sglang 0.5.1.post3__py3-none-any.whl → 0.5.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +3 -0
- sglang/bench_one_batch_server.py +10 -1
- sglang/bench_serving.py +251 -26
- sglang/lang/interpreter.py +1 -1
- sglang/srt/configs/__init__.py +4 -0
- sglang/srt/configs/internvl.py +6 -0
- sglang/srt/configs/longcat_flash.py +104 -0
- sglang/srt/configs/model_config.py +37 -7
- sglang/srt/configs/qwen3_next.py +326 -0
- sglang/srt/connector/__init__.py +1 -1
- sglang/srt/connector/base_connector.py +1 -2
- sglang/srt/connector/redis.py +2 -2
- sglang/srt/connector/serde/__init__.py +1 -1
- sglang/srt/connector/serde/safe_serde.py +4 -3
- sglang/srt/custom_op.py +11 -1
- sglang/srt/debug_utils/dump_comparator.py +81 -44
- sglang/srt/debug_utils/dump_loader.py +97 -0
- sglang/srt/debug_utils/dumper.py +11 -3
- sglang/srt/debug_utils/text_comparator.py +73 -11
- sglang/srt/disaggregation/ascend/conn.py +75 -0
- sglang/srt/disaggregation/base/conn.py +1 -1
- sglang/srt/disaggregation/common/conn.py +15 -12
- sglang/srt/disaggregation/decode.py +6 -4
- sglang/srt/disaggregation/fake/conn.py +1 -1
- sglang/srt/disaggregation/mini_lb.py +6 -420
- sglang/srt/disaggregation/mooncake/conn.py +18 -10
- sglang/srt/disaggregation/nixl/conn.py +180 -16
- sglang/srt/disaggregation/prefill.py +6 -4
- sglang/srt/disaggregation/utils.py +5 -50
- sglang/srt/distributed/parallel_state.py +94 -58
- sglang/srt/entrypoints/engine.py +34 -14
- sglang/srt/entrypoints/http_server.py +172 -47
- sglang/srt/entrypoints/openai/protocol.py +63 -3
- sglang/srt/entrypoints/openai/serving_base.py +6 -2
- sglang/srt/entrypoints/openai/serving_chat.py +34 -19
- sglang/srt/entrypoints/openai/serving_completions.py +10 -4
- sglang/srt/entrypoints/openai/serving_embedding.py +8 -4
- sglang/srt/entrypoints/openai/serving_responses.py +7 -4
- sglang/srt/eplb/eplb_manager.py +28 -4
- sglang/srt/eplb/expert_distribution.py +55 -15
- sglang/srt/eplb/expert_location.py +8 -3
- sglang/srt/eplb/expert_location_updater.py +1 -1
- sglang/srt/function_call/ebnf_composer.py +11 -9
- sglang/srt/function_call/glm4_moe_detector.py +1 -1
- sglang/srt/function_call/gpt_oss_detector.py +1 -1
- sglang/srt/function_call/qwen3_coder_detector.py +1 -1
- sglang/srt/hf_transformers_utils.py +12 -0
- sglang/srt/layers/activation.py +44 -9
- sglang/srt/layers/attention/aiter_backend.py +93 -68
- sglang/srt/layers/attention/ascend_backend.py +250 -112
- sglang/srt/layers/attention/fla/chunk.py +242 -0
- sglang/srt/layers/attention/fla/chunk_delta_h.py +314 -0
- sglang/srt/layers/attention/fla/chunk_o.py +178 -0
- sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +151 -0
- sglang/srt/layers/attention/fla/cumsum.py +300 -0
- sglang/srt/layers/attention/fla/fused_recurrent.py +640 -0
- sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +232 -0
- sglang/srt/layers/attention/fla/index.py +37 -0
- sglang/srt/layers/attention/fla/l2norm.py +150 -0
- sglang/srt/layers/attention/fla/layernorm_gated.py +326 -0
- sglang/srt/layers/attention/fla/op.py +66 -0
- sglang/srt/layers/attention/fla/solve_tril.py +465 -0
- sglang/srt/layers/attention/fla/utils.py +331 -0
- sglang/srt/layers/attention/fla/wy_fast.py +158 -0
- sglang/srt/layers/attention/flashinfer_backend.py +6 -4
- sglang/srt/layers/attention/flashinfer_mla_backend.py +16 -12
- sglang/srt/layers/attention/hybrid_attn_backend.py +47 -8
- sglang/srt/layers/attention/hybrid_linear_attn_backend.py +584 -0
- sglang/srt/layers/attention/intel_amx_backend.py +3 -0
- sglang/srt/layers/attention/mamba/causal_conv1d.py +128 -0
- sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +1052 -0
- sglang/srt/layers/attention/mamba/mamba.py +64 -0
- sglang/srt/layers/attention/torch_native_backend.py +12 -6
- sglang/srt/layers/attention/trtllm_mla_backend.py +126 -36
- sglang/srt/layers/attention/wave_ops/decode_attention.py +2 -4
- sglang/srt/layers/attention/wave_ops/extend_attention.py +1 -3
- sglang/srt/layers/communicator.py +45 -7
- sglang/srt/layers/layernorm.py +54 -12
- sglang/srt/layers/logits_processor.py +10 -3
- sglang/srt/layers/moe/__init__.py +2 -1
- sglang/srt/layers/moe/cutlass_w4a8_moe.py +4 -12
- sglang/srt/layers/moe/ep_moe/kernels.py +74 -0
- sglang/srt/layers/moe/ep_moe/layer.py +110 -49
- sglang/srt/layers/moe/fused_moe_native.py +5 -3
- sglang/srt/layers/moe/fused_moe_triton/__init__.py +5 -3
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=129,N=352,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/{E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → E=257,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json } +29 -29
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +9 -1049
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +212 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +799 -0
- sglang/srt/layers/moe/fused_moe_triton/layer.py +56 -45
- sglang/srt/layers/moe/fused_moe_triton/moe_align_block_size.py +87 -0
- sglang/srt/layers/moe/moe_runner/__init__.py +2 -1
- sglang/srt/layers/moe/moe_runner/base.py +274 -1
- sglang/srt/layers/moe/moe_runner/runner.py +80 -0
- sglang/srt/layers/moe/moe_runner/triton.py +448 -0
- sglang/srt/layers/moe/token_dispatcher/__init__.py +16 -4
- sglang/srt/layers/moe/token_dispatcher/{base_dispatcher.py → base.py} +67 -17
- sglang/srt/layers/moe/token_dispatcher/deepep.py +41 -38
- sglang/srt/layers/moe/token_dispatcher/standard.py +44 -2
- sglang/srt/layers/moe/topk.py +43 -12
- sglang/srt/layers/moe/utils.py +6 -5
- sglang/srt/layers/quantization/awq.py +19 -7
- sglang/srt/layers/quantization/base_config.py +11 -6
- sglang/srt/layers/quantization/blockwise_int8.py +38 -27
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +50 -30
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +13 -1
- sglang/srt/layers/quantization/deep_gemm_wrapper/compile_utils.py +9 -1
- sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -3
- sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +27 -0
- sglang/srt/layers/quantization/fp8.py +76 -47
- sglang/srt/layers/quantization/fp8_utils.py +43 -29
- sglang/srt/layers/quantization/gptq.py +25 -17
- sglang/srt/layers/quantization/modelopt_quant.py +107 -40
- sglang/srt/layers/quantization/moe_wna16.py +21 -18
- sglang/srt/layers/quantization/mxfp4.py +77 -45
- sglang/srt/layers/quantization/quark/quark_moe.py +32 -27
- sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +49 -30
- sglang/srt/layers/quantization/quark/utils.py +97 -0
- sglang/srt/layers/quantization/rocm_mxfp4_utils.py +13 -0
- sglang/srt/layers/quantization/unquant.py +135 -47
- sglang/srt/layers/quantization/utils.py +13 -0
- sglang/srt/layers/quantization/w4afp8.py +60 -42
- sglang/srt/layers/quantization/w8a8_fp8.py +35 -20
- sglang/srt/layers/quantization/w8a8_int8.py +83 -41
- sglang/srt/layers/rocm_linear_utils.py +44 -0
- sglang/srt/layers/rotary_embedding.py +28 -19
- sglang/srt/layers/sampler.py +29 -5
- sglang/srt/lora/backend/base_backend.py +50 -8
- sglang/srt/lora/backend/triton_backend.py +90 -2
- sglang/srt/lora/layers.py +32 -0
- sglang/srt/lora/lora.py +4 -1
- sglang/srt/lora/lora_manager.py +35 -112
- sglang/srt/lora/mem_pool.py +24 -10
- sglang/srt/lora/utils.py +18 -9
- sglang/srt/managers/cache_controller.py +242 -278
- sglang/srt/managers/data_parallel_controller.py +30 -15
- sglang/srt/managers/detokenizer_manager.py +13 -2
- sglang/srt/managers/disagg_service.py +46 -0
- sglang/srt/managers/io_struct.py +160 -11
- sglang/srt/managers/mm_utils.py +6 -1
- sglang/srt/managers/multi_tokenizer_mixin.py +579 -0
- sglang/srt/managers/schedule_batch.py +27 -44
- sglang/srt/managers/schedule_policy.py +4 -3
- sglang/srt/managers/scheduler.py +90 -115
- sglang/srt/managers/scheduler_metrics_mixin.py +114 -8
- sglang/srt/managers/scheduler_output_processor_mixin.py +29 -19
- sglang/srt/managers/scheduler_profiler_mixin.py +1 -1
- sglang/srt/managers/scheduler_update_weights_mixin.py +8 -1
- sglang/srt/managers/template_manager.py +3 -3
- sglang/srt/managers/tokenizer_communicator_mixin.py +491 -0
- sglang/srt/managers/tokenizer_manager.py +41 -477
- sglang/srt/managers/tp_worker.py +16 -4
- sglang/srt/managers/tp_worker_overlap_thread.py +8 -10
- sglang/srt/mem_cache/allocator.py +1 -1
- sglang/srt/mem_cache/chunk_cache.py +1 -1
- sglang/srt/mem_cache/hicache_storage.py +24 -22
- sglang/srt/mem_cache/hiradix_cache.py +184 -101
- sglang/srt/mem_cache/lora_radix_cache.py +1 -1
- sglang/srt/mem_cache/memory_pool.py +324 -41
- sglang/srt/mem_cache/memory_pool_host.py +25 -18
- sglang/srt/mem_cache/radix_cache.py +5 -6
- sglang/srt/mem_cache/radix_cache_cpp.py +1 -1
- sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +164 -0
- sglang/srt/mem_cache/storage/hf3fs/{client_hf3fs.py → hf3fs_usrbio_client.py} +5 -1
- sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +61 -34
- sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +149 -12
- sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +280 -0
- sglang/srt/mem_cache/storage/lmcache/unit_test.py +121 -0
- sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +74 -19
- sglang/srt/mem_cache/storage/mooncake_store/test_mooncake_store.py +161 -0
- sglang/srt/mem_cache/swa_radix_cache.py +1 -3
- sglang/srt/metrics/collector.py +484 -63
- sglang/srt/metrics/startup_func_log_and_timer.py +150 -0
- sglang/srt/metrics/utils.py +48 -0
- sglang/srt/model_executor/cpu_graph_runner.py +640 -0
- sglang/srt/model_executor/cuda_graph_runner.py +13 -5
- sglang/srt/model_executor/forward_batch_info.py +72 -18
- sglang/srt/model_executor/model_runner.py +189 -31
- sglang/srt/model_loader/__init__.py +9 -3
- sglang/srt/model_loader/loader.py +33 -28
- sglang/srt/model_loader/utils.py +12 -0
- sglang/srt/model_loader/weight_utils.py +2 -1
- sglang/srt/models/deepseek_v2.py +311 -50
- sglang/srt/models/gemma3n_mm.py +1 -1
- sglang/srt/models/glm4_moe.py +10 -1
- sglang/srt/models/glm4v.py +4 -2
- sglang/srt/models/gpt_oss.py +5 -18
- sglang/srt/models/internvl.py +28 -0
- sglang/srt/models/llama4.py +9 -0
- sglang/srt/models/llama_eagle3.py +17 -0
- sglang/srt/models/longcat_flash.py +1026 -0
- sglang/srt/models/longcat_flash_nextn.py +699 -0
- sglang/srt/models/minicpmv.py +165 -3
- sglang/srt/models/mllama4.py +25 -0
- sglang/srt/models/opt.py +637 -0
- sglang/srt/models/qwen2.py +33 -3
- sglang/srt/models/qwen2_5_vl.py +90 -42
- sglang/srt/models/qwen2_moe.py +79 -14
- sglang/srt/models/qwen3.py +8 -2
- sglang/srt/models/qwen3_moe.py +39 -8
- sglang/srt/models/qwen3_next.py +1039 -0
- sglang/srt/models/qwen3_next_mtp.py +109 -0
- sglang/srt/models/torch_native_llama.py +1 -1
- sglang/srt/models/transformers.py +1 -1
- sglang/srt/multimodal/processors/base_processor.py +4 -2
- sglang/srt/multimodal/processors/glm4v.py +9 -9
- sglang/srt/multimodal/processors/internvl.py +141 -129
- sglang/srt/{reasoning_parser.py → parser/reasoning_parser.py} +1 -1
- sglang/srt/sampling/penaltylib/orchestrator.py +14 -2
- sglang/srt/sampling/sampling_batch_info.py +18 -15
- sglang/srt/server_args.py +297 -79
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +5 -0
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +10 -1
- sglang/srt/speculative/eagle_worker.py +216 -120
- sglang/srt/speculative/spec_info.py +5 -0
- sglang/srt/speculative/standalone_worker.py +109 -0
- sglang/srt/utils.py +37 -2
- sglang/srt/weight_sync/utils.py +1 -1
- sglang/test/attention/test_trtllm_mla_backend.py +181 -8
- sglang/test/few_shot_gsm8k.py +1 -0
- sglang/test/runners.py +4 -0
- sglang/test/test_cutlass_moe.py +24 -6
- sglang/test/test_cutlass_w4a8_moe.py +24 -9
- sglang/test/test_disaggregation_utils.py +66 -0
- sglang/test/test_utils.py +25 -1
- sglang/utils.py +5 -0
- sglang/version.py +1 -1
- {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/METADATA +11 -9
- {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/RECORD +243 -194
- sglang/srt/disaggregation/launch_lb.py +0 -131
- sglang/srt/mem_cache/storage/mooncake_store/unit_test.py +0 -40
- /sglang/srt/{model_parallel.py → layers/model_parallel.py} +0 -0
- /sglang/srt/{code_completion_parser.py → parser/code_completion_parser.py} +0 -0
- /sglang/srt/{conversation.py → parser/conversation.py} +0 -0
- /sglang/srt/{harmony_parser.py → parser/harmony_parser.py} +0 -0
- /sglang/srt/{jinja_template_utils.py → parser/jinja_template_utils.py} +0 -0
- {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/WHEEL +0 -0
- {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.5.1.post3.dist-info → sglang-0.5.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,232 @@
|
|
1
|
+
from typing import Optional
|
2
|
+
|
3
|
+
import torch
|
4
|
+
import triton
|
5
|
+
import triton.language as tl
|
6
|
+
|
7
|
+
from sglang.srt.layers.attention.fla.utils import input_guard
|
8
|
+
|
9
|
+
|
10
|
+
@triton.heuristics(
|
11
|
+
{
|
12
|
+
"USE_INITIAL_STATE": lambda args: args["h0_source"] is not None,
|
13
|
+
"IS_VARLEN": lambda args: args["cu_seqlens"] is not None,
|
14
|
+
}
|
15
|
+
)
|
16
|
+
@triton.jit(do_not_specialize=["T"])
|
17
|
+
def fused_sigmoid_gating_delta_rule_update_kernel(
|
18
|
+
A_log,
|
19
|
+
a,
|
20
|
+
dt_bias,
|
21
|
+
softplus_beta,
|
22
|
+
softplus_threshold,
|
23
|
+
q,
|
24
|
+
k,
|
25
|
+
v,
|
26
|
+
b,
|
27
|
+
o,
|
28
|
+
h0_source,
|
29
|
+
h0_indices,
|
30
|
+
cu_seqlens,
|
31
|
+
scale,
|
32
|
+
T,
|
33
|
+
B: tl.constexpr,
|
34
|
+
H: tl.constexpr,
|
35
|
+
HV: tl.constexpr,
|
36
|
+
K: tl.constexpr,
|
37
|
+
V: tl.constexpr,
|
38
|
+
BK: tl.constexpr,
|
39
|
+
BV: tl.constexpr,
|
40
|
+
USE_INITIAL_STATE: tl.constexpr,
|
41
|
+
USE_QK_L2NORM_IN_KERNEL: tl.constexpr,
|
42
|
+
IS_VARLEN: tl.constexpr,
|
43
|
+
):
|
44
|
+
"""
|
45
|
+
Fused kernel that combines sigmoid gating computation with recurrent delta rule update.
|
46
|
+
"""
|
47
|
+
i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
48
|
+
i_n, i_hv = i_nh // HV, i_nh % HV
|
49
|
+
i_h = i_hv // (HV // H)
|
50
|
+
|
51
|
+
if IS_VARLEN:
|
52
|
+
bos, eos = (
|
53
|
+
tl.load(cu_seqlens + i_n).to(tl.int64),
|
54
|
+
tl.load(cu_seqlens + i_n + 1).to(tl.int64),
|
55
|
+
)
|
56
|
+
all = T
|
57
|
+
T = eos - bos
|
58
|
+
else:
|
59
|
+
bos, eos = i_n * T, i_n * T + T
|
60
|
+
all = B * T
|
61
|
+
|
62
|
+
o_k = i_k * BK + tl.arange(0, BK)
|
63
|
+
o_v = i_v * BV + tl.arange(0, BV)
|
64
|
+
|
65
|
+
p_q = q + (bos * H + i_h) * K + o_k
|
66
|
+
p_k = k + (bos * H + i_h) * K + o_k
|
67
|
+
p_v = v + (bos * HV + i_hv) * V + o_v
|
68
|
+
p_b = b + bos * HV + i_hv
|
69
|
+
p_o = o + ((i_k * all + bos) * HV + i_hv) * V + o_v
|
70
|
+
|
71
|
+
# Gating computation pointers
|
72
|
+
p_A_log = A_log + i_hv
|
73
|
+
p_a = a + bos * HV + i_hv
|
74
|
+
p_dt_bias = dt_bias + i_hv
|
75
|
+
|
76
|
+
mask_k = o_k < K
|
77
|
+
mask_v = o_v < V
|
78
|
+
mask_h = mask_k[:, None] & mask_v[None, :]
|
79
|
+
|
80
|
+
b_h = tl.zeros([BK, BV], dtype=tl.float32)
|
81
|
+
if USE_INITIAL_STATE:
|
82
|
+
idx = tl.load(h0_indices + i_n)
|
83
|
+
if idx >= 0:
|
84
|
+
p_h0 = (
|
85
|
+
h0_source
|
86
|
+
+ idx * HV * K * V
|
87
|
+
+ i_hv * K * V
|
88
|
+
+ o_k[:, None] * V
|
89
|
+
+ o_v[None, :]
|
90
|
+
)
|
91
|
+
b_h += tl.load(p_h0, mask=mask_h, other=0).to(tl.float32)
|
92
|
+
|
93
|
+
for _ in range(0, T):
|
94
|
+
# Load inputs
|
95
|
+
b_q = tl.load(p_q, mask=mask_k, other=0).to(tl.float32)
|
96
|
+
b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32)
|
97
|
+
b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32)
|
98
|
+
b_b = tl.load(p_b).to(tl.float32)
|
99
|
+
|
100
|
+
# Compute sigmoid gating
|
101
|
+
# Load gating parameters
|
102
|
+
b_A_log = tl.load(p_A_log).to(tl.float32)
|
103
|
+
b_a = tl.load(p_a).to(tl.float32)
|
104
|
+
b_dt_bias = tl.load(p_dt_bias).to(tl.float32)
|
105
|
+
|
106
|
+
# Compute g = -exp(A_log) * softplus(a + dt_bias)
|
107
|
+
x = b_a + b_dt_bias
|
108
|
+
beta_x = softplus_beta * x
|
109
|
+
# Apply softplus with numerical stability
|
110
|
+
softplus_x = tl.where(
|
111
|
+
beta_x <= softplus_threshold,
|
112
|
+
(1.0 / softplus_beta) * tl.log(1.0 + tl.exp(beta_x)),
|
113
|
+
x,
|
114
|
+
)
|
115
|
+
b_g = -tl.exp(b_A_log) * softplus_x
|
116
|
+
|
117
|
+
# Compute beta = sigmoid(b)
|
118
|
+
b_beta = 1.0 / (1.0 + tl.exp(-b_b))
|
119
|
+
|
120
|
+
# Apply L2 normalization if enabled
|
121
|
+
if USE_QK_L2NORM_IN_KERNEL:
|
122
|
+
b_q = b_q / (tl.sqrt(tl.sum(b_q * b_q)) + 1e-6)
|
123
|
+
b_k = b_k / (tl.sqrt(tl.sum(b_k * b_k)) + 1e-6)
|
124
|
+
|
125
|
+
b_q = b_q * scale
|
126
|
+
|
127
|
+
# Apply gating to hidden state: h *= exp(g)
|
128
|
+
b_h *= tl.exp(b_g)
|
129
|
+
|
130
|
+
# Delta rule: v -= sum(h * k, dim=0)
|
131
|
+
b_v -= tl.sum(b_h * b_k[:, None], 0)
|
132
|
+
|
133
|
+
# Apply beta gating: v *= beta
|
134
|
+
b_v *= b_beta
|
135
|
+
|
136
|
+
# Update hidden state: h += k[:, None] * v[None, :]
|
137
|
+
b_h += b_k[:, None] * b_v[None, :]
|
138
|
+
|
139
|
+
# Compute output: o = sum(h * q, dim=0)
|
140
|
+
b_o = tl.sum(b_h * b_q[:, None], 0)
|
141
|
+
tl.store(p_o, b_o.to(p_o.dtype.element_ty), mask=mask_v)
|
142
|
+
|
143
|
+
# Update pointers for next timestep
|
144
|
+
p_q += H * K
|
145
|
+
p_k += H * K
|
146
|
+
p_o += HV * V
|
147
|
+
p_v += HV * V
|
148
|
+
p_b += HV
|
149
|
+
p_a += HV
|
150
|
+
|
151
|
+
# Store final state back to h0_source with bounds checking
|
152
|
+
if USE_INITIAL_STATE:
|
153
|
+
idx = tl.load(h0_indices + i_n)
|
154
|
+
if idx >= 0:
|
155
|
+
p_h0 = (
|
156
|
+
h0_source
|
157
|
+
+ idx * HV * K * V
|
158
|
+
+ i_hv * K * V
|
159
|
+
+ o_k[:, None] * V
|
160
|
+
+ o_v[None, :]
|
161
|
+
)
|
162
|
+
tl.store(p_h0, b_h.to(p_h0.dtype.element_ty), mask=mask_h)
|
163
|
+
|
164
|
+
|
165
|
+
@input_guard
|
166
|
+
def fused_sigmoid_gating_delta_rule_update(
|
167
|
+
A_log: torch.Tensor,
|
168
|
+
a: torch.Tensor,
|
169
|
+
dt_bias: torch.Tensor,
|
170
|
+
softplus_beta: float,
|
171
|
+
softplus_threshold: float,
|
172
|
+
q: torch.Tensor,
|
173
|
+
k: torch.Tensor,
|
174
|
+
v: torch.Tensor,
|
175
|
+
b: torch.Tensor,
|
176
|
+
initial_state_source: torch.Tensor,
|
177
|
+
initial_state_indices: torch.Tensor,
|
178
|
+
scale: Optional[float] = None,
|
179
|
+
use_qk_l2norm_in_kernel: bool = False,
|
180
|
+
cu_seqlens: Optional[torch.Tensor] = None,
|
181
|
+
):
|
182
|
+
"""
|
183
|
+
Fused triton implementation of sigmoid gating delta rule update.
|
184
|
+
This function uses a single fused kernel that combines both sigmoid gating computation
|
185
|
+
and the recurrent delta rule update for better performance.
|
186
|
+
"""
|
187
|
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
188
|
+
HV = v.shape[2]
|
189
|
+
N = B if cu_seqlens is None else len(cu_seqlens) - 1
|
190
|
+
BK, BV = triton.next_power_of_2(K), min(triton.next_power_of_2(V), 8)
|
191
|
+
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
|
192
|
+
assert NK == 1, "NK > 1 is not supported yet"
|
193
|
+
num_stages = 3
|
194
|
+
num_warps = 1
|
195
|
+
|
196
|
+
if scale is None:
|
197
|
+
scale = k.shape[-1] ** -0.5
|
198
|
+
else:
|
199
|
+
assert scale > 0, "scale must be positive"
|
200
|
+
|
201
|
+
o = q.new_empty(NK, *v.shape)
|
202
|
+
grid = (NK, NV, N * HV)
|
203
|
+
|
204
|
+
fused_sigmoid_gating_delta_rule_update_kernel[grid](
|
205
|
+
A_log=A_log,
|
206
|
+
a=a,
|
207
|
+
dt_bias=dt_bias,
|
208
|
+
softplus_beta=softplus_beta,
|
209
|
+
softplus_threshold=softplus_threshold,
|
210
|
+
q=q,
|
211
|
+
k=k,
|
212
|
+
v=v,
|
213
|
+
b=b,
|
214
|
+
o=o,
|
215
|
+
h0_source=initial_state_source,
|
216
|
+
h0_indices=initial_state_indices,
|
217
|
+
cu_seqlens=cu_seqlens,
|
218
|
+
scale=scale,
|
219
|
+
T=T,
|
220
|
+
B=B,
|
221
|
+
H=H,
|
222
|
+
HV=HV,
|
223
|
+
K=K,
|
224
|
+
V=V,
|
225
|
+
BK=BK,
|
226
|
+
BV=BV,
|
227
|
+
USE_QK_L2NORM_IN_KERNEL=use_qk_l2norm_in_kernel,
|
228
|
+
num_warps=num_warps,
|
229
|
+
num_stages=num_stages,
|
230
|
+
)
|
231
|
+
o = o.squeeze(0)
|
232
|
+
return o
|
@@ -0,0 +1,37 @@
|
|
1
|
+
# Adapt from https://github.com/fla-org/flash-linear-attention/blob/main/fla/ops/utils/index.py
|
2
|
+
# -*- coding: utf-8 -*-
|
3
|
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
4
|
+
|
5
|
+
import torch
|
6
|
+
import torch.nn.functional as F
|
7
|
+
import triton
|
8
|
+
import triton.language as tl
|
9
|
+
|
10
|
+
from sglang.srt.layers.attention.fla.utils import tensor_cache
|
11
|
+
|
12
|
+
|
13
|
+
@tensor_cache
|
14
|
+
def prepare_lens(cu_seqlens: torch.LongTensor) -> torch.LongTensor:
|
15
|
+
return cu_seqlens[1:] - cu_seqlens[:-1]
|
16
|
+
|
17
|
+
|
18
|
+
@tensor_cache
|
19
|
+
def prepare_chunk_indices(
|
20
|
+
cu_seqlens: torch.LongTensor, chunk_size: int
|
21
|
+
) -> torch.LongTensor:
|
22
|
+
indices = torch.cat(
|
23
|
+
[
|
24
|
+
torch.arange(n)
|
25
|
+
for n in triton.cdiv(prepare_lens(cu_seqlens), chunk_size).tolist()
|
26
|
+
]
|
27
|
+
)
|
28
|
+
return torch.stack([indices.eq(0).cumsum(0) - 1, indices], 1).to(cu_seqlens)
|
29
|
+
|
30
|
+
|
31
|
+
@tensor_cache
|
32
|
+
def prepare_chunk_offsets(
|
33
|
+
cu_seqlens: torch.LongTensor, chunk_size: int
|
34
|
+
) -> torch.LongTensor:
|
35
|
+
return torch.cat(
|
36
|
+
[cu_seqlens.new_tensor([0]), triton.cdiv(prepare_lens(cu_seqlens), chunk_size)]
|
37
|
+
).cumsum(-1)
|
@@ -0,0 +1,150 @@
|
|
1
|
+
# Adapt from https://github.com/fla-org/flash-linear-attention/blob/main/fla/modules/l2norm.py
|
2
|
+
# -*- coding: utf-8 -*-
|
3
|
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
4
|
+
|
5
|
+
from typing import Optional
|
6
|
+
|
7
|
+
import torch
|
8
|
+
import torch.nn as nn
|
9
|
+
import triton
|
10
|
+
import triton.language as tl
|
11
|
+
|
12
|
+
from sglang.srt.layers.attention.fla.utils import input_guard
|
13
|
+
|
14
|
+
BT_LIST = [8, 16, 32, 64, 128]
|
15
|
+
|
16
|
+
|
17
|
+
# @triton.autotune(
|
18
|
+
# configs=[
|
19
|
+
# triton.Config({}, num_warps=num_warps) for num_warps in [1, 2, 4, 8, 16, 32]
|
20
|
+
# ],
|
21
|
+
# key=["D"],
|
22
|
+
# )
|
23
|
+
@triton.jit
|
24
|
+
def l2norm_fwd_kernel1(
|
25
|
+
x,
|
26
|
+
y,
|
27
|
+
D,
|
28
|
+
BD: tl.constexpr,
|
29
|
+
eps,
|
30
|
+
):
|
31
|
+
i_t = tl.program_id(0)
|
32
|
+
x += i_t * D
|
33
|
+
y += i_t * D
|
34
|
+
# Compute mean and variance
|
35
|
+
cols = tl.arange(0, BD)
|
36
|
+
mask = cols < D
|
37
|
+
b_x = tl.load(x + cols, mask=mask, other=0.0).to(tl.float32)
|
38
|
+
b_var = tl.sum(b_x * b_x, axis=0)
|
39
|
+
b_rstd = 1 / tl.sqrt(b_var + eps)
|
40
|
+
# tl.store(Rstd + i_t, rstd)
|
41
|
+
# Normalize and apply linear transformation
|
42
|
+
b_y = b_x * b_rstd
|
43
|
+
tl.store(y + cols, b_y, mask=mask)
|
44
|
+
|
45
|
+
|
46
|
+
# @triton.autotune(
|
47
|
+
# configs=[
|
48
|
+
# triton.Config({"BT": BT}, num_warps=num_warps)
|
49
|
+
# for num_warps in [1, 2, 4, 8, 16]
|
50
|
+
# for BT in BT_LIST
|
51
|
+
# ],
|
52
|
+
# key=["D", "NB"],
|
53
|
+
# )
|
54
|
+
@triton.jit
|
55
|
+
def l2norm_fwd_kernel(
|
56
|
+
x,
|
57
|
+
y,
|
58
|
+
eps,
|
59
|
+
NB: tl.constexpr,
|
60
|
+
T: tl.constexpr,
|
61
|
+
D: tl.constexpr,
|
62
|
+
BT: tl.constexpr,
|
63
|
+
BD: tl.constexpr,
|
64
|
+
):
|
65
|
+
i_t = tl.program_id(0)
|
66
|
+
p_x = tl.make_block_ptr(x, (T, D), (D, 1), (i_t * BT, 0), (BT, BD), (1, 0))
|
67
|
+
b_x = tl.load(p_x, boundary_check=(0, 1)).to(tl.float32)
|
68
|
+
b_var = tl.sum(b_x * b_x, axis=1)
|
69
|
+
b_y = b_x / tl.sqrt(b_var + eps)[:, None]
|
70
|
+
p_y = tl.make_block_ptr(y, (T, D), (D, 1), (i_t * BT, 0), (BT, BD), (1, 0))
|
71
|
+
tl.store(p_y, b_y.to(p_y.dtype.element_ty), boundary_check=(0, 1))
|
72
|
+
|
73
|
+
|
74
|
+
def l2norm_fwd(
|
75
|
+
x: torch.Tensor, eps: float = 1e-6, output_dtype: Optional[torch.dtype] = None
|
76
|
+
):
|
77
|
+
x_shape_og = x.shape
|
78
|
+
x = x.view(-1, x.shape[-1])
|
79
|
+
# allocate output
|
80
|
+
if output_dtype is None:
|
81
|
+
y = torch.empty_like(x)
|
82
|
+
else:
|
83
|
+
y = torch.empty_like(x, dtype=output_dtype)
|
84
|
+
assert y.stride(-1) == 1
|
85
|
+
T, D = x.shape[0], x.shape[-1]
|
86
|
+
# rstd = torch.empty((T,), dtype=torch.float32, device=x.device)
|
87
|
+
# Less than 64KB per feature: enqueue fused kernel
|
88
|
+
MAX_FUSED_SIZE = 65536 // x.element_size()
|
89
|
+
BD = min(MAX_FUSED_SIZE, triton.next_power_of_2(D))
|
90
|
+
if D > BD:
|
91
|
+
raise RuntimeError("This layer doesn't support feature dim >= 64KB.")
|
92
|
+
|
93
|
+
if D <= 512:
|
94
|
+
NB = triton.cdiv(T, 2048)
|
95
|
+
|
96
|
+
def grid(meta):
|
97
|
+
return (triton.cdiv(T, meta["BT"]),)
|
98
|
+
|
99
|
+
l2norm_fwd_kernel[grid](
|
100
|
+
x,
|
101
|
+
y,
|
102
|
+
eps,
|
103
|
+
NB=NB,
|
104
|
+
T=T,
|
105
|
+
D=D,
|
106
|
+
BD=BD,
|
107
|
+
BT=16,
|
108
|
+
num_warps=8,
|
109
|
+
num_stages=3,
|
110
|
+
)
|
111
|
+
else:
|
112
|
+
l2norm_fwd_kernel1[(T,)](
|
113
|
+
x,
|
114
|
+
y,
|
115
|
+
eps=eps,
|
116
|
+
D=D,
|
117
|
+
BD=BD,
|
118
|
+
num_warps=8,
|
119
|
+
num_stages=3,
|
120
|
+
)
|
121
|
+
|
122
|
+
return y.view(x_shape_og)
|
123
|
+
|
124
|
+
|
125
|
+
class L2NormFunction(torch.autograd.Function):
|
126
|
+
|
127
|
+
@staticmethod
|
128
|
+
@input_guard
|
129
|
+
def forward(ctx, x, eps=1e-6, output_dtype=None):
|
130
|
+
return l2norm_fwd(x, eps, output_dtype)
|
131
|
+
|
132
|
+
|
133
|
+
def l2norm(
|
134
|
+
x: torch.Tensor, eps: float = 1e-6, output_dtype: Optional[torch.dtype] = None
|
135
|
+
) -> torch.Tensor:
|
136
|
+
return L2NormFunction.apply(x, eps, output_dtype)
|
137
|
+
|
138
|
+
|
139
|
+
l2_norm = l2norm
|
140
|
+
|
141
|
+
|
142
|
+
class L2Norm(nn.Module):
|
143
|
+
|
144
|
+
def __init__(self, eps: float = 1e-6, output_dtype: Optional[torch.dtype] = None):
|
145
|
+
super().__init__()
|
146
|
+
self.eps = eps
|
147
|
+
self.output_dtype = output_dtype
|
148
|
+
|
149
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
150
|
+
return l2norm(x, self.eps, self.output_dtype)
|