sequenzo 0.1.18__cp311-cp311-macosx_10_9_universal2.whl → 0.1.19__cp311-cp311-macosx_10_9_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (357) hide show
  1. sequenzo/__init__.py +39 -7
  2. sequenzo/big_data/clara/utils/get_weighted_diss.c +155 -155
  3. sequenzo/big_data/clara/utils/get_weighted_diss.cpython-311-darwin.so +0 -0
  4. sequenzo/clustering/KMedoids.py +39 -0
  5. sequenzo/clustering/hierarchical_clustering.py +107 -5
  6. sequenzo/define_sequence_data.py +10 -1
  7. sequenzo/dissimilarity_measures/get_distance_matrix.py +1 -2
  8. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +155 -155
  9. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cpython-311-darwin.so +0 -0
  10. sequenzo/dissimilarity_measures/utils/seqconc.c +155 -155
  11. sequenzo/dissimilarity_measures/utils/seqconc.cpython-311-darwin.so +0 -0
  12. sequenzo/dissimilarity_measures/utils/seqdss.c +155 -155
  13. sequenzo/dissimilarity_measures/utils/seqdss.cpython-311-darwin.so +0 -0
  14. sequenzo/dissimilarity_measures/utils/seqdur.c +155 -155
  15. sequenzo/dissimilarity_measures/utils/seqdur.cpython-311-darwin.so +0 -0
  16. sequenzo/dissimilarity_measures/utils/seqlength.c +155 -155
  17. sequenzo/dissimilarity_measures/utils/seqlength.cpython-311-darwin.so +0 -0
  18. sequenzo/multidomain/cat.py +0 -53
  19. sequenzo/multidomain/idcd.py +0 -1
  20. sequenzo/openmp_setup.py +233 -0
  21. sequenzo/visualization/plot_transition_matrix.py +21 -22
  22. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/METADATA +43 -10
  23. sequenzo-0.1.19.dist-info/RECORD +215 -0
  24. sequenzo/dissimilarity_measures/setup.py +0 -35
  25. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -688
  26. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT.h +0 -558
  27. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  28. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  29. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  30. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  31. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  32. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  33. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  34. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  35. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  36. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  37. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  38. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  39. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  40. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  41. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  42. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  43. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -486
  44. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -247
  45. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -114
  46. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -501
  47. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -282
  48. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -235
  49. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  50. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -870
  51. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -199
  52. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -206
  53. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Scaling.h +0 -188
  54. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Transform.h +0 -1563
  55. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Translation.h +0 -202
  56. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Umeyama.h +0 -166
  57. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  58. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -110
  59. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/Householder.h +0 -176
  60. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/HouseholderSequence.h +0 -545
  61. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  62. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  63. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  64. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  65. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  66. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  67. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  68. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  69. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -483
  70. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  71. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/Determinant.h +0 -117
  72. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/FullPivLU.h +0 -877
  73. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/InverseImpl.h +0 -432
  74. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -624
  75. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  76. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/arch/InverseSize4.h +0 -351
  77. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  78. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -435
  79. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  80. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -153
  81. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  82. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  83. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  84. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  85. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  86. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  87. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -434
  88. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  89. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  90. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/BDCSVD.h +0 -1366
  91. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD.h +0 -812
  92. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  93. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/SVDBase.h +0 -376
  94. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  95. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  96. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  97. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -378
  98. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  99. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  100. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  101. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -270
  102. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseBlock.h +0 -571
  103. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  104. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  105. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  106. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  107. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  108. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  109. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -98
  110. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  111. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMap.h +0 -305
  112. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  113. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  114. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  115. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseProduct.h +0 -181
  116. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -49
  117. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -397
  118. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  119. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  120. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  121. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  122. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  123. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -186
  124. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseVector.h +0 -478
  125. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -254
  126. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  127. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU.h +0 -923
  128. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  129. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  130. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  131. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  132. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  133. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  134. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  135. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  136. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  137. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  138. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  139. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  140. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  141. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  142. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  143. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  144. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseQR/SparseQR.h +0 -758
  145. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -116
  146. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdList.h +0 -106
  147. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -131
  148. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/details.h +0 -84
  149. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  150. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  151. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Image.h +0 -82
  152. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Kernel.h +0 -79
  153. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -55
  154. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/blas.h +0 -440
  155. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapack.h +0 -152
  156. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke.h +0 -16292
  157. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -17
  158. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  159. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  160. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -1442
  161. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  162. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  163. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  164. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  165. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  166. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -149
  167. sequenzo/dissimilarity_measures/src/eigen/blas/BandTriangularSolver.h +0 -97
  168. sequenzo/dissimilarity_measures/src/eigen/blas/GeneralRank1Update.h +0 -44
  169. sequenzo/dissimilarity_measures/src/eigen/blas/PackedSelfadjointProduct.h +0 -53
  170. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularMatrixVector.h +0 -79
  171. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularSolverVector.h +0 -88
  172. sequenzo/dissimilarity_measures/src/eigen/blas/Rank2Update.h +0 -57
  173. sequenzo/dissimilarity_measures/src/eigen/blas/common.h +0 -175
  174. sequenzo/dissimilarity_measures/src/eigen/blas/f2c/datatypes.h +0 -24
  175. sequenzo/dissimilarity_measures/src/eigen/blas/level1_cplx_impl.h +0 -155
  176. sequenzo/dissimilarity_measures/src/eigen/blas/level1_impl.h +0 -144
  177. sequenzo/dissimilarity_measures/src/eigen/blas/level1_real_impl.h +0 -122
  178. sequenzo/dissimilarity_measures/src/eigen/blas/level2_cplx_impl.h +0 -360
  179. sequenzo/dissimilarity_measures/src/eigen/blas/level2_impl.h +0 -553
  180. sequenzo/dissimilarity_measures/src/eigen/blas/level2_real_impl.h +0 -306
  181. sequenzo/dissimilarity_measures/src/eigen/blas/level3_impl.h +0 -702
  182. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/__init__.py +0 -1
  183. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/printers.py +0 -314
  184. sequenzo/dissimilarity_measures/src/eigen/lapack/lapack_common.h +0 -29
  185. sequenzo/dissimilarity_measures/src/eigen/scripts/relicense.py +0 -69
  186. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  187. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  188. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  189. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  190. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  191. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  192. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  193. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  194. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  195. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  196. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  197. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  198. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  199. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  200. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  201. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  202. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  203. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  204. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  205. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  206. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  207. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  208. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  209. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  210. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  211. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  212. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  213. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  214. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  215. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  216. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  217. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  218. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  219. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  220. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  221. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  222. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  223. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  224. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  225. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  226. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  227. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  228. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  229. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  230. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  231. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  232. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  233. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  234. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  235. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  236. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  237. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  238. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  239. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  240. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  241. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  242. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  243. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  244. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  245. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  246. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  247. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  248. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  249. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  250. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  251. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  252. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  253. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  254. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  255. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  256. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  257. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  258. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  259. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  260. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  261. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  262. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  263. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  264. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  265. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  266. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  267. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  268. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  269. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  270. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  271. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  272. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  273. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  274. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  275. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  276. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  277. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  278. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  279. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  280. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  281. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  282. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  283. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  284. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  285. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  286. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  287. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  288. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  289. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  290. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  291. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  292. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  293. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  294. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  295. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  296. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  297. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  298. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  299. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  300. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  301. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  302. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  303. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  304. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  305. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  306. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  307. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  308. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  309. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  310. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  311. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  312. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  313. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  314. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  315. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  316. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  317. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  318. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  319. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  320. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  321. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  322. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  323. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  324. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  325. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  326. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  327. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  328. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  329. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  330. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  331. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  332. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  333. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  334. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  335. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  336. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  337. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  338. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  339. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  340. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  341. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  342. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  343. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  344. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  345. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  346. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  347. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  348. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  349. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  350. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  351. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h +0 -507
  352. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  353. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  354. sequenzo-0.1.18.dist-info/RECORD +0 -544
  355. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/WHEEL +0 -0
  356. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/licenses/LICENSE +0 -0
  357. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/top_level.txt +0 -0
@@ -1,1650 +0,0 @@
1
- // This file is part of Eigen, a lightweight C++ template library for linear algebra.
2
- //
3
- // Mehdi Goli Codeplay Software Ltd.
4
- // Ralph Potter Codeplay Software Ltd.
5
- // Luke Iwanski Codeplay Software Ltd.
6
- // Contact: <eigen@codeplay.com>
7
- //
8
- // This Source Code Form is subject to the terms of the Mozilla Public License v. 2.0. If a copy of the MPL was not
9
- // distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
-
11
- /*****************************************************************
12
- * TensorContractionSycl.h
13
- *
14
- * \brief:
15
- * TensorContractionSycl.h, provides various tensor contraction kernel for SYCL backend
16
- *
17
- *****************************************************************/
18
-
19
- #ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_SYCL_H
20
- #define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_SYCL_H
21
-
22
- namespace Eigen {
23
-
24
- namespace TensorSycl {
25
- namespace internal {
26
-
27
- #ifndef EIGEN_SYCL_DISABLE_GEMV
28
- /*!
29
- * \brief TVPanelSize, a template class used for setting the panel size required for launching General TensorVector
30
- * contraction kernel on various hardware devices.
31
- *
32
- * \tparam Scalar: determines the element type of the tensor/vector
33
- *
34
- * \tparam StorageIndex determines the Index type.
35
- *
36
- * \tparam NCWindow: determines the number of non-contracting element to be process by each work-group
37
- *
38
- * \tparam CFactor: determines the number of contracting element to be process by each thread
39
- *
40
- * \tparam NCFactor: determines the number of non-contracting element to be process by each thread
41
- */
42
- template <typename Scalar, typename StorageIndex, StorageIndex NCWindow, StorageIndex CFactor, StorageIndex NCFactor>
43
- struct TVPanelSize {
44
- // LocalThreadSizeC: determines total number of thread per workgroup for the contracting dimension
45
- static EIGEN_CONSTEXPR StorageIndex LocalThreadSizeC = EIGEN_SYCL_LOCAL_THREAD_DIM0;
46
- // LocalThreadSizeNC: determines total number of thread per workgroup for the non-contracting dimension
47
- static EIGEN_CONSTEXPR StorageIndex LocalThreadSizeNC = EIGEN_SYCL_LOCAL_THREAD_DIM1;
48
- // TileSizeDimNC: determines the tile size for the non-contracting dimension
49
- static EIGEN_CONSTEXPR StorageIndex TileSizeDimNC = NCWindow / NCFactor;
50
- // TileSizeDimC: determines the tile size for the contracting dimension
51
- static EIGEN_CONSTEXPR StorageIndex TileSizeDimC = CFactor * LocalThreadSizeNC * LocalThreadSizeC;
52
- // WorkLoadPerThreadNC : determines workload per thread for loading the non-contracting dimension
53
- static EIGEN_CONSTEXPR StorageIndex WorkLoadPerThreadNC = TileSizeDimNC / LocalThreadSizeNC;
54
- // WorkLoadPerThreadC: determines workload per thread for loading the non-contracting dimension
55
- static EIGEN_CONSTEXPR StorageIndex WorkLoadPerThreadC = TileSizeDimC / LocalThreadSizeC;
56
- // BC : determines if supporting bank conflict is required
57
- static EIGEN_CONSTEXPR bool BC = false;
58
- };
59
- #endif
60
-
61
- /*!
62
- * \brief TTPanelSize, a template class used for setting the panel size required for launching General Tensor Tensor
63
- contraction kernel on various hardware devices.
64
- *
65
- * \tparam Scalar: determines the element type of the tensor
66
- *
67
- * \tparam StorageIndex: determines the Index type.
68
- *
69
- * \tparam REG_SIZE_M: determines workload per thread for loading the M dimension This can be varied based on the
70
- available register on a chosen device(can be controlled by EIGEN_SYCL_REG_M macro).
71
- *
72
- * \tparam REG_SIZE_N: determines workload per thread for loading the N dimension This can be varied based on the
73
- available register on a chosen device(can be controlled by EIGEN_SYCL_REG_N macro).
74
- *
75
- * \tparam TSDK: determines Tile size for dimension K. The packet size is assumed to be considered
76
- */
77
-
78
- template <typename Scalar, typename StorageIndex, StorageIndex REG_SIZE_M, StorageIndex REG_SIZE_N, StorageIndex TSDK>
79
- struct TTPanelSize {
80
- // TileSizeDimK: determines Tile size for dimension K. The packet size is assumed to be considered
81
- static EIGEN_CONSTEXPR StorageIndex TileSizeDimK = TSDK;
82
- // WorkLoadPerThreadM : determines workload per thread for loading the M dimension This can be varied based on the
83
- // available register on a chosen device(can be controlled by EIGEN_SYCL_REG_M macro//
84
- #ifndef EIGEN_SYCL_REG_M
85
- static EIGEN_CONSTEXPR StorageIndex WorkLoadPerThreadM = REG_SIZE_M;
86
- #else
87
- static EIGEN_CONSTEXPR StorageIndex WorkLoadPerThreadM = EIGEN_SYCL_REG_M;
88
- #endif
89
- // WorkLoadPerThreadN : determines workload per thread for loading the N dimension This can be varied based on the
90
- // available register on a chosen device(can be controlled by EIGEN_SYCL_REG_N macro
91
- #ifndef EIGEN_SYCL_REG_N
92
- static EIGEN_CONSTEXPR StorageIndex WorkLoadPerThreadN = REG_SIZE_N;
93
- #else
94
- static EIGEN_CONSTEXPR StorageIndex WorkLoadPerThreadN = EIGEN_SYCL_REG_N;
95
- #endif
96
- // LocalThreadSizeM: determines total number of thread per workgroup for the m dimension
97
- static EIGEN_CONSTEXPR StorageIndex LocalThreadSizeM = EIGEN_SYCL_LOCAL_THREAD_DIM0;
98
- // LocalThreadSizeN: determines total number of thread per workgroup for the n dimension
99
- static EIGEN_CONSTEXPR StorageIndex LocalThreadSizeN = EIGEN_SYCL_LOCAL_THREAD_DIM1;
100
- // TileSizeDimM: determines the tile size for the m dimension
101
- static EIGEN_CONSTEXPR StorageIndex TileSizeDimM = LocalThreadSizeM * WorkLoadPerThreadM;
102
- // TileSizeDimN: determines the tile size for the n dimension
103
- static EIGEN_CONSTEXPR StorageIndex TileSizeDimN = LocalThreadSizeN * WorkLoadPerThreadN;
104
- // LoadPerThreadLhs: determines workload per thread for loading Lhs Tensor. This must be divisable by packetsize
105
- static EIGEN_CONSTEXPR StorageIndex LoadPerThreadLhs =
106
- ((TileSizeDimK * WorkLoadPerThreadM * WorkLoadPerThreadN) / (TileSizeDimN));
107
- // LoadPerThreadRhs: determines workload per thread for loading Rhs Tensor. This must be divisable by packetsize
108
- static EIGEN_CONSTEXPR StorageIndex LoadPerThreadRhs =
109
- ((TileSizeDimK * WorkLoadPerThreadM * WorkLoadPerThreadN) / (TileSizeDimM));
110
- // BC : determines if supporting bank conflict is required
111
- static EIGEN_CONSTEXPR bool BC = true;
112
- // DoubleBuffer: determines if double buffering technique should be used (This can be disabled by
113
- // EIGEN_SYCL_DISABLE_DOUBLE_BUFFER macro when the device doesnot have sufficient local memory)
114
- static EIGEN_CONSTEXPR bool DoubleBuffer =
115
- #ifdef EIGEN_SYCL_DISABLE_DOUBLE_BUFFER
116
- false;
117
- #else
118
- true;
119
- #endif
120
- };
121
-
122
- /* !
123
- * \brief contraction_type: an enum class representing the Tensor Contraction implementation algorithm. This is used to
124
- * specialize the contraction algorithm based on device support for dedicated local memory.
125
- */
126
- enum class contraction_type { local, no_local };
127
- /* !
128
- * \brief data_source an enum class determining the location of the data in a memory hierarchy (global, local, private).
129
- */
130
- enum class data_source { global_mem, local_mem, private_mem };
131
-
132
- /*!
133
- * \brief read, a template function used for loading the data from global
134
- memory. This function is used to guarantee coalesced and vectorized load whenever possible
135
- *
136
- * \tparam PacketLoad: determines if the each element of this tensor block should be loaded in a packet mode
137
- *
138
- * \param is_coalesced_layout: determines whether or not the Tensor data in a memory can be access coalesced and
139
- vectorized when possible. Coalesced memory access is a key factor in Kernel performance. When a tensor is 2d and the
140
- contracting dimension is 1, it is always possible to accessed tensor data coalesced and vectorized. This is the case
141
- when RHS(right hand side) Tensor is transposed or when LHS(left hand side) Tensor is not transposed.
142
- *
143
- * \tparam PacketType: determines the type of packet
144
- *
145
- * \tparam TensorMapper: determines the input tensor mapper type
146
- *
147
- * \tparam StorageIndex: determines the Index type
148
-
149
- * \param tensorMapper: is the input tensor
150
- *
151
- * \param NCIndex: is the non-contracting dim index
152
- *
153
- * \param CIndex is the contracting dim index
154
- *
155
- * \param ld: is the leading dimension of the flattened tensor
156
- */
157
- template <bool PacketLoad, bool is_coalesced_layout, bool, typename PacketType, typename TensorMapper,
158
- typename StorageIndex>
159
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename ::Eigen::internal::enable_if<PacketLoad, PacketType>::type read(
160
- const TensorMapper &tensorMapper, const StorageIndex &NCIndex, const StorageIndex &CIndex, const StorageIndex &ld) {
161
- const StorageIndex row = (is_coalesced_layout) ? NCIndex : CIndex;
162
- const StorageIndex col = (is_coalesced_layout) ? CIndex : NCIndex;
163
- return tensorMapper.get_tensor().template packet<Unaligned>(row + (col * ld));
164
- }
165
-
166
- /*!
167
- * \brief read, special overload of read function, when the read access is not vectorized
168
- *
169
- * \tparam PacketLoad: determines if the each element of this tensor block should be loaded in a packet mode
170
- *
171
- * \param is_coalesced_layout: determines whether or not the Tensor data in a memory can be access coalesced and
172
- vectorized when possible. Coalesced memory access is a key factor in Kernel performance. When a tensor is 2d and the
173
- contracting dimension is 1, it is always possible to accessed tensor data coalesced and vectorized. This is the case
174
- when RHS(right hand side) Tensor is transposed or when LHS(left hand side) Tensor is not transposed.
175
- *
176
- * \tparam PacketType: determines the type of packet
177
- *
178
- * \tparam TensorMapper: determines the input tensor mapper type
179
- *
180
- * \tparam StorageIndex: determines the Index type
181
-
182
- * \param tensorMapper: is the input tensor
183
- *
184
- * \param NCIndex: is the non-contracting dim index
185
- *
186
- * \param CIndex: is the contracting dim index
187
- */
188
- template <bool PacketLoad, bool, bool IsRhs, typename PacketType, typename TensorMapper, typename StorageIndex>
189
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename ::Eigen::internal::enable_if<!PacketLoad, PacketType>::type read(
190
- const TensorMapper &tensorMapper, const StorageIndex &NCIndex, const StorageIndex &CIndex, const StorageIndex &) {
191
- const StorageIndex row = (IsRhs) ? CIndex : NCIndex;
192
- const StorageIndex col = (IsRhs) ? NCIndex : CIndex;
193
- return tensorMapper(row, col);
194
- }
195
-
196
- /*!
197
- * \brief write, a template function used for storing the data to local memory. This function is used to guarantee
198
- * coalesced and vectorized store whenever possible.
199
- *
200
- * \tparam StorageIndex: determines the Index type
201
- *
202
- * \param ld is the leading dimension of the local memory. ld is a compile time value for the local memory
203
- *
204
- * \tparam data_source: an enum value representing if the location of the data in a memory hierarchy.
205
- *
206
- * \tparam PacketType: determines the type of packet
207
- *
208
- * \tparam DataScalar: determines the output data type
209
- *
210
- * \param packet_data: the data to be written in the local memory
211
- *
212
- * \param ptr: a pointer to the local memory
213
- *
214
- * \param CIndex is the contracting dim index
215
- */
216
-
217
- template <typename StorageIndex, StorageIndex ld, data_source dt, typename PacketType, typename DataScalar>
218
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
219
- typename ::Eigen::internal::enable_if<dt != data_source::global_mem, void>::type
220
- write(PacketType &packet_data, DataScalar ptr) {
221
- EIGEN_CONSTEXPR int PacketSize = Eigen::internal::unpacket_traits<PacketType>::size;
222
- EIGEN_UNROLL_LOOP
223
- for (int i = 0; i < PacketSize; i++) {
224
- *ptr = PacketWrapper<PacketType, PacketSize>::scalarize(i, packet_data);
225
- ptr += ld;
226
- }
227
- }
228
-
229
- /*!
230
- * \brief Overloading the write function for storing the data to global memory, when vectorization enabled This function
231
- * is used to guarantee coalesced and vectorized store whenever possible.
232
- *
233
- * \tparam data_source: an enum value representing if the location of the data in a memory hierarchy.
234
- *
235
- * \tparam PacketType: determines the type of packet
236
- *
237
- * \tparam DataScalar: determines the output data type
238
- *
239
- * \param packet_data: the data to be written in the local memory
240
- *
241
- * \param ptr: a pointer to the local memory
242
- */
243
-
244
- template <data_source dt, typename PacketType, typename DataScalar>
245
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename ::Eigen::internal::enable_if<
246
- Eigen::internal::unpacket_traits<PacketType>::size != 1 && dt == data_source::global_mem, void>::type
247
- write(PacketType &packet_data, DataScalar *ptr) {
248
- ::Eigen::internal::pstoreu<DataScalar, PacketType>(ptr, packet_data);
249
- }
250
-
251
- /*!
252
- * \brief Overloading the write function for storing the data to global memory, when vectorization is disabled.
253
- *
254
- * \tparam data_source: an enum value representing if the location of the data in a memory hierarchy.
255
- *
256
- * \tparam PacketType: determines the type of packet
257
- *
258
- * \tparam DataScalar: determines the output data type
259
- *
260
- * \param packet_data: the data to be written in the local memory
261
- *
262
- * \param ptr: a pointer to the local memory
263
- */
264
- template <data_source dt, typename PacketType, typename DataScalar>
265
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename ::Eigen::internal::enable_if<
266
- Eigen::internal::unpacket_traits<PacketType>::size == 1 && dt == data_source::global_mem, void>::type
267
- write(PacketType &packet_data, DataScalar *ptr) {
268
- *ptr = packet_data;
269
- }
270
-
271
- /*!
272
- * \brief check_boundary: is used to check the edge condition for non-internal blocks.
273
- *
274
- * \tparam is_internal: determines if the block is internal
275
- */
276
- template <bool is_internal>
277
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool check_boundary(bool) {
278
- return true;
279
- }
280
-
281
- /*!
282
- * \brief check_boundary: specialization of the check_boundary for non-internal blocks.
283
- *
284
- * \param cond: true when the data is in range. Otherwise false
285
- */
286
- template <>
287
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool check_boundary<false>(bool cond) {
288
- return cond;
289
- }
290
-
291
- /*!
292
- * \brief BlockProperties is a template class that provides different characteristic of a block of each Tensor processed
293
- * by each workgroup.
294
- *
295
- * \tparam is_transposed: iff true, determines whether or not the block of the Tensor is transposed
296
- *
297
- * \tparam packet_load_: determines if the each element of this tensor block should be loaded in a packet mode
298
- *
299
- * \tparam PacketType: determines the type of packet
300
- *
301
- * \tparam OutType: determines the type of each element for this block of tensor. If packet load is true, it will be
302
- * packetType; Otherwise it will be scalar Type
303
- *
304
- * \param elements_per_access determines the size of each element based on OutType
305
- *
306
- * \param is_coalesced_layout determines whether or not the Tensor data in a memory can be access coalesced and
307
- * vectorized when possible. Coalesced memory access is a key factor in Kernel performance. When a tensor is 2d and the
308
- * contracting dimension is 1, it is always possible to accessed tensor data coalesced and vectorized. This is the case
309
- * when RHS(right hand side) Tensor is transposed or when LHS(left hand side) Tensor is not transposed.
310
- *
311
- * \param nc_stride determines the stride of non-contracting dimension to access the next adjustment element within the
312
- * Tensor Block for each workgroup
313
- *
314
- * \param c_stride determines the stride of contracting dimension to access the next adjustment element within the
315
- * Tensor Block for each workgroup
316
- */
317
- template <bool is_transposed, bool is_rhs_, bool packet_load_, typename PacketType>
318
- struct BlockProperties {
319
- static EIGEN_CONSTEXPR bool packet_load = packet_load_;
320
- typedef typename Eigen::internal::unpacket_traits<PacketType>::type OutScalar;
321
- static EIGEN_CONSTEXPR bool is_rhs = is_rhs_;
322
- typedef typename Eigen::internal::conditional<packet_load, PacketType, OutScalar>::type OutType;
323
- static EIGEN_CONSTEXPR int elements_per_access = Eigen::internal::unpacket_traits<OutType>::size;
324
- static EIGEN_CONSTEXPR bool is_coalesced_layout = !(is_transposed ^ is_rhs);
325
- static EIGEN_CONSTEXPR int nc_stride = (is_coalesced_layout ? elements_per_access : 1);
326
- static EIGEN_CONSTEXPR int c_stride = (is_coalesced_layout ? 1 : elements_per_access);
327
- };
328
-
329
- /*!
330
- * \brief ThreadProperties is a template class that provides each thread's properties within a workgroup. Please see
331
- * the sycl-1.2.1 specification (https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf) for the workgroup,
332
- * work-items
333
- *
334
- * \tparam StorageIndex: determines the StorageIndex Type
335
- *
336
- * \param linearLocalThreadId: determines the linearized location of a thread within a work-group
337
- *
338
- * \param kGroupId: determines the logical group id in a k dimension of the flattened tensor. It will be > 1 when
339
- * tall/skinny algorithm is used
340
- *
341
- * \param mGroupOffset: determines the logical start position of all thread within a workgroup for the m dimension of
342
- * the flattened tensor.
343
- *
344
- * \param kGroupOffset determines the logical start position of all thread within a workgroup for the k dimension of the
345
- * flattened tensor. It will be > 1 when tall/skinny algorithm is used.
346
- *
347
- * \param mLocalOffset: determines the logical start position of each thread within a workgroup for the m dimension of a
348
- * flattened tensor. The position determines the distance of each thread within the workgroup from each other
349
- * independent from their global position.
350
- *
351
- * \param nLocalOffset: determines the logical start position of each thread within a workgroup for the n dimension of a
352
- * flattened tensor. The position determines the distance of each thread within the workgroup from each other
353
- * independent from their global position.
354
- *
355
- * \param mGlobalOffset: determines the logical start position of each thread a thread for the m dimension on a
356
- * flattened tensor
357
- *
358
- * \param nGlobalOffset: determines the logical start position of each thread a thread for the n dimension on a
359
- * flattened tensor
360
- *
361
- * \param kSize : determine the number of the k elements of the flattened Tensor to be processed by each thread for the
362
- * given tensor block. This is !=K dimension of Flattened Tensor when Tall/Skinny matrix is used.
363
- *
364
- * \param is_internal : this will determined if the thread within the work-group computes an internal block of tensor or
365
- * the edge blocks. When it is internal, there is no need to check the boundaries and all the if stantement can be
366
- * resolve by compiler.
367
- */
368
- template <typename StorageIndex>
369
- struct ThreadProperties {
370
- const StorageIndex linearLocalThreadId;
371
- const StorageIndex kGroupId;
372
- const StorageIndex mGroupOffset;
373
- const StorageIndex nGroupOffset;
374
- const StorageIndex kGroupOffset;
375
- const StorageIndex mLocalOffset;
376
- const StorageIndex nLocalOffset;
377
- const StorageIndex mGlobalOffset;
378
- const StorageIndex nGlobalOffset;
379
- StorageIndex kSize;
380
- const bool is_internal;
381
- // this is used to adjust the last block
382
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ThreadProperties(
383
- const StorageIndex linearLocalThreadId_, const StorageIndex kGroupId_, const StorageIndex mGroupOffset_,
384
- const StorageIndex nGroupOffset_, const StorageIndex kGroupOffset_, const StorageIndex mLocalOffset_,
385
- const StorageIndex nLocalOffset_, const StorageIndex mGlobalOffset_, const StorageIndex nGlobalOffset_,
386
- StorageIndex kSize_, const bool is_internal_)
387
- : linearLocalThreadId(linearLocalThreadId_),
388
- kGroupId(kGroupId_),
389
- mGroupOffset(mGroupOffset_),
390
- nGroupOffset(nGroupOffset_),
391
- kGroupOffset(kGroupOffset_),
392
- mLocalOffset(mLocalOffset_),
393
- nLocalOffset(nLocalOffset_),
394
- mGlobalOffset(mGlobalOffset_),
395
- nGlobalOffset(nGlobalOffset_),
396
- kSize(kSize_),
397
- is_internal(is_internal_) {}
398
- };
399
-
400
- /*!
401
- * \brief TensorContractionKernel is a template class that provides Tensor -Tensor contraction operation.
402
- *
403
- * \tparam OutScalar: determines the output scalar type
404
- *
405
- * \tparam LhsScalar: determines the left-hand-side scalar type
406
- *
407
- * \tparam RhsScalar: determines the right-hand-side scalar type
408
- *
409
- * \tparam OutAccessor: determines the sycl accessor type for out put (please see the sycl-1.2.1 specification
410
- (https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf) for accessor definition)
411
- *
412
- * \tparam LhsMapper determines the tensor contraction mapper type for left-hand-side matrix
413
- *
414
- * \tparam RhsMapper determines the tensor contraction mapper type for right-hand-side matrix
415
- *
416
- * \tparam StorageIndex: determines the StorageIndex Type
417
- *
418
- * \tparam Properties: determines the Contraction Panel properties
419
- *
420
- * \tparam TripleDim: determines the M, K, N dimensions for the flatten tensors in order to treat them as a matrix
421
- *
422
- * \tparam Vectorizable: determines whether or not the vectorization is enabled for the Eigen expression.
423
- *
424
- * \tparam input_mapper_properties : determine if the input tensors are matrix. If they are matrix, special memory
425
- access is used to guarantee that always the memory access are coalesced.
426
- *
427
- * \tptaram IsFinal : determine if this is the final kernel. If so, the result will be written in a final output.
428
- Otherwise, the result of contraction will be written iin a temporary buffer. This is the case when Tall/Skinny
429
- contraction is used. So in this case, a final reduction step is required to compute final output.
430
-
431
- * \tparam contraction_tp: it is an enum value representing whether the local memroy/no local memory implementation of
432
- the algorithm to be used
433
- *
434
- * \param scratch: local memory containing tiles of LHS and RHS tensors for each work-group
435
- *
436
- * \param lhs: determines the left-hand-side flattened tensor (tensor mapper)
437
- *
438
- * \param rhs: determines the right-hand-side flattened tensor (tensor mapper)
439
- *
440
- * \param out_res: determines the output tensor containing the contraction result
441
- *
442
- * \param groupSizeM: a logical number determining the number of work-group for m dimension
443
- *
444
- * \param groupSizeN: a logical number determining the number of work-group for n dimension
445
- *
446
- * \param numTiles: determines total number of tiles on the k dimension
447
- *
448
- * \param TripleDim: determines the M, K, N dimensions for the flatten tensors in order to treat them as a matrix
449
- */
450
- template <typename OutScalar, typename LhsScalar, typename RhsScalar, typename OutAccessor, typename LhsMapper,
451
- typename RhsMapper, typename StorageIndex, typename Properties, typename TripleDim, bool Vectorizable,
452
- typename input_mapper_properties, bool IsFinal, contraction_type contraction_tp>
453
- class TensorContractionKernel {
454
- public:
455
- typedef typename Eigen::TensorSycl::internal::Vectorise<OutScalar, Eigen::SyclDevice, Vectorizable>::PacketReturnType
456
- PacketReturnType;
457
- static EIGEN_CONSTEXPR int PacketSize =
458
- Eigen::TensorSycl::internal::Vectorise<OutScalar, Eigen::SyclDevice, Vectorizable>::PacketSize;
459
- static EIGEN_CONSTEXPR bool is_lhs_transposed =
460
- !::Eigen::internal::TensorContractionInputMapperTrait<LhsMapper>::inner_dim_contiguous;
461
- static EIGEN_CONSTEXPR bool is_rhs_transposed =
462
- !::Eigen::internal::TensorContractionInputMapperTrait<RhsMapper>::inner_dim_contiguous;
463
-
464
- typedef BlockProperties<is_lhs_transposed, false, input_mapper_properties::is_lhs_matrix && Vectorizable,
465
- PacketReturnType>
466
- LHSBlockProperties;
467
-
468
- typedef BlockProperties<is_rhs_transposed, true, input_mapper_properties::is_rhs_matrix && Vectorizable,
469
- PacketReturnType>
470
- RHSBlockProperties;
471
-
472
- static EIGEN_CONSTEXPR StorageIndex NStride =
473
- contraction_tp == contraction_type::local ? Properties::WorkLoadPerThreadN : RHSBlockProperties::nc_stride;
474
-
475
- typedef cl::sycl::accessor<OutScalar, 1, cl::sycl::access::mode::read_write, cl::sycl::access::target::local> Scratch;
476
- typedef cl::sycl::multi_ptr<OutScalar, cl::sycl::access::address_space::local_space> local_ptr;
477
- typedef OutScalar * /*cl::sycl::multi_ptr<OutScalar, cl::sycl::access::address_space::private_space>*/ private_ptr;
478
- typedef
479
- typename ::Eigen::internal::conditional<contraction_tp == contraction_type::local, local_ptr, private_ptr>::type
480
- tile_ptr;
481
- static EIGEN_CONSTEXPR StorageIndex LSDL = contraction_tp == contraction_type::local
482
- ? Properties::TileSizeDimM + Properties::BC
483
- : Properties::WorkLoadPerThreadM;
484
- static EIGEN_CONSTEXPR StorageIndex LSDR = contraction_tp == contraction_type::local
485
- ? Properties::TileSizeDimN + Properties::BC
486
- : Properties::WorkLoadPerThreadN;
487
- static EIGEN_CONSTEXPR StorageIndex LocalOffset = Properties::LocalThreadSizeM * Properties::LocalThreadSizeN;
488
-
489
- /**
490
- * \brief MemHolder this is a place holder struct for creating memory hierarchy in SYCL. Inside SYCL kernel it is not
491
- * allowed to have dynamic memory allocation. While the local memory is created outside of the kernel and passed to
492
- * the kernel as an accessor, the private memory can only allowed to be allocated statically. Since we are abstracting
493
- * the TiledMemory for both local and private memory, the MemHolder structs is used as a helper to abstract out
494
- * different type of memory needed when local/no_local memory computation is called.
495
- *
496
- * \tparam contraction_type: it is an enum value representing whether the local memroy/no local memory implementation
497
- of the algorithm to be used
498
- * \tparam the private memory size
499
- * \param ptr the tile memory pointer type
500
- */
501
- template <contraction_type, StorageIndex>
502
- struct MemHolder {
503
- tile_ptr ptr;
504
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE MemHolder(local_ptr block_start_ptr) : ptr(block_start_ptr) {}
505
- };
506
- /**
507
- * \brief specialization of memHolder class when no local memory kernel is used.
508
- */
509
- template <StorageIndex MemSize>
510
- struct MemHolder<contraction_type::no_local, MemSize> {
511
- OutScalar ptr[MemSize] = {OutScalar{0}};
512
- };
513
- /**
514
- * \brief TiledMemory: contains required memory pointer for loading each tile of the TensorContraction panel from
515
- * global memory to local/private memory when local/no_local algorithm used.
516
- *
517
- * \param lhs_scratch_extract : determines the LHS tile memory. It is either private or local memory based on the
518
- * selected contraction_type.
519
- *
520
- * \param rhs_scratch_extract : determines the RHS tile memory. It is either private or local memory based on the
521
- * selected contraction_type.
522
- *
523
- * \param lhs_extract_index: determins the position of each thread on a local memory for lhs input. When private
524
- * memory is used this is set to zero as this is not applicable in case of private memory.
525
- *
526
- * \param rhs_extract_index: determins the position of each thread on a local memory for rhs input. When private
527
- * memory is used this is set to zero as this is not applicable in case of private memory.
528
- *
529
- * \param lhs_scratch_compute : determines the location to load for computation for lhs_local memory. This is the
530
- * same as lhs_scratch_extract for private memory.
531
- *
532
- * \param rhs_scratch_compute : determines the location to load for computation for rhs_local memory. This is the
533
- * same as rhs_scratch_extract for private memory.
534
- */
535
- struct TiledMemory {
536
- MemHolder<contraction_tp, Properties::WorkLoadPerThreadM * Properties::TileSizeDimK> lhs_scratch_extract;
537
- MemHolder<contraction_tp, Properties::WorkLoadPerThreadN * Properties::TileSizeDimK> rhs_scratch_extract;
538
- tile_ptr lhs_scratch_ptr_compute;
539
- tile_ptr rhs_scratch_ptr_compute;
540
- const std::pair<StorageIndex, StorageIndex> lhs_extract_index;
541
- const std::pair<StorageIndex, StorageIndex> rhs_extract_index;
542
- template <contraction_type tp = contraction_tp>
543
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
544
- TiledMemory(const ThreadProperties<StorageIndex> &, local_ptr,
545
- typename ::Eigen::internal::enable_if<tp == contraction_type::no_local>::type * = 0)
546
- : lhs_scratch_extract{},
547
- rhs_scratch_extract{},
548
- lhs_scratch_ptr_compute(lhs_scratch_extract.ptr),
549
- rhs_scratch_ptr_compute(rhs_scratch_extract.ptr),
550
- lhs_extract_index(std::pair<StorageIndex, StorageIndex>(StorageIndex{0}, StorageIndex{0})),
551
- rhs_extract_index(std::pair<StorageIndex, StorageIndex>(StorageIndex{0}, StorageIndex{0})) {}
552
-
553
- template <contraction_type tp = contraction_tp>
554
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
555
- TiledMemory(const ThreadProperties<StorageIndex> &thread_properties, local_ptr block_start_ptr,
556
- typename ::Eigen::internal::enable_if<tp == contraction_type::local>::type * = 0)
557
- : lhs_scratch_extract{block_start_ptr},
558
- rhs_scratch_extract{lhs_scratch_extract.ptr +
559
- ((Properties::DoubleBuffer + 1) * LSDL * Properties::TileSizeDimK)},
560
- lhs_scratch_ptr_compute(lhs_scratch_extract.ptr + thread_properties.mLocalOffset),
561
- rhs_scratch_ptr_compute(rhs_scratch_extract.ptr + thread_properties.nLocalOffset),
562
- lhs_extract_index(
563
- local_id_extract<LHSBlockProperties, Properties::TileSizeDimM>(thread_properties.linearLocalThreadId)),
564
- rhs_extract_index(
565
- local_id_extract<RHSBlockProperties, Properties::TileSizeDimN>(thread_properties.linearLocalThreadId)) {}
566
- };
567
-
568
- Scratch scratch;
569
- const LhsMapper lhs;
570
- const RhsMapper rhs;
571
- OutAccessor out_res;
572
- const StorageIndex groupSizeM;
573
- const StorageIndex groupSizeN;
574
- const StorageIndex numTiles;
575
- const TripleDim triple_dim;
576
-
577
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorContractionKernel(Scratch scratch_, const LhsMapper lhs_,
578
- const RhsMapper rhs_, OutAccessor out_res_,
579
- const StorageIndex groupSizeM_,
580
- const StorageIndex groupSizeN_,
581
- const StorageIndex numTiles_,
582
- const TripleDim triple_dim_)
583
- : scratch(scratch_),
584
- lhs(lhs_),
585
- rhs(rhs_),
586
- out_res(out_res_),
587
- groupSizeM(groupSizeM_),
588
- groupSizeN(groupSizeN_),
589
- numTiles(numTiles_),
590
- triple_dim(triple_dim_) {}
591
-
592
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorContractionKernel(Scratch scratch_, const LhsMapper lhs_,
593
- const RhsMapper rhs_, OutAccessor out_res_,
594
- const StorageIndex groupSizeM_,
595
- const StorageIndex numTiles_,
596
- const TripleDim triple_dim_)
597
- : TensorContractionKernel(scratch_, lhs_, rhs_, out_res_, groupSizeM_, 1, numTiles_, triple_dim_) {}
598
-
599
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void operator()(cl::sycl::nd_item<1> itemID) {
600
- const StorageIndex linearLocalThreadId = itemID.get_local_id(0);
601
- const StorageIndex nLocalThreadId = linearLocalThreadId / Properties::LocalThreadSizeM;
602
- const StorageIndex mLocalThreadId = linearLocalThreadId % Properties::LocalThreadSizeM;
603
- const StorageIndex mGroupId = itemID.get_group(0) % groupSizeM;
604
- const StorageIndex tmp = itemID.get_group(0) / groupSizeM;
605
- const StorageIndex nGroupId = IsFinal ? tmp : tmp % groupSizeN;
606
- const StorageIndex kGroupId = IsFinal ? 0 : tmp / groupSizeN;
607
- const StorageIndex mGroupOffset = mGroupId * Properties::TileSizeDimM;
608
- const StorageIndex nGroupOffset = nGroupId * Properties::TileSizeDimN;
609
- const StorageIndex mLocalOffset = PacketSize * mLocalThreadId;
610
- const StorageIndex nLocalOffset = NStride * nLocalThreadId;
611
- const StorageIndex mGlobalOffset = mGroupOffset + mLocalOffset;
612
- const StorageIndex nGlobalOffset = nGroupOffset + nLocalOffset;
613
-
614
- const StorageIndex kSizePerWG = IsFinal ? triple_dim.K : numTiles * Properties::TileSizeDimK;
615
- StorageIndex kGroupOffset = kGroupId * kSizePerWG;
616
- const bool is_internal = triple_dim.M - mGroupOffset >= Properties::TileSizeDimM &&
617
- triple_dim.N - nGroupOffset >= Properties::TileSizeDimN &&
618
- triple_dim.K - kGroupOffset >= kSizePerWG;
619
- // this is used to adjust the last block
620
- StorageIndex kSize = IsFinal ? triple_dim.K : std::min(kSizePerWG, triple_dim.K - kGroupOffset);
621
- // This is used to find out the lats K offset so that kGroupOffset -kSize can compute the coffset for loading to
622
- // tile
623
- kGroupOffset += kSize;
624
-
625
- auto thread_properties =
626
- ThreadProperties<StorageIndex>(linearLocalThreadId, kGroupId, mGroupOffset, nGroupOffset, kGroupOffset,
627
- mLocalOffset, nLocalOffset, mGlobalOffset, nGlobalOffset, kSize, is_internal);
628
-
629
- auto out_ptr = out_res.get_pointer() + (IsFinal ? 0 : thread_properties.kGroupId * triple_dim.M * triple_dim.N);
630
-
631
- (thread_properties.is_internal) ? compute_panel<true>(itemID, thread_properties, out_ptr)
632
- : compute_panel<false>(itemID, thread_properties, out_ptr);
633
- }
634
- // The compute block computes the contraction operation private block for each thread and store the resutl in the
635
- // privateRes memory of Each computation the compute block function is independent of local and no local concepts as
636
- // it only compute the block on each thread's private memory space
637
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void compute_block_per_tile(OutScalar *lhs_block_ptr, OutScalar *rhs_block_ptr,
638
- PacketReturnType *privateRes) {
639
- StorageIndex idx = 0;
640
- EIGEN_CONSTEXPR StorageIndex lhs_stride =
641
- contraction_tp == contraction_type::local ? (PacketSize * Properties::LocalThreadSizeM) : 1;
642
- EIGEN_UNROLL_LOOP
643
- for (StorageIndex wLPTN = 0; wLPTN < Properties::WorkLoadPerThreadN; wLPTN++) {
644
- auto rhsPacket = PacketReturnType{*(rhs_block_ptr + wLPTN)};
645
- StorageIndex lhs_index = 0;
646
- EIGEN_UNROLL_LOOP
647
- for (StorageIndex wLPTM = 0; wLPTM < Properties::WorkLoadPerThreadM / PacketSize; wLPTM++) {
648
- PacketReturnType lhsPack{};
649
- Eigen::TensorSycl::internal::PacketWrapper<PacketReturnType, PacketSize>::set_packet(lhsPack,
650
- lhs_block_ptr + lhs_index);
651
- privateRes[idx] = ::Eigen::internal::pmadd(lhsPack, rhsPacket, privateRes[idx]);
652
-
653
- lhs_index += lhs_stride;
654
- idx++;
655
- }
656
- }
657
- }
658
- // The store function write the computed contraction operation in the private memory of each thread to the global
659
- // memory. The store function is independent of local and no local concepts s that it can be abstract out in the base
660
- // class.
661
- template <bool is_internal_block, StorageIndex PrivateNStride, typename OutPtr>
662
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void store(OutPtr *out_ptr, PacketReturnType *privateRes,
663
- StorageIndex mGlobalOffset, StorageIndex nGlobalOffset) {
664
- auto chk_bound = [&](const StorageIndex &mIndex, const StorageIndex &nIndex) EIGEN_DEVICE_FUNC {
665
- return (mIndex + PacketSize - 1 < triple_dim.M && nGlobalOffset + nIndex < triple_dim.N);
666
- };
667
- // when local memory is not used M and N are both accessed in a coalesced way. However, when local memory is
668
- // available the k*N is transposed in the local to N*K therefore, each blocks operates on blockId*
669
- // WorkLoadPerThreadN slice of N
670
- EIGEN_CONSTEXPR StorageIndex GlobalNStride =
671
- contraction_tp == contraction_type::local ? 1 : Properties::LocalThreadSizeN;
672
- EIGEN_UNROLL_LOOP
673
- for (StorageIndex wLPTN = 0; wLPTN < Properties::WorkLoadPerThreadN / PrivateNStride; wLPTN++) {
674
- // output leading dimension
675
- StorageIndex outputLD = 0;
676
- // When local memory is used the PrivateNstride is always 1 because the coalesed access on N is loaded into Local
677
- // memory and extracting from local to global is the same as no transposed version. However, when local memory is
678
- // not used and RHS is transposed we packetize the load for RHS.
679
- EIGEN_UNROLL_LOOP
680
- for (StorageIndex nId = 0; nId < PrivateNStride; nId++) {
681
- StorageIndex globalRow = mGlobalOffset;
682
- EIGEN_UNROLL_LOOP
683
- for (StorageIndex wLPTM = 0; wLPTM < Properties::WorkLoadPerThreadM / PacketSize; wLPTM++) {
684
- PacketReturnType privetOut = privateRes[wLPTM];
685
- if (check_boundary<is_internal_block>(chk_bound(globalRow, nId))) {
686
- // Store the final results in C. The C matrix has always M as a first StorageIndex and N as a second
687
- // StorageIndex Therefore it is always coalesced layout
688
- write<data_source::global_mem>(privetOut, out_ptr + outputLD + globalRow);
689
- } else {
690
- EIGEN_UNROLL_LOOP
691
- for (StorageIndex mId = 0; mId < PacketSize; mId++) {
692
- StorageIndex mOffset = globalRow + mId;
693
- if (mOffset < triple_dim.M && (nGlobalOffset + nId < triple_dim.N)) {
694
- out_ptr[mOffset + outputLD] =
695
- Eigen::TensorSycl::internal::PacketWrapper<PacketReturnType, PacketSize>::scalarize(mId, privetOut);
696
- }
697
- }
698
- }
699
- globalRow += (PacketSize * Properties::LocalThreadSizeM);
700
- }
701
- outputLD += triple_dim.M;
702
- privateRes += Properties::WorkLoadPerThreadM / PacketSize;
703
- }
704
- out_ptr += (GlobalNStride * outputLD);
705
-
706
- nGlobalOffset += (PrivateNStride * GlobalNStride);
707
- }
708
- }
709
- // when no local memory is used the following extract_block will be enabled
710
- template <typename InputBlockProperties, bool is_internal_block, typename Input, typename PrivateReg,
711
- contraction_type contract_tp = contraction_tp>
712
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
713
- typename ::Eigen::internal::enable_if<contract_tp == contraction_type::no_local>::type
714
- extract_block(const Input &inpt, PrivateReg private_ptr, const std::pair<StorageIndex, StorageIndex> &,
715
- const StorageIndex &ncOffset, const StorageIndex cOffset) {
716
- EIGEN_CONSTEXPR StorageIndex LocalThreadSizeNC =
717
- InputBlockProperties::is_rhs ? Properties::LocalThreadSizeN : Properties::LocalThreadSizeM;
718
- EIGEN_CONSTEXPR StorageIndex WorkLoadPerThreadNC =
719
- InputBlockProperties::is_rhs ? Properties::WorkLoadPerThreadN : Properties::WorkLoadPerThreadM;
720
- const StorageIndex &NC = InputBlockProperties::is_rhs ? triple_dim.N : triple_dim.M;
721
-
722
- auto chk_bound = [&](const StorageIndex &CIndex, const StorageIndex &NCIndex) EIGEN_DEVICE_FUNC {
723
- return ((CIndex + InputBlockProperties::c_stride - 1 < triple_dim.K) &&
724
- (NCIndex + InputBlockProperties::nc_stride - 1 < NC));
725
- };
726
- const StorageIndex ld = InputBlockProperties::is_coalesced_layout ? NC : triple_dim.K;
727
- StorageIndex cIndex = cOffset;
728
-
729
- EIGEN_UNROLL_LOOP
730
- for (StorageIndex cId = 0; cId < Properties::TileSizeDimK / InputBlockProperties::c_stride; cId++) {
731
- StorageIndex ncIndex = ncOffset;
732
- EIGEN_UNROLL_LOOP
733
- for (StorageIndex ncId = 0; ncId < WorkLoadPerThreadNC / InputBlockProperties::nc_stride; ncId++) {
734
- if (check_boundary<is_internal_block>(chk_bound(cIndex, ncIndex))) {
735
- auto val =
736
- read<InputBlockProperties::packet_load, InputBlockProperties::is_coalesced_layout,
737
- InputBlockProperties::is_rhs, typename InputBlockProperties::OutType>(inpt, ncIndex, cIndex, ld);
738
-
739
- write<StorageIndex, (InputBlockProperties::is_coalesced_layout ? 1 : WorkLoadPerThreadNC),
740
- data_source::private_mem>(val, private_ptr);
741
- } else {
742
- EIGEN_UNROLL_LOOP
743
- for (StorageIndex i = 0; i < InputBlockProperties::elements_per_access; i++) {
744
- const StorageIndex ncInd = ncIndex + (InputBlockProperties::is_coalesced_layout ? i : 0);
745
- const StorageIndex cInd = cIndex + (InputBlockProperties::is_coalesced_layout ? 0 : i);
746
- OutScalar val =
747
- (ncInd < NC && cInd < triple_dim.K)
748
- ? read<false, InputBlockProperties::is_coalesced_layout, InputBlockProperties::is_rhs, OutScalar>(
749
- inpt, ncInd, cInd, ld)
750
- : OutScalar(0);
751
- write<StorageIndex, (InputBlockProperties::is_coalesced_layout ? 1 : WorkLoadPerThreadNC),
752
- data_source::private_mem>(
753
- val, private_ptr + (InputBlockProperties::is_coalesced_layout ? i : 0) +
754
- ((InputBlockProperties::is_coalesced_layout ? 0 : i) * WorkLoadPerThreadNC));
755
- }
756
- }
757
-
758
- // if it is lhs we have to load it packetised when the packet size is > 1, because the output is coalesced. So
759
- // even if M is not accessed in a coalesced mode, we have to load packet_size number of m per thread.
760
- ncIndex = (!InputBlockProperties::is_rhs && InputBlockProperties::nc_stride == 1 && PacketSize != 1)
761
- ? ncOffset + (ncId + 1) % PacketSize + ((ncId + 1) / PacketSize) * LocalThreadSizeNC
762
- : (ncIndex + InputBlockProperties::nc_stride * LocalThreadSizeNC);
763
- private_ptr += InputBlockProperties::nc_stride;
764
- }
765
- // the previous for loop ( private_ptr += (ncId * nc_stride)) has already moved ptr with one WorkLoadPerThreadNC
766
- private_ptr += (InputBlockProperties::c_stride - 1) * WorkLoadPerThreadNC;
767
- cIndex += InputBlockProperties::c_stride;
768
- }
769
- }
770
- template <typename InputBlockProperties, StorageIndex TileSizeDimNC>
771
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::pair<StorageIndex, StorageIndex> local_id_extract(
772
- const StorageIndex &linearLocalThreadId) {
773
- const StorageIndex localThreadNC =
774
- (InputBlockProperties::is_coalesced_layout)
775
- ? linearLocalThreadId % (TileSizeDimNC / InputBlockProperties::nc_stride)
776
- : linearLocalThreadId / (Properties::TileSizeDimK / InputBlockProperties::c_stride);
777
- const StorageIndex localThreadC =
778
- (InputBlockProperties::is_coalesced_layout)
779
- ? linearLocalThreadId / (TileSizeDimNC / InputBlockProperties::nc_stride)
780
- : linearLocalThreadId % (Properties::TileSizeDimK / InputBlockProperties::c_stride);
781
- return std::pair<StorageIndex, StorageIndex>(localThreadNC, localThreadC);
782
- }
783
-
784
- template <bool db = Properties::DoubleBuffer, contraction_type ctp = contraction_tp>
785
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
786
- typename ::Eigen::internal::enable_if<db && ctp == contraction_type::local>::type
787
- sync_mem(const cl::sycl::nd_item<1> &, bool &db_offset) noexcept {
788
- db_offset = !db_offset;
789
- }
790
-
791
- template <bool db = Properties::DoubleBuffer, contraction_type ctp = contraction_tp>
792
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
793
- typename ::Eigen::internal::enable_if<!db && ctp == contraction_type::local>::type
794
- sync_mem(const cl::sycl::nd_item<1> &itemID, bool &) noexcept {
795
- itemID.barrier(cl::sycl::access::fence_space::local_space);
796
- }
797
-
798
- template <contraction_type ctp = contraction_tp>
799
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
800
- typename ::Eigen::internal::enable_if<ctp == contraction_type::no_local>::type
801
- sync_mem(const cl::sycl::nd_item<1> &, bool &) noexcept {
802
- return;
803
- }
804
-
805
- template <bool need_sync, contraction_type ctp = contraction_tp>
806
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
807
- typename ::Eigen::internal::enable_if<need_sync && ctp == contraction_type::no_local>::type
808
- sync_thread(const cl::sycl::nd_item<1> &
809
- #ifdef EIGEN_SYCL_ARM_GPU_CACHE_OPTIMISATION
810
- itemID
811
- #endif
812
- ) noexcept {
813
- #ifdef EIGEN_SYCL_ARM_GPU_CACHE_OPTIMISATION
814
- itemID.barrier(cl::sycl::access::fence_spacce::local_space);
815
- #else
816
- return;
817
- #endif
818
- }
819
- template <bool need_sync, contraction_type ctp = contraction_tp>
820
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
821
- typename ::Eigen::internal::enable_if<need_sync && ctp == contraction_type::local>::type
822
- sync_thread(const cl::sycl::nd_item<1> &itemID) {
823
- itemID.barrier(cl::sycl::access::fence_space::local_space);
824
- }
825
- template <bool need_sync>
826
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename ::Eigen::internal::enable_if<!need_sync>::type sync_thread(
827
- const cl::sycl::nd_item<1> &) {
828
- return;
829
- }
830
-
831
- template <bool is_internal_block>
832
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void compute_tile_per_panel(const cl::sycl::nd_item<1> &itemID,
833
- ThreadProperties<StorageIndex> &thread_properties,
834
- TiledMemory &tiled_input_block,
835
- PacketReturnType *privateRes, bool &db_offset) {
836
- // Tiling the Rhs block from global to local memory
837
- extract_block<RHSBlockProperties, is_internal_block>(
838
- rhs, tiled_input_block.rhs_scratch_extract.ptr + (db_offset * Properties::TileSizeDimK * LSDR),
839
- tiled_input_block.rhs_extract_index,
840
- contraction_tp == contraction_type::local ? thread_properties.nGroupOffset : thread_properties.nGlobalOffset,
841
- thread_properties.kGroupOffset - thread_properties.kSize);
842
-
843
- sync_thread<contraction_tp == contraction_type::no_local>(itemID);
844
-
845
- // Tiling the Lhs block from global to local memory
846
- extract_block<LHSBlockProperties, is_internal_block>(
847
- lhs, tiled_input_block.lhs_scratch_extract.ptr + (db_offset * LSDL * Properties::TileSizeDimK),
848
- tiled_input_block.lhs_extract_index,
849
- contraction_tp == contraction_type::local ? thread_properties.mGroupOffset : thread_properties.mGlobalOffset,
850
- thread_properties.kGroupOffset - thread_properties.kSize);
851
-
852
- // itemID.barrier(cl::sycl::access::fence_space::local_space);
853
- sync_thread<contraction_tp == contraction_type::local>(itemID);
854
- // switch to compute mede
855
- StorageIndex lhs_offset = (db_offset * LSDL * Properties::TileSizeDimK);
856
- StorageIndex rhs_offset = (db_offset * Properties::TileSizeDimK * LSDR);
857
- // Loop over the values of a single tile
858
- for (StorageIndex k = 0; k < Properties::TileSizeDimK; k++) {
859
- compute_block_per_tile(tiled_input_block.lhs_scratch_ptr_compute + lhs_offset,
860
- tiled_input_block.rhs_scratch_ptr_compute + rhs_offset, privateRes);
861
- lhs_offset += LSDL;
862
- rhs_offset += LSDR;
863
- }
864
- // computing the K index for the next tile
865
- thread_properties.kSize -= Properties::TileSizeDimK;
866
- sync_mem(itemID, db_offset);
867
- }
868
-
869
- // when local memory is available the following compute_panel will be enabled
870
- template <bool is_internal_block, typename OutPtr>
871
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void compute_panel(const cl::sycl::nd_item<1> &itemID,
872
- ThreadProperties<StorageIndex> &thread_properties,
873
- OutPtr out_ptr) {
874
- auto tiled_input_block = TiledMemory{thread_properties, scratch.get_pointer()};
875
- // Allocate register space
876
- PacketReturnType privateRes[Properties::WorkLoadPerThreadM * Properties::WorkLoadPerThreadN / PacketSize] = {
877
- PacketReturnType{0}};
878
- bool db_offset = 0;
879
-
880
- while (thread_properties.kSize >= Properties::TileSizeDimK) {
881
- compute_tile_per_panel<is_internal_block>(itemID, thread_properties, tiled_input_block, privateRes, db_offset);
882
- }
883
- if (thread_properties.kSize > 0) {
884
- compute_tile_per_panel<false>(itemID, thread_properties, tiled_input_block, privateRes, db_offset);
885
- }
886
-
887
- // Storing the final results in the output
888
- store<is_internal_block,
889
- contraction_tp == contraction_type::local ? static_cast<StorageIndex>(1) : RHSBlockProperties::nc_stride>(
890
- out_ptr + thread_properties.nGlobalOffset * triple_dim.M, privateRes, thread_properties.mGlobalOffset,
891
- thread_properties.nGlobalOffset);
892
- }
893
- // When local memory is available the following extract_block will be enabled
894
- template <typename InputBlockProperties, bool is_internal_block, typename Input, typename Local,
895
- contraction_type contract_tp = contraction_tp>
896
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
897
- typename ::Eigen::internal::enable_if<contract_tp == contraction_type::local>::type
898
- extract_block(const Input &inpt, Local local_ptr, const std::pair<StorageIndex, StorageIndex>& local_index,
899
- const StorageIndex &ncOffset, const StorageIndex cOffset) {
900
- EIGEN_CONSTEXPR StorageIndex TileSizeDimNC =
901
- InputBlockProperties::is_rhs ? Properties::TileSizeDimN : Properties::TileSizeDimM;
902
- EIGEN_CONSTEXPR StorageIndex LoadPerThread =
903
- InputBlockProperties::is_rhs ? Properties::LoadPerThreadRhs : Properties::LoadPerThreadLhs;
904
- EIGEN_CONSTEXPR StorageIndex LSD = InputBlockProperties::is_rhs ? LSDR : LSDL;
905
- static_assert(((LocalOffset % (TileSizeDimNC / InputBlockProperties::nc_stride) == 0) &&
906
- (LocalOffset % (Properties::TileSizeDimK / InputBlockProperties::c_stride) == 0)),
907
- " LocalOffset must be divisable by stride");
908
- const StorageIndex &NC = InputBlockProperties::is_rhs ? triple_dim.N : triple_dim.M;
909
- StorageIndex localThreadNC = local_index.first;
910
- StorageIndex localThreadC = local_index.second;
911
- auto chk_bound = [&](const StorageIndex &CIndex, const StorageIndex &NCIndex) EIGEN_DEVICE_FUNC {
912
- return ((CIndex + InputBlockProperties::c_stride - 1 < triple_dim.K) &&
913
- (NCIndex + InputBlockProperties::nc_stride - 1 < NC));
914
- };
915
- EIGEN_UNROLL_LOOP
916
- for (StorageIndex lPT = 0; lPT < LoadPerThread / InputBlockProperties::elements_per_access; lPT++) {
917
- const StorageIndex CIndex = cOffset + (InputBlockProperties::c_stride * localThreadC);
918
- const StorageIndex NCIndex = ncOffset + (InputBlockProperties::nc_stride * localThreadNC);
919
- const StorageIndex ld = InputBlockProperties::is_coalesced_layout ? NC : triple_dim.K;
920
- if (check_boundary<is_internal_block>(chk_bound(CIndex, NCIndex))) {
921
- auto val =
922
- read<InputBlockProperties::packet_load, InputBlockProperties::is_coalesced_layout,
923
- InputBlockProperties::is_rhs, typename InputBlockProperties::OutType>(inpt, NCIndex, CIndex, ld);
924
- write<StorageIndex, (InputBlockProperties::is_coalesced_layout ? 1 : LSD), data_source::local_mem>(
925
- val, local_ptr + (InputBlockProperties::nc_stride * localThreadNC) +
926
- (InputBlockProperties::c_stride * localThreadC * LSD));
927
- } else {
928
- EIGEN_UNROLL_LOOP
929
- for (StorageIndex i = 0; i < InputBlockProperties::elements_per_access; i++) {
930
- const StorageIndex nCInd = NCIndex + (InputBlockProperties::is_coalesced_layout ? i : 0);
931
- const StorageIndex cInd = CIndex + (InputBlockProperties::is_coalesced_layout ? 0 : i);
932
- OutScalar val =
933
- (nCInd < NC && cInd < triple_dim.K)
934
- ? read<false, InputBlockProperties::is_coalesced_layout, InputBlockProperties::is_rhs, OutScalar>(
935
- inpt, nCInd, cInd, ld)
936
- : OutScalar(0);
937
-
938
- write<StorageIndex, (InputBlockProperties::is_coalesced_layout ? 1 : LSD), data_source::local_mem>(
939
- val, local_ptr + (InputBlockProperties::nc_stride * localThreadNC) +
940
- (InputBlockProperties::is_coalesced_layout ? i : 0) +
941
- ((InputBlockProperties::c_stride * localThreadC +
942
- (InputBlockProperties::is_coalesced_layout ? 0 : i)) *
943
- LSD));
944
- }
945
- }
946
- localThreadNC += (InputBlockProperties::is_coalesced_layout)
947
- ? LocalOffset % (TileSizeDimNC / InputBlockProperties::nc_stride)
948
- : LocalOffset / (Properties::TileSizeDimK / InputBlockProperties::c_stride);
949
- localThreadC += (InputBlockProperties::is_coalesced_layout)
950
- ? LocalOffset / (TileSizeDimNC / InputBlockProperties::nc_stride)
951
- : LocalOffset % (Properties::TileSizeDimK / InputBlockProperties::c_stride);
952
- }
953
- }
954
- };
955
-
956
- #ifndef EIGEN_SYCL_DISABLE_GEMV
957
-
958
- /*!
959
- * \brief GeneralVectorTensor is a template class that provides Tensor -vector contraction operation, which is a special
960
- * case of Tensor Tensor contraction.
961
- *
962
- * \tparam OutScalar: determines the output scalar type
963
- *
964
- * \tparam OutAccessor: determines the sycl accessor type for out put (please see the sycl-1.2.1 specification
965
- * (https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf) for accessor definition)
966
- *
967
- * \tparam VectorMapper: determines the tensor contraction mapper for the vector input (can be lhs or rhs)
968
- *
969
- * \tparam TensorMapper: determines the tensor contraction mapper for the tensor input (can be lhs or rhs)
970
- *
971
- * \tparam StorageIndex: determines the StorageIndex Type
972
- *
973
- * \tparam Properties: determines the Contraction Panel properties
974
- *
975
- * \tparam KFactor: determines the number of elements in K dimension in a Tile
976
- *
977
- * \tparam Vectorizable: determines whether or not the vectorization is enabled for the Eigen expression.
978
- *
979
- * \tparam is_lhs_vec: determines whether lhs is a vector or rhs is a vector
980
- *
981
- * \tparam IsFinal: determine if this is the final kernel. If so, the result will be written in a final output.
982
- * Otherwise, the result of contraction will be written iin a temporary buffer.
983
- *
984
- * \param scratch: determines the local memory containing the vector block for each work-group
985
- *
986
- * \param vec: determines the vector input (tensor mapper)
987
- *
988
- * \param mat: determines the tensor input (tensor mapper)
989
- *
990
- * \param out_res: determines the output vector containing the contraction result
991
- *
992
- * \param nonContractGroupSize: a logical number determining the number of work-group for non-contracting dimension
993
- *
994
- * \param nonContractDim: determines the size of non contracting dimension for the flattened tensor
995
- *
996
- * \param contractDim: determines the size of non contracting dimension for the flattened tensor
997
- *
998
- */
999
- template <typename OutScalar, typename OutAccessor, typename VectorMapper, typename TensorMapper, typename StorageIndex,
1000
- typename Properties, StorageIndex KFactor, bool Vectorizable, bool is_lhs_vec, bool IsFinal>
1001
- struct GeneralVectorTensor {
1002
- typedef typename Eigen::TensorSycl::internal::Vectorise<OutScalar, Eigen::SyclDevice, Vectorizable>::PacketReturnType
1003
- PacketReturnType;
1004
- static EIGEN_CONSTEXPR int PacketSize =
1005
- Eigen::TensorSycl::internal::Vectorise<OutScalar, Eigen::SyclDevice, Vectorizable>::PacketSize;
1006
- typedef cl::sycl::accessor<OutScalar, 1, cl::sycl::access::mode::read_write, cl::sycl::access::target::local> Scratch;
1007
-
1008
- static EIGEN_CONSTEXPR StorageIndex OutScratchOffset =
1009
- KFactor * Properties::LocalThreadSizeC * Properties::LocalThreadSizeNC;
1010
-
1011
- // Since the access layout for a vector can always be coalesced, when LHS is a vector, we pass false and false to make
1012
- // sure that the !^ is true When RHS is a vector, we pass true and true to make sure that the !^ is true.
1013
- typedef BlockProperties<is_lhs_vec ? false : true, is_lhs_vec ? false : true, Vectorizable, PacketReturnType>
1014
- VecBlockProperties;
1015
-
1016
- Scratch scratch;
1017
- const VectorMapper vec;
1018
- const TensorMapper mat;
1019
- OutAccessor out_res;
1020
- const StorageIndex nonContractGroupSize;
1021
- const StorageIndex nonContractDim;
1022
- const StorageIndex contractDim;
1023
-
1024
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE GeneralVectorTensor(Scratch scratch_, const VectorMapper vec_,
1025
- const TensorMapper mat_, OutAccessor out_res_,
1026
- const StorageIndex nonContractGroupSize_,
1027
- const StorageIndex nonContractDim_,
1028
- const StorageIndex contractDim_)
1029
- : scratch(scratch_),
1030
- vec(vec_),
1031
- mat(mat_),
1032
- out_res(out_res_),
1033
- nonContractGroupSize(nonContractGroupSize_),
1034
- nonContractDim(nonContractDim_),
1035
- contractDim(contractDim_) {}
1036
-
1037
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void operator()(cl::sycl::nd_item<1> itemID) {
1038
- auto scratch_ptr = scratch.get_pointer();
1039
- const StorageIndex linearLocalThreadId = itemID.get_local_id(0);
1040
- StorageIndex nonContractId = is_lhs_vec ? linearLocalThreadId / Properties::LocalThreadSizeC
1041
- : linearLocalThreadId % Properties::LocalThreadSizeNC;
1042
- StorageIndex contractId = is_lhs_vec ? linearLocalThreadId % Properties::LocalThreadSizeC
1043
- : linearLocalThreadId / Properties::LocalThreadSizeNC;
1044
- const StorageIndex cGroupSize = itemID.get_group_range(0) / nonContractGroupSize;
1045
- const StorageIndex nonContractGroupId =
1046
- is_lhs_vec ? itemID.get_group(0) / cGroupSize : itemID.get_group(0) % nonContractGroupSize;
1047
- const StorageIndex contractGroupId =
1048
- is_lhs_vec ? itemID.get_group(0) % cGroupSize : itemID.get_group(0) / nonContractGroupSize;
1049
- auto out_ptr = out_res.get_pointer() + (IsFinal ? 0 : contractGroupId * nonContractDim);
1050
-
1051
- const StorageIndex nonContractGroupOffset = nonContractGroupId * Properties::TileSizeDimNC;
1052
- const StorageIndex contractGroupOffset = contractGroupId * Properties::TileSizeDimC;
1053
- auto outScratchIndex = nonContractId + contractId * Properties::LocalThreadSizeNC;
1054
- const StorageIndex globalNonContractDimOffset = nonContractGroupOffset + nonContractId;
1055
- const StorageIndex globalContractDimOffset = contractGroupOffset + contractId;
1056
- auto local_output = scratch_ptr + OutScratchOffset;
1057
- const bool is_internal = nonContractDim - nonContractGroupOffset >= Properties::TileSizeDimNC &&
1058
- contractDim - contractGroupOffset >= Properties::TileSizeDimC;
1059
- is_internal
1060
- ? compute_panel<true>(itemID, vec, mat, local_output, out_ptr,
1061
- #ifdef EIGEN_SYCL_LOCAL_MEM_UNSET_OR_ON
1062
- scratch_ptr, contractGroupOffset,
1063
- #endif
1064
- nonContractGroupOffset, linearLocalThreadId, contractDim, nonContractDim, contractId,
1065
- nonContractId, globalContractDimOffset, globalNonContractDimOffset, outScratchIndex)
1066
- : compute_panel<false>(itemID, vec, mat, local_output, out_ptr,
1067
- #ifdef EIGEN_SYCL_LOCAL_MEM_UNSET_OR_ON
1068
- scratch_ptr, contractGroupOffset,
1069
- #endif
1070
- nonContractGroupOffset, linearLocalThreadId, contractDim, nonContractDim, contractId,
1071
- nonContractId, globalContractDimOffset, globalNonContractDimOffset, outScratchIndex);
1072
- }
1073
- template <bool is_internal_block, typename OutPtr>
1074
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void compute_panel(
1075
- const cl::sycl::nd_item<1> &itemID, const VectorMapper &vec, const TensorMapper &mat, OutScalar *local_output,
1076
- OutPtr out_ptr,
1077
- #ifdef EIGEN_SYCL_LOCAL_MEM_UNSET_OR_ON
1078
- OutScalar *scratch_ptr, const StorageIndex contractGroupOffset,
1079
- #endif
1080
- const StorageIndex nonContractGroupOffset, const StorageIndex linearLocalThreadId, StorageIndex contractDim,
1081
- StorageIndex nonContractDim, StorageIndex contractId, StorageIndex nonContractId,
1082
- StorageIndex globalContractDimOffset, StorageIndex globalNonContractDimOffset, StorageIndex outScratchIndex) {
1083
- OutScalar outScalar[Properties::WorkLoadPerThreadNC] = {OutScalar(0)};
1084
- // Reading the vector
1085
- #ifdef EIGEN_SYCL_LOCAL_MEM_UNSET_OR_ON
1086
- const StorageIndex vectorOffset = contractGroupOffset + linearLocalThreadId;
1087
- extract_block<VecBlockProperties, is_internal_block, KFactor,
1088
- Properties::LocalThreadSizeNC * Properties::LocalThreadSizeC>(vec, scratch_ptr, linearLocalThreadId,
1089
- vectorOffset, contractDim);
1090
-
1091
- itemID.barrier(cl::sycl::access::fence_space::local_space);
1092
- auto in_scratch_ptr = scratch_ptr + contractId;
1093
- #endif
1094
-
1095
- StorageIndex privateOffsetC = 0;
1096
- EIGEN_UNROLL_LOOP
1097
- for (StorageIndex i = 0; i < Properties::WorkLoadPerThreadC; i++) {
1098
- StorageIndex privateOffsetNC = 0;
1099
- bool contract_conds = ((globalContractDimOffset + privateOffsetC) < contractDim);
1100
- #ifdef EIGEN_SYCL_LOCAL_MEM_UNSET_OR_ON
1101
- auto vecScalar = *in_scratch_ptr;
1102
- #else
1103
- auto vecScalar = (check_boundary<is_internal_block>(contract_conds))
1104
- ? vec(is_lhs_vec ? StorageIndex(0) : globalContractDimOffset + privateOffsetC,
1105
- is_lhs_vec ? globalContractDimOffset + privateOffsetC : StorageIndex(0))
1106
- : OutScalar(0);
1107
- #endif
1108
- EIGEN_UNROLL_LOOP
1109
- for (StorageIndex j = 0; j < Properties::WorkLoadPerThreadNC; j++) {
1110
- auto matScalar = (check_boundary<is_internal_block>(
1111
- contract_conds && ((globalNonContractDimOffset + privateOffsetNC) < nonContractDim)))
1112
- ? mat(is_lhs_vec ? globalContractDimOffset + privateOffsetC
1113
- : globalNonContractDimOffset + privateOffsetNC,
1114
- is_lhs_vec ? globalNonContractDimOffset + privateOffsetNC
1115
- : globalContractDimOffset + privateOffsetC)
1116
- : OutScalar(0);
1117
-
1118
- outScalar[j] = cl::sycl::mad(matScalar, vecScalar, outScalar[j]);
1119
- privateOffsetNC += Properties::LocalThreadSizeNC;
1120
- }
1121
- privateOffsetC += Properties::LocalThreadSizeC;
1122
- #ifdef EIGEN_SYCL_LOCAL_MEM_UNSET_OR_ON
1123
- in_scratch_ptr += Properties::LocalThreadSizeC;
1124
- #endif
1125
- }
1126
-
1127
- auto out_scratch_ptr = local_output + outScratchIndex;
1128
- // Each block of 16*16 element in shared memory should reduce to 16*1
1129
- EIGEN_UNROLL_LOOP
1130
- for (StorageIndex j = 0; j < Properties::WorkLoadPerThreadNC; j++) {
1131
- *out_scratch_ptr = outScalar[j];
1132
-
1133
- out_scratch_ptr += (Properties::LocalThreadSizeNC * Properties::LocalThreadSizeC);
1134
- }
1135
- if (is_lhs_vec) {
1136
- nonContractId = linearLocalThreadId % Properties::LocalThreadSizeNC;
1137
- contractId = linearLocalThreadId / Properties::LocalThreadSizeNC;
1138
- outScratchIndex = nonContractId + contractId * Properties::LocalThreadSizeNC;
1139
- }
1140
-
1141
- out_scratch_ptr = local_output + outScratchIndex;
1142
- EIGEN_UNROLL_LOOP
1143
- for (StorageIndex j = 0; j < Properties::WorkLoadPerThreadNC; j++) {
1144
- EIGEN_UNROLL_LOOP
1145
- for (StorageIndex offset = Properties::LocalThreadSizeC >> 1; offset > 0; offset >>= 1) {
1146
- itemID.barrier(cl::sycl::access::fence_space::local_space);
1147
- if (contractId < offset) {
1148
- StorageIndex myNeigbourId = (Properties::LocalThreadSizeNC * offset);
1149
- *out_scratch_ptr += out_scratch_ptr[myNeigbourId];
1150
- }
1151
- }
1152
- // moving to next 16 by 16 block
1153
- out_scratch_ptr += (Properties::LocalThreadSizeNC * Properties::LocalThreadSizeC);
1154
- }
1155
-
1156
- if (contractId == 0) {
1157
- out_scratch_ptr = local_output + nonContractId;
1158
- StorageIndex global_final_offset = nonContractGroupOffset + nonContractId;
1159
- out_ptr += global_final_offset;
1160
- EIGEN_UNROLL_LOOP
1161
- for (StorageIndex j = 0; j < Properties::WorkLoadPerThreadNC; j++) {
1162
- if (check_boundary<is_internal_block>(global_final_offset < nonContractDim)) {
1163
- auto res = *out_scratch_ptr;
1164
-
1165
- *out_ptr = res;
1166
- out_ptr += Properties::LocalThreadSizeNC;
1167
- }
1168
- // moving to next 16 by 16 block to ge the next 16 reduced elements
1169
- out_scratch_ptr += (Properties::LocalThreadSizeNC * Properties::LocalThreadSizeC);
1170
- if (!(is_internal_block)) global_final_offset += Properties::LocalThreadSizeNC;
1171
- }
1172
- }
1173
- }
1174
-
1175
- template <typename InputBlockProperties, bool is_internal_block, int CFactor, int GroupSize, typename Input,
1176
- typename Local>
1177
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void extract_block(const Input &inpt, Local *local_ptr,
1178
- const StorageIndex &linearLocalThreadId,
1179
- const StorageIndex &cOffset, const StorageIndex &C) {
1180
- local_ptr += InputBlockProperties::c_stride * linearLocalThreadId;
1181
- StorageIndex cIndex = cOffset;
1182
- for (StorageIndex cId = 0; cId < CFactor / InputBlockProperties::c_stride; cId++) {
1183
- if (check_boundary<is_internal_block>(cIndex + InputBlockProperties::c_stride - 1 < C)) {
1184
- auto val = read<InputBlockProperties::packet_load, InputBlockProperties::is_coalesced_layout,
1185
- InputBlockProperties::is_rhs, typename InputBlockProperties::OutType>(inpt, StorageIndex(0),
1186
- cIndex, StorageIndex(1));
1187
- write<StorageIndex, 1, data_source::local_mem>(val, local_ptr);
1188
- } else {
1189
- EIGEN_UNROLL_LOOP
1190
- for (StorageIndex i = 0; i < InputBlockProperties::elements_per_access; i++) {
1191
- OutScalar val =
1192
- (cIndex + i < C)
1193
- ? read<false, InputBlockProperties::is_coalesced_layout, InputBlockProperties::is_rhs, OutScalar>(
1194
- inpt, StorageIndex(0), cIndex + i, StorageIndex(1))
1195
- : OutScalar(0);
1196
- write<StorageIndex, 1, data_source::local_mem>(val, local_ptr + i);
1197
- }
1198
- }
1199
- local_ptr += InputBlockProperties::c_stride * GroupSize;
1200
- cIndex += InputBlockProperties::c_stride * GroupSize;
1201
- }
1202
- }
1203
- };
1204
- #endif
1205
-
1206
- #ifndef EIGEN_SYCL_DISABLE_SCALAR
1207
-
1208
- /*!
1209
- * \brief GeneralScalarContraction is a template class that provides the scalar value of Tensor -Tensor contraction
1210
- * operation, when all the dimensions are contracting dimensions. This Kernel reduces two tensors to an scalar
1211
- *
1212
- * \tparam OutScalar: determines the output scalar type
1213
- *
1214
- * \tparam LhsScalar: determines the left-hand-side scalar type
1215
- *
1216
- * \tparam RhsScalar: determines the right-hand-side scalar type
1217
- *
1218
- * \tparam OutAccessor: determines the sycl accessor type for out put (please see the sycl-1.2.1 specification
1219
- * (https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf) for accessor definition)
1220
- *
1221
- * \tparam LhsMapper: determines the tensor contraction mapper type for left-hand-side matrix
1222
- *
1223
- * \tparam RhsMapper: determines the tensor contraction mapper type for right-hand-side matrix
1224
- *
1225
- * \tparam StorageIndex: determines the StorageIndex Type
1226
- *
1227
- * \tparam Vectorizable: determines whether or not the vectorization is enabled for the Eigen expression.
1228
- *
1229
- * \param scratch: local memory containing tiles of LHS and RHS tensors for each work-group
1230
- *
1231
- * \param lhs: determines the left-hand-side flattened tensor (tensor mapper)
1232
- *
1233
- * \param rhs: determines the right-hand-side flattened tensor (tensor mapper)
1234
- *
1235
- * \param out_res: determines the output tensor containing the contraction result
1236
- *
1237
- * \param rng: determins the total input data size
1238
- */
1239
- template <typename OutScalar, typename LhsScalar, typename RhsScalar, typename OutAccessor, typename LhsMapper,
1240
- typename RhsMapper, typename StorageIndex, bool Vectorizable>
1241
- struct GeneralScalarContraction {
1242
- typedef cl::sycl::accessor<OutScalar, 1, cl::sycl::access::mode::read_write, cl::sycl::access::target::local> Scratch;
1243
- Scratch scratch;
1244
- const LhsMapper lhs;
1245
- const RhsMapper rhs;
1246
- OutAccessor out_res;
1247
- const StorageIndex rng;
1248
-
1249
- EIGEN_DEVICE_FUNC
1250
- GeneralScalarContraction(Scratch scratch_, const LhsMapper lhs_, const RhsMapper rhs_, OutAccessor out_res_,
1251
- const StorageIndex rng_)
1252
- : scratch(scratch_), lhs(lhs_), rhs(rhs_), out_res(out_res_), rng(rng_) {}
1253
-
1254
- EIGEN_DEVICE_FUNC void operator()(cl::sycl::nd_item<1> itemID) {
1255
- auto out_ptr = out_res.get_pointer();
1256
- auto scratch_ptr = scratch.get_pointer().get();
1257
-
1258
- StorageIndex globalid = itemID.get_global_id(0);
1259
- StorageIndex localid = itemID.get_local_id(0);
1260
- OutScalar accumulator = OutScalar(0);
1261
- for (StorageIndex i = globalid; i < rng; i += itemID.get_global_range(0)) {
1262
- accumulator = cl::sycl::mad(lhs(0, i), rhs(i, 0), accumulator);
1263
- }
1264
- auto out_scratch_ptr = scratch_ptr + localid;
1265
- *out_scratch_ptr = accumulator;
1266
- for (StorageIndex offset = itemID.get_local_range(0) >> 1; offset > 0; offset >>= 1) {
1267
- itemID.barrier(cl::sycl::access::fence_space::local_space);
1268
- if (localid < offset) {
1269
- *out_scratch_ptr = (accumulator += out_scratch_ptr[offset]);
1270
- }
1271
- }
1272
- if (localid == 0) {
1273
- out_ptr[itemID.get_group(0)] = accumulator;
1274
- }
1275
- }
1276
- };
1277
- #endif
1278
-
1279
- } // namespace internal
1280
- } // namespace TensorSycl
1281
-
1282
- template <typename Indices, typename LeftArgType, typename RightArgType, typename OutputKernelType>
1283
- struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>,
1284
- Eigen::SyclDevice>
1285
- : public TensorContractionEvaluatorBase<TensorEvaluator<
1286
- const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, Eigen::SyclDevice>> {
1287
- static_assert(std::is_same<OutputKernelType, const NoOpOutputKernel>::value,
1288
- "SYCL tensor contraction does not support output kernels.");
1289
-
1290
- typedef Eigen::SyclDevice Device;
1291
-
1292
- typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, Device> Self;
1293
- typedef TensorContractionEvaluatorBase<Self> Base;
1294
- typedef TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType> XprType;
1295
- typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
1296
- typedef typename XprType::Index StorageIndex;
1297
- typedef typename XprType::CoeffReturnType CoeffReturnType;
1298
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
1299
- typedef typename Base::Storage Storage;
1300
- typedef typename Base::EvaluatorPointerType EvaluatorPointerType;
1301
- struct TripleDim {
1302
- const StorageIndex M;
1303
- const StorageIndex N;
1304
- const StorageIndex K;
1305
- TripleDim(const StorageIndex M_, const StorageIndex N_, const StorageIndex K_) : M(M_), N(N_), K(K_) {}
1306
- };
1307
- enum {
1308
- Layout = TensorEvaluator<LeftArgType, Device>::Layout,
1309
- PacketAccess = (PacketType<CoeffReturnType, Device>::size > 1),
1310
- BlockAccess = false,
1311
- };
1312
-
1313
- static EIGEN_CONSTEXPR int LDims = Base::LDims;
1314
- static EIGEN_CONSTEXPR int RDims = Base::RDims;
1315
- static EIGEN_CONSTEXPR int ContractDims = Base::ContractDims;
1316
-
1317
- typedef array<StorageIndex, LDims> left_dim_mapper_t;
1318
- typedef array<StorageIndex, RDims> right_dim_mapper_t;
1319
-
1320
- typedef array<StorageIndex, ContractDims> contract_t;
1321
- typedef array<StorageIndex, LDims - ContractDims> left_nocontract_t;
1322
- typedef array<StorageIndex, RDims - ContractDims> right_nocontract_t;
1323
-
1324
- static const int NumDims = LDims + RDims - 2 * ContractDims;
1325
-
1326
- typedef DSizes<StorageIndex, NumDims> Dimensions;
1327
-
1328
- typedef TensorEvaluator<typename Base::EvalLeftArgType, Device> LeftEvaluator;
1329
- typedef TensorEvaluator<typename Base::EvalRightArgType, Device> RightEvaluator;
1330
- typedef typename Eigen::internal::remove_const<typename LeftEvaluator::CoeffReturnType>::type LhsScalar;
1331
- typedef typename Eigen::internal::remove_const<typename RightEvaluator::CoeffReturnType>::type RhsScalar;
1332
-
1333
- typedef typename LeftEvaluator::Dimensions LeftDimensions;
1334
- typedef typename RightEvaluator::Dimensions RightDimensions;
1335
-
1336
- template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered>
1337
- struct input_mapper_propertis {
1338
- static EIGEN_CONSTEXPR bool is_lhs_matrix = (LDims == 2 && ContractDims == 1) || lhs_inner_dim_contiguous;
1339
- static EIGEN_CONSTEXPR bool is_rhs_matrix =
1340
- (RDims == 2 && ContractDims == 1) || (rhs_inner_dim_contiguous && !rhs_inner_dim_reordered);
1341
- };
1342
-
1343
- TensorEvaluator(const XprType &op, const Device &device) : Base(op, device) {}
1344
-
1345
- // We need to redefine this method to make nvcc happy
1346
- EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(typename Base::EvaluatorPointerType data) {
1347
- this->m_leftImpl.evalSubExprsIfNeeded(NULL);
1348
- this->m_rightImpl.evalSubExprsIfNeeded(NULL);
1349
- if (!data) {
1350
- this->m_result = this->m_device.get(
1351
- static_cast<Scalar *>(this->m_device.allocate_temp(this->dimensions().TotalSize() * sizeof(Scalar))));
1352
- data = this->m_result;
1353
- }
1354
- evalToSycl(data);
1355
- return (this->m_result != NULL);
1356
- }
1357
- const Eigen::SyclDevice &device() const { return this->m_device; }
1358
- void evalToSycl(typename Base::EvaluatorPointerType buffer) const {
1359
- if (this->m_lhs_inner_dim_contiguous) {
1360
- if (this->m_rhs_inner_dim_contiguous) {
1361
- if (this->m_rhs_inner_dim_reordered) {
1362
- evalTyped<true, true, true, Unaligned>(buffer);
1363
- } else {
1364
- evalTyped<true, true, false, Unaligned>(buffer);
1365
- }
1366
- } else {
1367
- if (this->m_rhs_inner_dim_reordered) {
1368
- evalTyped<true, false, true, Unaligned>(buffer);
1369
- } else {
1370
- evalTyped<true, false, false, Unaligned>(buffer);
1371
- }
1372
- }
1373
- } else {
1374
- if (this->m_rhs_inner_dim_contiguous) {
1375
- if (this->m_rhs_inner_dim_reordered) {
1376
- evalTyped<false, true, true, Unaligned>(buffer);
1377
- } else {
1378
- evalTyped<false, true, false, Unaligned>(buffer);
1379
- }
1380
- } else {
1381
- if (this->m_rhs_inner_dim_reordered) {
1382
- evalTyped<false, false, true, Unaligned>(buffer);
1383
- } else {
1384
- evalTyped<false, false, false, Unaligned>(buffer);
1385
- }
1386
- }
1387
- }
1388
- }
1389
-
1390
- template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
1391
- void evalTyped(typename Base::EvaluatorPointerType buffer) const {
1392
- const auto triple_dim = TripleDim{this->m_i_size, this->m_j_size, this->m_k_size};
1393
- typedef internal::TensorContractionInputMapper<
1394
- LhsScalar, StorageIndex, internal::Lhs, LeftEvaluator, left_nocontract_t, contract_t,
1395
- PacketType<CoeffReturnType, Device>::size, lhs_inner_dim_contiguous, false, Unaligned, MakeSYCLPointer>
1396
- LhsMapper;
1397
-
1398
- typedef internal::TensorContractionInputMapper<RhsScalar, StorageIndex, internal::Rhs, RightEvaluator,
1399
- right_nocontract_t, contract_t,
1400
- PacketType<CoeffReturnType, Device>::size, rhs_inner_dim_contiguous,
1401
- rhs_inner_dim_reordered, Unaligned, MakeSYCLPointer>
1402
- RhsMapper;
1403
-
1404
- // initialize data mappers
1405
- LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides, this->m_i_strides,
1406
- this->m_left_contracting_strides, this->m_k_strides);
1407
-
1408
- RhsMapper rhs(this->m_rightImpl, this->m_right_nocontract_strides, this->m_j_strides,
1409
- this->m_right_contracting_strides, this->m_k_strides);
1410
-
1411
- #ifndef EIGEN_SYCL_DISABLE_SCALAR
1412
- if (triple_dim.M == 1 && triple_dim.N == 1) {
1413
- launchSC(buffer, lhs, rhs, triple_dim.K);
1414
- } else
1415
- #endif
1416
- #ifndef EIGEN_SYCL_DISABLE_GEMV
1417
- if (triple_dim.M != 1 && triple_dim.N == 1) {
1418
- LaunchVT<false>(buffer, rhs, lhs, triple_dim.M, triple_dim.K);
1419
- } else if (triple_dim.M == 1 && triple_dim.N != 1) {
1420
- LaunchVT<true>(buffer, lhs, rhs, triple_dim.N, triple_dim.K);
1421
- } else // This is equivalent of if (m!=1 && n!=1)
1422
- #endif
1423
- {
1424
- typedef input_mapper_propertis<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, rhs_inner_dim_reordered>
1425
- inpt_mapper_properties;
1426
- #ifndef EIGEN_SYCL_DISABLE_SKINNY
1427
- bool skinny = false;
1428
- auto platform_name = this->device().getPlatformName();
1429
- // This is based on empirical calculation for AMD r9-nano and Fiji
1430
- if (platform_name.find("AMD") == 0) {
1431
- skinny = (triple_dim.M < triple_dim.K || triple_dim.N < triple_dim.K) &&
1432
- ((triple_dim.M < 1024 && triple_dim.N < 1024) ||
1433
- (uint64_t(triple_dim.M * triple_dim.N) < uint64_t(triple_dim.K)));
1434
- } else {
1435
- skinny = (((std::max(triple_dim.K, triple_dim.N) / std::min(triple_dim.K, triple_dim.N)) > 100) ||
1436
- ((std::max(triple_dim.K, triple_dim.M) / std::min(triple_dim.K, triple_dim.M)) > 100) ||
1437
- ((std::max(triple_dim.N, triple_dim.M) / std::min(triple_dim.N, triple_dim.M)) > 100));
1438
- }
1439
- if (skinny)
1440
- adjustTT<true, inpt_mapper_properties>(buffer, lhs, rhs, triple_dim);
1441
- else
1442
- #endif // EIGEN_SYCL_DISABLE_SKINNY
1443
- adjustTT<false, inpt_mapper_properties>(buffer, lhs, rhs, triple_dim);
1444
- }
1445
- }
1446
-
1447
- template <bool skinny, typename input_mapper_properties, typename LhsMapper, typename RhsMapper>
1448
- void EIGEN_ALWAYS_INLINE adjustTT(EvaluatorPointerType buffer, const LhsMapper &lhs, const RhsMapper &rhs,
1449
- const TripleDim &triple_dim) const {
1450
- #ifdef EIGEN_SYCL_LOCAL_MEM_UNSET_OR_ON
1451
- if (device().has_local_memory()) {
1452
- typedef TensorSycl::internal::TTPanelSize<CoeffReturnType, StorageIndex, 4, 4, 16> PanelParameters;
1453
- launchTT<TensorSycl::internal::contraction_type::local, skinny, input_mapper_properties, PanelParameters>(
1454
- buffer, lhs, rhs, triple_dim);
1455
- }
1456
- #endif
1457
- #ifdef EIGEN_SYCL_LOCAL_MEM_UNSET_OR_OFF
1458
- if (!(device().has_local_memory())) {
1459
- typedef TensorSycl::internal::TTPanelSize<CoeffReturnType, StorageIndex, 4, 4, 4> PanelParameters;
1460
- launchTT<TensorSycl::internal::contraction_type::no_local, skinny, input_mapper_properties, PanelParameters>(
1461
- buffer, lhs, rhs, triple_dim);
1462
- }
1463
- #endif
1464
- }
1465
-
1466
- template <TensorSycl::internal::contraction_type ct, bool skinny, typename input_mapper_properties,
1467
- typename Properties, typename LhsMapper, typename RhsMapper>
1468
- void launchTT(EvaluatorPointerType buffer, const LhsMapper &lhs, const RhsMapper &rhs,
1469
- const TripleDim &triple_dim) const {
1470
- const StorageIndex roundUpM = Eigen::TensorSycl::internal::roundUp(triple_dim.M, Properties::TileSizeDimM);
1471
- const StorageIndex roundUpN = Eigen::TensorSycl::internal::roundUp(triple_dim.N, Properties::TileSizeDimN);
1472
- const StorageIndex groupSizeM = roundUpM / Properties::TileSizeDimM;
1473
- const StorageIndex groupSizeN = roundUpN / Properties::TileSizeDimN;
1474
-
1475
- const StorageIndex roundUpK = Eigen::TensorSycl::internal::roundUp(triple_dim.K, Properties::TileSizeDimK);
1476
- StorageIndex totalTilesK = roundUpK / Properties::TileSizeDimK;
1477
- StorageIndex groupSizeK =
1478
- skinny
1479
- ? std::max(std::min(totalTilesK,
1480
- (StorageIndex)(device().getPowerOfTwo(device().getNumSyclMultiProcessors(), true) * 4) /
1481
- (groupSizeM * groupSizeN)),
1482
- StorageIndex(1))
1483
- : StorageIndex(1);
1484
-
1485
- const StorageIndex numTilesPerGroup = Eigen::TensorSycl::internal::roundUp(totalTilesK, groupSizeK) / groupSizeK;
1486
-
1487
- const StorageIndex totalGroupSize = groupSizeM * groupSizeN * groupSizeK;
1488
-
1489
- const StorageIndex localRange = Properties::LocalThreadSizeM * Properties::LocalThreadSizeN;
1490
- const StorageIndex globalRange = totalGroupSize * localRange;
1491
-
1492
- const StorageIndex scratchSize = (ct == TensorSycl::internal::contraction_type::local)
1493
- ? ((Properties::DoubleBuffer + 1) *
1494
- (Properties::TileSizeDimM + Properties::BC) * (Properties::TileSizeDimK)) +
1495
- ((Properties::DoubleBuffer + 1) * (Properties::TileSizeDimK) *
1496
- (Properties::TileSizeDimN + Properties::BC))
1497
- : StorageIndex(1);
1498
-
1499
- auto thread_range = cl::sycl::nd_range<1>(cl::sycl::range<1>(globalRange), cl::sycl::range<1>(localRange));
1500
- if (groupSizeK == 1) {
1501
- typedef TensorSycl::internal::TensorContractionKernel<CoeffReturnType, LhsScalar, RhsScalar, EvaluatorPointerType,
1502
- LhsMapper, RhsMapper, StorageIndex, Properties, TripleDim,
1503
- PacketAccess, input_mapper_properties, true, ct>
1504
- ContractKernelName;
1505
- device().template binary_kernel_launcher<CoeffReturnType, ContractKernelName>(
1506
- lhs, rhs, buffer, thread_range, scratchSize, groupSizeM, groupSizeN, numTilesPerGroup, triple_dim);
1507
- } else {
1508
- typedef TensorSycl::internal::TensorContractionKernel<CoeffReturnType, LhsScalar, RhsScalar, EvaluatorPointerType,
1509
- LhsMapper, RhsMapper, StorageIndex, Properties, TripleDim,
1510
- PacketAccess, input_mapper_properties, false, ct>
1511
- ContractKernelName;
1512
- CoeffReturnType *temp_pointer = static_cast<CoeffReturnType *>(
1513
- device().allocate_temp(triple_dim.M * triple_dim.N * groupSizeK * sizeof(CoeffReturnType)));
1514
- EvaluatorPointerType tmp_global_accessor = device().get(temp_pointer);
1515
-
1516
- device().template binary_kernel_launcher<CoeffReturnType, ContractKernelName>(
1517
- lhs, rhs, tmp_global_accessor, thread_range, scratchSize, groupSizeM, groupSizeN, numTilesPerGroup,
1518
- triple_dim);
1519
-
1520
- typedef Eigen::internal::SumReducer<CoeffReturnType> Op;
1521
- auto op = Op();
1522
- typedef TensorSycl::internal::SecondStepPartialReduction<CoeffReturnType, StorageIndex, EvaluatorPointerType,
1523
- EvaluatorPointerType, Op>
1524
- ReductionKernel;
1525
-
1526
- device().template unary_kernel_launcher<CoeffReturnType, ReductionKernel>(
1527
- tmp_global_accessor, buffer,
1528
- cl::sycl::nd_range<1>(cl::sycl::range<1>(StorageIndex(
1529
- Eigen::TensorSycl::internal::roundUp(triple_dim.M * triple_dim.N, localRange))),
1530
- cl::sycl::range<1>(localRange)),
1531
- StorageIndex(1), op, StorageIndex(triple_dim.M * triple_dim.N), groupSizeK);
1532
-
1533
- device().deallocate_temp(temp_pointer);
1534
- }
1535
- }
1536
-
1537
- #ifndef EIGEN_SYCL_DISABLE_GEMV
1538
- template <bool is_lhs_vec, typename VectorMapper, typename TensorMapper, typename StorageIndex>
1539
- void EIGEN_ALWAYS_INLINE LaunchVT(EvaluatorPointerType buffer, const VectorMapper &vec, const TensorMapper &mat,
1540
- StorageIndex NC, StorageIndex C) const {
1541
- const StorageIndex nonContractDim = NC;
1542
- EIGEN_CONSTEXPR StorageIndex NCFactor = 1;
1543
- EIGEN_CONSTEXPR StorageIndex CFactor = 1;
1544
- EIGEN_CONSTEXPR StorageIndex NCWindow = 16;
1545
- typedef Eigen::TensorSycl::internal::TVPanelSize<CoeffReturnType, StorageIndex, NCWindow, CFactor, NCFactor>
1546
- Properties;
1547
- const StorageIndex roundUpC = Eigen::TensorSycl::internal::roundUp(C, Properties::TileSizeDimC);
1548
- const StorageIndex cNumGroups = roundUpC / (Properties::LocalThreadSizeC * Properties::WorkLoadPerThreadC);
1549
- const StorageIndex roundUpNC = Eigen::TensorSycl::internal::roundUp(nonContractDim, Properties::TileSizeDimNC);
1550
- const StorageIndex nCNumGroups = roundUpNC / (Properties::LocalThreadSizeNC * Properties::WorkLoadPerThreadNC);
1551
- const StorageIndex globalRange =
1552
- (roundUpNC / (Properties::WorkLoadPerThreadNC)) * (roundUpC / (Properties::WorkLoadPerThreadC));
1553
- const StorageIndex localRange = Properties::LocalThreadSizeNC * Properties::LocalThreadSizeC;
1554
- const StorageIndex scratchSize =
1555
- (Properties::WorkLoadPerThreadNC + CFactor) * Properties::LocalThreadSizeC * Properties::LocalThreadSizeNC;
1556
- auto thread_range = cl::sycl::nd_range<1>(cl::sycl::range<1>(globalRange), cl::sycl::range<1>(localRange));
1557
- if (cNumGroups > 1) {
1558
- typedef Eigen::TensorSycl::internal::GeneralVectorTensor<CoeffReturnType, EvaluatorPointerType, VectorMapper,
1559
- TensorMapper, StorageIndex, Properties, CFactor, false,
1560
- is_lhs_vec, false>
1561
- ContractKernelName;
1562
- CoeffReturnType *temp_pointer =
1563
- static_cast<CoeffReturnType *>(device().allocate_temp(nonContractDim * cNumGroups * sizeof(CoeffReturnType)));
1564
- EvaluatorPointerType tmp_global_accessor = device().get(temp_pointer);
1565
-
1566
- device().template binary_kernel_launcher<CoeffReturnType, ContractKernelName>(
1567
- vec, mat, tmp_global_accessor, thread_range, scratchSize, nCNumGroups, nonContractDim, C);
1568
-
1569
- typedef Eigen::internal::SumReducer<CoeffReturnType> Op;
1570
- typedef TensorSycl::internal::SecondStepPartialReduction<CoeffReturnType, StorageIndex, EvaluatorPointerType,
1571
- EvaluatorPointerType, Op>
1572
- ReductionKernel;
1573
-
1574
- device().template unary_kernel_launcher<CoeffReturnType, ReductionKernel>(
1575
- tmp_global_accessor, buffer,
1576
- cl::sycl::nd_range<1>(cl::sycl::range<1>(Eigen::TensorSycl::internal::roundUp(nonContractDim, localRange)),
1577
- cl::sycl::range<1>(localRange)),
1578
- StorageIndex(1), Op(), nonContractDim, cNumGroups);
1579
-
1580
- device().deallocate_temp(temp_pointer);
1581
- } else {
1582
- typedef Eigen::TensorSycl::internal::GeneralVectorTensor<CoeffReturnType, EvaluatorPointerType, VectorMapper,
1583
- TensorMapper, StorageIndex, Properties, CFactor, false,
1584
- is_lhs_vec, true>
1585
- ContractKernelName;
1586
- device().template binary_kernel_launcher<CoeffReturnType, ContractKernelName>(
1587
- vec, mat, buffer, thread_range, scratchSize, nCNumGroups, nonContractDim, C);
1588
- }
1589
- }
1590
- #endif
1591
-
1592
- #ifndef EIGEN_SYCL_DISABLE_SCALAR
1593
- template <typename LhsMapper, typename RhsMapper>
1594
- EIGEN_ALWAYS_INLINE void launchSC(EvaluatorPointerType buffer, const LhsMapper &lhs, const RhsMapper &rhs,
1595
- StorageIndex K) const {
1596
- EIGEN_STATIC_ASSERT(!((EIGEN_SYCL_LOCAL_THREAD_DIM0 * EIGEN_SYCL_LOCAL_THREAD_DIM1) &
1597
- (EIGEN_SYCL_LOCAL_THREAD_DIM0 * EIGEN_SYCL_LOCAL_THREAD_DIM1 - 1)),
1598
- "The Local thread size must be a power of 2 for the reduction "
1599
- "operation");
1600
- EIGEN_CONSTEXPR StorageIndex local_range = EIGEN_SYCL_LOCAL_THREAD_DIM0 * EIGEN_SYCL_LOCAL_THREAD_DIM1;
1601
-
1602
- // Here we force the code not to be more than 2-step reduction: Our empirical research shows that if each thread
1603
- // reduces at least 512 elementss individually, we get better performance.
1604
- const StorageIndex num_work_group = ((K + (512 * local_range - 1)) / (512 * local_range) > 1 ? local_range : 1);
1605
- const StorageIndex global_range = num_work_group * local_range;
1606
-
1607
- typedef Eigen::TensorSycl::internal::GeneralScalarContraction<
1608
- CoeffReturnType, LhsScalar, RhsScalar, EvaluatorPointerType, LhsMapper, RhsMapper, StorageIndex, false>
1609
- ContractKernelName;
1610
- auto thread_range = cl::sycl::nd_range<1>(cl::sycl::range<1>(global_range), cl::sycl::range<1>(local_range));
1611
- if (num_work_group > 1) {
1612
- CoeffReturnType *temp_pointer =
1613
- static_cast<CoeffReturnType *>(device().allocate_temp(num_work_group * sizeof(CoeffReturnType)));
1614
- EvaluatorPointerType tmp_global_accessor = device().get(temp_pointer);
1615
- device().template binary_kernel_launcher<CoeffReturnType, ContractKernelName>(lhs, rhs, tmp_global_accessor,
1616
- thread_range, local_range, K);
1617
- typedef Eigen::internal::SumReducer<CoeffReturnType> Op;
1618
- typedef TensorSycl::internal::SecondStepFullReducer<CoeffReturnType, Op, EvaluatorPointerType,
1619
- EvaluatorPointerType, StorageIndex, local_range>
1620
- GenericRKernel;
1621
- device().template unary_kernel_launcher<CoeffReturnType, GenericRKernel>(
1622
- tmp_global_accessor, buffer,
1623
- cl::sycl::nd_range<1>(cl::sycl::range<1>(local_range), cl::sycl::range<1>(local_range)), local_range, Op());
1624
-
1625
- device().deallocate_temp(temp_pointer);
1626
- } else {
1627
- device().template binary_kernel_launcher<CoeffReturnType, ContractKernelName>(lhs, rhs, buffer, thread_range,
1628
- local_range, K);
1629
- }
1630
- }
1631
- #endif
1632
-
1633
- EIGEN_STRONG_INLINE void cleanup() {
1634
- this->m_leftImpl.cleanup();
1635
- this->m_rightImpl.cleanup();
1636
-
1637
- if (this->m_result) {
1638
- this->m_device.deallocate_temp(this->m_result);
1639
- this->m_result = NULL;
1640
- }
1641
- }
1642
- // The placeholder accessors must bound to a command group handler for SYCL
1643
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
1644
- this->m_leftImpl.bind(cgh);
1645
- this->m_rightImpl.bind(cgh);
1646
- this->m_result.bind(cgh);
1647
- }
1648
- };
1649
- } // namespace Eigen
1650
- #endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_SYCL_H