sequenzo 0.1.18__cp311-cp311-macosx_10_9_universal2.whl → 0.1.19__cp311-cp311-macosx_10_9_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (357) hide show
  1. sequenzo/__init__.py +39 -7
  2. sequenzo/big_data/clara/utils/get_weighted_diss.c +155 -155
  3. sequenzo/big_data/clara/utils/get_weighted_diss.cpython-311-darwin.so +0 -0
  4. sequenzo/clustering/KMedoids.py +39 -0
  5. sequenzo/clustering/hierarchical_clustering.py +107 -5
  6. sequenzo/define_sequence_data.py +10 -1
  7. sequenzo/dissimilarity_measures/get_distance_matrix.py +1 -2
  8. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +155 -155
  9. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cpython-311-darwin.so +0 -0
  10. sequenzo/dissimilarity_measures/utils/seqconc.c +155 -155
  11. sequenzo/dissimilarity_measures/utils/seqconc.cpython-311-darwin.so +0 -0
  12. sequenzo/dissimilarity_measures/utils/seqdss.c +155 -155
  13. sequenzo/dissimilarity_measures/utils/seqdss.cpython-311-darwin.so +0 -0
  14. sequenzo/dissimilarity_measures/utils/seqdur.c +155 -155
  15. sequenzo/dissimilarity_measures/utils/seqdur.cpython-311-darwin.so +0 -0
  16. sequenzo/dissimilarity_measures/utils/seqlength.c +155 -155
  17. sequenzo/dissimilarity_measures/utils/seqlength.cpython-311-darwin.so +0 -0
  18. sequenzo/multidomain/cat.py +0 -53
  19. sequenzo/multidomain/idcd.py +0 -1
  20. sequenzo/openmp_setup.py +233 -0
  21. sequenzo/visualization/plot_transition_matrix.py +21 -22
  22. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/METADATA +43 -10
  23. sequenzo-0.1.19.dist-info/RECORD +215 -0
  24. sequenzo/dissimilarity_measures/setup.py +0 -35
  25. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -688
  26. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT.h +0 -558
  27. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  28. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  29. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  30. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  31. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  32. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  33. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  34. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  35. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  36. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  37. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  38. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  39. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  40. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  41. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  42. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  43. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -486
  44. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -247
  45. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -114
  46. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -501
  47. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -282
  48. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -235
  49. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  50. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -870
  51. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -199
  52. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -206
  53. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Scaling.h +0 -188
  54. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Transform.h +0 -1563
  55. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Translation.h +0 -202
  56. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Umeyama.h +0 -166
  57. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  58. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -110
  59. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/Householder.h +0 -176
  60. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/HouseholderSequence.h +0 -545
  61. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  62. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  63. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  64. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  65. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  66. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  67. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  68. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  69. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -483
  70. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  71. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/Determinant.h +0 -117
  72. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/FullPivLU.h +0 -877
  73. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/InverseImpl.h +0 -432
  74. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -624
  75. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  76. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/arch/InverseSize4.h +0 -351
  77. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  78. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -435
  79. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  80. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -153
  81. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  82. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  83. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  84. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  85. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  86. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  87. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -434
  88. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  89. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  90. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/BDCSVD.h +0 -1366
  91. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD.h +0 -812
  92. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  93. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/SVDBase.h +0 -376
  94. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  95. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  96. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  97. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -378
  98. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  99. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  100. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  101. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -270
  102. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseBlock.h +0 -571
  103. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  104. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  105. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  106. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  107. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  108. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  109. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -98
  110. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  111. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMap.h +0 -305
  112. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  113. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  114. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  115. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseProduct.h +0 -181
  116. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -49
  117. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -397
  118. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  119. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  120. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  121. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  122. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  123. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -186
  124. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseVector.h +0 -478
  125. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -254
  126. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  127. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU.h +0 -923
  128. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  129. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  130. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  131. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  132. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  133. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  134. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  135. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  136. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  137. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  138. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  139. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  140. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  141. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  142. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  143. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  144. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseQR/SparseQR.h +0 -758
  145. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -116
  146. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdList.h +0 -106
  147. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -131
  148. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/details.h +0 -84
  149. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  150. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  151. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Image.h +0 -82
  152. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Kernel.h +0 -79
  153. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -55
  154. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/blas.h +0 -440
  155. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapack.h +0 -152
  156. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke.h +0 -16292
  157. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -17
  158. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  159. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  160. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -1442
  161. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  162. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  163. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  164. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  165. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  166. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -149
  167. sequenzo/dissimilarity_measures/src/eigen/blas/BandTriangularSolver.h +0 -97
  168. sequenzo/dissimilarity_measures/src/eigen/blas/GeneralRank1Update.h +0 -44
  169. sequenzo/dissimilarity_measures/src/eigen/blas/PackedSelfadjointProduct.h +0 -53
  170. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularMatrixVector.h +0 -79
  171. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularSolverVector.h +0 -88
  172. sequenzo/dissimilarity_measures/src/eigen/blas/Rank2Update.h +0 -57
  173. sequenzo/dissimilarity_measures/src/eigen/blas/common.h +0 -175
  174. sequenzo/dissimilarity_measures/src/eigen/blas/f2c/datatypes.h +0 -24
  175. sequenzo/dissimilarity_measures/src/eigen/blas/level1_cplx_impl.h +0 -155
  176. sequenzo/dissimilarity_measures/src/eigen/blas/level1_impl.h +0 -144
  177. sequenzo/dissimilarity_measures/src/eigen/blas/level1_real_impl.h +0 -122
  178. sequenzo/dissimilarity_measures/src/eigen/blas/level2_cplx_impl.h +0 -360
  179. sequenzo/dissimilarity_measures/src/eigen/blas/level2_impl.h +0 -553
  180. sequenzo/dissimilarity_measures/src/eigen/blas/level2_real_impl.h +0 -306
  181. sequenzo/dissimilarity_measures/src/eigen/blas/level3_impl.h +0 -702
  182. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/__init__.py +0 -1
  183. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/printers.py +0 -314
  184. sequenzo/dissimilarity_measures/src/eigen/lapack/lapack_common.h +0 -29
  185. sequenzo/dissimilarity_measures/src/eigen/scripts/relicense.py +0 -69
  186. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  187. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  188. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  189. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  190. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  191. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  192. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  193. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  194. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  195. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  196. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  197. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  198. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  199. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  200. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  201. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  202. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  203. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  204. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  205. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  206. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  207. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  208. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  209. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  210. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  211. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  212. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  213. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  214. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  215. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  216. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  217. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  218. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  219. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  220. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  221. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  222. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  223. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  224. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  225. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  226. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  227. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  228. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  229. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  230. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  231. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  232. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  233. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  234. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  235. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  236. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  237. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  238. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  239. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  240. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  241. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  242. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  243. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  244. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  245. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  246. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  247. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  248. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  249. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  250. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  251. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  252. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  253. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  254. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  255. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  256. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  257. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  258. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  259. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  260. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  261. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  262. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  263. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  264. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  265. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  266. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  267. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  268. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  269. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  270. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  271. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  272. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  273. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  274. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  275. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  276. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  277. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  278. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  279. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  280. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  281. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  282. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  283. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  284. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  285. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  286. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  287. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  288. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  289. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  290. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  291. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  292. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  293. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  294. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  295. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  296. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  297. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  298. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  299. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  300. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  301. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  302. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  303. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  304. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  305. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  306. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  307. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  308. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  309. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  310. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  311. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  312. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  313. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  314. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  315. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  316. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  317. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  318. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  319. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  320. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  321. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  322. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  323. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  324. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  325. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  326. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  327. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  328. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  329. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  330. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  331. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  332. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  333. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  334. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  335. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  336. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  337. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  338. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  339. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  340. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  341. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  342. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  343. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  344. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  345. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  346. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  347. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  348. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  349. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  350. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  351. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h +0 -507
  352. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  353. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  354. sequenzo-0.1.18.dist-info/RECORD +0 -544
  355. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/WHEEL +0 -0
  356. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/licenses/LICENSE +0 -0
  357. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/top_level.txt +0 -0
@@ -1,904 +0,0 @@
1
- // This file is part of Eigen, a lightweight C++ template library
2
- // for linear algebra.
3
- //
4
- // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5
- // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
6
- //
7
- // This Source Code Form is subject to the terms of the Mozilla
8
- // Public License v. 2.0. If a copy of the MPL was not distributed
9
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
-
11
- #ifndef EIGEN_SELFADJOINTEIGENSOLVER_H
12
- #define EIGEN_SELFADJOINTEIGENSOLVER_H
13
-
14
- #include "./Tridiagonalization.h"
15
-
16
- namespace Eigen {
17
-
18
- template<typename _MatrixType>
19
- class GeneralizedSelfAdjointEigenSolver;
20
-
21
- namespace internal {
22
- template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues;
23
-
24
- template<typename MatrixType, typename DiagType, typename SubDiagType>
25
- EIGEN_DEVICE_FUNC
26
- ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec);
27
- }
28
-
29
- /** \eigenvalues_module \ingroup Eigenvalues_Module
30
- *
31
- *
32
- * \class SelfAdjointEigenSolver
33
- *
34
- * \brief Computes eigenvalues and eigenvectors of selfadjoint matrices
35
- *
36
- * \tparam _MatrixType the type of the matrix of which we are computing the
37
- * eigendecomposition; this is expected to be an instantiation of the Matrix
38
- * class template.
39
- *
40
- * A matrix \f$ A \f$ is selfadjoint if it equals its adjoint. For real
41
- * matrices, this means that the matrix is symmetric: it equals its
42
- * transpose. This class computes the eigenvalues and eigenvectors of a
43
- * selfadjoint matrix. These are the scalars \f$ \lambda \f$ and vectors
44
- * \f$ v \f$ such that \f$ Av = \lambda v \f$. The eigenvalues of a
45
- * selfadjoint matrix are always real. If \f$ D \f$ is a diagonal matrix with
46
- * the eigenvalues on the diagonal, and \f$ V \f$ is a matrix with the
47
- * eigenvectors as its columns, then \f$ A = V D V^{-1} \f$. This is called the
48
- * eigendecomposition.
49
- *
50
- * For a selfadjoint matrix, \f$ V \f$ is unitary, meaning its inverse is equal
51
- * to its adjoint, \f$ V^{-1} = V^{\dagger} \f$. If \f$ A \f$ is real, then
52
- * \f$ V \f$ is also real and therefore orthogonal, meaning its inverse is
53
- * equal to its transpose, \f$ V^{-1} = V^T \f$.
54
- *
55
- * The algorithm exploits the fact that the matrix is selfadjoint, making it
56
- * faster and more accurate than the general purpose eigenvalue algorithms
57
- * implemented in EigenSolver and ComplexEigenSolver.
58
- *
59
- * Only the \b lower \b triangular \b part of the input matrix is referenced.
60
- *
61
- * Call the function compute() to compute the eigenvalues and eigenvectors of
62
- * a given matrix. Alternatively, you can use the
63
- * SelfAdjointEigenSolver(const MatrixType&, int) constructor which computes
64
- * the eigenvalues and eigenvectors at construction time. Once the eigenvalue
65
- * and eigenvectors are computed, they can be retrieved with the eigenvalues()
66
- * and eigenvectors() functions.
67
- *
68
- * The documentation for SelfAdjointEigenSolver(const MatrixType&, int)
69
- * contains an example of the typical use of this class.
70
- *
71
- * To solve the \em generalized eigenvalue problem \f$ Av = \lambda Bv \f$ and
72
- * the likes, see the class GeneralizedSelfAdjointEigenSolver.
73
- *
74
- * \sa MatrixBase::eigenvalues(), class EigenSolver, class ComplexEigenSolver
75
- */
76
- template<typename _MatrixType> class SelfAdjointEigenSolver
77
- {
78
- public:
79
-
80
- typedef _MatrixType MatrixType;
81
- enum {
82
- Size = MatrixType::RowsAtCompileTime,
83
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
84
- Options = MatrixType::Options,
85
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
86
- };
87
-
88
- /** \brief Scalar type for matrices of type \p _MatrixType. */
89
- typedef typename MatrixType::Scalar Scalar;
90
- typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
91
-
92
- typedef Matrix<Scalar,Size,Size,ColMajor,MaxColsAtCompileTime,MaxColsAtCompileTime> EigenvectorsType;
93
-
94
- /** \brief Real scalar type for \p _MatrixType.
95
- *
96
- * This is just \c Scalar if #Scalar is real (e.g., \c float or
97
- * \c double), and the type of the real part of \c Scalar if #Scalar is
98
- * complex.
99
- */
100
- typedef typename NumTraits<Scalar>::Real RealScalar;
101
-
102
- friend struct internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>;
103
-
104
- /** \brief Type for vector of eigenvalues as returned by eigenvalues().
105
- *
106
- * This is a column vector with entries of type #RealScalar.
107
- * The length of the vector is the size of \p _MatrixType.
108
- */
109
- typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType;
110
- typedef Tridiagonalization<MatrixType> TridiagonalizationType;
111
- typedef typename TridiagonalizationType::SubDiagonalType SubDiagonalType;
112
-
113
- /** \brief Default constructor for fixed-size matrices.
114
- *
115
- * The default constructor is useful in cases in which the user intends to
116
- * perform decompositions via compute(). This constructor
117
- * can only be used if \p _MatrixType is a fixed-size matrix; use
118
- * SelfAdjointEigenSolver(Index) for dynamic-size matrices.
119
- *
120
- * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp
121
- * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver.out
122
- */
123
- EIGEN_DEVICE_FUNC
124
- SelfAdjointEigenSolver()
125
- : m_eivec(),
126
- m_eivalues(),
127
- m_subdiag(),
128
- m_hcoeffs(),
129
- m_info(InvalidInput),
130
- m_isInitialized(false),
131
- m_eigenvectorsOk(false)
132
- { }
133
-
134
- /** \brief Constructor, pre-allocates memory for dynamic-size matrices.
135
- *
136
- * \param [in] size Positive integer, size of the matrix whose
137
- * eigenvalues and eigenvectors will be computed.
138
- *
139
- * This constructor is useful for dynamic-size matrices, when the user
140
- * intends to perform decompositions via compute(). The \p size
141
- * parameter is only used as a hint. It is not an error to give a wrong
142
- * \p size, but it may impair performance.
143
- *
144
- * \sa compute() for an example
145
- */
146
- EIGEN_DEVICE_FUNC
147
- explicit SelfAdjointEigenSolver(Index size)
148
- : m_eivec(size, size),
149
- m_eivalues(size),
150
- m_subdiag(size > 1 ? size - 1 : 1),
151
- m_hcoeffs(size > 1 ? size - 1 : 1),
152
- m_isInitialized(false),
153
- m_eigenvectorsOk(false)
154
- {}
155
-
156
- /** \brief Constructor; computes eigendecomposition of given matrix.
157
- *
158
- * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to
159
- * be computed. Only the lower triangular part of the matrix is referenced.
160
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
161
- *
162
- * This constructor calls compute(const MatrixType&, int) to compute the
163
- * eigenvalues of the matrix \p matrix. The eigenvectors are computed if
164
- * \p options equals #ComputeEigenvectors.
165
- *
166
- * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp
167
- * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.out
168
- *
169
- * \sa compute(const MatrixType&, int)
170
- */
171
- template<typename InputType>
172
- EIGEN_DEVICE_FUNC
173
- explicit SelfAdjointEigenSolver(const EigenBase<InputType>& matrix, int options = ComputeEigenvectors)
174
- : m_eivec(matrix.rows(), matrix.cols()),
175
- m_eivalues(matrix.cols()),
176
- m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1),
177
- m_hcoeffs(matrix.cols() > 1 ? matrix.cols() - 1 : 1),
178
- m_isInitialized(false),
179
- m_eigenvectorsOk(false)
180
- {
181
- compute(matrix.derived(), options);
182
- }
183
-
184
- /** \brief Computes eigendecomposition of given matrix.
185
- *
186
- * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to
187
- * be computed. Only the lower triangular part of the matrix is referenced.
188
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
189
- * \returns Reference to \c *this
190
- *
191
- * This function computes the eigenvalues of \p matrix. The eigenvalues()
192
- * function can be used to retrieve them. If \p options equals #ComputeEigenvectors,
193
- * then the eigenvectors are also computed and can be retrieved by
194
- * calling eigenvectors().
195
- *
196
- * This implementation uses a symmetric QR algorithm. The matrix is first
197
- * reduced to tridiagonal form using the Tridiagonalization class. The
198
- * tridiagonal matrix is then brought to diagonal form with implicit
199
- * symmetric QR steps with Wilkinson shift. Details can be found in
200
- * Section 8.3 of Golub \& Van Loan, <i>%Matrix Computations</i>.
201
- *
202
- * The cost of the computation is about \f$ 9n^3 \f$ if the eigenvectors
203
- * are required and \f$ 4n^3/3 \f$ if they are not required.
204
- *
205
- * This method reuses the memory in the SelfAdjointEigenSolver object that
206
- * was allocated when the object was constructed, if the size of the
207
- * matrix does not change.
208
- *
209
- * Example: \include SelfAdjointEigenSolver_compute_MatrixType.cpp
210
- * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType.out
211
- *
212
- * \sa SelfAdjointEigenSolver(const MatrixType&, int)
213
- */
214
- template<typename InputType>
215
- EIGEN_DEVICE_FUNC
216
- SelfAdjointEigenSolver& compute(const EigenBase<InputType>& matrix, int options = ComputeEigenvectors);
217
-
218
- /** \brief Computes eigendecomposition of given matrix using a closed-form algorithm
219
- *
220
- * This is a variant of compute(const MatrixType&, int options) which
221
- * directly solves the underlying polynomial equation.
222
- *
223
- * Currently only 2x2 and 3x3 matrices for which the sizes are known at compile time are supported (e.g., Matrix3d).
224
- *
225
- * This method is usually significantly faster than the QR iterative algorithm
226
- * but it might also be less accurate. It is also worth noting that
227
- * for 3x3 matrices it involves trigonometric operations which are
228
- * not necessarily available for all scalar types.
229
- *
230
- * For the 3x3 case, we observed the following worst case relative error regarding the eigenvalues:
231
- * - double: 1e-8
232
- * - float: 1e-3
233
- *
234
- * \sa compute(const MatrixType&, int options)
235
- */
236
- EIGEN_DEVICE_FUNC
237
- SelfAdjointEigenSolver& computeDirect(const MatrixType& matrix, int options = ComputeEigenvectors);
238
-
239
- /**
240
- *\brief Computes the eigen decomposition from a tridiagonal symmetric matrix
241
- *
242
- * \param[in] diag The vector containing the diagonal of the matrix.
243
- * \param[in] subdiag The subdiagonal of the matrix.
244
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
245
- * \returns Reference to \c *this
246
- *
247
- * This function assumes that the matrix has been reduced to tridiagonal form.
248
- *
249
- * \sa compute(const MatrixType&, int) for more information
250
- */
251
- SelfAdjointEigenSolver& computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options=ComputeEigenvectors);
252
-
253
- /** \brief Returns the eigenvectors of given matrix.
254
- *
255
- * \returns A const reference to the matrix whose columns are the eigenvectors.
256
- *
257
- * \pre The eigenvectors have been computed before.
258
- *
259
- * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
260
- * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
261
- * eigenvectors are normalized to have (Euclidean) norm equal to one. If
262
- * this object was used to solve the eigenproblem for the selfadjoint
263
- * matrix \f$ A \f$, then the matrix returned by this function is the
264
- * matrix \f$ V \f$ in the eigendecomposition \f$ A = V D V^{-1} \f$.
265
- *
266
- * For a selfadjoint matrix, \f$ V \f$ is unitary, meaning its inverse is equal
267
- * to its adjoint, \f$ V^{-1} = V^{\dagger} \f$. If \f$ A \f$ is real, then
268
- * \f$ V \f$ is also real and therefore orthogonal, meaning its inverse is
269
- * equal to its transpose, \f$ V^{-1} = V^T \f$.
270
- *
271
- * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp
272
- * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out
273
- *
274
- * \sa eigenvalues()
275
- */
276
- EIGEN_DEVICE_FUNC
277
- const EigenvectorsType& eigenvectors() const
278
- {
279
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
280
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
281
- return m_eivec;
282
- }
283
-
284
- /** \brief Returns the eigenvalues of given matrix.
285
- *
286
- * \returns A const reference to the column vector containing the eigenvalues.
287
- *
288
- * \pre The eigenvalues have been computed before.
289
- *
290
- * The eigenvalues are repeated according to their algebraic multiplicity,
291
- * so there are as many eigenvalues as rows in the matrix. The eigenvalues
292
- * are sorted in increasing order.
293
- *
294
- * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp
295
- * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out
296
- *
297
- * \sa eigenvectors(), MatrixBase::eigenvalues()
298
- */
299
- EIGEN_DEVICE_FUNC
300
- const RealVectorType& eigenvalues() const
301
- {
302
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
303
- return m_eivalues;
304
- }
305
-
306
- /** \brief Computes the positive-definite square root of the matrix.
307
- *
308
- * \returns the positive-definite square root of the matrix
309
- *
310
- * \pre The eigenvalues and eigenvectors of a positive-definite matrix
311
- * have been computed before.
312
- *
313
- * The square root of a positive-definite matrix \f$ A \f$ is the
314
- * positive-definite matrix whose square equals \f$ A \f$. This function
315
- * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the
316
- * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$.
317
- *
318
- * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp
319
- * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out
320
- *
321
- * \sa operatorInverseSqrt(), <a href="unsupported/group__MatrixFunctions__Module.html">MatrixFunctions Module</a>
322
- */
323
- EIGEN_DEVICE_FUNC
324
- MatrixType operatorSqrt() const
325
- {
326
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
327
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
328
- return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint();
329
- }
330
-
331
- /** \brief Computes the inverse square root of the matrix.
332
- *
333
- * \returns the inverse positive-definite square root of the matrix
334
- *
335
- * \pre The eigenvalues and eigenvectors of a positive-definite matrix
336
- * have been computed before.
337
- *
338
- * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to
339
- * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is
340
- * cheaper than first computing the square root with operatorSqrt() and
341
- * then its inverse with MatrixBase::inverse().
342
- *
343
- * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp
344
- * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out
345
- *
346
- * \sa operatorSqrt(), MatrixBase::inverse(), <a href="unsupported/group__MatrixFunctions__Module.html">MatrixFunctions Module</a>
347
- */
348
- EIGEN_DEVICE_FUNC
349
- MatrixType operatorInverseSqrt() const
350
- {
351
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
352
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
353
- return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
354
- }
355
-
356
- /** \brief Reports whether previous computation was successful.
357
- *
358
- * \returns \c Success if computation was successful, \c NoConvergence otherwise.
359
- */
360
- EIGEN_DEVICE_FUNC
361
- ComputationInfo info() const
362
- {
363
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
364
- return m_info;
365
- }
366
-
367
- /** \brief Maximum number of iterations.
368
- *
369
- * The algorithm terminates if it does not converge within m_maxIterations * n iterations, where n
370
- * denotes the size of the matrix. This value is currently set to 30 (copied from LAPACK).
371
- */
372
- static const int m_maxIterations = 30;
373
-
374
- protected:
375
- static EIGEN_DEVICE_FUNC
376
- void check_template_parameters()
377
- {
378
- EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
379
- }
380
-
381
- EigenvectorsType m_eivec;
382
- RealVectorType m_eivalues;
383
- typename TridiagonalizationType::SubDiagonalType m_subdiag;
384
- typename TridiagonalizationType::CoeffVectorType m_hcoeffs;
385
- ComputationInfo m_info;
386
- bool m_isInitialized;
387
- bool m_eigenvectorsOk;
388
- };
389
-
390
- namespace internal {
391
- /** \internal
392
- *
393
- * \eigenvalues_module \ingroup Eigenvalues_Module
394
- *
395
- * Performs a QR step on a tridiagonal symmetric matrix represented as a
396
- * pair of two vectors \a diag and \a subdiag.
397
- *
398
- * \param diag the diagonal part of the input selfadjoint tridiagonal matrix
399
- * \param subdiag the sub-diagonal part of the input selfadjoint tridiagonal matrix
400
- * \param start starting index of the submatrix to work on
401
- * \param end last+1 index of the submatrix to work on
402
- * \param matrixQ pointer to the column-major matrix holding the eigenvectors, can be 0
403
- * \param n size of the input matrix
404
- *
405
- * For compilation efficiency reasons, this procedure does not use eigen expression
406
- * for its arguments.
407
- *
408
- * Implemented from Golub's "Matrix Computations", algorithm 8.3.2:
409
- * "implicit symmetric QR step with Wilkinson shift"
410
- */
411
- template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
412
- EIGEN_DEVICE_FUNC
413
- static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n);
414
- }
415
-
416
- template<typename MatrixType>
417
- template<typename InputType>
418
- EIGEN_DEVICE_FUNC
419
- SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
420
- ::compute(const EigenBase<InputType>& a_matrix, int options)
421
- {
422
- check_template_parameters();
423
-
424
- const InputType &matrix(a_matrix.derived());
425
-
426
- EIGEN_USING_STD(abs);
427
- eigen_assert(matrix.cols() == matrix.rows());
428
- eigen_assert((options&~(EigVecMask|GenEigMask))==0
429
- && (options&EigVecMask)!=EigVecMask
430
- && "invalid option parameter");
431
- bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
432
- Index n = matrix.cols();
433
- m_eivalues.resize(n,1);
434
-
435
- if(n==1)
436
- {
437
- m_eivec = matrix;
438
- m_eivalues.coeffRef(0,0) = numext::real(m_eivec.coeff(0,0));
439
- if(computeEigenvectors)
440
- m_eivec.setOnes(n,n);
441
- m_info = Success;
442
- m_isInitialized = true;
443
- m_eigenvectorsOk = computeEigenvectors;
444
- return *this;
445
- }
446
-
447
- // declare some aliases
448
- RealVectorType& diag = m_eivalues;
449
- EigenvectorsType& mat = m_eivec;
450
-
451
- // map the matrix coefficients to [-1:1] to avoid over- and underflow.
452
- mat = matrix.template triangularView<Lower>();
453
- RealScalar scale = mat.cwiseAbs().maxCoeff();
454
- if(scale==RealScalar(0)) scale = RealScalar(1);
455
- mat.template triangularView<Lower>() /= scale;
456
- m_subdiag.resize(n-1);
457
- m_hcoeffs.resize(n-1);
458
- internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors);
459
-
460
- m_info = internal::computeFromTridiagonal_impl(diag, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec);
461
-
462
- // scale back the eigen values
463
- m_eivalues *= scale;
464
-
465
- m_isInitialized = true;
466
- m_eigenvectorsOk = computeEigenvectors;
467
- return *this;
468
- }
469
-
470
- template<typename MatrixType>
471
- SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
472
- ::computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options)
473
- {
474
- //TODO : Add an option to scale the values beforehand
475
- bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
476
-
477
- m_eivalues = diag;
478
- m_subdiag = subdiag;
479
- if (computeEigenvectors)
480
- {
481
- m_eivec.setIdentity(diag.size(), diag.size());
482
- }
483
- m_info = internal::computeFromTridiagonal_impl(m_eivalues, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec);
484
-
485
- m_isInitialized = true;
486
- m_eigenvectorsOk = computeEigenvectors;
487
- return *this;
488
- }
489
-
490
- namespace internal {
491
- /**
492
- * \internal
493
- * \brief Compute the eigendecomposition from a tridiagonal matrix
494
- *
495
- * \param[in,out] diag : On input, the diagonal of the matrix, on output the eigenvalues
496
- * \param[in,out] subdiag : The subdiagonal part of the matrix (entries are modified during the decomposition)
497
- * \param[in] maxIterations : the maximum number of iterations
498
- * \param[in] computeEigenvectors : whether the eigenvectors have to be computed or not
499
- * \param[out] eivec : The matrix to store the eigenvectors if computeEigenvectors==true. Must be allocated on input.
500
- * \returns \c Success or \c NoConvergence
501
- */
502
- template<typename MatrixType, typename DiagType, typename SubDiagType>
503
- EIGEN_DEVICE_FUNC
504
- ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec)
505
- {
506
- ComputationInfo info;
507
- typedef typename MatrixType::Scalar Scalar;
508
-
509
- Index n = diag.size();
510
- Index end = n-1;
511
- Index start = 0;
512
- Index iter = 0; // total number of iterations
513
-
514
- typedef typename DiagType::RealScalar RealScalar;
515
- const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
516
- const RealScalar precision_inv = RealScalar(1)/NumTraits<RealScalar>::epsilon();
517
- while (end>0)
518
- {
519
- for (Index i = start; i<end; ++i) {
520
- if (numext::abs(subdiag[i]) < considerAsZero) {
521
- subdiag[i] = RealScalar(0);
522
- } else {
523
- // abs(subdiag[i]) <= epsilon * sqrt(abs(diag[i]) + abs(diag[i+1]))
524
- // Scaled to prevent underflows.
525
- const RealScalar scaled_subdiag = precision_inv * subdiag[i];
526
- if (scaled_subdiag * scaled_subdiag <= (numext::abs(diag[i])+numext::abs(diag[i+1]))) {
527
- subdiag[i] = RealScalar(0);
528
- }
529
- }
530
- }
531
-
532
- // find the largest unreduced block at the end of the matrix.
533
- while (end>0 && subdiag[end-1]==RealScalar(0))
534
- {
535
- end--;
536
- }
537
- if (end<=0)
538
- break;
539
-
540
- // if we spent too many iterations, we give up
541
- iter++;
542
- if(iter > maxIterations * n) break;
543
-
544
- start = end - 1;
545
- while (start>0 && subdiag[start-1]!=0)
546
- start--;
547
-
548
- internal::tridiagonal_qr_step<MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor>(diag.data(), subdiag.data(), start, end, computeEigenvectors ? eivec.data() : (Scalar*)0, n);
549
- }
550
- if (iter <= maxIterations * n)
551
- info = Success;
552
- else
553
- info = NoConvergence;
554
-
555
- // Sort eigenvalues and corresponding vectors.
556
- // TODO make the sort optional ?
557
- // TODO use a better sort algorithm !!
558
- if (info == Success)
559
- {
560
- for (Index i = 0; i < n-1; ++i)
561
- {
562
- Index k;
563
- diag.segment(i,n-i).minCoeff(&k);
564
- if (k > 0)
565
- {
566
- numext::swap(diag[i], diag[k+i]);
567
- if(computeEigenvectors)
568
- eivec.col(i).swap(eivec.col(k+i));
569
- }
570
- }
571
- }
572
- return info;
573
- }
574
-
575
- template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues
576
- {
577
- EIGEN_DEVICE_FUNC
578
- static inline void run(SolverType& eig, const typename SolverType::MatrixType& A, int options)
579
- { eig.compute(A,options); }
580
- };
581
-
582
- template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3,false>
583
- {
584
- typedef typename SolverType::MatrixType MatrixType;
585
- typedef typename SolverType::RealVectorType VectorType;
586
- typedef typename SolverType::Scalar Scalar;
587
- typedef typename SolverType::EigenvectorsType EigenvectorsType;
588
-
589
-
590
- /** \internal
591
- * Computes the roots of the characteristic polynomial of \a m.
592
- * For numerical stability m.trace() should be near zero and to avoid over- or underflow m should be normalized.
593
- */
594
- EIGEN_DEVICE_FUNC
595
- static inline void computeRoots(const MatrixType& m, VectorType& roots)
596
- {
597
- EIGEN_USING_STD(sqrt)
598
- EIGEN_USING_STD(atan2)
599
- EIGEN_USING_STD(cos)
600
- EIGEN_USING_STD(sin)
601
- const Scalar s_inv3 = Scalar(1)/Scalar(3);
602
- const Scalar s_sqrt3 = sqrt(Scalar(3));
603
-
604
- // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The
605
- // eigenvalues are the roots to this equation, all guaranteed to be
606
- // real-valued, because the matrix is symmetric.
607
- Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(1,0)*m(2,0)*m(2,1) - m(0,0)*m(2,1)*m(2,1) - m(1,1)*m(2,0)*m(2,0) - m(2,2)*m(1,0)*m(1,0);
608
- Scalar c1 = m(0,0)*m(1,1) - m(1,0)*m(1,0) + m(0,0)*m(2,2) - m(2,0)*m(2,0) + m(1,1)*m(2,2) - m(2,1)*m(2,1);
609
- Scalar c2 = m(0,0) + m(1,1) + m(2,2);
610
-
611
- // Construct the parameters used in classifying the roots of the equation
612
- // and in solving the equation for the roots in closed form.
613
- Scalar c2_over_3 = c2*s_inv3;
614
- Scalar a_over_3 = (c2*c2_over_3 - c1)*s_inv3;
615
- a_over_3 = numext::maxi(a_over_3, Scalar(0));
616
-
617
- Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1));
618
-
619
- Scalar q = a_over_3*a_over_3*a_over_3 - half_b*half_b;
620
- q = numext::maxi(q, Scalar(0));
621
-
622
- // Compute the eigenvalues by solving for the roots of the polynomial.
623
- Scalar rho = sqrt(a_over_3);
624
- Scalar theta = atan2(sqrt(q),half_b)*s_inv3; // since sqrt(q) > 0, atan2 is in [0, pi] and theta is in [0, pi/3]
625
- Scalar cos_theta = cos(theta);
626
- Scalar sin_theta = sin(theta);
627
- // roots are already sorted, since cos is monotonically decreasing on [0, pi]
628
- roots(0) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); // == 2*rho*cos(theta+2pi/3)
629
- roots(1) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); // == 2*rho*cos(theta+ pi/3)
630
- roots(2) = c2_over_3 + Scalar(2)*rho*cos_theta;
631
- }
632
-
633
- EIGEN_DEVICE_FUNC
634
- static inline bool extract_kernel(MatrixType& mat, Ref<VectorType> res, Ref<VectorType> representative)
635
- {
636
- EIGEN_USING_STD(abs);
637
- EIGEN_USING_STD(sqrt);
638
- Index i0;
639
- // Find non-zero column i0 (by construction, there must exist a non zero coefficient on the diagonal):
640
- mat.diagonal().cwiseAbs().maxCoeff(&i0);
641
- // mat.col(i0) is a good candidate for an orthogonal vector to the current eigenvector,
642
- // so let's save it:
643
- representative = mat.col(i0);
644
- Scalar n0, n1;
645
- VectorType c0, c1;
646
- n0 = (c0 = representative.cross(mat.col((i0+1)%3))).squaredNorm();
647
- n1 = (c1 = representative.cross(mat.col((i0+2)%3))).squaredNorm();
648
- if(n0>n1) res = c0/sqrt(n0);
649
- else res = c1/sqrt(n1);
650
-
651
- return true;
652
- }
653
-
654
- EIGEN_DEVICE_FUNC
655
- static inline void run(SolverType& solver, const MatrixType& mat, int options)
656
- {
657
- eigen_assert(mat.cols() == 3 && mat.cols() == mat.rows());
658
- eigen_assert((options&~(EigVecMask|GenEigMask))==0
659
- && (options&EigVecMask)!=EigVecMask
660
- && "invalid option parameter");
661
- bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
662
-
663
- EigenvectorsType& eivecs = solver.m_eivec;
664
- VectorType& eivals = solver.m_eivalues;
665
-
666
- // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
667
- Scalar shift = mat.trace() / Scalar(3);
668
- // TODO Avoid this copy. Currently it is necessary to suppress bogus values when determining maxCoeff and for computing the eigenvectors later
669
- MatrixType scaledMat = mat.template selfadjointView<Lower>();
670
- scaledMat.diagonal().array() -= shift;
671
- Scalar scale = scaledMat.cwiseAbs().maxCoeff();
672
- if(scale > 0) scaledMat /= scale; // TODO for scale==0 we could save the remaining operations
673
-
674
- // compute the eigenvalues
675
- computeRoots(scaledMat,eivals);
676
-
677
- // compute the eigenvectors
678
- if(computeEigenvectors)
679
- {
680
- if((eivals(2)-eivals(0))<=Eigen::NumTraits<Scalar>::epsilon())
681
- {
682
- // All three eigenvalues are numerically the same
683
- eivecs.setIdentity();
684
- }
685
- else
686
- {
687
- MatrixType tmp;
688
- tmp = scaledMat;
689
-
690
- // Compute the eigenvector of the most distinct eigenvalue
691
- Scalar d0 = eivals(2) - eivals(1);
692
- Scalar d1 = eivals(1) - eivals(0);
693
- Index k(0), l(2);
694
- if(d0 > d1)
695
- {
696
- numext::swap(k,l);
697
- d0 = d1;
698
- }
699
-
700
- // Compute the eigenvector of index k
701
- {
702
- tmp.diagonal().array () -= eivals(k);
703
- // By construction, 'tmp' is of rank 2, and its kernel corresponds to the respective eigenvector.
704
- extract_kernel(tmp, eivecs.col(k), eivecs.col(l));
705
- }
706
-
707
- // Compute eigenvector of index l
708
- if(d0<=2*Eigen::NumTraits<Scalar>::epsilon()*d1)
709
- {
710
- // If d0 is too small, then the two other eigenvalues are numerically the same,
711
- // and thus we only have to ortho-normalize the near orthogonal vector we saved above.
712
- eivecs.col(l) -= eivecs.col(k).dot(eivecs.col(l))*eivecs.col(l);
713
- eivecs.col(l).normalize();
714
- }
715
- else
716
- {
717
- tmp = scaledMat;
718
- tmp.diagonal().array () -= eivals(l);
719
-
720
- VectorType dummy;
721
- extract_kernel(tmp, eivecs.col(l), dummy);
722
- }
723
-
724
- // Compute last eigenvector from the other two
725
- eivecs.col(1) = eivecs.col(2).cross(eivecs.col(0)).normalized();
726
- }
727
- }
728
-
729
- // Rescale back to the original size.
730
- eivals *= scale;
731
- eivals.array() += shift;
732
-
733
- solver.m_info = Success;
734
- solver.m_isInitialized = true;
735
- solver.m_eigenvectorsOk = computeEigenvectors;
736
- }
737
- };
738
-
739
- // 2x2 direct eigenvalues decomposition, code from Hauke Heibel
740
- template<typename SolverType>
741
- struct direct_selfadjoint_eigenvalues<SolverType,2,false>
742
- {
743
- typedef typename SolverType::MatrixType MatrixType;
744
- typedef typename SolverType::RealVectorType VectorType;
745
- typedef typename SolverType::Scalar Scalar;
746
- typedef typename SolverType::EigenvectorsType EigenvectorsType;
747
-
748
- EIGEN_DEVICE_FUNC
749
- static inline void computeRoots(const MatrixType& m, VectorType& roots)
750
- {
751
- EIGEN_USING_STD(sqrt);
752
- const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*numext::abs2(m(1,0)));
753
- const Scalar t1 = Scalar(0.5) * (m(0,0) + m(1,1));
754
- roots(0) = t1 - t0;
755
- roots(1) = t1 + t0;
756
- }
757
-
758
- EIGEN_DEVICE_FUNC
759
- static inline void run(SolverType& solver, const MatrixType& mat, int options)
760
- {
761
- EIGEN_USING_STD(sqrt);
762
- EIGEN_USING_STD(abs);
763
-
764
- eigen_assert(mat.cols() == 2 && mat.cols() == mat.rows());
765
- eigen_assert((options&~(EigVecMask|GenEigMask))==0
766
- && (options&EigVecMask)!=EigVecMask
767
- && "invalid option parameter");
768
- bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
769
-
770
- EigenvectorsType& eivecs = solver.m_eivec;
771
- VectorType& eivals = solver.m_eivalues;
772
-
773
- // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
774
- Scalar shift = mat.trace() / Scalar(2);
775
- MatrixType scaledMat = mat;
776
- scaledMat.coeffRef(0,1) = mat.coeff(1,0);
777
- scaledMat.diagonal().array() -= shift;
778
- Scalar scale = scaledMat.cwiseAbs().maxCoeff();
779
- if(scale > Scalar(0))
780
- scaledMat /= scale;
781
-
782
- // Compute the eigenvalues
783
- computeRoots(scaledMat,eivals);
784
-
785
- // compute the eigen vectors
786
- if(computeEigenvectors)
787
- {
788
- if((eivals(1)-eivals(0))<=abs(eivals(1))*Eigen::NumTraits<Scalar>::epsilon())
789
- {
790
- eivecs.setIdentity();
791
- }
792
- else
793
- {
794
- scaledMat.diagonal().array () -= eivals(1);
795
- Scalar a2 = numext::abs2(scaledMat(0,0));
796
- Scalar c2 = numext::abs2(scaledMat(1,1));
797
- Scalar b2 = numext::abs2(scaledMat(1,0));
798
- if(a2>c2)
799
- {
800
- eivecs.col(1) << -scaledMat(1,0), scaledMat(0,0);
801
- eivecs.col(1) /= sqrt(a2+b2);
802
- }
803
- else
804
- {
805
- eivecs.col(1) << -scaledMat(1,1), scaledMat(1,0);
806
- eivecs.col(1) /= sqrt(c2+b2);
807
- }
808
-
809
- eivecs.col(0) << eivecs.col(1).unitOrthogonal();
810
- }
811
- }
812
-
813
- // Rescale back to the original size.
814
- eivals *= scale;
815
- eivals.array() += shift;
816
-
817
- solver.m_info = Success;
818
- solver.m_isInitialized = true;
819
- solver.m_eigenvectorsOk = computeEigenvectors;
820
- }
821
- };
822
-
823
- }
824
-
825
- template<typename MatrixType>
826
- EIGEN_DEVICE_FUNC
827
- SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
828
- ::computeDirect(const MatrixType& matrix, int options)
829
- {
830
- internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>::run(*this,matrix,options);
831
- return *this;
832
- }
833
-
834
- namespace internal {
835
-
836
- // Francis implicit QR step.
837
- template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
838
- EIGEN_DEVICE_FUNC
839
- static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n)
840
- {
841
- // Wilkinson Shift.
842
- RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5);
843
- RealScalar e = subdiag[end-1];
844
- // Note that thanks to scaling, e^2 or td^2 cannot overflow, however they can still
845
- // underflow thus leading to inf/NaN values when using the following commented code:
846
- // RealScalar e2 = numext::abs2(subdiag[end-1]);
847
- // RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * sqrt(td*td + e2));
848
- // This explain the following, somewhat more complicated, version:
849
- RealScalar mu = diag[end];
850
- if(td==RealScalar(0)) {
851
- mu -= numext::abs(e);
852
- } else if (e != RealScalar(0)) {
853
- const RealScalar e2 = numext::abs2(e);
854
- const RealScalar h = numext::hypot(td,e);
855
- if(e2 == RealScalar(0)) {
856
- mu -= e / ((td + (td>RealScalar(0) ? h : -h)) / e);
857
- } else {
858
- mu -= e2 / (td + (td>RealScalar(0) ? h : -h));
859
- }
860
- }
861
-
862
- RealScalar x = diag[start] - mu;
863
- RealScalar z = subdiag[start];
864
- // If z ever becomes zero, the Givens rotation will be the identity and
865
- // z will stay zero for all future iterations.
866
- for (Index k = start; k < end && z != RealScalar(0); ++k)
867
- {
868
- JacobiRotation<RealScalar> rot;
869
- rot.makeGivens(x, z);
870
-
871
- // do T = G' T G
872
- RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k];
873
- RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1];
874
-
875
- diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1]);
876
- diag[k+1] = rot.s() * sdk + rot.c() * dkp1;
877
- subdiag[k] = rot.c() * sdk - rot.s() * dkp1;
878
-
879
- if (k > start)
880
- subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z;
881
-
882
- // "Chasing the bulge" to return to triangular form.
883
- x = subdiag[k];
884
- if (k < end - 1)
885
- {
886
- z = -rot.s() * subdiag[k+1];
887
- subdiag[k + 1] = rot.c() * subdiag[k+1];
888
- }
889
-
890
- // apply the givens rotation to the unit matrix Q = Q * G
891
- if (matrixQ)
892
- {
893
- // FIXME if StorageOrder == RowMajor this operation is not very efficient
894
- Map<Matrix<Scalar,Dynamic,Dynamic,StorageOrder> > q(matrixQ,n,n);
895
- q.applyOnTheRight(k,k+1,rot);
896
- }
897
- }
898
- }
899
-
900
- } // end namespace internal
901
-
902
- } // end namespace Eigen
903
-
904
- #endif // EIGEN_SELFADJOINTEIGENSOLVER_H