configs/model_config.py +37 -7
- sglang/srt/configs/qwen3_next.py +326 -0
- sglang/srt/connector/__init__.py +1 -1
- sglang/srt/connector/base_connector.py +1 -2
- sglang/srt/connector/redis.py +2 -2
- sglang/srt/connector/serde/__init__.py +1 -1
- sglang/srt/connector/serde/safe_serde.py +4 -3
- sglang/srt/custom_op.py +11 -1
- sglang/srt/debug_utils/dump_comparator.py +81 -44
- sglang/srt/debug_utils/dump_loader.py +97 -0
- sglang/srt/debug_utils/dumper.py +11 -3
- sglang/srt/debug_utils/text_comparator.py +73 -11
- sglang/srt/disaggregation/ascend/conn.py +75 -0
- sglang/srt/disaggregation/base/conn.py +1 -1
- sglang/srt/disaggregation/common/conn.py +15 -12
- sglang/srt/disaggregation/decode.py +6 -4
- sglang/srt/disaggregation/fake/conn.py +1 -1
- sglang/srt/disaggregation/mini_lb.py +6 -420
- sglang/srt/disaggregation/mooncake/conn.py +18 -10
- sglang/srt/disaggregation/nixl/conn.py +180 -16
- sglang/srt/disaggregation/prefill.py +6 -4
- sglang/srt/disaggregation/utils.py +5 -50
- sglang/srt/distributed/parallel_state.py +94 -58
- sglang/srt/entrypoints/engine.py +34 -14
- sglang/srt/entrypoints/http_server.py +172 -47
- sglang/srt/entrypoints/openai/protocol.py +63 -3
- sglang/srt/entrypoints/openai/serving_base.py +6 -2
- sglang/srt/entrypoints/openai/serving_chat.py +34 -19
- sglang/srt/entrypoints/openai/serving_completions.py +10 -4
- sglang/srt/entrypoints/openai/serving_embedding.py +8 -4
- sglang/srt/entrypoints/openai/serving_responses.py +7 -4
- sglang/srt/eplb/eplb_manager.py +28 -4
- sglang/srt/eplb/expert_distribution.py +55 -15
- sglang/srt/eplb/expert_location.py +8 -3
- sglang/srt/eplb/expert_location_updater.py +1 -1
- sglang/srt/function_call/ebnf_composer.py +11 -9
- sglang/srt/function_call/glm4_moe_detector.py +1 -1
- sglang/srt/function_call/gpt_oss_detector.py +1 -1
- sglang/srt/function_call/qwen3_coder_detector.py +1 -1
- sglang/srt/hf_transformers_utils.py +12 -0
- sglang/srt/layers/activation.py +44 -9
- sglang/srt/layers/attention/aiter_backend.py +93 -68
- sglang/srt/layers/attention/ascend_backend.py +250 -112
- sglang/srt/layers/attention/fla/chunk.py +242 -0
- sglang/srt/layers/attention/fla/chunk_delta_h.py +314 -0
- sglang/srt/layers/attention/fla/chunk_o.py +178 -0
- sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +151 -0
- sglang/srt/layers/attention/fla/cumsum.py +300 -0
- sglang/srt/layers/attention/fla/fused_recurrent.py +640 -0
- sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +232 -0
- sglang/srt/layers/attention/fla/index.py +37 -0
- sglang/srt/layers/attention/fla/l2norm.py +150 -0
- sglang/srt/layers/attention/fla/layernorm_gated.py +326 -0
- sglang/srt/layers/attention/fla/op.py +66 -0
- sglang/srt/layers/attention/fla/solve_tril.py +465 -0
- sglang/srt/layers/attention/fla/utils.py +331 -0
- sglang/srt/layers/attention/fla/wy_fast.py +158 -0
- sglang/srt/layers/attention/flashinfer_backend.py +6 -4
- sglang/srt/layers/attention/flashinfer_mla_backend.py +16 -12
- sglang/srt/layers/attention/hybrid_attn_backend.py +47 -8
- sglang/srt/layers/attention/hybrid_linear_attn_backend.py +584 -0
- sglang/srt/layers/attention/intel_amx_backend.py +3 -0
- sglang/srt/layers/attention/mamba/causal_conv1d.py +128 -0
- sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +1052 -0
- sglang/srt/layers/attention/mamba/mamba.py +64 -0
- sglang/srt/layers/attention/torch_native_backend.py +12 -6
- sglang/srt/layers/attention/trtllm_mla_backend.py +126 -36
- sglang/srt/layers/attention/wave_ops/decode_attention.py +2 -4
- sglang/srt/layers/attention/wave_ops/extend_attention.py +1 -3
- sglang/srt/layers/communicator.py +45 -7
- sglang/srt/layers/layernorm.py +54 -12
- sglang/srt/layers/logits_processor.py +10 -3
- sglang/srt/layers/moe/__init__.py +2 -1
- sglang/srt/layers/moe/cutlass_w4a8_moe.py +4 -12
- sglang/srt/layers/moe/ep_moe/kernels.py +74 -0
- sglang/srt/layers/moe/ep_moe/layer.py +110 -49
- sglang/srt/layers/moe/fused_moe_native.py +5 -3
- sglang/srt/layers/moe/fused_moe_triton/__init__.py +5 -3
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=129,N=352,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/{E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → E=257,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json } +29 -29
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +9 -1049
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +212 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +799 -0
- sglang/srt/layers/moe/fused_moe_triton/layer.py +56 -45
- sglang/srt/layers/moe/fused_moe_triton/moe_align_block_size.py +87 -0
- sglang/srt/layers/moe/moe_runner/__init__.py +2 -1
- sglang/srt/layers/moe/moe_runner/base.py +274 -1
- sglang/srt/layers/moe/moe_runner/runner.py +80 -0
- sglang/srt/layers/moe/moe_runner/triton.py +448 -0
- sglang/srt/layers/moe/token_dispatcher/__init__.py +16 -4
- sglang/srt/layers/moe/token_dispatcher/{base_dispatcher.py → base.py} +67 -17
- sglang/srt/layers/moe/token_dispatcher/deepep.py +41 -38
- sglang/srt/layers/moe/token_dispatcher/standard.py +44 -2
- sglang/srt/layers/moe/topk.py +43 -12
- sglang/srt/layers/moe/utils.py +6 -5
- sglang/srt/layers/quantization/awq.py +19 -7
- sglang/srt/layers/quantization/base_config.py +11 -6
- sglang/srt/layers/quantization/blockwise_int8.py +38 -27
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +50 -30
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +13 -1
- sglang/srt/layers/quantization/deep_gemm_wrapper/compile_utils.py +9 -1
- sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -3
- sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +27 -0
- sglang/srt/layers/quantization/fp8.py +76 -47
- sglang/srt/layers/quantization/fp8_utils.py +43 -29
- sglang/srt/layers/quantization/gptq.py +25 -17
- sglang/srt/layers/quantization/modelopt_quant.py +107 -40
- sglang/srt/layers/quantization/moe_wna16.py +21 -18
- sglang/srt/layers/quantization/mxfp4.py +77 -45
- sglang/srt/layers/quantization/quark/quark_moe.py +32 -27
- sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +49 -30
- sglang/srt/layers/quantization/quark/utils.py +97 -0
- sglang/srt/layers/quantization/rocm_mxfp4_utils.py +13 -0
- sglang/srt/layers/quantization/unquant.py +135 -47
- sglang/srt/layers/quantization/utils.py +13 -0
- sglang/srt/layers/quantization/w4afp8.py +60 -42
- sglang/srt/layers/quantization/w8a8_fp8.py +35 -20
- sglang/srt/layers/quantization/w8a8_int8.py +83 -41
- sglang/srt/layers/rocm_linear_utils.py +44 -0
- sglang/srt/layers/rotary_embedding.py +28 -19
- sglang/srt/layers/sampler.py +29 -5
- sglang/srt/lora/backend/base_backend.py +50 -8
- sglang/srt/lora/backend/triton_backend.py +90 -2
- sglang/srt/lora/layers.py +32 -0
- sglang/srt/lora/lora.py +4 -1
- sglang/srt/lora/lora_manager.py +35 -112
- sglang/srt/lora/mem_pool.py +24 -10
- sglang/srt/lora/utils.py +18 -9
- sglang/srt/managers/cache_controller.py +242 -278
- sglang/srt/managers/data_parallel_controller.py +30 -15
- sglang/srt/managers/detokenizer_manager.py +13 -2
- sglang/srt/managers/disagg_service.py +46 -0
- sglang/srt/managers/io_struct.py +160 -11
- sglang/srt/managers/mm_utils.py +6 -1
- sglang/srt/managers/multi_tokenizer_mixin.py +579 -0
- sglang/srt/managers/schedule_batch.py +27 -44
- sglang/srt/managers/schedule_policy.py +4 -3
- sglang/srt/managers/scheduler.py +90 -115
- sglang/srt/managers/scheduler_metrics_mixin.py +114 -8
- sglang/srt/managers/scheduler_output_processor_mixin.py +29 -19
- sglang/srt/managers/scheduler_profiler_mixin.py +1 -1
- sglang/srt/managers/scheduler_update_weights_mixin.py +8 -1
- sglang/srt/managers/template_manager.py +3 -3
- sglang/srt/managers/tokenizer_communicator_mixin.py +491 -0
- sglang/srt/managers/tokenizer_manager.py +41 -477
- sglang/srt/managers/tp_worker.py +16 -4
- sglang/srt/managers/tp_worker_overlap_thread.py +8 -10
- sglang/srt/mem_cache/allocator.py +1 -1
- sglang/srt/mem_cache/chunk_cache.py +1 -1
- sglang/srt/mem_cache/hicache_storage.py +24 -22
- sglang/srt/mem_cache/hiradix_cache.py +184 -101
- sglang/srt/mem_cache/lora_radix_cache.py +1 -1
- sglang/srt/mem_cache/memory_pool.py +324 -41
- sglang/srt/mem_cache/memory_pool_host.py +25 -18
- sglang/srt/mem_cache/radix_cache.py +5 -6
- sglang/srt/mem_cache/radix_cache_cpp.py +1 -1
- sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +164 -0
- sglang/srt/mem_cache/storage/hf3fs/{client_hf3fs.py → hf3fs_usrbio_client.py} +5 -1
- sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +61 -34
- sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +149 -12
- sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +280 -0
- sglang/srt/mem_cache/storage/lmcache/unit_test.py +121 -0
- sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +74 -19
- sglang/srt/mem_cache/storage/mooncake_store/test_mooncake_store.py +161 -0
- sglang/srt/mem_cache/swa_radix_cache.py +1 -3
- sglang/srt/metrics/collector.py +484 -63
- sglang/srt/metrics/startup_func_log_and_timer.py +150 -0
- sglang/srt/metrics/utils.py +48 -0
- sglang/srt/model_executor/cpu_graph_runner.py +640 -0
- sglang/srt/model_executor/cuda_graph_runner.py +13 -5
- sglang/srt/model_executor/forward_batch_info.py +72 -18
- sglang/srt/model_executor/model_runner.py +189 -31
- sglang/srt/model_loader/__init__.py +9 -3
- sglang/srt/model_loader/loader.py +33 -28
- sglang/srt/model_loader/utils.py +12 -0
- sglang/srt/model_loader/weight_utils.py +2 -1
- sglang/srt/models/deepseek_v2.py +311 -50
- sglang/srt/models/gemma3n_mm.py +1 -1
- sglang/srt/models/glm4_moe.py +10 -1
- sglang/srt/models/glm4v.py +4 -2
- sglang/srt/models/gpt_oss.py +5 -18
- sglang/srt/models/internvl.py +28 -0
- sglang/srt/models/llama4.py +9 -0
- sglang/srt/models/llama_eagle3.py +17 -0
- sglang/srt/models/longcat_flash.py +1026 -0
- sglang/srt/models/longcat_flash_nextn.py +699 -0
- sglang/srt/models/minicpmv.py +165 -3
- sglang/srt/models/mllama4.py +25 -0
- sglang/srt/models/opt.py +637 -0
- sglang/srt/models/qwen2.py +33 -3
- sglang/srt/models/qwen2_5_vl.py +90 -42
- sglang/srt/models/qwen2_moe.py +79 -14
- sglang/srt/models/qwen3.py +8 -2
- sglang/srt/models/qwen3_moe.py +39 -8
- sglang/srt/models/qwen3_next.py +1039 -0
- sglang/srt/models/qwen3_next_mtp.py +109 -0
- sglang/srt/models/torch_native_llama.py +1 -1
- sglang/srt/models/transformers.py +1 -1
- sglang/srt/multimodal/processors/base_processor.py +4 -2
- sglang/srt/multimodal/processors/glm4v.py +9 -9
- sglang/srt/multimodal/processors/internvl.py +141 -129
- sglang/srt/{reasoning_parser.py → parser/reasoning_parser.py} +1 -1
- sglang/srt/sampling/penaltylib/orchestrator.py +14 -2
- sglang/srt/sampling/sampling_batch_info.py +18 -15
- sglang/srt/server_args.py +297 -79
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +5 -0
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +10 -1
- sglang/srt/speculative/eagle_worker.py +216 -120
- sglang/srt/speculative/spec_info.py +5 -0
- sglang/srt/speculative/standalone_worker.py +109 -0
- sglang/srt/utils.py +37 -2
- sglang/srt/weight_sync/utils.py +1 -1
- sglang/test/attention/test_trtllm_mla_backend.py +181 -8
- sglang/test/few_shot_gsm8k.py +1 -0
- sglang/test/runners.py +4 -0
- sglang/test/test_cutlass_moe.py +24 -6
- sglang/test/test_cutlass_w4a8_moe.py +24 -9
- sglang/test/test_disaggregation_utils.py +66 -0
- sglang/test/test_utils.py +25 -1
- sglang/utils.py +5 -0
- sglang/version.py +1 -1
- {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/METADATA +11 -9
- {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/RECORD +243 -194
- sglang/srt/disaggregation/launch_lb.py +0 -131
- sglang/srt/mem_cache/storage/mooncake_store/unit_test.py +0 -40
- /sglang/srt/{model_parallel.py → layers/model_parallel.py} +0 -0
- /sglang/srt/{code_completion_parser.py → parser/code_completion_parser.py} +0 -0
- /sglang/srt/{conversation.py → parser/conversation.py} +0 -0
- /sglang/srt/{harmony_parser.py → parser/harmony_parser.py} +0 -0
- /sglang/srt/{jinja_template_utils.py → parser/jinja_template_utils.py} +0 -0
- {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/WHEEL +0 -0
- {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/top_level.txt +0 -0
@@ -9,6 +9,8 @@ from torch.nn.parameter import Parameter
|
|
9
9
|
|
10
10
|
from sglang.srt.custom_op import CustomOp
|
11
11
|
from sglang.srt.layers.amx_utils import _amx_process_weight_after_loading
|
12
|
+
from sglang.srt.layers.moe import MoeRunner, MoeRunnerBackend, MoeRunnerConfig
|
13
|
+
from sglang.srt.layers.moe.moe_runner.triton import TritonMoeQuantInfo
|
12
14
|
from sglang.srt.layers.quantization.base_config import (
|
13
15
|
FusedMoEMethodBase,
|
14
16
|
LinearMethodBase,
|
@@ -24,8 +26,10 @@ from sglang.srt.utils import (
|
|
24
26
|
)
|
25
27
|
|
26
28
|
if TYPE_CHECKING:
|
27
|
-
from sglang.srt.layers.moe.
|
28
|
-
|
29
|
+
from sglang.srt.layers.moe.token_dispatcher import (
|
30
|
+
CombineInput,
|
31
|
+
StandardDispatchOutput,
|
32
|
+
)
|
29
33
|
|
30
34
|
has_triton_kernels = importlib.util.find_spec("triton_kernels") is not None
|
31
35
|
|
@@ -155,7 +159,7 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
|
|
155
159
|
layer: torch.nn.Module,
|
156
160
|
num_experts: int,
|
157
161
|
hidden_size: int,
|
158
|
-
|
162
|
+
intermediate_size_per_partition: int,
|
159
163
|
params_dtype: torch.dtype,
|
160
164
|
with_bias: bool = False,
|
161
165
|
**extra_weight_attrs,
|
@@ -163,7 +167,7 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
|
|
163
167
|
self.with_bias = with_bias
|
164
168
|
|
165
169
|
# Fused gate_up_proj (column parallel)
|
166
|
-
w13_weight_n, w13_weight_k = 2 *
|
170
|
+
w13_weight_n, w13_weight_k = 2 * intermediate_size_per_partition, hidden_size
|
167
171
|
if self.use_triton_kernels:
|
168
172
|
w13_weight_n, w13_weight_k = w13_weight_k, w13_weight_n
|
169
173
|
w13_weight = torch.nn.Parameter(
|
@@ -175,7 +179,11 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
|
|
175
179
|
|
176
180
|
if self.with_bias:
|
177
181
|
w13_weight_bias = torch.nn.Parameter(
|
178
|
-
torch.empty(
|
182
|
+
torch.empty(
|
183
|
+
num_experts,
|
184
|
+
2 * intermediate_size_per_partition,
|
185
|
+
dtype=torch.float32,
|
186
|
+
),
|
179
187
|
requires_grad=False,
|
180
188
|
)
|
181
189
|
layer.register_parameter("w13_weight_bias", w13_weight_bias)
|
@@ -184,7 +192,7 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
|
|
184
192
|
# down_proj (row parallel)
|
185
193
|
w2_weight_n, w2_weight_k = (
|
186
194
|
hidden_size,
|
187
|
-
|
195
|
+
intermediate_size_per_partition,
|
188
196
|
)
|
189
197
|
if self.use_triton_kernels:
|
190
198
|
w2_weight_n, w2_weight_k = w2_weight_k, w2_weight_n
|
@@ -222,33 +230,40 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
|
|
222
230
|
|
223
231
|
return
|
224
232
|
|
233
|
+
def create_moe_runner(
|
234
|
+
self, layer: torch.nn.Module, moe_runner_config: MoeRunnerConfig
|
235
|
+
):
|
236
|
+
self.moe_runner_config = moe_runner_config
|
237
|
+
self.runner = MoeRunner(MoeRunnerBackend.TRITON, moe_runner_config)
|
238
|
+
|
225
239
|
def apply(
|
226
240
|
self,
|
227
241
|
layer: torch.nn.Module,
|
228
|
-
|
229
|
-
|
230
|
-
moe_runner_config: MoeRunnerConfig,
|
231
|
-
) -> torch.Tensor:
|
242
|
+
dispatch_output: StandardDispatchOutput,
|
243
|
+
) -> CombineInput:
|
232
244
|
|
233
245
|
return self.forward(
|
234
|
-
x=x,
|
235
246
|
layer=layer,
|
236
|
-
|
237
|
-
moe_runner_config=moe_runner_config,
|
247
|
+
dispatch_output=dispatch_output,
|
238
248
|
)
|
239
249
|
|
240
250
|
def forward_cuda(
|
241
251
|
self,
|
242
252
|
layer: torch.nn.Module,
|
243
|
-
|
244
|
-
|
245
|
-
|
246
|
-
|
253
|
+
dispatch_output: StandardDispatchOutput,
|
254
|
+
) -> CombineInput:
|
255
|
+
|
256
|
+
from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
|
257
|
+
|
258
|
+
x = dispatch_output.hidden_states
|
259
|
+
topk_output = dispatch_output.topk_output
|
260
|
+
|
261
|
+
moe_runner_config = self.moe_runner_config
|
247
262
|
|
248
263
|
if self.use_triton_kernels:
|
249
264
|
if self.with_bias:
|
250
265
|
assert self.triton_kernel_moe_with_bias_forward is not None
|
251
|
-
|
266
|
+
output = self.triton_kernel_moe_with_bias_forward(
|
252
267
|
hidden_states=x,
|
253
268
|
w1=layer.w13_weight,
|
254
269
|
w2=layer.w2_weight,
|
@@ -261,13 +276,14 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
|
|
261
276
|
)
|
262
277
|
else:
|
263
278
|
assert self.triton_kernel_moe_forward is not None
|
264
|
-
|
279
|
+
output = self.triton_kernel_moe_forward(
|
265
280
|
hidden_states=x,
|
266
281
|
w1=layer.w13_weight,
|
267
282
|
w2=layer.w2_weight,
|
268
283
|
topk_output=topk_output,
|
269
284
|
moe_runner_config=moe_runner_config,
|
270
285
|
)
|
286
|
+
return StandardCombineInput(hidden_states=output)
|
271
287
|
else:
|
272
288
|
if _use_aiter:
|
273
289
|
assert not moe_runner_config.no_combine, "unsupported"
|
@@ -284,7 +300,7 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
|
|
284
300
|
topk_weights = torch.ones_like(
|
285
301
|
topk_weights, dtype=torch.float32
|
286
302
|
) # topk_weights must be FP32 (float32)
|
287
|
-
|
303
|
+
output = fused_moe(
|
288
304
|
x,
|
289
305
|
layer.w13_weight,
|
290
306
|
layer.w2_weight,
|
@@ -296,28 +312,30 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
|
|
296
312
|
else ActivationType.Gelu
|
297
313
|
),
|
298
314
|
)
|
315
|
+
return StandardCombineInput(hidden_states=output)
|
299
316
|
else:
|
300
|
-
from sglang.srt.layers.moe.fused_moe_triton.fused_moe import (
|
301
|
-
fused_experts,
|
302
|
-
)
|
303
317
|
|
304
|
-
|
305
|
-
|
306
|
-
|
307
|
-
|
308
|
-
b1=getattr(layer, "w13_weight_bias", None),
|
318
|
+
quant_info = TritonMoeQuantInfo(
|
319
|
+
w13_weight=layer.w13_weight,
|
320
|
+
w2_weight=layer.w2_weight,
|
321
|
+
b13=getattr(layer, "w13_weight_bias", None),
|
309
322
|
b2=getattr(layer, "w2_weight_bias", None),
|
310
|
-
topk_output=topk_output,
|
311
|
-
moe_runner_config=moe_runner_config,
|
312
323
|
)
|
324
|
+
return self.runner.run(dispatch_output, quant_info)
|
313
325
|
|
314
326
|
def forward_cpu(
|
315
327
|
self,
|
316
328
|
layer: torch.nn.Module,
|
317
|
-
|
318
|
-
|
319
|
-
|
320
|
-
|
329
|
+
dispatch_output: StandardDispatchOutput,
|
330
|
+
) -> CombineInput:
|
331
|
+
|
332
|
+
from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
|
333
|
+
|
334
|
+
x = dispatch_output.hidden_states
|
335
|
+
topk_output = dispatch_output.topk_output
|
336
|
+
|
337
|
+
moe_runner_config = self.moe_runner_config
|
338
|
+
|
321
339
|
assert (
|
322
340
|
moe_runner_config.activation == "silu"
|
323
341
|
), f"activation = {moe_runner_config.activation} is not supported."
|
@@ -332,7 +350,7 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
|
|
332
350
|
x, topk_weights = apply_topk_weights_cpu(
|
333
351
|
moe_runner_config.apply_router_weight_on_input, topk_weights, x
|
334
352
|
)
|
335
|
-
|
353
|
+
output = torch.ops.sgl_kernel.fused_experts_cpu(
|
336
354
|
x,
|
337
355
|
layer.w13_weight,
|
338
356
|
layer.w2_weight,
|
@@ -348,33 +366,103 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
|
|
348
366
|
None, # a2_scale
|
349
367
|
True, # is_vnni
|
350
368
|
)
|
369
|
+
return StandardCombineInput(hidden_states=output)
|
351
370
|
else:
|
352
371
|
from sglang.srt.layers.moe.fused_moe_native import moe_forward_native
|
353
372
|
|
354
|
-
|
373
|
+
output = moe_forward_native(
|
355
374
|
layer,
|
356
375
|
x,
|
357
376
|
topk_output,
|
358
377
|
moe_runner_config,
|
359
378
|
)
|
379
|
+
return StandardCombineInput(hidden_states=output)
|
360
380
|
|
361
381
|
def forward_npu(
|
362
382
|
self,
|
363
383
|
layer: torch.nn.Module,
|
364
|
-
|
365
|
-
|
366
|
-
|
367
|
-
|
368
|
-
|
384
|
+
dispatch_output: StandardDispatchOutput,
|
385
|
+
) -> CombineInput:
|
386
|
+
|
387
|
+
import torch_npu
|
388
|
+
|
389
|
+
from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
|
390
|
+
|
391
|
+
x = dispatch_output.hidden_states
|
392
|
+
topk_weights, topk_ids, _ = dispatch_output.topk_output
|
393
|
+
|
394
|
+
original_dtype = x.dtype
|
395
|
+
num_tokens = x.shape[0]
|
396
|
+
topk_weights = topk_weights.to(x.dtype)
|
397
|
+
topk_ids = topk_ids.to(torch.int32)
|
398
|
+
num_experts = layer.num_experts
|
399
|
+
top_k = layer.top_k
|
400
|
+
row_idx_len = num_tokens * top_k
|
401
|
+
row_idx = (
|
402
|
+
torch.arange(0, row_idx_len, dtype=torch.int32, device=topk_weights.device)
|
403
|
+
.view(top_k, -1)
|
404
|
+
.permute(1, 0)
|
405
|
+
.contiguous()
|
406
|
+
)
|
369
407
|
|
370
|
-
|
371
|
-
|
372
|
-
|
373
|
-
|
374
|
-
|
408
|
+
hidden_states, expanded_row_idx, expanded_expert_idx = (
|
409
|
+
torch_npu.npu_moe_init_routing(
|
410
|
+
x, row_idx=row_idx, expert_idx=topk_ids, active_num=num_tokens
|
411
|
+
)
|
412
|
+
)
|
413
|
+
|
414
|
+
expert_tokens = torch_npu.npu_moe_compute_expert_tokens(
|
415
|
+
expanded_expert_idx, num_experts
|
375
416
|
)
|
376
417
|
|
377
|
-
|
418
|
+
expert_tokens = expert_tokens.to(torch.int64)
|
419
|
+
if layer.w13_weight.shape[-1] == layer.hidden_size:
|
420
|
+
w13 = layer.w13_weight.transpose(1, 2)
|
421
|
+
w2 = layer.w2_weight.transpose(1, 2)
|
422
|
+
|
423
|
+
# gmm1: gate_up_proj
|
424
|
+
hidden_states = torch_npu.npu_grouped_matmul(
|
425
|
+
x=[hidden_states],
|
426
|
+
weight=[w13],
|
427
|
+
split_item=2,
|
428
|
+
group_list_type=0,
|
429
|
+
group_type=0,
|
430
|
+
group_list=expert_tokens,
|
431
|
+
output_dtype=original_dtype,
|
432
|
+
)[0]
|
433
|
+
|
434
|
+
# act_fn:
|
435
|
+
if self.moe_runner_config.activation == "silu":
|
436
|
+
hidden_states = torch_npu.npu_swiglu(hidden_states)
|
437
|
+
else:
|
438
|
+
from sglang.srt.layers.activation import GeluAndMul
|
439
|
+
|
440
|
+
hidden_states = GeluAndMul()(hidden_states)
|
441
|
+
|
442
|
+
# gmm2: down_proj
|
443
|
+
hidden_states = torch_npu.npu_grouped_matmul(
|
444
|
+
x=[hidden_states],
|
445
|
+
weight=[w2],
|
446
|
+
split_item=2,
|
447
|
+
group_list_type=0,
|
448
|
+
group_type=0,
|
449
|
+
group_list=expert_tokens,
|
450
|
+
output_dtype=original_dtype,
|
451
|
+
)[0]
|
452
|
+
|
453
|
+
final_hidden_states = torch_npu.npu_moe_finalize_routing(
|
454
|
+
hidden_states,
|
455
|
+
skip1=None,
|
456
|
+
skip2=None,
|
457
|
+
bias=None,
|
458
|
+
scales=topk_weights,
|
459
|
+
expanded_src_to_dst_row=expanded_row_idx,
|
460
|
+
export_for_source_row=topk_ids,
|
461
|
+
)
|
462
|
+
|
463
|
+
return StandardCombineInput(hidden_states=final_hidden_states)
|
464
|
+
|
465
|
+
def forward_tpu(self, *args, **kwargs) -> CombineInput:
|
378
466
|
raise NotImplementedError("The TPU backend currently does not support MoE.")
|
379
467
|
|
380
468
|
forward_native = forward_cpu
|
@@ -77,6 +77,19 @@ def is_layer_skipped(
|
|
77
77
|
)
|
78
78
|
else:
|
79
79
|
is_skipped = prefix in ignored_layers
|
80
|
+
if "gate_up_proj" in prefix:
|
81
|
+
prefix_gate = prefix.replace("gate_up_proj", "gate_proj")
|
82
|
+
prefix_up = prefix.replace("gate_up_proj", "up_proj")
|
83
|
+
if prefix_gate in ignored_layers and prefix_up in ignored_layers:
|
84
|
+
is_skipped = True
|
85
|
+
elif "experts" in prefix:
|
86
|
+
is_skipped = any(
|
87
|
+
[
|
88
|
+
prefix in layer_name
|
89
|
+
for layer_name in ignored_layers
|
90
|
+
if "experts" in layer_name
|
91
|
+
]
|
92
|
+
)
|
80
93
|
|
81
94
|
assert is_skipped is not None
|
82
95
|
return is_skipped
|
@@ -1,12 +1,14 @@
|
|
1
1
|
from __future__ import annotations
|
2
2
|
|
3
3
|
import logging
|
4
|
-
from typing import TYPE_CHECKING, Any, Dict, List, Optional
|
4
|
+
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional
|
5
5
|
|
6
6
|
import torch
|
7
7
|
from torch.nn import Module
|
8
8
|
from torch.nn.parameter import Parameter
|
9
9
|
|
10
|
+
from sglang.srt.distributed.parallel_state import get_moe_expert_parallel_world_size
|
11
|
+
from sglang.srt.layers.linear import LinearBase, UnquantizedLinearMethod
|
10
12
|
from sglang.srt.layers.quantization.base_config import (
|
11
13
|
FusedMoEMethodBase,
|
12
14
|
QuantizationConfig,
|
@@ -15,12 +17,19 @@ from sglang.srt.layers.quantization.base_config import (
|
|
15
17
|
from sglang.srt.layers.quantization.fp8 import Fp8LinearMethod
|
16
18
|
from sglang.srt.layers.quantization.unquant import UnquantizedLinearMethod
|
17
19
|
from sglang.srt.layers.quantization.utils import is_layer_skipped
|
18
|
-
from sglang.srt.utils import set_weight_attrs
|
20
|
+
from sglang.srt.utils import is_npu, set_weight_attrs
|
21
|
+
|
22
|
+
_is_npu = is_npu()
|
23
|
+
if not _is_npu:
|
24
|
+
from sglang.srt.layers.moe.cutlass_w4a8_moe import cutlass_w4a8_moe
|
19
25
|
|
20
26
|
if TYPE_CHECKING:
|
21
27
|
from sglang.srt.layers.moe import MoeRunnerConfig
|
22
28
|
from sglang.srt.layers.moe.ep_moe.layer import EPMoE
|
23
|
-
from sglang.srt.layers.moe.
|
29
|
+
from sglang.srt.layers.moe.token_dispatcher import (
|
30
|
+
CombineInput,
|
31
|
+
StandardDispatchOutput,
|
32
|
+
)
|
24
33
|
|
25
34
|
ACTIVATION_SCHEMES = ["static", "dynamic"]
|
26
35
|
|
@@ -91,12 +100,13 @@ class W4AFp8Config(QuantizationConfig):
|
|
91
100
|
from sglang.srt.layers.linear import LinearBase
|
92
101
|
from sglang.srt.layers.moe.ep_moe.layer import EPMoE
|
93
102
|
from sglang.srt.layers.moe.fused_moe_triton import FusedMoE
|
103
|
+
from sglang.srt.managers.schedule_batch import global_server_args_dict
|
94
104
|
|
95
105
|
if isinstance(layer, LinearBase):
|
96
106
|
if is_layer_skipped(prefix, self.ignored_layers):
|
97
107
|
return UnquantizedLinearMethod()
|
98
108
|
return Fp8LinearMethod(self)
|
99
|
-
elif isinstance(layer,
|
109
|
+
elif isinstance(layer, FusedMoE):
|
100
110
|
return W4AFp8MoEMethod(self)
|
101
111
|
return None
|
102
112
|
|
@@ -104,8 +114,24 @@ class W4AFp8Config(QuantizationConfig):
|
|
104
114
|
return []
|
105
115
|
|
106
116
|
|
107
|
-
|
117
|
+
def interleave_scales(scales: torch.Tensor) -> torch.Tensor:
|
118
|
+
"""Interleave scales in groups of 4 similar to TRT-LLM implementation."""
|
119
|
+
s_shape = scales.shape
|
120
|
+
# Reshape to separate groups of 4
|
121
|
+
alignment = 4 if s_shape[2] % 4 == 0 else 1
|
122
|
+
scales_interleaved = scales.reshape(
|
123
|
+
s_shape[0], s_shape[1], (s_shape[2] // alignment), alignment
|
124
|
+
)
|
125
|
+
# Permute dimensions to interleave
|
126
|
+
scales_interleaved = scales_interleaved.permute(0, 2, 1, 3)
|
127
|
+
# Reshape back to original dimensions but with interleaved values
|
128
|
+
scales_interleaved = scales_interleaved.reshape(
|
129
|
+
s_shape[0], s_shape[2] // alignment, s_shape[1] * alignment
|
130
|
+
)
|
131
|
+
return scales_interleaved.contiguous()
|
108
132
|
|
133
|
+
|
134
|
+
class W4AFp8MoEMethod(FusedMoEMethodBase):
|
109
135
|
def __init__(self, quant_config: W4AFp8Config):
|
110
136
|
self.quant_config = quant_config
|
111
137
|
|
@@ -114,7 +140,7 @@ class W4AFp8MoEMethod(FusedMoEMethodBase):
|
|
114
140
|
layer: EPMoE,
|
115
141
|
num_experts: int,
|
116
142
|
hidden_size: int,
|
117
|
-
|
143
|
+
intermediate_size_per_partition: int,
|
118
144
|
params_dtype: torch.dtype,
|
119
145
|
**extra_weight_attrs,
|
120
146
|
):
|
@@ -126,7 +152,7 @@ class W4AFp8MoEMethod(FusedMoEMethodBase):
|
|
126
152
|
w13_weight = torch.nn.Parameter(
|
127
153
|
torch.empty(
|
128
154
|
num_experts,
|
129
|
-
|
155
|
+
intermediate_size_per_partition * 2,
|
130
156
|
hidden_size // 2,
|
131
157
|
dtype=torch.int8,
|
132
158
|
),
|
@@ -140,7 +166,7 @@ class W4AFp8MoEMethod(FusedMoEMethodBase):
|
|
140
166
|
torch.empty(
|
141
167
|
num_experts,
|
142
168
|
hidden_size,
|
143
|
-
|
169
|
+
intermediate_size_per_partition // 2,
|
144
170
|
dtype=torch.int8,
|
145
171
|
),
|
146
172
|
requires_grad=False,
|
@@ -154,7 +180,7 @@ class W4AFp8MoEMethod(FusedMoEMethodBase):
|
|
154
180
|
w13_weight_scale = torch.nn.Parameter(
|
155
181
|
torch.zeros(
|
156
182
|
num_experts,
|
157
|
-
2 *
|
183
|
+
2 * intermediate_size_per_partition,
|
158
184
|
hidden_size // self.quant_config.group_size,
|
159
185
|
dtype=torch.float32,
|
160
186
|
),
|
@@ -167,7 +193,7 @@ class W4AFp8MoEMethod(FusedMoEMethodBase):
|
|
167
193
|
torch.zeros(
|
168
194
|
num_experts,
|
169
195
|
hidden_size,
|
170
|
-
|
196
|
+
intermediate_size_per_partition // self.quant_config.group_size,
|
171
197
|
dtype=torch.float32,
|
172
198
|
),
|
173
199
|
requires_grad=False,
|
@@ -201,13 +227,13 @@ class W4AFp8MoEMethod(FusedMoEMethodBase):
|
|
201
227
|
)
|
202
228
|
self.c_strides1 = torch.full(
|
203
229
|
(num_experts, 3),
|
204
|
-
2 *
|
230
|
+
2 * intermediate_size_per_partition,
|
205
231
|
device=device,
|
206
232
|
dtype=torch.int64,
|
207
233
|
)
|
208
234
|
self.a_strides2 = torch.full(
|
209
235
|
(num_experts, 3),
|
210
|
-
|
236
|
+
intermediate_size_per_partition,
|
211
237
|
device=device,
|
212
238
|
dtype=torch.int64,
|
213
239
|
)
|
@@ -234,33 +260,18 @@ class W4AFp8MoEMethod(FusedMoEMethodBase):
|
|
234
260
|
|
235
261
|
return
|
236
262
|
|
237
|
-
def _interleave_scales(self, scales: torch.Tensor) -> torch.Tensor:
|
238
|
-
"""Interleave scales in groups of 4 similar to TRT-LLM implementation."""
|
239
|
-
s_shape = scales.shape
|
240
|
-
# Reshape to separate groups of 4
|
241
|
-
scales_interleaved = scales.reshape(
|
242
|
-
s_shape[0], s_shape[1], (s_shape[2] // 4), 4
|
243
|
-
)
|
244
|
-
# Permute dimensions to interleave
|
245
|
-
scales_interleaved = scales_interleaved.permute(0, 2, 1, 3)
|
246
|
-
# Reshape back to original dimensions but with interleaved values
|
247
|
-
scales_interleaved = scales_interleaved.reshape(
|
248
|
-
s_shape[0], s_shape[2] // 4, s_shape[1] * 4
|
249
|
-
)
|
250
|
-
return scales_interleaved.contiguous()
|
251
|
-
|
252
263
|
def process_weights_after_loading(self, layer: Module) -> None:
|
253
264
|
dtype = torch.bfloat16
|
254
265
|
device = layer.w2_weight.device
|
255
266
|
|
256
267
|
# Interleave w13_weight_scale (gate_up_proj)
|
257
268
|
w13_weight_scale = layer.w13_weight_scale_inv.to(dtype)
|
258
|
-
w13_weight_scale =
|
269
|
+
w13_weight_scale = interleave_scales(w13_weight_scale)
|
259
270
|
layer.w13_weight_scale_inv = Parameter(w13_weight_scale, requires_grad=False)
|
260
271
|
|
261
272
|
# Interleave w2_weight_scale (down_proj)
|
262
273
|
w2_weight_scale = layer.w2_weight_scale_inv.to(dtype)
|
263
|
-
w2_weight_scale =
|
274
|
+
w2_weight_scale = interleave_scales(w2_weight_scale)
|
264
275
|
layer.w2_weight_scale_inv = Parameter(w2_weight_scale, requires_grad=False)
|
265
276
|
|
266
277
|
# Process input scales
|
@@ -278,24 +289,31 @@ class W4AFp8MoEMethod(FusedMoEMethodBase):
|
|
278
289
|
)
|
279
290
|
layer.w2_input_scale = Parameter(new_w2_input_scale, requires_grad=False)
|
280
291
|
|
292
|
+
def create_moe_runner(
|
293
|
+
self, layer: torch.nn.Module, moe_runner_config: MoeRunnerConfig
|
294
|
+
):
|
295
|
+
self.moe_runner_config = moe_runner_config
|
296
|
+
|
281
297
|
def apply(
|
282
298
|
self,
|
283
299
|
layer: EPMoE,
|
284
|
-
|
285
|
-
|
286
|
-
moe_runner_config: MoeRunnerConfig,
|
287
|
-
) -> torch.Tensor:
|
300
|
+
dispatch_output: StandardDispatchOutput,
|
301
|
+
) -> CombineInput:
|
288
302
|
|
289
|
-
# TODO(ch-wan): move it out of this class
|
290
303
|
from sglang.srt.layers.moe.cutlass_w4a8_moe import cutlass_w4a8_moe
|
304
|
+
from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
|
305
|
+
|
306
|
+
x = dispatch_output.hidden_states
|
307
|
+
topk_output = dispatch_output.topk_output
|
291
308
|
|
292
309
|
topk_weights, topk_ids, _ = topk_output
|
293
310
|
local_topk_ids = topk_ids
|
294
|
-
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
311
|
+
if get_moe_expert_parallel_world_size() > 1:
|
312
|
+
local_topk_ids = torch.where(
|
313
|
+
topk_ids == -1,
|
314
|
+
layer.num_experts,
|
315
|
+
topk_ids,
|
316
|
+
)
|
299
317
|
|
300
318
|
output = cutlass_w4a8_moe(
|
301
319
|
layer.start_expert_id,
|
@@ -323,6 +341,6 @@ class W4AFp8MoEMethod(FusedMoEMethodBase):
|
|
323
341
|
layer.w13_input_scale,
|
324
342
|
layer.w2_input_scale,
|
325
343
|
)
|
326
|
-
if moe_runner_config.routed_scaling_factor is not None:
|
327
|
-
output *= moe_runner_config.routed_scaling_factor
|
328
|
-
return output
|
344
|
+
if self.moe_runner_config.routed_scaling_factor is not None:
|
345
|
+
output *= self.moe_runner_config.routed_scaling_factor
|
346
|
+
return StandardCombineInput(hidden_states=output)
|
@@ -5,6 +5,7 @@ from typing import TYPE_CHECKING, Any, Dict, List, Optional
|
|
5
5
|
import torch
|
6
6
|
from torch.nn.parameter import Parameter
|
7
7
|
|
8
|
+
from sglang.srt.layers.moe.moe_runner.triton import TritonMoeQuantInfo
|
8
9
|
from sglang.srt.layers.parameter import ChannelQuantScaleParameter, ModelWeightParameter
|
9
10
|
from sglang.srt.layers.quantization.base_config import (
|
10
11
|
FusedMoEMethodBase,
|
@@ -26,8 +27,11 @@ from sglang.srt.layers.quantization.fp8_utils import (
|
|
26
27
|
from sglang.srt.utils import set_weight_attrs
|
27
28
|
|
28
29
|
if TYPE_CHECKING:
|
29
|
-
from sglang.srt.layers.moe
|
30
|
-
from sglang.srt.layers.moe.
|
30
|
+
from sglang.srt.layers.moe import MoeRunner, MoeRunnerBackend, MoeRunnerConfig
|
31
|
+
from sglang.srt.layers.moe.token_dispatcher import (
|
32
|
+
CombineInput,
|
33
|
+
StandardDispatchOutput,
|
34
|
+
)
|
31
35
|
|
32
36
|
_is_fp8_fnuz = is_fp8_fnuz()
|
33
37
|
|
@@ -209,7 +213,7 @@ class W8A8FP8MoEMethod(FusedMoEMethodBase):
|
|
209
213
|
layer: torch.nn.Module,
|
210
214
|
num_experts: int,
|
211
215
|
hidden_size: int,
|
212
|
-
|
216
|
+
intermediate_size_per_partition: int,
|
213
217
|
params_dtype: torch.dtype,
|
214
218
|
**extra_weight_attrs,
|
215
219
|
):
|
@@ -218,7 +222,10 @@ class W8A8FP8MoEMethod(FusedMoEMethodBase):
|
|
218
222
|
# WEIGHTS
|
219
223
|
w13_weight = torch.nn.Parameter(
|
220
224
|
torch.empty(
|
221
|
-
num_experts,
|
225
|
+
num_experts,
|
226
|
+
2 * intermediate_size_per_partition,
|
227
|
+
hidden_size,
|
228
|
+
dtype=fp8_dtype,
|
222
229
|
),
|
223
230
|
requires_grad=False,
|
224
231
|
)
|
@@ -226,14 +233,21 @@ class W8A8FP8MoEMethod(FusedMoEMethodBase):
|
|
226
233
|
set_weight_attrs(w13_weight, extra_weight_attrs)
|
227
234
|
|
228
235
|
w2_weight = torch.nn.Parameter(
|
229
|
-
torch.empty(
|
236
|
+
torch.empty(
|
237
|
+
num_experts,
|
238
|
+
hidden_size,
|
239
|
+
intermediate_size_per_partition,
|
240
|
+
dtype=fp8_dtype,
|
241
|
+
),
|
230
242
|
requires_grad=False,
|
231
243
|
)
|
232
244
|
layer.register_parameter("w2_weight", w2_weight)
|
233
245
|
set_weight_attrs(w2_weight, extra_weight_attrs)
|
234
246
|
|
235
247
|
w13_weight_scale = torch.nn.Parameter(
|
236
|
-
torch.ones(
|
248
|
+
torch.ones(
|
249
|
+
num_experts, 2 * intermediate_size_per_partition, 1, dtype=torch.float32
|
250
|
+
),
|
237
251
|
requires_grad=False,
|
238
252
|
)
|
239
253
|
w2_weight_scale = torch.nn.Parameter(
|
@@ -266,25 +280,26 @@ class W8A8FP8MoEMethod(FusedMoEMethodBase):
|
|
266
280
|
layer.w2_weight_scale.data, requires_grad=False
|
267
281
|
)
|
268
282
|
|
283
|
+
def create_moe_runner(
|
284
|
+
self, layer: torch.nn.Module, moe_runner_config: MoeRunnerConfig
|
285
|
+
):
|
286
|
+
self.moe_runner_config = moe_runner_config
|
287
|
+
self.runner = MoeRunner(MoeRunnerBackend.TRITON, moe_runner_config)
|
288
|
+
|
269
289
|
def apply(
|
270
290
|
self,
|
271
291
|
layer: torch.nn.Module,
|
272
|
-
|
273
|
-
|
274
|
-
moe_runner_config: MoeRunnerConfig,
|
275
|
-
) -> torch.Tensor:
|
276
|
-
from sglang.srt.layers.moe.fused_moe_triton.fused_moe import fused_experts
|
292
|
+
dispatch_output: StandardDispatchOutput,
|
293
|
+
) -> CombineInput:
|
277
294
|
|
278
|
-
|
279
|
-
|
280
|
-
layer.
|
281
|
-
layer.w2_weight,
|
282
|
-
topk_output=topk_output,
|
283
|
-
moe_runner_config=moe_runner_config,
|
295
|
+
quant_info = TritonMoeQuantInfo(
|
296
|
+
w13_weight=layer.w13_weight,
|
297
|
+
w2_weight=layer.w2_weight,
|
284
298
|
use_fp8_w8a8=True,
|
285
299
|
per_channel_quant=True,
|
286
|
-
|
287
|
-
w2_scale=
|
288
|
-
|
300
|
+
w13_scale=layer.w13_weight_scale,
|
301
|
+
w2_scale=layer.w2_weight_scale,
|
302
|
+
a13_scale=layer.w13_input_scale,
|
289
303
|
a2_scale=layer.w2_input_scale,
|
290
304
|
)
|
305
|
+
return self.runner.run(dispatch_output, quant_info)
|