sglang 0.5.1.post3__py3-none-any.whl → 0.5.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (245) hide show
  1. sglang/bench_one_batch.py +3 -0
  2. sglang/bench_one_batch_server.py +10 -1
  3. sglang/bench_serving.py +251 -26
  4. sglang/lang/interpreter.py +1 -1
  5. sglang/srt/configs/__init__.py +4 -0
  6. sglang/srt/configs/internvl.py +6 -0
  7. sglang/srt/configs/longcat_flash.py +104 -0
  8. sglang/srt/configs/model_config.py +37 -7
  9. sglang/srt/configs/qwen3_next.py +326 -0
  10. sglang/srt/connector/__init__.py +1 -1
  11. sglang/srt/connector/base_connector.py +1 -2
  12. sglang/srt/connector/redis.py +2 -2
  13. sglang/srt/connector/serde/__init__.py +1 -1
  14. sglang/srt/connector/serde/safe_serde.py +4 -3
  15. sglang/srt/custom_op.py +11 -1
  16. sglang/srt/debug_utils/dump_comparator.py +81 -44
  17. sglang/srt/debug_utils/dump_loader.py +97 -0
  18. sglang/srt/debug_utils/dumper.py +11 -3
  19. sglang/srt/debug_utils/text_comparator.py +73 -11
  20. sglang/srt/disaggregation/ascend/conn.py +75 -0
  21. sglang/srt/disaggregation/base/conn.py +1 -1
  22. sglang/srt/disaggregation/common/conn.py +15 -12
  23. sglang/srt/disaggregation/decode.py +6 -4
  24. sglang/srt/disaggregation/fake/conn.py +1 -1
  25. sglang/srt/disaggregation/mini_lb.py +6 -420
  26. sglang/srt/disaggregation/mooncake/conn.py +18 -10
  27. sglang/srt/disaggregation/nixl/conn.py +180 -16
  28. sglang/srt/disaggregation/prefill.py +6 -4
  29. sglang/srt/disaggregation/utils.py +5 -50
  30. sglang/srt/distributed/parallel_state.py +94 -58
  31. sglang/srt/entrypoints/engine.py +34 -14
  32. sglang/srt/entrypoints/http_server.py +172 -47
  33. sglang/srt/entrypoints/openai/protocol.py +63 -3
  34. sglang/srt/entrypoints/openai/serving_base.py +6 -2
  35. sglang/srt/entrypoints/openai/serving_chat.py +34 -19
  36. sglang/srt/entrypoints/openai/serving_completions.py +10 -4
  37. sglang/srt/entrypoints/openai/serving_embedding.py +8 -4
  38. sglang/srt/entrypoints/openai/serving_responses.py +7 -4
  39. sglang/srt/eplb/eplb_manager.py +28 -4
  40. sglang/srt/eplb/expert_distribution.py +55 -15
  41. sglang/srt/eplb/expert_location.py +8 -3
  42. sglang/srt/eplb/expert_location_updater.py +1 -1
  43. sglang/srt/function_call/ebnf_composer.py +11 -9
  44. sglang/srt/function_call/glm4_moe_detector.py +1 -1
  45. sglang/srt/function_call/gpt_oss_detector.py +1 -1
  46. sglang/srt/function_call/qwen3_coder_detector.py +1 -1
  47. sglang/srt/hf_transformers_utils.py +12 -0
  48. sglang/srt/layers/activation.py +44 -9
  49. sglang/srt/layers/attention/aiter_backend.py +93 -68
  50. sglang/srt/layers/attention/ascend_backend.py +250 -112
  51. sglang/srt/layers/attention/fla/chunk.py +242 -0
  52. sglang/srt/layers/attention/fla/chunk_delta_h.py +314 -0
  53. sglang/srt/layers/attention/fla/chunk_o.py +178 -0
  54. sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +151 -0
  55. sglang/srt/layers/attention/fla/cumsum.py +300 -0
  56. sglang/srt/layers/attention/fla/fused_recurrent.py +640 -0
  57. sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +232 -0
  58. sglang/srt/layers/attention/fla/index.py +37 -0
  59. sglang/srt/layers/attention/fla/l2norm.py +150 -0
  60. sglang/srt/layers/attention/fla/layernorm_gated.py +326 -0
  61. sglang/srt/layers/attention/fla/op.py +66 -0
  62. sglang/srt/layers/attention/fla/solve_tril.py +465 -0
  63. sglang/srt/layers/attention/fla/utils.py +331 -0
  64. sglang/srt/layers/attention/fla/wy_fast.py +158 -0
  65. sglang/srt/layers/attention/flashinfer_backend.py +6 -4
  66. sglang/srt/layers/attention/flashinfer_mla_backend.py +16 -12
  67. sglang/srt/layers/attention/hybrid_attn_backend.py +47 -8
  68. sglang/srt/layers/attention/hybrid_linear_attn_backend.py +584 -0
  69. sglang/srt/layers/attention/intel_amx_backend.py +3 -0
  70. sglang/srt/layers/attention/mamba/causal_conv1d.py +128 -0
  71. sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +1052 -0
  72. sglang/srt/layers/attention/mamba/mamba.py +64 -0
  73. sglang/srt/layers/attention/torch_native_backend.py +12 -6
  74. sglang/srt/layers/attention/trtllm_mla_backend.py +126 -36
  75. sglang/srt/layers/attention/wave_ops/decode_attention.py +2 -4
  76. sglang/srt/layers/attention/wave_ops/extend_attention.py +1 -3
  77. sglang/srt/layers/communicator.py +45 -7
  78. sglang/srt/layers/layernorm.py +54 -12
  79. sglang/srt/layers/logits_processor.py +10 -3
  80. sglang/srt/layers/moe/__init__.py +2 -1
  81. sglang/srt/layers/moe/cutlass_w4a8_moe.py +4 -12
  82. sglang/srt/layers/moe/ep_moe/kernels.py +74 -0
  83. sglang/srt/layers/moe/ep_moe/layer.py +110 -49
  84. sglang/srt/layers/moe/fused_moe_native.py +5 -3
  85. sglang/srt/layers/moe/fused_moe_triton/__init__.py +5 -3
  86. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  87. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=129,N=352,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  88. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/{E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → E=257,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json } +29 -29
  89. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  90. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  91. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  92. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  93. sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +9 -1049
  94. sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +212 -0
  95. sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +799 -0
  96. sglang/srt/layers/moe/fused_moe_triton/layer.py +56 -45
  97. sglang/srt/layers/moe/fused_moe_triton/moe_align_block_size.py +87 -0
  98. sglang/srt/layers/moe/moe_runner/__init__.py +2 -1
  99. sglang/srt/layers/moe/moe_runner/base.py +274 -1
  100. sglang/srt/layers/moe/moe_runner/runner.py +80 -0
  101. sglang/srt/layers/moe/moe_runner/triton.py +448 -0
  102. sglang/srt/layers/moe/token_dispatcher/__init__.py +16 -4
  103. sglang/srt/layers/moe/token_dispatcher/{base_dispatcher.py → base.py} +67 -17
  104. sglang/srt/layers/moe/token_dispatcher/deepep.py +41 -38
  105. sglang/srt/layers/moe/token_dispatcher/standard.py +44 -2
  106. sglang/srt/layers/moe/topk.py +43 -12
  107. sglang/srt/layers/moe/utils.py +6 -5
  108. sglang/srt/layers/quantization/awq.py +19 -7
  109. sglang/srt/layers/quantization/base_config.py +11 -6
  110. sglang/srt/layers/quantization/blockwise_int8.py +38 -27
  111. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +50 -30
  112. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +13 -1
  113. sglang/srt/layers/quantization/deep_gemm_wrapper/compile_utils.py +9 -1
  114. sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -3
  115. sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +27 -0
  116. sglang/srt/layers/quantization/fp8.py +76 -47
  117. sglang/srt/layers/quantization/fp8_utils.py +43 -29
  118. sglang/srt/layers/quantization/gptq.py +25 -17
  119. sglang/srt/layers/quantization/modelopt_quant.py +107 -40
  120. sglang/srt/layers/quantization/moe_wna16.py +21 -18
  121. sglang/srt/layers/quantization/mxfp4.py +77 -45
  122. sglang/srt/layers/quantization/quark/quark_moe.py +32 -27
  123. sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +49 -30
  124. sglang/srt/layers/quantization/quark/utils.py +97 -0
  125. sglang/srt/layers/quantization/rocm_mxfp4_utils.py +13 -0
  126. sglang/srt/layers/quantization/unquant.py +135 -47
  127. sglang/srt/layers/quantization/utils.py +13 -0
  128. sglang/srt/layers/quantization/w4afp8.py +60 -42
  129. sglang/srt/layers/quantization/w8a8_fp8.py +35 -20
  130. sglang/srt/layers/quantization/w8a8_int8.py +83 -41
  131. sglang/srt/layers/rocm_linear_utils.py +44 -0
  132. sglang/srt/layers/rotary_embedding.py +28 -19
  133. sglang/srt/layers/sampler.py +29 -5
  134. sglang/srt/lora/backend/base_backend.py +50 -8
  135. sglang/srt/lora/backend/triton_backend.py +90 -2
  136. sglang/srt/lora/layers.py +32 -0
  137. sglang/srt/lora/lora.py +4 -1
  138. sglang/srt/lora/lora_manager.py +35 -112
  139. sglang/srt/lora/mem_pool.py +24 -10
  140. sglang/srt/lora/utils.py +18 -9
  141. sglang/srt/managers/cache_controller.py +242 -278
  142. sglang/srt/managers/data_parallel_controller.py +30 -15
  143. sglang/srt/managers/detokenizer_manager.py +13 -2
  144. sglang/srt/managers/disagg_service.py +46 -0
  145. sglang/srt/managers/io_struct.py +160 -11
  146. sglang/srt/managers/mm_utils.py +6 -1
  147. sglang/srt/managers/multi_tokenizer_mixin.py +579 -0
  148. sglang/srt/managers/schedule_batch.py +27 -44
  149. sglang/srt/managers/schedule_policy.py +4 -3
  150. sglang/srt/managers/scheduler.py +90 -115
  151. sglang/srt/managers/scheduler_metrics_mixin.py +114 -8
  152. sglang/srt/managers/scheduler_output_processor_mixin.py +29 -19
  153. sglang/srt/managers/scheduler_profiler_mixin.py +1 -1
  154. sglang/srt/managers/scheduler_update_weights_mixin.py +8 -1
  155. sglang/srt/managers/template_manager.py +3 -3
  156. sglang/srt/managers/tokenizer_communicator_mixin.py +491 -0
  157. sglang/srt/managers/tokenizer_manager.py +41 -477
  158. sglang/srt/managers/tp_worker.py +16 -4
  159. sglang/srt/managers/tp_worker_overlap_thread.py +8 -10
  160. sglang/srt/mem_cache/allocator.py +1 -1
  161. sglang/srt/mem_cache/chunk_cache.py +1 -1
  162. sglang/srt/mem_cache/hicache_storage.py +24 -22
  163. sglang/srt/mem_cache/hiradix_cache.py +184 -101
  164. sglang/srt/mem_cache/lora_radix_cache.py +1 -1
  165. sglang/srt/mem_cache/memory_pool.py +324 -41
  166. sglang/srt/mem_cache/memory_pool_host.py +25 -18
  167. sglang/srt/mem_cache/radix_cache.py +5 -6
  168. sglang/srt/mem_cache/radix_cache_cpp.py +1 -1
  169. sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +164 -0
  170. sglang/srt/mem_cache/storage/hf3fs/{client_hf3fs.py → hf3fs_usrbio_client.py} +5 -1
  171. sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +61 -34
  172. sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +149 -12
  173. sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +280 -0
  174. sglang/srt/mem_cache/storage/lmcache/unit_test.py +121 -0
  175. sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +74 -19
  176. sglang/srt/mem_cache/storage/mooncake_store/test_mooncake_store.py +161 -0
  177. sglang/srt/mem_cache/swa_radix_cache.py +1 -3
  178. sglang/srt/metrics/collector.py +484 -63
  179. sglang/srt/metrics/startup_func_log_and_timer.py +150 -0
  180. sglang/srt/metrics/utils.py +48 -0
  181. sglang/srt/model_executor/cpu_graph_runner.py +640 -0
  182. sglang/srt/model_executor/cuda_graph_runner.py +13 -5
  183. sglang/srt/model_executor/forward_batch_info.py +72 -18
  184. sglang/srt/model_executor/model_runner.py +189 -31
  185. sglang/srt/model_loader/__init__.py +9 -3
  186. sglang/srt/model_loader/loader.py +33 -28
  187. sglang/srt/model_loader/utils.py +12 -0
  188. sglang/srt/model_loader/weight_utils.py +2 -1
  189. sglang/srt/models/deepseek_v2.py +311 -50
  190. sglang/srt/models/gemma3n_mm.py +1 -1
  191. sglang/srt/models/glm4_moe.py +10 -1
  192. sglang/srt/models/glm4v.py +4 -2
  193. sglang/srt/models/gpt_oss.py +5 -18
  194. sglang/srt/models/internvl.py +28 -0
  195. sglang/srt/models/llama4.py +9 -0
  196. sglang/srt/models/llama_eagle3.py +17 -0
  197. sglang/srt/models/longcat_flash.py +1026 -0
  198. sglang/srt/models/longcat_flash_nextn.py +699 -0
  199. sglang/srt/models/minicpmv.py +165 -3
  200. sglang/srt/models/mllama4.py +25 -0
  201. sglang/srt/models/opt.py +637 -0
  202. sglang/srt/models/qwen2.py +33 -3
  203. sglang/srt/models/qwen2_5_vl.py +90 -42
  204. sglang/srt/models/qwen2_moe.py +79 -14
  205. sglang/srt/models/qwen3.py +8 -2
  206. sglang/srt/models/qwen3_moe.py +39 -8
  207. sglang/srt/models/qwen3_next.py +1039 -0
  208. sglang/srt/models/qwen3_next_mtp.py +109 -0
  209. sglang/srt/models/torch_native_llama.py +1 -1
  210. sglang/srt/models/transformers.py +1 -1
  211. sglang/srt/multimodal/processors/base_processor.py +4 -2
  212. sglang/srt/multimodal/processors/glm4v.py +9 -9
  213. sglang/srt/multimodal/processors/internvl.py +141 -129
  214. sglang/srt/{reasoning_parser.py → parser/reasoning_parser.py} +1 -1
  215. sglang/srt/sampling/penaltylib/orchestrator.py +14 -2
  216. sglang/srt/sampling/sampling_batch_info.py +18 -15
  217. sglang/srt/server_args.py +297 -79
  218. sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +5 -0
  219. sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +10 -1
  220. sglang/srt/speculative/eagle_worker.py +216 -120
  221. sglang/srt/speculative/spec_info.py +5 -0
  222. sglang/srt/speculative/standalone_worker.py +109 -0
  223. sglang/srt/utils.py +37 -2
  224. sglang/srt/weight_sync/utils.py +1 -1
  225. sglang/test/attention/test_trtllm_mla_backend.py +181 -8
  226. sglang/test/few_shot_gsm8k.py +1 -0
  227. sglang/test/runners.py +4 -0
  228. sglang/test/test_cutlass_moe.py +24 -6
  229. sglang/test/test_cutlass_w4a8_moe.py +24 -9
  230. sglang/test/test_disaggregation_utils.py +66 -0
  231. sglang/test/test_utils.py +25 -1
  232. sglang/utils.py +5 -0
  233. sglang/version.py +1 -1
  234. {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/METADATA +11 -9
  235. {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/RECORD +243 -194
  236. sglang/srt/disaggregation/launch_lb.py +0 -131
  237. sglang/srt/mem_cache/storage/mooncake_store/unit_test.py +0 -40
  238. /sglang/srt/{model_parallel.py → layers/model_parallel.py} +0 -0
  239. /sglang/srt/{code_completion_parser.py → parser/code_completion_parser.py} +0 -0
  240. /sglang/srt/{conversation.py → parser/conversation.py} +0 -0
  241. /sglang/srt/{harmony_parser.py → parser/harmony_parser.py} +0 -0
  242. /sglang/srt/{jinja_template_utils.py → parser/jinja_template_utils.py} +0 -0
  243. {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/WHEEL +0 -0
  244. {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/licenses/LICENSE +0 -0
  245. {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/top_level.txt +0 -0
@@ -9,6 +9,8 @@ from torch.nn.parameter import Parameter
9
9
 
10
10
  from sglang.srt.custom_op import CustomOp
11
11
  from sglang.srt.layers.amx_utils import _amx_process_weight_after_loading
12
+ from sglang.srt.layers.moe import MoeRunner, MoeRunnerBackend, MoeRunnerConfig
13
+ from sglang.srt.layers.moe.moe_runner.triton import TritonMoeQuantInfo
12
14
  from sglang.srt.layers.quantization.base_config import (
13
15
  FusedMoEMethodBase,
14
16
  LinearMethodBase,
@@ -24,8 +26,10 @@ from sglang.srt.utils import (
24
26
  )
25
27
 
26
28
  if TYPE_CHECKING:
27
- from sglang.srt.layers.moe.moe_runner import MoeRunnerConfig
28
- from sglang.srt.layers.moe.topk import TopKOutput
29
+ from sglang.srt.layers.moe.token_dispatcher import (
30
+ CombineInput,
31
+ StandardDispatchOutput,
32
+ )
29
33
 
30
34
  has_triton_kernels = importlib.util.find_spec("triton_kernels") is not None
31
35
 
@@ -155,7 +159,7 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
155
159
  layer: torch.nn.Module,
156
160
  num_experts: int,
157
161
  hidden_size: int,
158
- intermediate_size: int,
162
+ intermediate_size_per_partition: int,
159
163
  params_dtype: torch.dtype,
160
164
  with_bias: bool = False,
161
165
  **extra_weight_attrs,
@@ -163,7 +167,7 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
163
167
  self.with_bias = with_bias
164
168
 
165
169
  # Fused gate_up_proj (column parallel)
166
- w13_weight_n, w13_weight_k = 2 * intermediate_size, hidden_size
170
+ w13_weight_n, w13_weight_k = 2 * intermediate_size_per_partition, hidden_size
167
171
  if self.use_triton_kernels:
168
172
  w13_weight_n, w13_weight_k = w13_weight_k, w13_weight_n
169
173
  w13_weight = torch.nn.Parameter(
@@ -175,7 +179,11 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
175
179
 
176
180
  if self.with_bias:
177
181
  w13_weight_bias = torch.nn.Parameter(
178
- torch.empty(num_experts, 2 * intermediate_size, dtype=torch.float32),
182
+ torch.empty(
183
+ num_experts,
184
+ 2 * intermediate_size_per_partition,
185
+ dtype=torch.float32,
186
+ ),
179
187
  requires_grad=False,
180
188
  )
181
189
  layer.register_parameter("w13_weight_bias", w13_weight_bias)
@@ -184,7 +192,7 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
184
192
  # down_proj (row parallel)
185
193
  w2_weight_n, w2_weight_k = (
186
194
  hidden_size,
187
- intermediate_size,
195
+ intermediate_size_per_partition,
188
196
  )
189
197
  if self.use_triton_kernels:
190
198
  w2_weight_n, w2_weight_k = w2_weight_k, w2_weight_n
@@ -222,33 +230,40 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
222
230
 
223
231
  return
224
232
 
233
+ def create_moe_runner(
234
+ self, layer: torch.nn.Module, moe_runner_config: MoeRunnerConfig
235
+ ):
236
+ self.moe_runner_config = moe_runner_config
237
+ self.runner = MoeRunner(MoeRunnerBackend.TRITON, moe_runner_config)
238
+
225
239
  def apply(
226
240
  self,
227
241
  layer: torch.nn.Module,
228
- x: torch.Tensor,
229
- topk_output: TopKOutput,
230
- moe_runner_config: MoeRunnerConfig,
231
- ) -> torch.Tensor:
242
+ dispatch_output: StandardDispatchOutput,
243
+ ) -> CombineInput:
232
244
 
233
245
  return self.forward(
234
- x=x,
235
246
  layer=layer,
236
- topk_output=topk_output,
237
- moe_runner_config=moe_runner_config,
247
+ dispatch_output=dispatch_output,
238
248
  )
239
249
 
240
250
  def forward_cuda(
241
251
  self,
242
252
  layer: torch.nn.Module,
243
- x: torch.Tensor,
244
- topk_output: TopKOutput,
245
- moe_runner_config: MoeRunnerConfig,
246
- ) -> torch.Tensor:
253
+ dispatch_output: StandardDispatchOutput,
254
+ ) -> CombineInput:
255
+
256
+ from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
257
+
258
+ x = dispatch_output.hidden_states
259
+ topk_output = dispatch_output.topk_output
260
+
261
+ moe_runner_config = self.moe_runner_config
247
262
 
248
263
  if self.use_triton_kernels:
249
264
  if self.with_bias:
250
265
  assert self.triton_kernel_moe_with_bias_forward is not None
251
- return self.triton_kernel_moe_with_bias_forward(
266
+ output = self.triton_kernel_moe_with_bias_forward(
252
267
  hidden_states=x,
253
268
  w1=layer.w13_weight,
254
269
  w2=layer.w2_weight,
@@ -261,13 +276,14 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
261
276
  )
262
277
  else:
263
278
  assert self.triton_kernel_moe_forward is not None
264
- return self.triton_kernel_moe_forward(
279
+ output = self.triton_kernel_moe_forward(
265
280
  hidden_states=x,
266
281
  w1=layer.w13_weight,
267
282
  w2=layer.w2_weight,
268
283
  topk_output=topk_output,
269
284
  moe_runner_config=moe_runner_config,
270
285
  )
286
+ return StandardCombineInput(hidden_states=output)
271
287
  else:
272
288
  if _use_aiter:
273
289
  assert not moe_runner_config.no_combine, "unsupported"
@@ -284,7 +300,7 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
284
300
  topk_weights = torch.ones_like(
285
301
  topk_weights, dtype=torch.float32
286
302
  ) # topk_weights must be FP32 (float32)
287
- return fused_moe(
303
+ output = fused_moe(
288
304
  x,
289
305
  layer.w13_weight,
290
306
  layer.w2_weight,
@@ -296,28 +312,30 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
296
312
  else ActivationType.Gelu
297
313
  ),
298
314
  )
315
+ return StandardCombineInput(hidden_states=output)
299
316
  else:
300
- from sglang.srt.layers.moe.fused_moe_triton.fused_moe import (
301
- fused_experts,
302
- )
303
317
 
304
- return fused_experts(
305
- hidden_states=x,
306
- w1=layer.w13_weight,
307
- w2=layer.w2_weight,
308
- b1=getattr(layer, "w13_weight_bias", None),
318
+ quant_info = TritonMoeQuantInfo(
319
+ w13_weight=layer.w13_weight,
320
+ w2_weight=layer.w2_weight,
321
+ b13=getattr(layer, "w13_weight_bias", None),
309
322
  b2=getattr(layer, "w2_weight_bias", None),
310
- topk_output=topk_output,
311
- moe_runner_config=moe_runner_config,
312
323
  )
324
+ return self.runner.run(dispatch_output, quant_info)
313
325
 
314
326
  def forward_cpu(
315
327
  self,
316
328
  layer: torch.nn.Module,
317
- x: torch.Tensor,
318
- topk_output: TopKOutput,
319
- moe_runner_config: MoeRunnerConfig,
320
- ) -> torch.Tensor:
329
+ dispatch_output: StandardDispatchOutput,
330
+ ) -> CombineInput:
331
+
332
+ from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
333
+
334
+ x = dispatch_output.hidden_states
335
+ topk_output = dispatch_output.topk_output
336
+
337
+ moe_runner_config = self.moe_runner_config
338
+
321
339
  assert (
322
340
  moe_runner_config.activation == "silu"
323
341
  ), f"activation = {moe_runner_config.activation} is not supported."
@@ -332,7 +350,7 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
332
350
  x, topk_weights = apply_topk_weights_cpu(
333
351
  moe_runner_config.apply_router_weight_on_input, topk_weights, x
334
352
  )
335
- return torch.ops.sgl_kernel.fused_experts_cpu(
353
+ output = torch.ops.sgl_kernel.fused_experts_cpu(
336
354
  x,
337
355
  layer.w13_weight,
338
356
  layer.w2_weight,
@@ -348,33 +366,103 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
348
366
  None, # a2_scale
349
367
  True, # is_vnni
350
368
  )
369
+ return StandardCombineInput(hidden_states=output)
351
370
  else:
352
371
  from sglang.srt.layers.moe.fused_moe_native import moe_forward_native
353
372
 
354
- return moe_forward_native(
373
+ output = moe_forward_native(
355
374
  layer,
356
375
  x,
357
376
  topk_output,
358
377
  moe_runner_config,
359
378
  )
379
+ return StandardCombineInput(hidden_states=output)
360
380
 
361
381
  def forward_npu(
362
382
  self,
363
383
  layer: torch.nn.Module,
364
- x: torch.Tensor,
365
- topk_output: TopKOutput,
366
- moe_runner_config: MoeRunnerConfig,
367
- ) -> torch.Tensor:
368
- from sglang.srt.layers.moe.fused_moe_native import moe_forward_native
384
+ dispatch_output: StandardDispatchOutput,
385
+ ) -> CombineInput:
386
+
387
+ import torch_npu
388
+
389
+ from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
390
+
391
+ x = dispatch_output.hidden_states
392
+ topk_weights, topk_ids, _ = dispatch_output.topk_output
393
+
394
+ original_dtype = x.dtype
395
+ num_tokens = x.shape[0]
396
+ topk_weights = topk_weights.to(x.dtype)
397
+ topk_ids = topk_ids.to(torch.int32)
398
+ num_experts = layer.num_experts
399
+ top_k = layer.top_k
400
+ row_idx_len = num_tokens * top_k
401
+ row_idx = (
402
+ torch.arange(0, row_idx_len, dtype=torch.int32, device=topk_weights.device)
403
+ .view(top_k, -1)
404
+ .permute(1, 0)
405
+ .contiguous()
406
+ )
369
407
 
370
- return moe_forward_native(
371
- layer,
372
- x,
373
- topk_output,
374
- moe_runner_config,
408
+ hidden_states, expanded_row_idx, expanded_expert_idx = (
409
+ torch_npu.npu_moe_init_routing(
410
+ x, row_idx=row_idx, expert_idx=topk_ids, active_num=num_tokens
411
+ )
412
+ )
413
+
414
+ expert_tokens = torch_npu.npu_moe_compute_expert_tokens(
415
+ expanded_expert_idx, num_experts
375
416
  )
376
417
 
377
- def forward_tpu(self, *args, **kwargs) -> torch.Tensor:
418
+ expert_tokens = expert_tokens.to(torch.int64)
419
+ if layer.w13_weight.shape[-1] == layer.hidden_size:
420
+ w13 = layer.w13_weight.transpose(1, 2)
421
+ w2 = layer.w2_weight.transpose(1, 2)
422
+
423
+ # gmm1: gate_up_proj
424
+ hidden_states = torch_npu.npu_grouped_matmul(
425
+ x=[hidden_states],
426
+ weight=[w13],
427
+ split_item=2,
428
+ group_list_type=0,
429
+ group_type=0,
430
+ group_list=expert_tokens,
431
+ output_dtype=original_dtype,
432
+ )[0]
433
+
434
+ # act_fn:
435
+ if self.moe_runner_config.activation == "silu":
436
+ hidden_states = torch_npu.npu_swiglu(hidden_states)
437
+ else:
438
+ from sglang.srt.layers.activation import GeluAndMul
439
+
440
+ hidden_states = GeluAndMul()(hidden_states)
441
+
442
+ # gmm2: down_proj
443
+ hidden_states = torch_npu.npu_grouped_matmul(
444
+ x=[hidden_states],
445
+ weight=[w2],
446
+ split_item=2,
447
+ group_list_type=0,
448
+ group_type=0,
449
+ group_list=expert_tokens,
450
+ output_dtype=original_dtype,
451
+ )[0]
452
+
453
+ final_hidden_states = torch_npu.npu_moe_finalize_routing(
454
+ hidden_states,
455
+ skip1=None,
456
+ skip2=None,
457
+ bias=None,
458
+ scales=topk_weights,
459
+ expanded_src_to_dst_row=expanded_row_idx,
460
+ export_for_source_row=topk_ids,
461
+ )
462
+
463
+ return StandardCombineInput(hidden_states=final_hidden_states)
464
+
465
+ def forward_tpu(self, *args, **kwargs) -> CombineInput:
378
466
  raise NotImplementedError("The TPU backend currently does not support MoE.")
379
467
 
380
468
  forward_native = forward_cpu
@@ -77,6 +77,19 @@ def is_layer_skipped(
77
77
  )
78
78
  else:
79
79
  is_skipped = prefix in ignored_layers
80
+ if "gate_up_proj" in prefix:
81
+ prefix_gate = prefix.replace("gate_up_proj", "gate_proj")
82
+ prefix_up = prefix.replace("gate_up_proj", "up_proj")
83
+ if prefix_gate in ignored_layers and prefix_up in ignored_layers:
84
+ is_skipped = True
85
+ elif "experts" in prefix:
86
+ is_skipped = any(
87
+ [
88
+ prefix in layer_name
89
+ for layer_name in ignored_layers
90
+ if "experts" in layer_name
91
+ ]
92
+ )
80
93
 
81
94
  assert is_skipped is not None
82
95
  return is_skipped
@@ -1,12 +1,14 @@
1
1
  from __future__ import annotations
2
2
 
3
3
  import logging
4
- from typing import TYPE_CHECKING, Any, Dict, List, Optional
4
+ from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional
5
5
 
6
6
  import torch
7
7
  from torch.nn import Module
8
8
  from torch.nn.parameter import Parameter
9
9
 
10
+ from sglang.srt.distributed.parallel_state import get_moe_expert_parallel_world_size
11
+ from sglang.srt.layers.linear import LinearBase, UnquantizedLinearMethod
10
12
  from sglang.srt.layers.quantization.base_config import (
11
13
  FusedMoEMethodBase,
12
14
  QuantizationConfig,
@@ -15,12 +17,19 @@ from sglang.srt.layers.quantization.base_config import (
15
17
  from sglang.srt.layers.quantization.fp8 import Fp8LinearMethod
16
18
  from sglang.srt.layers.quantization.unquant import UnquantizedLinearMethod
17
19
  from sglang.srt.layers.quantization.utils import is_layer_skipped
18
- from sglang.srt.utils import set_weight_attrs
20
+ from sglang.srt.utils import is_npu, set_weight_attrs
21
+
22
+ _is_npu = is_npu()
23
+ if not _is_npu:
24
+ from sglang.srt.layers.moe.cutlass_w4a8_moe import cutlass_w4a8_moe
19
25
 
20
26
  if TYPE_CHECKING:
21
27
  from sglang.srt.layers.moe import MoeRunnerConfig
22
28
  from sglang.srt.layers.moe.ep_moe.layer import EPMoE
23
- from sglang.srt.layers.moe.topk import StandardTopKOutput
29
+ from sglang.srt.layers.moe.token_dispatcher import (
30
+ CombineInput,
31
+ StandardDispatchOutput,
32
+ )
24
33
 
25
34
  ACTIVATION_SCHEMES = ["static", "dynamic"]
26
35
 
@@ -91,12 +100,13 @@ class W4AFp8Config(QuantizationConfig):
91
100
  from sglang.srt.layers.linear import LinearBase
92
101
  from sglang.srt.layers.moe.ep_moe.layer import EPMoE
93
102
  from sglang.srt.layers.moe.fused_moe_triton import FusedMoE
103
+ from sglang.srt.managers.schedule_batch import global_server_args_dict
94
104
 
95
105
  if isinstance(layer, LinearBase):
96
106
  if is_layer_skipped(prefix, self.ignored_layers):
97
107
  return UnquantizedLinearMethod()
98
108
  return Fp8LinearMethod(self)
99
- elif isinstance(layer, EPMoE):
109
+ elif isinstance(layer, FusedMoE):
100
110
  return W4AFp8MoEMethod(self)
101
111
  return None
102
112
 
@@ -104,8 +114,24 @@ class W4AFp8Config(QuantizationConfig):
104
114
  return []
105
115
 
106
116
 
107
- class W4AFp8MoEMethod(FusedMoEMethodBase):
117
+ def interleave_scales(scales: torch.Tensor) -> torch.Tensor:
118
+ """Interleave scales in groups of 4 similar to TRT-LLM implementation."""
119
+ s_shape = scales.shape
120
+ # Reshape to separate groups of 4
121
+ alignment = 4 if s_shape[2] % 4 == 0 else 1
122
+ scales_interleaved = scales.reshape(
123
+ s_shape[0], s_shape[1], (s_shape[2] // alignment), alignment
124
+ )
125
+ # Permute dimensions to interleave
126
+ scales_interleaved = scales_interleaved.permute(0, 2, 1, 3)
127
+ # Reshape back to original dimensions but with interleaved values
128
+ scales_interleaved = scales_interleaved.reshape(
129
+ s_shape[0], s_shape[2] // alignment, s_shape[1] * alignment
130
+ )
131
+ return scales_interleaved.contiguous()
108
132
 
133
+
134
+ class W4AFp8MoEMethod(FusedMoEMethodBase):
109
135
  def __init__(self, quant_config: W4AFp8Config):
110
136
  self.quant_config = quant_config
111
137
 
@@ -114,7 +140,7 @@ class W4AFp8MoEMethod(FusedMoEMethodBase):
114
140
  layer: EPMoE,
115
141
  num_experts: int,
116
142
  hidden_size: int,
117
- intermediate_size: int,
143
+ intermediate_size_per_partition: int,
118
144
  params_dtype: torch.dtype,
119
145
  **extra_weight_attrs,
120
146
  ):
@@ -126,7 +152,7 @@ class W4AFp8MoEMethod(FusedMoEMethodBase):
126
152
  w13_weight = torch.nn.Parameter(
127
153
  torch.empty(
128
154
  num_experts,
129
- intermediate_size * 2,
155
+ intermediate_size_per_partition * 2,
130
156
  hidden_size // 2,
131
157
  dtype=torch.int8,
132
158
  ),
@@ -140,7 +166,7 @@ class W4AFp8MoEMethod(FusedMoEMethodBase):
140
166
  torch.empty(
141
167
  num_experts,
142
168
  hidden_size,
143
- intermediate_size // 2,
169
+ intermediate_size_per_partition // 2,
144
170
  dtype=torch.int8,
145
171
  ),
146
172
  requires_grad=False,
@@ -154,7 +180,7 @@ class W4AFp8MoEMethod(FusedMoEMethodBase):
154
180
  w13_weight_scale = torch.nn.Parameter(
155
181
  torch.zeros(
156
182
  num_experts,
157
- 2 * intermediate_size,
183
+ 2 * intermediate_size_per_partition,
158
184
  hidden_size // self.quant_config.group_size,
159
185
  dtype=torch.float32,
160
186
  ),
@@ -167,7 +193,7 @@ class W4AFp8MoEMethod(FusedMoEMethodBase):
167
193
  torch.zeros(
168
194
  num_experts,
169
195
  hidden_size,
170
- intermediate_size // self.quant_config.group_size,
196
+ intermediate_size_per_partition // self.quant_config.group_size,
171
197
  dtype=torch.float32,
172
198
  ),
173
199
  requires_grad=False,
@@ -201,13 +227,13 @@ class W4AFp8MoEMethod(FusedMoEMethodBase):
201
227
  )
202
228
  self.c_strides1 = torch.full(
203
229
  (num_experts, 3),
204
- 2 * intermediate_size,
230
+ 2 * intermediate_size_per_partition,
205
231
  device=device,
206
232
  dtype=torch.int64,
207
233
  )
208
234
  self.a_strides2 = torch.full(
209
235
  (num_experts, 3),
210
- intermediate_size,
236
+ intermediate_size_per_partition,
211
237
  device=device,
212
238
  dtype=torch.int64,
213
239
  )
@@ -234,33 +260,18 @@ class W4AFp8MoEMethod(FusedMoEMethodBase):
234
260
 
235
261
  return
236
262
 
237
- def _interleave_scales(self, scales: torch.Tensor) -> torch.Tensor:
238
- """Interleave scales in groups of 4 similar to TRT-LLM implementation."""
239
- s_shape = scales.shape
240
- # Reshape to separate groups of 4
241
- scales_interleaved = scales.reshape(
242
- s_shape[0], s_shape[1], (s_shape[2] // 4), 4
243
- )
244
- # Permute dimensions to interleave
245
- scales_interleaved = scales_interleaved.permute(0, 2, 1, 3)
246
- # Reshape back to original dimensions but with interleaved values
247
- scales_interleaved = scales_interleaved.reshape(
248
- s_shape[0], s_shape[2] // 4, s_shape[1] * 4
249
- )
250
- return scales_interleaved.contiguous()
251
-
252
263
  def process_weights_after_loading(self, layer: Module) -> None:
253
264
  dtype = torch.bfloat16
254
265
  device = layer.w2_weight.device
255
266
 
256
267
  # Interleave w13_weight_scale (gate_up_proj)
257
268
  w13_weight_scale = layer.w13_weight_scale_inv.to(dtype)
258
- w13_weight_scale = self._interleave_scales(w13_weight_scale)
269
+ w13_weight_scale = interleave_scales(w13_weight_scale)
259
270
  layer.w13_weight_scale_inv = Parameter(w13_weight_scale, requires_grad=False)
260
271
 
261
272
  # Interleave w2_weight_scale (down_proj)
262
273
  w2_weight_scale = layer.w2_weight_scale_inv.to(dtype)
263
- w2_weight_scale = self._interleave_scales(w2_weight_scale)
274
+ w2_weight_scale = interleave_scales(w2_weight_scale)
264
275
  layer.w2_weight_scale_inv = Parameter(w2_weight_scale, requires_grad=False)
265
276
 
266
277
  # Process input scales
@@ -278,24 +289,31 @@ class W4AFp8MoEMethod(FusedMoEMethodBase):
278
289
  )
279
290
  layer.w2_input_scale = Parameter(new_w2_input_scale, requires_grad=False)
280
291
 
292
+ def create_moe_runner(
293
+ self, layer: torch.nn.Module, moe_runner_config: MoeRunnerConfig
294
+ ):
295
+ self.moe_runner_config = moe_runner_config
296
+
281
297
  def apply(
282
298
  self,
283
299
  layer: EPMoE,
284
- x: torch.Tensor,
285
- topk_output: StandardTopKOutput,
286
- moe_runner_config: MoeRunnerConfig,
287
- ) -> torch.Tensor:
300
+ dispatch_output: StandardDispatchOutput,
301
+ ) -> CombineInput:
288
302
 
289
- # TODO(ch-wan): move it out of this class
290
303
  from sglang.srt.layers.moe.cutlass_w4a8_moe import cutlass_w4a8_moe
304
+ from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
305
+
306
+ x = dispatch_output.hidden_states
307
+ topk_output = dispatch_output.topk_output
291
308
 
292
309
  topk_weights, topk_ids, _ = topk_output
293
310
  local_topk_ids = topk_ids
294
- local_topk_ids = torch.where(
295
- topk_ids == -1,
296
- layer.num_experts,
297
- topk_ids,
298
- )
311
+ if get_moe_expert_parallel_world_size() > 1:
312
+ local_topk_ids = torch.where(
313
+ topk_ids == -1,
314
+ layer.num_experts,
315
+ topk_ids,
316
+ )
299
317
 
300
318
  output = cutlass_w4a8_moe(
301
319
  layer.start_expert_id,
@@ -323,6 +341,6 @@ class W4AFp8MoEMethod(FusedMoEMethodBase):
323
341
  layer.w13_input_scale,
324
342
  layer.w2_input_scale,
325
343
  )
326
- if moe_runner_config.routed_scaling_factor is not None:
327
- output *= moe_runner_config.routed_scaling_factor
328
- return output
344
+ if self.moe_runner_config.routed_scaling_factor is not None:
345
+ output *= self.moe_runner_config.routed_scaling_factor
346
+ return StandardCombineInput(hidden_states=output)
@@ -5,6 +5,7 @@ from typing import TYPE_CHECKING, Any, Dict, List, Optional
5
5
  import torch
6
6
  from torch.nn.parameter import Parameter
7
7
 
8
+ from sglang.srt.layers.moe.moe_runner.triton import TritonMoeQuantInfo
8
9
  from sglang.srt.layers.parameter import ChannelQuantScaleParameter, ModelWeightParameter
9
10
  from sglang.srt.layers.quantization.base_config import (
10
11
  FusedMoEMethodBase,
@@ -26,8 +27,11 @@ from sglang.srt.layers.quantization.fp8_utils import (
26
27
  from sglang.srt.utils import set_weight_attrs
27
28
 
28
29
  if TYPE_CHECKING:
29
- from sglang.srt.layers.moe.moe_runner import MoeRunnerConfig
30
- from sglang.srt.layers.moe.topk import StandardTopKOutput
30
+ from sglang.srt.layers.moe import MoeRunner, MoeRunnerBackend, MoeRunnerConfig
31
+ from sglang.srt.layers.moe.token_dispatcher import (
32
+ CombineInput,
33
+ StandardDispatchOutput,
34
+ )
31
35
 
32
36
  _is_fp8_fnuz = is_fp8_fnuz()
33
37
 
@@ -209,7 +213,7 @@ class W8A8FP8MoEMethod(FusedMoEMethodBase):
209
213
  layer: torch.nn.Module,
210
214
  num_experts: int,
211
215
  hidden_size: int,
212
- intermediate_size: int,
216
+ intermediate_size_per_partition: int,
213
217
  params_dtype: torch.dtype,
214
218
  **extra_weight_attrs,
215
219
  ):
@@ -218,7 +222,10 @@ class W8A8FP8MoEMethod(FusedMoEMethodBase):
218
222
  # WEIGHTS
219
223
  w13_weight = torch.nn.Parameter(
220
224
  torch.empty(
221
- num_experts, 2 * intermediate_size, hidden_size, dtype=fp8_dtype
225
+ num_experts,
226
+ 2 * intermediate_size_per_partition,
227
+ hidden_size,
228
+ dtype=fp8_dtype,
222
229
  ),
223
230
  requires_grad=False,
224
231
  )
@@ -226,14 +233,21 @@ class W8A8FP8MoEMethod(FusedMoEMethodBase):
226
233
  set_weight_attrs(w13_weight, extra_weight_attrs)
227
234
 
228
235
  w2_weight = torch.nn.Parameter(
229
- torch.empty(num_experts, hidden_size, intermediate_size, dtype=fp8_dtype),
236
+ torch.empty(
237
+ num_experts,
238
+ hidden_size,
239
+ intermediate_size_per_partition,
240
+ dtype=fp8_dtype,
241
+ ),
230
242
  requires_grad=False,
231
243
  )
232
244
  layer.register_parameter("w2_weight", w2_weight)
233
245
  set_weight_attrs(w2_weight, extra_weight_attrs)
234
246
 
235
247
  w13_weight_scale = torch.nn.Parameter(
236
- torch.ones(num_experts, 2 * intermediate_size, 1, dtype=torch.float32),
248
+ torch.ones(
249
+ num_experts, 2 * intermediate_size_per_partition, 1, dtype=torch.float32
250
+ ),
237
251
  requires_grad=False,
238
252
  )
239
253
  w2_weight_scale = torch.nn.Parameter(
@@ -266,25 +280,26 @@ class W8A8FP8MoEMethod(FusedMoEMethodBase):
266
280
  layer.w2_weight_scale.data, requires_grad=False
267
281
  )
268
282
 
283
+ def create_moe_runner(
284
+ self, layer: torch.nn.Module, moe_runner_config: MoeRunnerConfig
285
+ ):
286
+ self.moe_runner_config = moe_runner_config
287
+ self.runner = MoeRunner(MoeRunnerBackend.TRITON, moe_runner_config)
288
+
269
289
  def apply(
270
290
  self,
271
291
  layer: torch.nn.Module,
272
- x: torch.Tensor,
273
- topk_output: StandardTopKOutput,
274
- moe_runner_config: MoeRunnerConfig,
275
- ) -> torch.Tensor:
276
- from sglang.srt.layers.moe.fused_moe_triton.fused_moe import fused_experts
292
+ dispatch_output: StandardDispatchOutput,
293
+ ) -> CombineInput:
277
294
 
278
- return fused_experts(
279
- x,
280
- layer.w13_weight,
281
- layer.w2_weight,
282
- topk_output=topk_output,
283
- moe_runner_config=moe_runner_config,
295
+ quant_info = TritonMoeQuantInfo(
296
+ w13_weight=layer.w13_weight,
297
+ w2_weight=layer.w2_weight,
284
298
  use_fp8_w8a8=True,
285
299
  per_channel_quant=True,
286
- w1_scale=(layer.w13_weight_scale),
287
- w2_scale=(layer.w2_weight_scale),
288
- a1_scale=layer.w13_input_scale,
300
+ w13_scale=layer.w13_weight_scale,
301
+ w2_scale=layer.w2_weight_scale,
302
+ a13_scale=layer.w13_input_scale,
289
303
  a2_scale=layer.w2_input_scale,
290
304
  )
305
+ return self.runner.run(dispatch_output, quant_info)