sequenzo 0.1.18__cp311-cp311-macosx_10_9_universal2.whl → 0.1.19__cp311-cp311-macosx_10_9_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (357) hide show
  1. sequenzo/__init__.py +39 -7
  2. sequenzo/big_data/clara/utils/get_weighted_diss.c +155 -155
  3. sequenzo/big_data/clara/utils/get_weighted_diss.cpython-311-darwin.so +0 -0
  4. sequenzo/clustering/KMedoids.py +39 -0
  5. sequenzo/clustering/hierarchical_clustering.py +107 -5
  6. sequenzo/define_sequence_data.py +10 -1
  7. sequenzo/dissimilarity_measures/get_distance_matrix.py +1 -2
  8. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +155 -155
  9. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cpython-311-darwin.so +0 -0
  10. sequenzo/dissimilarity_measures/utils/seqconc.c +155 -155
  11. sequenzo/dissimilarity_measures/utils/seqconc.cpython-311-darwin.so +0 -0
  12. sequenzo/dissimilarity_measures/utils/seqdss.c +155 -155
  13. sequenzo/dissimilarity_measures/utils/seqdss.cpython-311-darwin.so +0 -0
  14. sequenzo/dissimilarity_measures/utils/seqdur.c +155 -155
  15. sequenzo/dissimilarity_measures/utils/seqdur.cpython-311-darwin.so +0 -0
  16. sequenzo/dissimilarity_measures/utils/seqlength.c +155 -155
  17. sequenzo/dissimilarity_measures/utils/seqlength.cpython-311-darwin.so +0 -0
  18. sequenzo/multidomain/cat.py +0 -53
  19. sequenzo/multidomain/idcd.py +0 -1
  20. sequenzo/openmp_setup.py +233 -0
  21. sequenzo/visualization/plot_transition_matrix.py +21 -22
  22. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/METADATA +43 -10
  23. sequenzo-0.1.19.dist-info/RECORD +215 -0
  24. sequenzo/dissimilarity_measures/setup.py +0 -35
  25. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -688
  26. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT.h +0 -558
  27. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  28. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  29. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  30. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  31. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  32. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  33. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  34. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  35. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  36. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  37. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  38. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  39. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  40. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  41. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  42. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  43. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -486
  44. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -247
  45. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -114
  46. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -501
  47. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -282
  48. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -235
  49. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  50. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -870
  51. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -199
  52. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -206
  53. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Scaling.h +0 -188
  54. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Transform.h +0 -1563
  55. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Translation.h +0 -202
  56. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Umeyama.h +0 -166
  57. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  58. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -110
  59. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/Householder.h +0 -176
  60. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/HouseholderSequence.h +0 -545
  61. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  62. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  63. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  64. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  65. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  66. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  67. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  68. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  69. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -483
  70. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  71. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/Determinant.h +0 -117
  72. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/FullPivLU.h +0 -877
  73. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/InverseImpl.h +0 -432
  74. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -624
  75. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  76. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/arch/InverseSize4.h +0 -351
  77. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  78. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -435
  79. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  80. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -153
  81. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  82. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  83. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  84. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  85. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  86. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  87. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -434
  88. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  89. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  90. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/BDCSVD.h +0 -1366
  91. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD.h +0 -812
  92. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  93. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/SVDBase.h +0 -376
  94. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  95. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  96. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  97. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -378
  98. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  99. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  100. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  101. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -270
  102. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseBlock.h +0 -571
  103. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  104. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  105. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  106. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  107. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  108. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  109. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -98
  110. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  111. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMap.h +0 -305
  112. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  113. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  114. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  115. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseProduct.h +0 -181
  116. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -49
  117. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -397
  118. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  119. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  120. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  121. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  122. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  123. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -186
  124. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseVector.h +0 -478
  125. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -254
  126. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  127. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU.h +0 -923
  128. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  129. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  130. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  131. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  132. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  133. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  134. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  135. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  136. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  137. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  138. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  139. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  140. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  141. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  142. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  143. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  144. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseQR/SparseQR.h +0 -758
  145. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -116
  146. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdList.h +0 -106
  147. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -131
  148. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/details.h +0 -84
  149. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  150. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  151. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Image.h +0 -82
  152. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Kernel.h +0 -79
  153. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -55
  154. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/blas.h +0 -440
  155. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapack.h +0 -152
  156. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke.h +0 -16292
  157. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -17
  158. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  159. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  160. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -1442
  161. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  162. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  163. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  164. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  165. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  166. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -149
  167. sequenzo/dissimilarity_measures/src/eigen/blas/BandTriangularSolver.h +0 -97
  168. sequenzo/dissimilarity_measures/src/eigen/blas/GeneralRank1Update.h +0 -44
  169. sequenzo/dissimilarity_measures/src/eigen/blas/PackedSelfadjointProduct.h +0 -53
  170. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularMatrixVector.h +0 -79
  171. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularSolverVector.h +0 -88
  172. sequenzo/dissimilarity_measures/src/eigen/blas/Rank2Update.h +0 -57
  173. sequenzo/dissimilarity_measures/src/eigen/blas/common.h +0 -175
  174. sequenzo/dissimilarity_measures/src/eigen/blas/f2c/datatypes.h +0 -24
  175. sequenzo/dissimilarity_measures/src/eigen/blas/level1_cplx_impl.h +0 -155
  176. sequenzo/dissimilarity_measures/src/eigen/blas/level1_impl.h +0 -144
  177. sequenzo/dissimilarity_measures/src/eigen/blas/level1_real_impl.h +0 -122
  178. sequenzo/dissimilarity_measures/src/eigen/blas/level2_cplx_impl.h +0 -360
  179. sequenzo/dissimilarity_measures/src/eigen/blas/level2_impl.h +0 -553
  180. sequenzo/dissimilarity_measures/src/eigen/blas/level2_real_impl.h +0 -306
  181. sequenzo/dissimilarity_measures/src/eigen/blas/level3_impl.h +0 -702
  182. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/__init__.py +0 -1
  183. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/printers.py +0 -314
  184. sequenzo/dissimilarity_measures/src/eigen/lapack/lapack_common.h +0 -29
  185. sequenzo/dissimilarity_measures/src/eigen/scripts/relicense.py +0 -69
  186. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  187. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  188. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  189. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  190. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  191. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  192. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  193. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  194. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  195. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  196. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  197. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  198. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  199. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  200. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  201. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  202. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  203. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  204. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  205. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  206. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  207. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  208. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  209. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  210. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  211. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  212. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  213. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  214. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  215. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  216. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  217. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  218. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  219. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  220. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  221. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  222. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  223. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  224. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  225. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  226. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  227. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  228. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  229. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  230. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  231. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  232. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  233. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  234. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  235. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  236. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  237. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  238. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  239. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  240. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  241. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  242. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  243. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  244. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  245. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  246. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  247. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  248. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  249. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  250. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  251. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  252. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  253. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  254. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  255. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  256. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  257. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  258. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  259. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  260. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  261. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  262. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  263. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  264. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  265. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  266. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  267. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  268. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  269. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  270. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  271. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  272. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  273. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  274. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  275. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  276. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  277. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  278. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  279. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  280. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  281. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  282. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  283. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  284. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  285. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  286. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  287. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  288. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  289. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  290. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  291. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  292. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  293. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  294. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  295. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  296. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  297. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  298. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  299. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  300. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  301. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  302. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  303. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  304. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  305. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  306. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  307. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  308. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  309. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  310. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  311. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  312. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  313. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  314. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  315. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  316. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  317. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  318. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  319. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  320. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  321. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  322. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  323. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  324. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  325. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  326. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  327. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  328. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  329. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  330. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  331. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  332. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  333. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  334. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  335. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  336. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  337. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  338. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  339. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  340. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  341. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  342. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  343. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  344. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  345. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  346. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  347. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  348. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  349. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  350. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  351. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h +0 -507
  352. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  353. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  354. sequenzo-0.1.18.dist-info/RECORD +0 -544
  355. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/WHEEL +0 -0
  356. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/licenses/LICENSE +0 -0
  357. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/top_level.txt +0 -0
@@ -1,1959 +0,0 @@
1
- // This file is part of Eigen, a lightweight C++ template library
2
- // for linear algebra.
3
- //
4
- // Copyright (C) 2015 Eugene Brevdo <ebrevdo@gmail.com>
5
- //
6
- // This Source Code Form is subject to the terms of the Mozilla
7
- // Public License v. 2.0. If a copy of the MPL was not distributed
8
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
-
10
- #ifndef EIGEN_BESSEL_FUNCTIONS_H
11
- #define EIGEN_BESSEL_FUNCTIONS_H
12
-
13
- namespace Eigen {
14
- namespace internal {
15
-
16
- // Parts of this code are based on the Cephes Math Library.
17
- //
18
- // Cephes Math Library Release 2.8: June, 2000
19
- // Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier
20
- //
21
- // Permission has been kindly provided by the original author
22
- // to incorporate the Cephes software into the Eigen codebase:
23
- //
24
- // From: Stephen Moshier
25
- // To: Eugene Brevdo
26
- // Subject: Re: Permission to wrap several cephes functions in Eigen
27
- //
28
- // Hello Eugene,
29
- //
30
- // Thank you for writing.
31
- //
32
- // If your licensing is similar to BSD, the formal way that has been
33
- // handled is simply to add a statement to the effect that you are incorporating
34
- // the Cephes software by permission of the author.
35
- //
36
- // Good luck with your project,
37
- // Steve
38
-
39
-
40
- /****************************************************************************
41
- * Implementation of Bessel function, based on Cephes *
42
- ****************************************************************************/
43
-
44
- template <typename Scalar>
45
- struct bessel_i0e_retval {
46
- typedef Scalar type;
47
- };
48
-
49
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
50
- struct generic_i0e {
51
- EIGEN_DEVICE_FUNC
52
- static EIGEN_STRONG_INLINE T run(const T&) {
53
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
54
- THIS_TYPE_IS_NOT_SUPPORTED);
55
- return ScalarType(0);
56
- }
57
- };
58
-
59
- template <typename T>
60
- struct generic_i0e<T, float> {
61
- EIGEN_DEVICE_FUNC
62
- static EIGEN_STRONG_INLINE T run(const T& x) {
63
- /* i0ef.c
64
- *
65
- * Modified Bessel function of order zero,
66
- * exponentially scaled
67
- *
68
- *
69
- *
70
- * SYNOPSIS:
71
- *
72
- * float x, y, i0ef();
73
- *
74
- * y = i0ef( x );
75
- *
76
- *
77
- *
78
- * DESCRIPTION:
79
- *
80
- * Returns exponentially scaled modified Bessel function
81
- * of order zero of the argument.
82
- *
83
- * The function is defined as i0e(x) = exp(-|x|) j0( ix ).
84
- *
85
- *
86
- *
87
- * ACCURACY:
88
- *
89
- * Relative error:
90
- * arithmetic domain # trials peak rms
91
- * IEEE 0,30 100000 3.7e-7 7.0e-8
92
- * See i0f().
93
- *
94
- */
95
-
96
- const float A[] = {-1.30002500998624804212E-8f, 6.04699502254191894932E-8f,
97
- -2.67079385394061173391E-7f, 1.11738753912010371815E-6f,
98
- -4.41673835845875056359E-6f, 1.64484480707288970893E-5f,
99
- -5.75419501008210370398E-5f, 1.88502885095841655729E-4f,
100
- -5.76375574538582365885E-4f, 1.63947561694133579842E-3f,
101
- -4.32430999505057594430E-3f, 1.05464603945949983183E-2f,
102
- -2.37374148058994688156E-2f, 4.93052842396707084878E-2f,
103
- -9.49010970480476444210E-2f, 1.71620901522208775349E-1f,
104
- -3.04682672343198398683E-1f, 6.76795274409476084995E-1f};
105
-
106
- const float B[] = {3.39623202570838634515E-9f, 2.26666899049817806459E-8f,
107
- 2.04891858946906374183E-7f, 2.89137052083475648297E-6f,
108
- 6.88975834691682398426E-5f, 3.36911647825569408990E-3f,
109
- 8.04490411014108831608E-1f};
110
- T y = pabs(x);
111
- T y_le_eight = internal::pchebevl<T, 18>::run(
112
- pmadd(pset1<T>(0.5f), y, pset1<T>(-2.0f)), A);
113
- T y_gt_eight = pmul(
114
- internal::pchebevl<T, 7>::run(
115
- psub(pdiv(pset1<T>(32.0f), y), pset1<T>(2.0f)), B),
116
- prsqrt(y));
117
- // TODO: Perhaps instead check whether all packet elements are in
118
- // [-8, 8] and evaluate a branch based off of that. It's possible
119
- // in practice most elements are in this region.
120
- return pselect(pcmp_le(y, pset1<T>(8.0f)), y_le_eight, y_gt_eight);
121
- }
122
- };
123
-
124
- template <typename T>
125
- struct generic_i0e<T, double> {
126
- EIGEN_DEVICE_FUNC
127
- static EIGEN_STRONG_INLINE T run(const T& x) {
128
- /* i0e.c
129
- *
130
- * Modified Bessel function of order zero,
131
- * exponentially scaled
132
- *
133
- *
134
- *
135
- * SYNOPSIS:
136
- *
137
- * double x, y, i0e();
138
- *
139
- * y = i0e( x );
140
- *
141
- *
142
- *
143
- * DESCRIPTION:
144
- *
145
- * Returns exponentially scaled modified Bessel function
146
- * of order zero of the argument.
147
- *
148
- * The function is defined as i0e(x) = exp(-|x|) j0( ix ).
149
- *
150
- *
151
- *
152
- * ACCURACY:
153
- *
154
- * Relative error:
155
- * arithmetic domain # trials peak rms
156
- * IEEE 0,30 30000 5.4e-16 1.2e-16
157
- * See i0().
158
- *
159
- */
160
-
161
- const double A[] = {-4.41534164647933937950E-18, 3.33079451882223809783E-17,
162
- -2.43127984654795469359E-16, 1.71539128555513303061E-15,
163
- -1.16853328779934516808E-14, 7.67618549860493561688E-14,
164
- -4.85644678311192946090E-13, 2.95505266312963983461E-12,
165
- -1.72682629144155570723E-11, 9.67580903537323691224E-11,
166
- -5.18979560163526290666E-10, 2.65982372468238665035E-9,
167
- -1.30002500998624804212E-8, 6.04699502254191894932E-8,
168
- -2.67079385394061173391E-7, 1.11738753912010371815E-6,
169
- -4.41673835845875056359E-6, 1.64484480707288970893E-5,
170
- -5.75419501008210370398E-5, 1.88502885095841655729E-4,
171
- -5.76375574538582365885E-4, 1.63947561694133579842E-3,
172
- -4.32430999505057594430E-3, 1.05464603945949983183E-2,
173
- -2.37374148058994688156E-2, 4.93052842396707084878E-2,
174
- -9.49010970480476444210E-2, 1.71620901522208775349E-1,
175
- -3.04682672343198398683E-1, 6.76795274409476084995E-1};
176
- const double B[] = {
177
- -7.23318048787475395456E-18, -4.83050448594418207126E-18,
178
- 4.46562142029675999901E-17, 3.46122286769746109310E-17,
179
- -2.82762398051658348494E-16, -3.42548561967721913462E-16,
180
- 1.77256013305652638360E-15, 3.81168066935262242075E-15,
181
- -9.55484669882830764870E-15, -4.15056934728722208663E-14,
182
- 1.54008621752140982691E-14, 3.85277838274214270114E-13,
183
- 7.18012445138366623367E-13, -1.79417853150680611778E-12,
184
- -1.32158118404477131188E-11, -3.14991652796324136454E-11,
185
- 1.18891471078464383424E-11, 4.94060238822496958910E-10,
186
- 3.39623202570838634515E-9, 2.26666899049817806459E-8,
187
- 2.04891858946906374183E-7, 2.89137052083475648297E-6,
188
- 6.88975834691682398426E-5, 3.36911647825569408990E-3,
189
- 8.04490411014108831608E-1};
190
- T y = pabs(x);
191
- T y_le_eight = internal::pchebevl<T, 30>::run(
192
- pmadd(pset1<T>(0.5), y, pset1<T>(-2.0)), A);
193
- T y_gt_eight = pmul(
194
- internal::pchebevl<T, 25>::run(
195
- psub(pdiv(pset1<T>(32.0), y), pset1<T>(2.0)), B),
196
- prsqrt(y));
197
- // TODO: Perhaps instead check whether all packet elements are in
198
- // [-8, 8] and evaluate a branch based off of that. It's possible
199
- // in practice most elements are in this region.
200
- return pselect(pcmp_le(y, pset1<T>(8.0)), y_le_eight, y_gt_eight);
201
- }
202
- };
203
-
204
- template <typename T>
205
- struct bessel_i0e_impl {
206
- EIGEN_DEVICE_FUNC
207
- static EIGEN_STRONG_INLINE T run(const T x) {
208
- return generic_i0e<T>::run(x);
209
- }
210
- };
211
-
212
- template <typename Scalar>
213
- struct bessel_i0_retval {
214
- typedef Scalar type;
215
- };
216
-
217
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
218
- struct generic_i0 {
219
- EIGEN_DEVICE_FUNC
220
- static EIGEN_STRONG_INLINE T run(const T& x) {
221
- return pmul(
222
- pexp(pabs(x)),
223
- generic_i0e<T, ScalarType>::run(x));
224
- }
225
- };
226
-
227
- template <typename T>
228
- struct bessel_i0_impl {
229
- EIGEN_DEVICE_FUNC
230
- static EIGEN_STRONG_INLINE T run(const T x) {
231
- return generic_i0<T>::run(x);
232
- }
233
- };
234
-
235
- template <typename Scalar>
236
- struct bessel_i1e_retval {
237
- typedef Scalar type;
238
- };
239
-
240
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type >
241
- struct generic_i1e {
242
- EIGEN_DEVICE_FUNC
243
- static EIGEN_STRONG_INLINE T run(const T&) {
244
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
245
- THIS_TYPE_IS_NOT_SUPPORTED);
246
- return ScalarType(0);
247
- }
248
- };
249
-
250
- template <typename T>
251
- struct generic_i1e<T, float> {
252
- EIGEN_DEVICE_FUNC
253
- static EIGEN_STRONG_INLINE T run(const T& x) {
254
- /* i1ef.c
255
- *
256
- * Modified Bessel function of order one,
257
- * exponentially scaled
258
- *
259
- *
260
- *
261
- * SYNOPSIS:
262
- *
263
- * float x, y, i1ef();
264
- *
265
- * y = i1ef( x );
266
- *
267
- *
268
- *
269
- * DESCRIPTION:
270
- *
271
- * Returns exponentially scaled modified Bessel function
272
- * of order one of the argument.
273
- *
274
- * The function is defined as i1(x) = -i exp(-|x|) j1( ix ).
275
- *
276
- *
277
- *
278
- * ACCURACY:
279
- *
280
- * Relative error:
281
- * arithmetic domain # trials peak rms
282
- * IEEE 0, 30 30000 1.5e-6 1.5e-7
283
- * See i1().
284
- *
285
- */
286
- const float A[] = {9.38153738649577178388E-9f, -4.44505912879632808065E-8f,
287
- 2.00329475355213526229E-7f, -8.56872026469545474066E-7f,
288
- 3.47025130813767847674E-6f, -1.32731636560394358279E-5f,
289
- 4.78156510755005422638E-5f, -1.61760815825896745588E-4f,
290
- 5.12285956168575772895E-4f, -1.51357245063125314899E-3f,
291
- 4.15642294431288815669E-3f, -1.05640848946261981558E-2f,
292
- 2.47264490306265168283E-2f, -5.29459812080949914269E-2f,
293
- 1.02643658689847095384E-1f, -1.76416518357834055153E-1f,
294
- 2.52587186443633654823E-1f};
295
-
296
- const float B[] = {-3.83538038596423702205E-9f, -2.63146884688951950684E-8f,
297
- -2.51223623787020892529E-7f, -3.88256480887769039346E-6f,
298
- -1.10588938762623716291E-4f, -9.76109749136146840777E-3f,
299
- 7.78576235018280120474E-1f};
300
-
301
-
302
- T y = pabs(x);
303
- T y_le_eight = pmul(y, internal::pchebevl<T, 17>::run(
304
- pmadd(pset1<T>(0.5f), y, pset1<T>(-2.0f)), A));
305
- T y_gt_eight = pmul(
306
- internal::pchebevl<T, 7>::run(
307
- psub(pdiv(pset1<T>(32.0f), y),
308
- pset1<T>(2.0f)), B),
309
- prsqrt(y));
310
- // TODO: Perhaps instead check whether all packet elements are in
311
- // [-8, 8] and evaluate a branch based off of that. It's possible
312
- // in practice most elements are in this region.
313
- y = pselect(pcmp_le(y, pset1<T>(8.0f)), y_le_eight, y_gt_eight);
314
- return pselect(pcmp_lt(x, pset1<T>(0.0f)), pnegate(y), y);
315
- }
316
- };
317
-
318
- template <typename T>
319
- struct generic_i1e<T, double> {
320
- EIGEN_DEVICE_FUNC
321
- static EIGEN_STRONG_INLINE T run(const T& x) {
322
- /* i1e.c
323
- *
324
- * Modified Bessel function of order one,
325
- * exponentially scaled
326
- *
327
- *
328
- *
329
- * SYNOPSIS:
330
- *
331
- * double x, y, i1e();
332
- *
333
- * y = i1e( x );
334
- *
335
- *
336
- *
337
- * DESCRIPTION:
338
- *
339
- * Returns exponentially scaled modified Bessel function
340
- * of order one of the argument.
341
- *
342
- * The function is defined as i1(x) = -i exp(-|x|) j1( ix ).
343
- *
344
- *
345
- *
346
- * ACCURACY:
347
- *
348
- * Relative error:
349
- * arithmetic domain # trials peak rms
350
- * IEEE 0, 30 30000 2.0e-15 2.0e-16
351
- * See i1().
352
- *
353
- */
354
- const double A[] = {2.77791411276104639959E-18, -2.11142121435816608115E-17,
355
- 1.55363195773620046921E-16, -1.10559694773538630805E-15,
356
- 7.60068429473540693410E-15, -5.04218550472791168711E-14,
357
- 3.22379336594557470981E-13, -1.98397439776494371520E-12,
358
- 1.17361862988909016308E-11, -6.66348972350202774223E-11,
359
- 3.62559028155211703701E-10, -1.88724975172282928790E-9,
360
- 9.38153738649577178388E-9, -4.44505912879632808065E-8,
361
- 2.00329475355213526229E-7, -8.56872026469545474066E-7,
362
- 3.47025130813767847674E-6, -1.32731636560394358279E-5,
363
- 4.78156510755005422638E-5, -1.61760815825896745588E-4,
364
- 5.12285956168575772895E-4, -1.51357245063125314899E-3,
365
- 4.15642294431288815669E-3, -1.05640848946261981558E-2,
366
- 2.47264490306265168283E-2, -5.29459812080949914269E-2,
367
- 1.02643658689847095384E-1, -1.76416518357834055153E-1,
368
- 2.52587186443633654823E-1};
369
- const double B[] = {
370
- 7.51729631084210481353E-18, 4.41434832307170791151E-18,
371
- -4.65030536848935832153E-17, -3.20952592199342395980E-17,
372
- 2.96262899764595013876E-16, 3.30820231092092828324E-16,
373
- -1.88035477551078244854E-15, -3.81440307243700780478E-15,
374
- 1.04202769841288027642E-14, 4.27244001671195135429E-14,
375
- -2.10154184277266431302E-14, -4.08355111109219731823E-13,
376
- -7.19855177624590851209E-13, 2.03562854414708950722E-12,
377
- 1.41258074366137813316E-11, 3.25260358301548823856E-11,
378
- -1.89749581235054123450E-11, -5.58974346219658380687E-10,
379
- -3.83538038596423702205E-9, -2.63146884688951950684E-8,
380
- -2.51223623787020892529E-7, -3.88256480887769039346E-6,
381
- -1.10588938762623716291E-4, -9.76109749136146840777E-3,
382
- 7.78576235018280120474E-1};
383
- T y = pabs(x);
384
- T y_le_eight = pmul(y, internal::pchebevl<T, 29>::run(
385
- pmadd(pset1<T>(0.5), y, pset1<T>(-2.0)), A));
386
- T y_gt_eight = pmul(
387
- internal::pchebevl<T, 25>::run(
388
- psub(pdiv(pset1<T>(32.0), y),
389
- pset1<T>(2.0)), B),
390
- prsqrt(y));
391
- // TODO: Perhaps instead check whether all packet elements are in
392
- // [-8, 8] and evaluate a branch based off of that. It's possible
393
- // in practice most elements are in this region.
394
- y = pselect(pcmp_le(y, pset1<T>(8.0)), y_le_eight, y_gt_eight);
395
- return pselect(pcmp_lt(x, pset1<T>(0.0)), pnegate(y), y);
396
- }
397
- };
398
-
399
- template <typename T>
400
- struct bessel_i1e_impl {
401
- EIGEN_DEVICE_FUNC
402
- static EIGEN_STRONG_INLINE T run(const T x) {
403
- return generic_i1e<T>::run(x);
404
- }
405
- };
406
-
407
- template <typename T>
408
- struct bessel_i1_retval {
409
- typedef T type;
410
- };
411
-
412
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
413
- struct generic_i1 {
414
- EIGEN_DEVICE_FUNC
415
- static EIGEN_STRONG_INLINE T run(const T& x) {
416
- return pmul(
417
- pexp(pabs(x)),
418
- generic_i1e<T, ScalarType>::run(x));
419
- }
420
- };
421
-
422
- template <typename T>
423
- struct bessel_i1_impl {
424
- EIGEN_DEVICE_FUNC
425
- static EIGEN_STRONG_INLINE T run(const T x) {
426
- return generic_i1<T>::run(x);
427
- }
428
- };
429
-
430
- template <typename T>
431
- struct bessel_k0e_retval {
432
- typedef T type;
433
- };
434
-
435
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
436
- struct generic_k0e {
437
- EIGEN_DEVICE_FUNC
438
- static EIGEN_STRONG_INLINE T run(const T&) {
439
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
440
- THIS_TYPE_IS_NOT_SUPPORTED);
441
- return ScalarType(0);
442
- }
443
- };
444
-
445
- template <typename T>
446
- struct generic_k0e<T, float> {
447
- EIGEN_DEVICE_FUNC
448
- static EIGEN_STRONG_INLINE T run(const T& x) {
449
- /* k0ef.c
450
- * Modified Bessel function, third kind, order zero,
451
- * exponentially scaled
452
- *
453
- *
454
- *
455
- * SYNOPSIS:
456
- *
457
- * float x, y, k0ef();
458
- *
459
- * y = k0ef( x );
460
- *
461
- *
462
- *
463
- * DESCRIPTION:
464
- *
465
- * Returns exponentially scaled modified Bessel function
466
- * of the third kind of order zero of the argument.
467
- *
468
- *
469
- *
470
- * ACCURACY:
471
- *
472
- * Relative error:
473
- * arithmetic domain # trials peak rms
474
- * IEEE 0, 30 30000 8.1e-7 7.8e-8
475
- * See k0().
476
- *
477
- */
478
-
479
- const float A[] = {1.90451637722020886025E-9f, 2.53479107902614945675E-7f,
480
- 2.28621210311945178607E-5f, 1.26461541144692592338E-3f,
481
- 3.59799365153615016266E-2f, 3.44289899924628486886E-1f,
482
- -5.35327393233902768720E-1f};
483
-
484
- const float B[] = {-1.69753450938905987466E-9f, 8.57403401741422608519E-9f,
485
- -4.66048989768794782956E-8f, 2.76681363944501510342E-7f,
486
- -1.83175552271911948767E-6f, 1.39498137188764993662E-5f,
487
- -1.28495495816278026384E-4f, 1.56988388573005337491E-3f,
488
- -3.14481013119645005427E-2f, 2.44030308206595545468E0f};
489
- const T MAXNUM = pset1<T>(NumTraits<float>::infinity());
490
- const T two = pset1<T>(2.0);
491
- T x_le_two = internal::pchebevl<T, 7>::run(
492
- pmadd(x, x, pset1<T>(-2.0)), A);
493
- x_le_two = pmadd(
494
- generic_i0<T, float>::run(x), pnegate(
495
- plog(pmul(pset1<T>(0.5), x))), x_le_two);
496
- x_le_two = pmul(pexp(x), x_le_two);
497
- T x_gt_two = pmul(
498
- internal::pchebevl<T, 10>::run(
499
- psub(pdiv(pset1<T>(8.0), x), two), B),
500
- prsqrt(x));
501
- return pselect(
502
- pcmp_le(x, pset1<T>(0.0)),
503
- MAXNUM,
504
- pselect(pcmp_le(x, two), x_le_two, x_gt_two));
505
- }
506
- };
507
-
508
- template <typename T>
509
- struct generic_k0e<T, double> {
510
- EIGEN_DEVICE_FUNC
511
- static EIGEN_STRONG_INLINE T run(const T& x) {
512
- /* k0e.c
513
- * Modified Bessel function, third kind, order zero,
514
- * exponentially scaled
515
- *
516
- *
517
- *
518
- * SYNOPSIS:
519
- *
520
- * double x, y, k0e();
521
- *
522
- * y = k0e( x );
523
- *
524
- *
525
- *
526
- * DESCRIPTION:
527
- *
528
- * Returns exponentially scaled modified Bessel function
529
- * of the third kind of order zero of the argument.
530
- *
531
- *
532
- *
533
- * ACCURACY:
534
- *
535
- * Relative error:
536
- * arithmetic domain # trials peak rms
537
- * IEEE 0, 30 30000 1.4e-15 1.4e-16
538
- * See k0().
539
- *
540
- */
541
-
542
- const double A[] = {
543
- 1.37446543561352307156E-16,
544
- 4.25981614279661018399E-14,
545
- 1.03496952576338420167E-11,
546
- 1.90451637722020886025E-9,
547
- 2.53479107902614945675E-7,
548
- 2.28621210311945178607E-5,
549
- 1.26461541144692592338E-3,
550
- 3.59799365153615016266E-2,
551
- 3.44289899924628486886E-1,
552
- -5.35327393233902768720E-1};
553
- const double B[] = {
554
- 5.30043377268626276149E-18, -1.64758043015242134646E-17,
555
- 5.21039150503902756861E-17, -1.67823109680541210385E-16,
556
- 5.51205597852431940784E-16, -1.84859337734377901440E-15,
557
- 6.34007647740507060557E-15, -2.22751332699166985548E-14,
558
- 8.03289077536357521100E-14, -2.98009692317273043925E-13,
559
- 1.14034058820847496303E-12, -4.51459788337394416547E-12,
560
- 1.85594911495471785253E-11, -7.95748924447710747776E-11,
561
- 3.57739728140030116597E-10, -1.69753450938905987466E-9,
562
- 8.57403401741422608519E-9, -4.66048989768794782956E-8,
563
- 2.76681363944501510342E-7, -1.83175552271911948767E-6,
564
- 1.39498137188764993662E-5, -1.28495495816278026384E-4,
565
- 1.56988388573005337491E-3, -3.14481013119645005427E-2,
566
- 2.44030308206595545468E0
567
- };
568
- const T MAXNUM = pset1<T>(NumTraits<double>::infinity());
569
- const T two = pset1<T>(2.0);
570
- T x_le_two = internal::pchebevl<T, 10>::run(
571
- pmadd(x, x, pset1<T>(-2.0)), A);
572
- x_le_two = pmadd(
573
- generic_i0<T, double>::run(x), pmul(
574
- pset1<T>(-1.0), plog(pmul(pset1<T>(0.5), x))), x_le_two);
575
- x_le_two = pmul(pexp(x), x_le_two);
576
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
577
- T x_gt_two = pmul(
578
- internal::pchebevl<T, 25>::run(
579
- psub(pdiv(pset1<T>(8.0), x), two), B),
580
- prsqrt(x));
581
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
582
- }
583
- };
584
-
585
- template <typename T>
586
- struct bessel_k0e_impl {
587
- EIGEN_DEVICE_FUNC
588
- static EIGEN_STRONG_INLINE T run(const T x) {
589
- return generic_k0e<T>::run(x);
590
- }
591
- };
592
-
593
- template <typename T>
594
- struct bessel_k0_retval {
595
- typedef T type;
596
- };
597
-
598
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
599
- struct generic_k0 {
600
- EIGEN_DEVICE_FUNC
601
- static EIGEN_STRONG_INLINE T run(const T&) {
602
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
603
- THIS_TYPE_IS_NOT_SUPPORTED);
604
- return ScalarType(0);
605
- }
606
- };
607
-
608
- template <typename T>
609
- struct generic_k0<T, float> {
610
- EIGEN_DEVICE_FUNC
611
- static EIGEN_STRONG_INLINE T run(const T& x) {
612
- /* k0f.c
613
- * Modified Bessel function, third kind, order zero
614
- *
615
- *
616
- *
617
- * SYNOPSIS:
618
- *
619
- * float x, y, k0f();
620
- *
621
- * y = k0f( x );
622
- *
623
- *
624
- *
625
- * DESCRIPTION:
626
- *
627
- * Returns modified Bessel function of the third kind
628
- * of order zero of the argument.
629
- *
630
- * The range is partitioned into the two intervals [0,8] and
631
- * (8, infinity). Chebyshev polynomial expansions are employed
632
- * in each interval.
633
- *
634
- *
635
- *
636
- * ACCURACY:
637
- *
638
- * Tested at 2000 random points between 0 and 8. Peak absolute
639
- * error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15.
640
- * Relative error:
641
- * arithmetic domain # trials peak rms
642
- * IEEE 0, 30 30000 7.8e-7 8.5e-8
643
- *
644
- * ERROR MESSAGES:
645
- *
646
- * message condition value returned
647
- * K0 domain x <= 0 MAXNUM
648
- *
649
- */
650
-
651
- const float A[] = {1.90451637722020886025E-9f, 2.53479107902614945675E-7f,
652
- 2.28621210311945178607E-5f, 1.26461541144692592338E-3f,
653
- 3.59799365153615016266E-2f, 3.44289899924628486886E-1f,
654
- -5.35327393233902768720E-1f};
655
-
656
- const float B[] = {-1.69753450938905987466E-9f, 8.57403401741422608519E-9f,
657
- -4.66048989768794782956E-8f, 2.76681363944501510342E-7f,
658
- -1.83175552271911948767E-6f, 1.39498137188764993662E-5f,
659
- -1.28495495816278026384E-4f, 1.56988388573005337491E-3f,
660
- -3.14481013119645005427E-2f, 2.44030308206595545468E0f};
661
- const T MAXNUM = pset1<T>(NumTraits<float>::infinity());
662
- const T two = pset1<T>(2.0);
663
- T x_le_two = internal::pchebevl<T, 7>::run(
664
- pmadd(x, x, pset1<T>(-2.0)), A);
665
- x_le_two = pmadd(
666
- generic_i0<T, float>::run(x), pnegate(
667
- plog(pmul(pset1<T>(0.5), x))), x_le_two);
668
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
669
- T x_gt_two = pmul(
670
- pmul(
671
- pexp(pnegate(x)),
672
- internal::pchebevl<T, 10>::run(
673
- psub(pdiv(pset1<T>(8.0), x), two), B)),
674
- prsqrt(x));
675
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
676
- }
677
- };
678
-
679
- template <typename T>
680
- struct generic_k0<T, double> {
681
- EIGEN_DEVICE_FUNC
682
- static EIGEN_STRONG_INLINE T run(const T& x) {
683
- /*
684
- *
685
- * Modified Bessel function, third kind, order zero,
686
- * exponentially scaled
687
- *
688
- *
689
- *
690
- * SYNOPSIS:
691
- *
692
- * double x, y, k0();
693
- *
694
- * y = k0( x );
695
- *
696
- *
697
- *
698
- * DESCRIPTION:
699
- *
700
- * Returns exponentially scaled modified Bessel function
701
- * of the third kind of order zero of the argument.
702
- *
703
- *
704
- *
705
- * ACCURACY:
706
- *
707
- * Relative error:
708
- * arithmetic domain # trials peak rms
709
- * IEEE 0, 30 30000 1.4e-15 1.4e-16
710
- * See k0().
711
- *
712
- */
713
- const double A[] = {
714
- 1.37446543561352307156E-16,
715
- 4.25981614279661018399E-14,
716
- 1.03496952576338420167E-11,
717
- 1.90451637722020886025E-9,
718
- 2.53479107902614945675E-7,
719
- 2.28621210311945178607E-5,
720
- 1.26461541144692592338E-3,
721
- 3.59799365153615016266E-2,
722
- 3.44289899924628486886E-1,
723
- -5.35327393233902768720E-1};
724
- const double B[] = {
725
- 5.30043377268626276149E-18, -1.64758043015242134646E-17,
726
- 5.21039150503902756861E-17, -1.67823109680541210385E-16,
727
- 5.51205597852431940784E-16, -1.84859337734377901440E-15,
728
- 6.34007647740507060557E-15, -2.22751332699166985548E-14,
729
- 8.03289077536357521100E-14, -2.98009692317273043925E-13,
730
- 1.14034058820847496303E-12, -4.51459788337394416547E-12,
731
- 1.85594911495471785253E-11, -7.95748924447710747776E-11,
732
- 3.57739728140030116597E-10, -1.69753450938905987466E-9,
733
- 8.57403401741422608519E-9, -4.66048989768794782956E-8,
734
- 2.76681363944501510342E-7, -1.83175552271911948767E-6,
735
- 1.39498137188764993662E-5, -1.28495495816278026384E-4,
736
- 1.56988388573005337491E-3, -3.14481013119645005427E-2,
737
- 2.44030308206595545468E0
738
- };
739
- const T MAXNUM = pset1<T>(NumTraits<double>::infinity());
740
- const T two = pset1<T>(2.0);
741
- T x_le_two = internal::pchebevl<T, 10>::run(
742
- pmadd(x, x, pset1<T>(-2.0)), A);
743
- x_le_two = pmadd(
744
- generic_i0<T, double>::run(x), pnegate(
745
- plog(pmul(pset1<T>(0.5), x))), x_le_two);
746
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
747
- T x_gt_two = pmul(
748
- pmul(
749
- pexp(-x),
750
- internal::pchebevl<T, 25>::run(
751
- psub(pdiv(pset1<T>(8.0), x), two), B)),
752
- prsqrt(x));
753
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
754
- }
755
- };
756
-
757
- template <typename T>
758
- struct bessel_k0_impl {
759
- EIGEN_DEVICE_FUNC
760
- static EIGEN_STRONG_INLINE T run(const T x) {
761
- return generic_k0<T>::run(x);
762
- }
763
- };
764
-
765
- template <typename T>
766
- struct bessel_k1e_retval {
767
- typedef T type;
768
- };
769
-
770
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
771
- struct generic_k1e {
772
- EIGEN_DEVICE_FUNC
773
- static EIGEN_STRONG_INLINE T run(const T&) {
774
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
775
- THIS_TYPE_IS_NOT_SUPPORTED);
776
- return ScalarType(0);
777
- }
778
- };
779
-
780
- template <typename T>
781
- struct generic_k1e<T, float> {
782
- EIGEN_DEVICE_FUNC
783
- static EIGEN_STRONG_INLINE T run(const T& x) {
784
- /* k1ef.c
785
- *
786
- * Modified Bessel function, third kind, order one,
787
- * exponentially scaled
788
- *
789
- *
790
- *
791
- * SYNOPSIS:
792
- *
793
- * float x, y, k1ef();
794
- *
795
- * y = k1ef( x );
796
- *
797
- *
798
- *
799
- * DESCRIPTION:
800
- *
801
- * Returns exponentially scaled modified Bessel function
802
- * of the third kind of order one of the argument:
803
- *
804
- * k1e(x) = exp(x) * k1(x).
805
- *
806
- *
807
- *
808
- * ACCURACY:
809
- *
810
- * Relative error:
811
- * arithmetic domain # trials peak rms
812
- * IEEE 0, 30 30000 4.9e-7 6.7e-8
813
- * See k1().
814
- *
815
- */
816
-
817
- const float A[] = {-2.21338763073472585583E-8f, -2.43340614156596823496E-6f,
818
- -1.73028895751305206302E-4f, -6.97572385963986435018E-3f,
819
- -1.22611180822657148235E-1f, -3.53155960776544875667E-1f,
820
- 1.52530022733894777053E0f};
821
- const float B[] = {2.01504975519703286596E-9f, -1.03457624656780970260E-8f,
822
- 5.74108412545004946722E-8f, -3.50196060308781257119E-7f,
823
- 2.40648494783721712015E-6f, -1.93619797416608296024E-5f,
824
- 1.95215518471351631108E-4f, -2.85781685962277938680E-3f,
825
- 1.03923736576817238437E-1f, 2.72062619048444266945E0f};
826
- const T MAXNUM = pset1<T>(NumTraits<float>::infinity());
827
- const T two = pset1<T>(2.0);
828
- T x_le_two = pdiv(internal::pchebevl<T, 7>::run(
829
- pmadd(x, x, pset1<T>(-2.0)), A), x);
830
- x_le_two = pmadd(
831
- generic_i1<T, float>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two);
832
- x_le_two = pmul(x_le_two, pexp(x));
833
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
834
- T x_gt_two = pmul(
835
- internal::pchebevl<T, 10>::run(
836
- psub(pdiv(pset1<T>(8.0), x), two), B),
837
- prsqrt(x));
838
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
839
- }
840
- };
841
-
842
- template <typename T>
843
- struct generic_k1e<T, double> {
844
- EIGEN_DEVICE_FUNC
845
- static EIGEN_STRONG_INLINE T run(const T& x) {
846
- /* k1e.c
847
- *
848
- * Modified Bessel function, third kind, order one,
849
- * exponentially scaled
850
- *
851
- *
852
- *
853
- * SYNOPSIS:
854
- *
855
- * double x, y, k1e();
856
- *
857
- * y = k1e( x );
858
- *
859
- *
860
- *
861
- * DESCRIPTION:
862
- *
863
- * Returns exponentially scaled modified Bessel function
864
- * of the third kind of order one of the argument:
865
- *
866
- * k1e(x) = exp(x) * k1(x).
867
- *
868
- *
869
- *
870
- * ACCURACY:
871
- *
872
- * Relative error:
873
- * arithmetic domain # trials peak rms
874
- * IEEE 0, 30 30000 7.8e-16 1.2e-16
875
- * See k1().
876
- *
877
- */
878
- const double A[] = {-7.02386347938628759343E-18, -2.42744985051936593393E-15,
879
- -6.66690169419932900609E-13, -1.41148839263352776110E-10,
880
- -2.21338763073472585583E-8, -2.43340614156596823496E-6,
881
- -1.73028895751305206302E-4, -6.97572385963986435018E-3,
882
- -1.22611180822657148235E-1, -3.53155960776544875667E-1,
883
- 1.52530022733894777053E0};
884
- const double B[] = {-5.75674448366501715755E-18, 1.79405087314755922667E-17,
885
- -5.68946255844285935196E-17, 1.83809354436663880070E-16,
886
- -6.05704724837331885336E-16, 2.03870316562433424052E-15,
887
- -7.01983709041831346144E-15, 2.47715442448130437068E-14,
888
- -8.97670518232499435011E-14, 3.34841966607842919884E-13,
889
- -1.28917396095102890680E-12, 5.13963967348173025100E-12,
890
- -2.12996783842756842877E-11, 9.21831518760500529508E-11,
891
- -4.19035475934189648750E-10, 2.01504975519703286596E-9,
892
- -1.03457624656780970260E-8, 5.74108412545004946722E-8,
893
- -3.50196060308781257119E-7, 2.40648494783721712015E-6,
894
- -1.93619797416608296024E-5, 1.95215518471351631108E-4,
895
- -2.85781685962277938680E-3, 1.03923736576817238437E-1,
896
- 2.72062619048444266945E0};
897
- const T MAXNUM = pset1<T>(NumTraits<double>::infinity());
898
- const T two = pset1<T>(2.0);
899
- T x_le_two = pdiv(internal::pchebevl<T, 11>::run(
900
- pmadd(x, x, pset1<T>(-2.0)), A), x);
901
- x_le_two = pmadd(
902
- generic_i1<T, double>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two);
903
- x_le_two = pmul(x_le_two, pexp(x));
904
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
905
- T x_gt_two = pmul(
906
- internal::pchebevl<T, 25>::run(
907
- psub(pdiv(pset1<T>(8.0), x), two), B),
908
- prsqrt(x));
909
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
910
- }
911
- };
912
-
913
- template <typename T>
914
- struct bessel_k1e_impl {
915
- EIGEN_DEVICE_FUNC
916
- static EIGEN_STRONG_INLINE T run(const T x) {
917
- return generic_k1e<T>::run(x);
918
- }
919
- };
920
-
921
- template <typename T>
922
- struct bessel_k1_retval {
923
- typedef T type;
924
- };
925
-
926
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
927
- struct generic_k1 {
928
- EIGEN_DEVICE_FUNC
929
- static EIGEN_STRONG_INLINE T run(const T&) {
930
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
931
- THIS_TYPE_IS_NOT_SUPPORTED);
932
- return ScalarType(0);
933
- }
934
- };
935
-
936
- template <typename T>
937
- struct generic_k1<T, float> {
938
- EIGEN_DEVICE_FUNC
939
- static EIGEN_STRONG_INLINE T run(const T& x) {
940
- /* k1f.c
941
- * Modified Bessel function, third kind, order one
942
- *
943
- *
944
- *
945
- * SYNOPSIS:
946
- *
947
- * float x, y, k1f();
948
- *
949
- * y = k1f( x );
950
- *
951
- *
952
- *
953
- * DESCRIPTION:
954
- *
955
- * Computes the modified Bessel function of the third kind
956
- * of order one of the argument.
957
- *
958
- * The range is partitioned into the two intervals [0,2] and
959
- * (2, infinity). Chebyshev polynomial expansions are employed
960
- * in each interval.
961
- *
962
- *
963
- *
964
- * ACCURACY:
965
- *
966
- * Relative error:
967
- * arithmetic domain # trials peak rms
968
- * IEEE 0, 30 30000 4.6e-7 7.6e-8
969
- *
970
- * ERROR MESSAGES:
971
- *
972
- * message condition value returned
973
- * k1 domain x <= 0 MAXNUM
974
- *
975
- */
976
-
977
- const float A[] = {-2.21338763073472585583E-8f, -2.43340614156596823496E-6f,
978
- -1.73028895751305206302E-4f, -6.97572385963986435018E-3f,
979
- -1.22611180822657148235E-1f, -3.53155960776544875667E-1f,
980
- 1.52530022733894777053E0f};
981
- const float B[] = {2.01504975519703286596E-9f, -1.03457624656780970260E-8f,
982
- 5.74108412545004946722E-8f, -3.50196060308781257119E-7f,
983
- 2.40648494783721712015E-6f, -1.93619797416608296024E-5f,
984
- 1.95215518471351631108E-4f, -2.85781685962277938680E-3f,
985
- 1.03923736576817238437E-1f, 2.72062619048444266945E0f};
986
- const T MAXNUM = pset1<T>(NumTraits<float>::infinity());
987
- const T two = pset1<T>(2.0);
988
- T x_le_two = pdiv(internal::pchebevl<T, 7>::run(
989
- pmadd(x, x, pset1<T>(-2.0)), A), x);
990
- x_le_two = pmadd(
991
- generic_i1<T, float>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two);
992
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
993
- T x_gt_two = pmul(
994
- pexp(pnegate(x)),
995
- pmul(
996
- internal::pchebevl<T, 10>::run(
997
- psub(pdiv(pset1<T>(8.0), x), two), B),
998
- prsqrt(x)));
999
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
1000
- }
1001
- };
1002
-
1003
- template <typename T>
1004
- struct generic_k1<T, double> {
1005
- EIGEN_DEVICE_FUNC
1006
- static EIGEN_STRONG_INLINE T run(const T& x) {
1007
- /* k1.c
1008
- * Modified Bessel function, third kind, order one
1009
- *
1010
- *
1011
- *
1012
- * SYNOPSIS:
1013
- *
1014
- * float x, y, k1f();
1015
- *
1016
- * y = k1f( x );
1017
- *
1018
- *
1019
- *
1020
- * DESCRIPTION:
1021
- *
1022
- * Computes the modified Bessel function of the third kind
1023
- * of order one of the argument.
1024
- *
1025
- * The range is partitioned into the two intervals [0,2] and
1026
- * (2, infinity). Chebyshev polynomial expansions are employed
1027
- * in each interval.
1028
- *
1029
- *
1030
- *
1031
- * ACCURACY:
1032
- *
1033
- * Relative error:
1034
- * arithmetic domain # trials peak rms
1035
- * IEEE 0, 30 30000 4.6e-7 7.6e-8
1036
- *
1037
- * ERROR MESSAGES:
1038
- *
1039
- * message condition value returned
1040
- * k1 domain x <= 0 MAXNUM
1041
- *
1042
- */
1043
- const double A[] = {-7.02386347938628759343E-18, -2.42744985051936593393E-15,
1044
- -6.66690169419932900609E-13, -1.41148839263352776110E-10,
1045
- -2.21338763073472585583E-8, -2.43340614156596823496E-6,
1046
- -1.73028895751305206302E-4, -6.97572385963986435018E-3,
1047
- -1.22611180822657148235E-1, -3.53155960776544875667E-1,
1048
- 1.52530022733894777053E0};
1049
- const double B[] = {-5.75674448366501715755E-18, 1.79405087314755922667E-17,
1050
- -5.68946255844285935196E-17, 1.83809354436663880070E-16,
1051
- -6.05704724837331885336E-16, 2.03870316562433424052E-15,
1052
- -7.01983709041831346144E-15, 2.47715442448130437068E-14,
1053
- -8.97670518232499435011E-14, 3.34841966607842919884E-13,
1054
- -1.28917396095102890680E-12, 5.13963967348173025100E-12,
1055
- -2.12996783842756842877E-11, 9.21831518760500529508E-11,
1056
- -4.19035475934189648750E-10, 2.01504975519703286596E-9,
1057
- -1.03457624656780970260E-8, 5.74108412545004946722E-8,
1058
- -3.50196060308781257119E-7, 2.40648494783721712015E-6,
1059
- -1.93619797416608296024E-5, 1.95215518471351631108E-4,
1060
- -2.85781685962277938680E-3, 1.03923736576817238437E-1,
1061
- 2.72062619048444266945E0};
1062
- const T MAXNUM = pset1<T>(NumTraits<double>::infinity());
1063
- const T two = pset1<T>(2.0);
1064
- T x_le_two = pdiv(internal::pchebevl<T, 11>::run(
1065
- pmadd(x, x, pset1<T>(-2.0)), A), x);
1066
- x_le_two = pmadd(
1067
- generic_i1<T, double>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two);
1068
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
1069
- T x_gt_two = pmul(
1070
- pexp(-x),
1071
- pmul(
1072
- internal::pchebevl<T, 25>::run(
1073
- psub(pdiv(pset1<T>(8.0), x), two), B),
1074
- prsqrt(x)));
1075
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
1076
- }
1077
- };
1078
-
1079
- template <typename T>
1080
- struct bessel_k1_impl {
1081
- EIGEN_DEVICE_FUNC
1082
- static EIGEN_STRONG_INLINE T run(const T x) {
1083
- return generic_k1<T>::run(x);
1084
- }
1085
- };
1086
-
1087
- template <typename T>
1088
- struct bessel_j0_retval {
1089
- typedef T type;
1090
- };
1091
-
1092
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
1093
- struct generic_j0 {
1094
- EIGEN_DEVICE_FUNC
1095
- static EIGEN_STRONG_INLINE T run(const T&) {
1096
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
1097
- THIS_TYPE_IS_NOT_SUPPORTED);
1098
- return ScalarType(0);
1099
- }
1100
- };
1101
-
1102
- template <typename T>
1103
- struct generic_j0<T, float> {
1104
- EIGEN_DEVICE_FUNC
1105
- static EIGEN_STRONG_INLINE T run(const T& x) {
1106
- /* j0f.c
1107
- * Bessel function of order zero
1108
- *
1109
- *
1110
- *
1111
- * SYNOPSIS:
1112
- *
1113
- * float x, y, j0f();
1114
- *
1115
- * y = j0f( x );
1116
- *
1117
- *
1118
- *
1119
- * DESCRIPTION:
1120
- *
1121
- * Returns Bessel function of order zero of the argument.
1122
- *
1123
- * The domain is divided into the intervals [0, 2] and
1124
- * (2, infinity). In the first interval the following polynomial
1125
- * approximation is used:
1126
- *
1127
- *
1128
- * 2 2 2
1129
- * (w - r ) (w - r ) (w - r ) P(w)
1130
- * 1 2 3
1131
- *
1132
- * 2
1133
- * where w = x and the three r's are zeros of the function.
1134
- *
1135
- * In the second interval, the modulus and phase are approximated
1136
- * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
1137
- * and Phase(x) = x + 1/x R(1/x^2) - pi/4. The function is
1138
- *
1139
- * j0(x) = Modulus(x) cos( Phase(x) ).
1140
- *
1141
- *
1142
- *
1143
- * ACCURACY:
1144
- *
1145
- * Absolute error:
1146
- * arithmetic domain # trials peak rms
1147
- * IEEE 0, 2 100000 1.3e-7 3.6e-8
1148
- * IEEE 2, 32 100000 1.9e-7 5.4e-8
1149
- *
1150
- */
1151
-
1152
- const float JP[] = {-6.068350350393235E-008f, 6.388945720783375E-006f,
1153
- -3.969646342510940E-004f, 1.332913422519003E-002f,
1154
- -1.729150680240724E-001f};
1155
- const float MO[] = {-6.838999669318810E-002f, 1.864949361379502E-001f,
1156
- -2.145007480346739E-001f, 1.197549369473540E-001f,
1157
- -3.560281861530129E-003f, -4.969382655296620E-002f,
1158
- -3.355424622293709E-006f, 7.978845717621440E-001f};
1159
- const float PH[] = {3.242077816988247E+001f, -3.630592630518434E+001f,
1160
- 1.756221482109099E+001f, -4.974978466280903E+000f,
1161
- 1.001973420681837E+000f, -1.939906941791308E-001f,
1162
- 6.490598792654666E-002f, -1.249992184872738E-001f};
1163
- const T DR1 = pset1<T>(5.78318596294678452118f);
1164
- const T NEG_PIO4F = pset1<T>(-0.7853981633974483096f); /* -pi / 4 */
1165
- T y = pabs(x);
1166
- T z = pmul(y, y);
1167
- T y_le_two = pselect(
1168
- pcmp_lt(y, pset1<T>(1.0e-3f)),
1169
- pmadd(z, pset1<T>(-0.25f), pset1<T>(1.0f)),
1170
- pmul(psub(z, DR1), internal::ppolevl<T, 4>::run(z, JP)));
1171
- T q = pdiv(pset1<T>(1.0f), y);
1172
- T w = prsqrt(y);
1173
- T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO));
1174
- w = pmul(q, q);
1175
- T yn = pmadd(q, internal::ppolevl<T, 7>::run(w, PH), NEG_PIO4F);
1176
- T y_gt_two = pmul(p, pcos(padd(yn, y)));
1177
- return pselect(pcmp_le(y, pset1<T>(2.0)), y_le_two, y_gt_two);
1178
- }
1179
- };
1180
-
1181
- template <typename T>
1182
- struct generic_j0<T, double> {
1183
- EIGEN_DEVICE_FUNC
1184
- static EIGEN_STRONG_INLINE T run(const T& x) {
1185
- /* j0.c
1186
- * Bessel function of order zero
1187
- *
1188
- *
1189
- *
1190
- * SYNOPSIS:
1191
- *
1192
- * double x, y, j0();
1193
- *
1194
- * y = j0( x );
1195
- *
1196
- *
1197
- *
1198
- * DESCRIPTION:
1199
- *
1200
- * Returns Bessel function of order zero of the argument.
1201
- *
1202
- * The domain is divided into the intervals [0, 5] and
1203
- * (5, infinity). In the first interval the following rational
1204
- * approximation is used:
1205
- *
1206
- *
1207
- * 2 2
1208
- * (w - r ) (w - r ) P (w) / Q (w)
1209
- * 1 2 3 8
1210
- *
1211
- * 2
1212
- * where w = x and the two r's are zeros of the function.
1213
- *
1214
- * In the second interval, the Hankel asymptotic expansion
1215
- * is employed with two rational functions of degree 6/6
1216
- * and 7/7.
1217
- *
1218
- *
1219
- *
1220
- * ACCURACY:
1221
- *
1222
- * Absolute error:
1223
- * arithmetic domain # trials peak rms
1224
- * DEC 0, 30 10000 4.4e-17 6.3e-18
1225
- * IEEE 0, 30 60000 4.2e-16 1.1e-16
1226
- *
1227
- */
1228
- const double PP[] = {7.96936729297347051624E-4, 8.28352392107440799803E-2,
1229
- 1.23953371646414299388E0, 5.44725003058768775090E0,
1230
- 8.74716500199817011941E0, 5.30324038235394892183E0,
1231
- 9.99999999999999997821E-1};
1232
- const double PQ[] = {9.24408810558863637013E-4, 8.56288474354474431428E-2,
1233
- 1.25352743901058953537E0, 5.47097740330417105182E0,
1234
- 8.76190883237069594232E0, 5.30605288235394617618E0,
1235
- 1.00000000000000000218E0};
1236
- const double QP[] = {-1.13663838898469149931E-2, -1.28252718670509318512E0,
1237
- -1.95539544257735972385E1, -9.32060152123768231369E1,
1238
- -1.77681167980488050595E2, -1.47077505154951170175E2,
1239
- -5.14105326766599330220E1, -6.05014350600728481186E0};
1240
- const double QQ[] = {1.00000000000000000000E0, 6.43178256118178023184E1,
1241
- 8.56430025976980587198E2, 3.88240183605401609683E3,
1242
- 7.24046774195652478189E3, 5.93072701187316984827E3,
1243
- 2.06209331660327847417E3, 2.42005740240291393179E2};
1244
- const double RP[] = {-4.79443220978201773821E9, 1.95617491946556577543E12,
1245
- -2.49248344360967716204E14, 9.70862251047306323952E15};
1246
- const double RQ[] = {1.00000000000000000000E0, 4.99563147152651017219E2,
1247
- 1.73785401676374683123E5, 4.84409658339962045305E7,
1248
- 1.11855537045356834862E10, 2.11277520115489217587E12,
1249
- 3.10518229857422583814E14, 3.18121955943204943306E16,
1250
- 1.71086294081043136091E18};
1251
- const T DR1 = pset1<T>(5.78318596294678452118E0);
1252
- const T DR2 = pset1<T>(3.04712623436620863991E1);
1253
- const T SQ2OPI = pset1<T>(7.9788456080286535587989E-1); /* sqrt(2 / pi) */
1254
- const T NEG_PIO4 = pset1<T>(-0.7853981633974483096); /* pi / 4 */
1255
-
1256
- T y = pabs(x);
1257
- T z = pmul(y, y);
1258
- T y_le_five = pselect(
1259
- pcmp_lt(y, pset1<T>(1.0e-5)),
1260
- pmadd(z, pset1<T>(-0.25), pset1<T>(1.0)),
1261
- pmul(pmul(psub(z, DR1), psub(z, DR2)),
1262
- pdiv(internal::ppolevl<T, 3>::run(z, RP),
1263
- internal::ppolevl<T, 8>::run(z, RQ))));
1264
- T s = pdiv(pset1<T>(25.0), z);
1265
- T p = pdiv(
1266
- internal::ppolevl<T, 6>::run(s, PP),
1267
- internal::ppolevl<T, 6>::run(s, PQ));
1268
- T q = pdiv(
1269
- internal::ppolevl<T, 7>::run(s, QP),
1270
- internal::ppolevl<T, 7>::run(s, QQ));
1271
- T yn = padd(y, NEG_PIO4);
1272
- T w = pdiv(pset1<T>(-5.0), y);
1273
- p = pmadd(p, pcos(yn), pmul(w, pmul(q, psin(yn))));
1274
- T y_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(y)));
1275
- return pselect(pcmp_le(y, pset1<T>(5.0)), y_le_five, y_gt_five);
1276
- }
1277
- };
1278
-
1279
- template <typename T>
1280
- struct bessel_j0_impl {
1281
- EIGEN_DEVICE_FUNC
1282
- static EIGEN_STRONG_INLINE T run(const T x) {
1283
- return generic_j0<T>::run(x);
1284
- }
1285
- };
1286
-
1287
- template <typename T>
1288
- struct bessel_y0_retval {
1289
- typedef T type;
1290
- };
1291
-
1292
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
1293
- struct generic_y0 {
1294
- EIGEN_DEVICE_FUNC
1295
- static EIGEN_STRONG_INLINE T run(const T&) {
1296
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
1297
- THIS_TYPE_IS_NOT_SUPPORTED);
1298
- return ScalarType(0);
1299
- }
1300
- };
1301
-
1302
- template <typename T>
1303
- struct generic_y0<T, float> {
1304
- EIGEN_DEVICE_FUNC
1305
- static EIGEN_STRONG_INLINE T run(const T& x) {
1306
- /* j0f.c
1307
- * Bessel function of the second kind, order zero
1308
- *
1309
- *
1310
- *
1311
- * SYNOPSIS:
1312
- *
1313
- * float x, y, y0f();
1314
- *
1315
- * y = y0f( x );
1316
- *
1317
- *
1318
- *
1319
- * DESCRIPTION:
1320
- *
1321
- * Returns Bessel function of the second kind, of order
1322
- * zero, of the argument.
1323
- *
1324
- * The domain is divided into the intervals [0, 2] and
1325
- * (2, infinity). In the first interval a rational approximation
1326
- * R(x) is employed to compute
1327
- *
1328
- * 2 2 2
1329
- * y0(x) = (w - r ) (w - r ) (w - r ) R(x) + 2/pi ln(x) j0(x).
1330
- * 1 2 3
1331
- *
1332
- * Thus a call to j0() is required. The three zeros are removed
1333
- * from R(x) to improve its numerical stability.
1334
- *
1335
- * In the second interval, the modulus and phase are approximated
1336
- * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
1337
- * and Phase(x) = x + 1/x S(1/x^2) - pi/4. Then the function is
1338
- *
1339
- * y0(x) = Modulus(x) sin( Phase(x) ).
1340
- *
1341
- *
1342
- *
1343
- *
1344
- * ACCURACY:
1345
- *
1346
- * Absolute error, when y0(x) < 1; else relative error:
1347
- *
1348
- * arithmetic domain # trials peak rms
1349
- * IEEE 0, 2 100000 2.4e-7 3.4e-8
1350
- * IEEE 2, 32 100000 1.8e-7 5.3e-8
1351
- *
1352
- */
1353
-
1354
- const float YP[] = {9.454583683980369E-008f, -9.413212653797057E-006f,
1355
- 5.344486707214273E-004f, -1.584289289821316E-002f,
1356
- 1.707584643733568E-001f};
1357
- const float MO[] = {-6.838999669318810E-002f, 1.864949361379502E-001f,
1358
- -2.145007480346739E-001f, 1.197549369473540E-001f,
1359
- -3.560281861530129E-003f, -4.969382655296620E-002f,
1360
- -3.355424622293709E-006f, 7.978845717621440E-001f};
1361
- const float PH[] = {3.242077816988247E+001f, -3.630592630518434E+001f,
1362
- 1.756221482109099E+001f, -4.974978466280903E+000f,
1363
- 1.001973420681837E+000f, -1.939906941791308E-001f,
1364
- 6.490598792654666E-002f, -1.249992184872738E-001f};
1365
- const T YZ1 = pset1<T>(0.43221455686510834878f);
1366
- const T TWOOPI = pset1<T>(0.636619772367581343075535f); /* 2 / pi */
1367
- const T NEG_PIO4F = pset1<T>(-0.7853981633974483096f); /* -pi / 4 */
1368
- const T NEG_MAXNUM = pset1<T>(-NumTraits<float>::infinity());
1369
- T z = pmul(x, x);
1370
- T x_le_two = pmul(TWOOPI, pmul(plog(x), generic_j0<T, float>::run(x)));
1371
- x_le_two = pmadd(
1372
- psub(z, YZ1), internal::ppolevl<T, 4>::run(z, YP), x_le_two);
1373
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), NEG_MAXNUM, x_le_two);
1374
- T q = pdiv(pset1<T>(1.0), x);
1375
- T w = prsqrt(x);
1376
- T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO));
1377
- T u = pmul(q, q);
1378
- T xn = pmadd(q, internal::ppolevl<T, 7>::run(u, PH), NEG_PIO4F);
1379
- T x_gt_two = pmul(p, psin(padd(xn, x)));
1380
- return pselect(pcmp_le(x, pset1<T>(2.0)), x_le_two, x_gt_two);
1381
- }
1382
- };
1383
-
1384
- template <typename T>
1385
- struct generic_y0<T, double> {
1386
- EIGEN_DEVICE_FUNC
1387
- static EIGEN_STRONG_INLINE T run(const T& x) {
1388
- /* j0.c
1389
- * Bessel function of the second kind, order zero
1390
- *
1391
- *
1392
- *
1393
- * SYNOPSIS:
1394
- *
1395
- * double x, y, y0();
1396
- *
1397
- * y = y0( x );
1398
- *
1399
- *
1400
- *
1401
- * DESCRIPTION:
1402
- *
1403
- * Returns Bessel function of the second kind, of order
1404
- * zero, of the argument.
1405
- *
1406
- * The domain is divided into the intervals [0, 5] and
1407
- * (5, infinity). In the first interval a rational approximation
1408
- * R(x) is employed to compute
1409
- * y0(x) = R(x) + 2 * log(x) * j0(x) / PI.
1410
- * Thus a call to j0() is required.
1411
- *
1412
- * In the second interval, the Hankel asymptotic expansion
1413
- * is employed with two rational functions of degree 6/6
1414
- * and 7/7.
1415
- *
1416
- *
1417
- *
1418
- * ACCURACY:
1419
- *
1420
- * Absolute error, when y0(x) < 1; else relative error:
1421
- *
1422
- * arithmetic domain # trials peak rms
1423
- * DEC 0, 30 9400 7.0e-17 7.9e-18
1424
- * IEEE 0, 30 30000 1.3e-15 1.6e-16
1425
- *
1426
- */
1427
- const double PP[] = {7.96936729297347051624E-4, 8.28352392107440799803E-2,
1428
- 1.23953371646414299388E0, 5.44725003058768775090E0,
1429
- 8.74716500199817011941E0, 5.30324038235394892183E0,
1430
- 9.99999999999999997821E-1};
1431
- const double PQ[] = {9.24408810558863637013E-4, 8.56288474354474431428E-2,
1432
- 1.25352743901058953537E0, 5.47097740330417105182E0,
1433
- 8.76190883237069594232E0, 5.30605288235394617618E0,
1434
- 1.00000000000000000218E0};
1435
- const double QP[] = {-1.13663838898469149931E-2, -1.28252718670509318512E0,
1436
- -1.95539544257735972385E1, -9.32060152123768231369E1,
1437
- -1.77681167980488050595E2, -1.47077505154951170175E2,
1438
- -5.14105326766599330220E1, -6.05014350600728481186E0};
1439
- const double QQ[] = {1.00000000000000000000E0, 6.43178256118178023184E1,
1440
- 8.56430025976980587198E2, 3.88240183605401609683E3,
1441
- 7.24046774195652478189E3, 5.93072701187316984827E3,
1442
- 2.06209331660327847417E3, 2.42005740240291393179E2};
1443
- const double YP[] = {1.55924367855235737965E4, -1.46639295903971606143E7,
1444
- 5.43526477051876500413E9, -9.82136065717911466409E11,
1445
- 8.75906394395366999549E13, -3.46628303384729719441E15,
1446
- 4.42733268572569800351E16, -1.84950800436986690637E16};
1447
- const double YQ[] = {1.00000000000000000000E0, 1.04128353664259848412E3,
1448
- 6.26107330137134956842E5, 2.68919633393814121987E8,
1449
- 8.64002487103935000337E10, 2.02979612750105546709E13,
1450
- 3.17157752842975028269E15, 2.50596256172653059228E17};
1451
- const T SQ2OPI = pset1<T>(7.9788456080286535587989E-1); /* sqrt(2 / pi) */
1452
- const T TWOOPI = pset1<T>(0.636619772367581343075535); /* 2 / pi */
1453
- const T NEG_PIO4 = pset1<T>(-0.7853981633974483096); /* -pi / 4 */
1454
- const T NEG_MAXNUM = pset1<T>(-NumTraits<double>::infinity());
1455
-
1456
- T z = pmul(x, x);
1457
- T x_le_five = pdiv(internal::ppolevl<T, 7>::run(z, YP),
1458
- internal::ppolevl<T, 7>::run(z, YQ));
1459
- x_le_five = pmadd(
1460
- pmul(TWOOPI, plog(x)), generic_j0<T, double>::run(x), x_le_five);
1461
- x_le_five = pselect(pcmp_le(x, pset1<T>(0.0)), NEG_MAXNUM, x_le_five);
1462
- T s = pdiv(pset1<T>(25.0), z);
1463
- T p = pdiv(
1464
- internal::ppolevl<T, 6>::run(s, PP),
1465
- internal::ppolevl<T, 6>::run(s, PQ));
1466
- T q = pdiv(
1467
- internal::ppolevl<T, 7>::run(s, QP),
1468
- internal::ppolevl<T, 7>::run(s, QQ));
1469
- T xn = padd(x, NEG_PIO4);
1470
- T w = pdiv(pset1<T>(5.0), x);
1471
- p = pmadd(p, psin(xn), pmul(w, pmul(q, pcos(xn))));
1472
- T x_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(x)));
1473
- return pselect(pcmp_le(x, pset1<T>(5.0)), x_le_five, x_gt_five);
1474
- }
1475
- };
1476
-
1477
- template <typename T>
1478
- struct bessel_y0_impl {
1479
- EIGEN_DEVICE_FUNC
1480
- static EIGEN_STRONG_INLINE T run(const T x) {
1481
- return generic_y0<T>::run(x);
1482
- }
1483
- };
1484
-
1485
- template <typename T>
1486
- struct bessel_j1_retval {
1487
- typedef T type;
1488
- };
1489
-
1490
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
1491
- struct generic_j1 {
1492
- EIGEN_DEVICE_FUNC
1493
- static EIGEN_STRONG_INLINE T run(const T&) {
1494
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
1495
- THIS_TYPE_IS_NOT_SUPPORTED);
1496
- return ScalarType(0);
1497
- }
1498
- };
1499
-
1500
- template <typename T>
1501
- struct generic_j1<T, float> {
1502
- EIGEN_DEVICE_FUNC
1503
- static EIGEN_STRONG_INLINE T run(const T& x) {
1504
- /* j1f.c
1505
- * Bessel function of order one
1506
- *
1507
- *
1508
- *
1509
- * SYNOPSIS:
1510
- *
1511
- * float x, y, j1f();
1512
- *
1513
- * y = j1f( x );
1514
- *
1515
- *
1516
- *
1517
- * DESCRIPTION:
1518
- *
1519
- * Returns Bessel function of order one of the argument.
1520
- *
1521
- * The domain is divided into the intervals [0, 2] and
1522
- * (2, infinity). In the first interval a polynomial approximation
1523
- * 2
1524
- * (w - r ) x P(w)
1525
- * 1
1526
- * 2
1527
- * is used, where w = x and r is the first zero of the function.
1528
- *
1529
- * In the second interval, the modulus and phase are approximated
1530
- * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
1531
- * and Phase(x) = x + 1/x R(1/x^2) - 3pi/4. The function is
1532
- *
1533
- * j0(x) = Modulus(x) cos( Phase(x) ).
1534
- *
1535
- *
1536
- *
1537
- * ACCURACY:
1538
- *
1539
- * Absolute error:
1540
- * arithmetic domain # trials peak rms
1541
- * IEEE 0, 2 100000 1.2e-7 2.5e-8
1542
- * IEEE 2, 32 100000 2.0e-7 5.3e-8
1543
- *
1544
- *
1545
- */
1546
-
1547
- const float JP[] = {-4.878788132172128E-009f, 6.009061827883699E-007f,
1548
- -4.541343896997497E-005f, 1.937383947804541E-003f,
1549
- -3.405537384615824E-002f};
1550
- const float MO1[] = {6.913942741265801E-002f, -2.284801500053359E-001f,
1551
- 3.138238455499697E-001f, -2.102302420403875E-001f,
1552
- 5.435364690523026E-003f, 1.493389585089498E-001f,
1553
- 4.976029650847191E-006f, 7.978845453073848E-001f};
1554
- const float PH1[] = {-4.497014141919556E+001f, 5.073465654089319E+001f,
1555
- -2.485774108720340E+001f, 7.222973196770240E+000f,
1556
- -1.544842782180211E+000f, 3.503787691653334E-001f,
1557
- -1.637986776941202E-001f, 3.749989509080821E-001f};
1558
- const T Z1 = pset1<T>(1.46819706421238932572E1f);
1559
- const T NEG_THPIO4F = pset1<T>(-2.35619449019234492885f); /* -3*pi/4 */
1560
-
1561
- T y = pabs(x);
1562
- T z = pmul(y, y);
1563
- T y_le_two = pmul(
1564
- psub(z, Z1),
1565
- pmul(x, internal::ppolevl<T, 4>::run(z, JP)));
1566
- T q = pdiv(pset1<T>(1.0f), y);
1567
- T w = prsqrt(y);
1568
- T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO1));
1569
- w = pmul(q, q);
1570
- T yn = pmadd(q, internal::ppolevl<T, 7>::run(w, PH1), NEG_THPIO4F);
1571
- T y_gt_two = pmul(p, pcos(padd(yn, y)));
1572
- // j1 is an odd function. This implementation differs from cephes to
1573
- // take this fact in to account. Cephes returns -j1(x) for y > 2 range.
1574
- y_gt_two = pselect(
1575
- pcmp_lt(x, pset1<T>(0.0f)), pnegate(y_gt_two), y_gt_two);
1576
- return pselect(pcmp_le(y, pset1<T>(2.0f)), y_le_two, y_gt_two);
1577
- }
1578
- };
1579
-
1580
- template <typename T>
1581
- struct generic_j1<T, double> {
1582
- EIGEN_DEVICE_FUNC
1583
- static EIGEN_STRONG_INLINE T run(const T& x) {
1584
- /* j1.c
1585
- * Bessel function of order one
1586
- *
1587
- *
1588
- *
1589
- * SYNOPSIS:
1590
- *
1591
- * double x, y, j1();
1592
- *
1593
- * y = j1( x );
1594
- *
1595
- *
1596
- *
1597
- * DESCRIPTION:
1598
- *
1599
- * Returns Bessel function of order one of the argument.
1600
- *
1601
- * The domain is divided into the intervals [0, 8] and
1602
- * (8, infinity). In the first interval a 24 term Chebyshev
1603
- * expansion is used. In the second, the asymptotic
1604
- * trigonometric representation is employed using two
1605
- * rational functions of degree 5/5.
1606
- *
1607
- *
1608
- *
1609
- * ACCURACY:
1610
- *
1611
- * Absolute error:
1612
- * arithmetic domain # trials peak rms
1613
- * DEC 0, 30 10000 4.0e-17 1.1e-17
1614
- * IEEE 0, 30 30000 2.6e-16 1.1e-16
1615
- *
1616
- */
1617
- const double PP[] = {7.62125616208173112003E-4, 7.31397056940917570436E-2,
1618
- 1.12719608129684925192E0, 5.11207951146807644818E0,
1619
- 8.42404590141772420927E0, 5.21451598682361504063E0,
1620
- 1.00000000000000000254E0};
1621
- const double PQ[] = {5.71323128072548699714E-4, 6.88455908754495404082E-2,
1622
- 1.10514232634061696926E0, 5.07386386128601488557E0,
1623
- 8.39985554327604159757E0, 5.20982848682361821619E0,
1624
- 9.99999999999999997461E-1};
1625
- const double QP[] = {5.10862594750176621635E-2, 4.98213872951233449420E0,
1626
- 7.58238284132545283818E1, 3.66779609360150777800E2,
1627
- 7.10856304998926107277E2, 5.97489612400613639965E2,
1628
- 2.11688757100572135698E2, 2.52070205858023719784E1};
1629
- const double QQ[] = {1.00000000000000000000E0, 7.42373277035675149943E1,
1630
- 1.05644886038262816351E3, 4.98641058337653607651E3,
1631
- 9.56231892404756170795E3, 7.99704160447350683650E3,
1632
- 2.82619278517639096600E3, 3.36093607810698293419E2};
1633
- const double RP[] = {-8.99971225705559398224E8, 4.52228297998194034323E11,
1634
- -7.27494245221818276015E13, 3.68295732863852883286E15};
1635
- const double RQ[] = {1.00000000000000000000E0, 6.20836478118054335476E2,
1636
- 2.56987256757748830383E5, 8.35146791431949253037E7,
1637
- 2.21511595479792499675E10, 4.74914122079991414898E12,
1638
- 7.84369607876235854894E14, 8.95222336184627338078E16,
1639
- 5.32278620332680085395E18};
1640
- const T Z1 = pset1<T>(1.46819706421238932572E1);
1641
- const T Z2 = pset1<T>(4.92184563216946036703E1);
1642
- const T NEG_THPIO4 = pset1<T>(-2.35619449019234492885); /* -3*pi/4 */
1643
- const T SQ2OPI = pset1<T>(7.9788456080286535587989E-1); /* sqrt(2 / pi) */
1644
- T y = pabs(x);
1645
- T z = pmul(y, y);
1646
- T y_le_five = pdiv(internal::ppolevl<T, 3>::run(z, RP),
1647
- internal::ppolevl<T, 8>::run(z, RQ));
1648
- y_le_five = pmul(pmul(pmul(y_le_five, x), psub(z, Z1)), psub(z, Z2));
1649
- T s = pdiv(pset1<T>(25.0), z);
1650
- T p = pdiv(
1651
- internal::ppolevl<T, 6>::run(s, PP),
1652
- internal::ppolevl<T, 6>::run(s, PQ));
1653
- T q = pdiv(
1654
- internal::ppolevl<T, 7>::run(s, QP),
1655
- internal::ppolevl<T, 7>::run(s, QQ));
1656
- T yn = padd(y, NEG_THPIO4);
1657
- T w = pdiv(pset1<T>(-5.0), y);
1658
- p = pmadd(p, pcos(yn), pmul(w, pmul(q, psin(yn))));
1659
- T y_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(y)));
1660
- // j1 is an odd function. This implementation differs from cephes to
1661
- // take this fact in to account. Cephes returns -j1(x) for y > 5 range.
1662
- y_gt_five = pselect(
1663
- pcmp_lt(x, pset1<T>(0.0)), pnegate(y_gt_five), y_gt_five);
1664
- return pselect(pcmp_le(y, pset1<T>(5.0)), y_le_five, y_gt_five);
1665
- }
1666
- };
1667
-
1668
- template <typename T>
1669
- struct bessel_j1_impl {
1670
- EIGEN_DEVICE_FUNC
1671
- static EIGEN_STRONG_INLINE T run(const T x) {
1672
- return generic_j1<T>::run(x);
1673
- }
1674
- };
1675
-
1676
- template <typename T>
1677
- struct bessel_y1_retval {
1678
- typedef T type;
1679
- };
1680
-
1681
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
1682
- struct generic_y1 {
1683
- EIGEN_DEVICE_FUNC
1684
- static EIGEN_STRONG_INLINE T run(const T&) {
1685
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
1686
- THIS_TYPE_IS_NOT_SUPPORTED);
1687
- return ScalarType(0);
1688
- }
1689
- };
1690
-
1691
- template <typename T>
1692
- struct generic_y1<T, float> {
1693
- EIGEN_DEVICE_FUNC
1694
- static EIGEN_STRONG_INLINE T run(const T& x) {
1695
- /* j1f.c
1696
- * Bessel function of second kind of order one
1697
- *
1698
- *
1699
- *
1700
- * SYNOPSIS:
1701
- *
1702
- * double x, y, y1();
1703
- *
1704
- * y = y1( x );
1705
- *
1706
- *
1707
- *
1708
- * DESCRIPTION:
1709
- *
1710
- * Returns Bessel function of the second kind of order one
1711
- * of the argument.
1712
- *
1713
- * The domain is divided into the intervals [0, 2] and
1714
- * (2, infinity). In the first interval a rational approximation
1715
- * R(x) is employed to compute
1716
- *
1717
- * 2
1718
- * y0(x) = (w - r ) x R(x^2) + 2/pi (ln(x) j1(x) - 1/x) .
1719
- * 1
1720
- *
1721
- * Thus a call to j1() is required.
1722
- *
1723
- * In the second interval, the modulus and phase are approximated
1724
- * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
1725
- * and Phase(x) = x + 1/x S(1/x^2) - 3pi/4. Then the function is
1726
- *
1727
- * y0(x) = Modulus(x) sin( Phase(x) ).
1728
- *
1729
- *
1730
- *
1731
- *
1732
- * ACCURACY:
1733
- *
1734
- * Absolute error:
1735
- * arithmetic domain # trials peak rms
1736
- * IEEE 0, 2 100000 2.2e-7 4.6e-8
1737
- * IEEE 2, 32 100000 1.9e-7 5.3e-8
1738
- *
1739
- * (error criterion relative when |y1| > 1).
1740
- *
1741
- */
1742
-
1743
- const float YP[] = {8.061978323326852E-009f, -9.496460629917016E-007f,
1744
- 6.719543806674249E-005f, -2.641785726447862E-003f,
1745
- 4.202369946500099E-002f};
1746
- const float MO1[] = {6.913942741265801E-002f, -2.284801500053359E-001f,
1747
- 3.138238455499697E-001f, -2.102302420403875E-001f,
1748
- 5.435364690523026E-003f, 1.493389585089498E-001f,
1749
- 4.976029650847191E-006f, 7.978845453073848E-001f};
1750
- const float PH1[] = {-4.497014141919556E+001f, 5.073465654089319E+001f,
1751
- -2.485774108720340E+001f, 7.222973196770240E+000f,
1752
- -1.544842782180211E+000f, 3.503787691653334E-001f,
1753
- -1.637986776941202E-001f, 3.749989509080821E-001f};
1754
- const T YO1 = pset1<T>(4.66539330185668857532f);
1755
- const T NEG_THPIO4F = pset1<T>(-2.35619449019234492885f); /* -3*pi/4 */
1756
- const T TWOOPI = pset1<T>(0.636619772367581343075535f); /* 2/pi */
1757
- const T NEG_MAXNUM = pset1<T>(-NumTraits<float>::infinity());
1758
-
1759
- T z = pmul(x, x);
1760
- T x_le_two = pmul(psub(z, YO1), internal::ppolevl<T, 4>::run(z, YP));
1761
- x_le_two = pmadd(
1762
- x_le_two, x,
1763
- pmul(TWOOPI, pmadd(
1764
- generic_j1<T, float>::run(x), plog(x),
1765
- pdiv(pset1<T>(-1.0f), x))));
1766
- x_le_two = pselect(pcmp_lt(x, pset1<T>(0.0f)), NEG_MAXNUM, x_le_two);
1767
-
1768
- T q = pdiv(pset1<T>(1.0), x);
1769
- T w = prsqrt(x);
1770
- T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO1));
1771
- w = pmul(q, q);
1772
- T xn = pmadd(q, internal::ppolevl<T, 7>::run(w, PH1), NEG_THPIO4F);
1773
- T x_gt_two = pmul(p, psin(padd(xn, x)));
1774
- return pselect(pcmp_le(x, pset1<T>(2.0)), x_le_two, x_gt_two);
1775
- }
1776
- };
1777
-
1778
- template <typename T>
1779
- struct generic_y1<T, double> {
1780
- EIGEN_DEVICE_FUNC
1781
- static EIGEN_STRONG_INLINE T run(const T& x) {
1782
- /* j1.c
1783
- * Bessel function of second kind of order one
1784
- *
1785
- *
1786
- *
1787
- * SYNOPSIS:
1788
- *
1789
- * double x, y, y1();
1790
- *
1791
- * y = y1( x );
1792
- *
1793
- *
1794
- *
1795
- * DESCRIPTION:
1796
- *
1797
- * Returns Bessel function of the second kind of order one
1798
- * of the argument.
1799
- *
1800
- * The domain is divided into the intervals [0, 8] and
1801
- * (8, infinity). In the first interval a 25 term Chebyshev
1802
- * expansion is used, and a call to j1() is required.
1803
- * In the second, the asymptotic trigonometric representation
1804
- * is employed using two rational functions of degree 5/5.
1805
- *
1806
- *
1807
- *
1808
- * ACCURACY:
1809
- *
1810
- * Absolute error:
1811
- * arithmetic domain # trials peak rms
1812
- * DEC 0, 30 10000 8.6e-17 1.3e-17
1813
- * IEEE 0, 30 30000 1.0e-15 1.3e-16
1814
- *
1815
- * (error criterion relative when |y1| > 1).
1816
- *
1817
- */
1818
- const double PP[] = {7.62125616208173112003E-4, 7.31397056940917570436E-2,
1819
- 1.12719608129684925192E0, 5.11207951146807644818E0,
1820
- 8.42404590141772420927E0, 5.21451598682361504063E0,
1821
- 1.00000000000000000254E0};
1822
- const double PQ[] = {5.71323128072548699714E-4, 6.88455908754495404082E-2,
1823
- 1.10514232634061696926E0, 5.07386386128601488557E0,
1824
- 8.39985554327604159757E0, 5.20982848682361821619E0,
1825
- 9.99999999999999997461E-1};
1826
- const double QP[] = {5.10862594750176621635E-2, 4.98213872951233449420E0,
1827
- 7.58238284132545283818E1, 3.66779609360150777800E2,
1828
- 7.10856304998926107277E2, 5.97489612400613639965E2,
1829
- 2.11688757100572135698E2, 2.52070205858023719784E1};
1830
- const double QQ[] = {1.00000000000000000000E0, 7.42373277035675149943E1,
1831
- 1.05644886038262816351E3, 4.98641058337653607651E3,
1832
- 9.56231892404756170795E3, 7.99704160447350683650E3,
1833
- 2.82619278517639096600E3, 3.36093607810698293419E2};
1834
- const double YP[] = {1.26320474790178026440E9, -6.47355876379160291031E11,
1835
- 1.14509511541823727583E14, -8.12770255501325109621E15,
1836
- 2.02439475713594898196E17, -7.78877196265950026825E17};
1837
- const double YQ[] = {1.00000000000000000000E0, 5.94301592346128195359E2,
1838
- 2.35564092943068577943E5, 7.34811944459721705660E7,
1839
- 1.87601316108706159478E10, 3.88231277496238566008E12,
1840
- 6.20557727146953693363E14, 6.87141087355300489866E16,
1841
- 3.97270608116560655612E18};
1842
- const T SQ2OPI = pset1<T>(.79788456080286535588);
1843
- const T NEG_THPIO4 = pset1<T>(-2.35619449019234492885); /* -3*pi/4 */
1844
- const T TWOOPI = pset1<T>(0.636619772367581343075535); /* 2/pi */
1845
- const T NEG_MAXNUM = pset1<T>(-NumTraits<double>::infinity());
1846
-
1847
- T z = pmul(x, x);
1848
- T x_le_five = pdiv(internal::ppolevl<T, 5>::run(z, YP),
1849
- internal::ppolevl<T, 8>::run(z, YQ));
1850
- x_le_five = pmadd(
1851
- x_le_five, x, pmul(
1852
- TWOOPI, pmadd(generic_j1<T, double>::run(x), plog(x),
1853
- pdiv(pset1<T>(-1.0), x))));
1854
-
1855
- x_le_five = pselect(pcmp_le(x, pset1<T>(0.0)), NEG_MAXNUM, x_le_five);
1856
- T s = pdiv(pset1<T>(25.0), z);
1857
- T p = pdiv(
1858
- internal::ppolevl<T, 6>::run(s, PP),
1859
- internal::ppolevl<T, 6>::run(s, PQ));
1860
- T q = pdiv(
1861
- internal::ppolevl<T, 7>::run(s, QP),
1862
- internal::ppolevl<T, 7>::run(s, QQ));
1863
- T xn = padd(x, NEG_THPIO4);
1864
- T w = pdiv(pset1<T>(5.0), x);
1865
- p = pmadd(p, psin(xn), pmul(w, pmul(q, pcos(xn))));
1866
- T x_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(x)));
1867
- return pselect(pcmp_le(x, pset1<T>(5.0)), x_le_five, x_gt_five);
1868
- }
1869
- };
1870
-
1871
- template <typename T>
1872
- struct bessel_y1_impl {
1873
- EIGEN_DEVICE_FUNC
1874
- static EIGEN_STRONG_INLINE T run(const T x) {
1875
- return generic_y1<T>::run(x);
1876
- }
1877
- };
1878
-
1879
- } // end namespace internal
1880
-
1881
- namespace numext {
1882
-
1883
- template <typename Scalar>
1884
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i0, Scalar)
1885
- bessel_i0(const Scalar& x) {
1886
- return EIGEN_MATHFUNC_IMPL(bessel_i0, Scalar)::run(x);
1887
- }
1888
-
1889
- template <typename Scalar>
1890
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i0e, Scalar)
1891
- bessel_i0e(const Scalar& x) {
1892
- return EIGEN_MATHFUNC_IMPL(bessel_i0e, Scalar)::run(x);
1893
- }
1894
-
1895
- template <typename Scalar>
1896
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i1, Scalar)
1897
- bessel_i1(const Scalar& x) {
1898
- return EIGEN_MATHFUNC_IMPL(bessel_i1, Scalar)::run(x);
1899
- }
1900
-
1901
- template <typename Scalar>
1902
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i1e, Scalar)
1903
- bessel_i1e(const Scalar& x) {
1904
- return EIGEN_MATHFUNC_IMPL(bessel_i1e, Scalar)::run(x);
1905
- }
1906
-
1907
- template <typename Scalar>
1908
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k0, Scalar)
1909
- bessel_k0(const Scalar& x) {
1910
- return EIGEN_MATHFUNC_IMPL(bessel_k0, Scalar)::run(x);
1911
- }
1912
-
1913
- template <typename Scalar>
1914
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k0e, Scalar)
1915
- bessel_k0e(const Scalar& x) {
1916
- return EIGEN_MATHFUNC_IMPL(bessel_k0e, Scalar)::run(x);
1917
- }
1918
-
1919
- template <typename Scalar>
1920
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k1, Scalar)
1921
- bessel_k1(const Scalar& x) {
1922
- return EIGEN_MATHFUNC_IMPL(bessel_k1, Scalar)::run(x);
1923
- }
1924
-
1925
- template <typename Scalar>
1926
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k1e, Scalar)
1927
- bessel_k1e(const Scalar& x) {
1928
- return EIGEN_MATHFUNC_IMPL(bessel_k1e, Scalar)::run(x);
1929
- }
1930
-
1931
- template <typename Scalar>
1932
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_j0, Scalar)
1933
- bessel_j0(const Scalar& x) {
1934
- return EIGEN_MATHFUNC_IMPL(bessel_j0, Scalar)::run(x);
1935
- }
1936
-
1937
- template <typename Scalar>
1938
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_y0, Scalar)
1939
- bessel_y0(const Scalar& x) {
1940
- return EIGEN_MATHFUNC_IMPL(bessel_y0, Scalar)::run(x);
1941
- }
1942
-
1943
- template <typename Scalar>
1944
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_j1, Scalar)
1945
- bessel_j1(const Scalar& x) {
1946
- return EIGEN_MATHFUNC_IMPL(bessel_j1, Scalar)::run(x);
1947
- }
1948
-
1949
- template <typename Scalar>
1950
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_y1, Scalar)
1951
- bessel_y1(const Scalar& x) {
1952
- return EIGEN_MATHFUNC_IMPL(bessel_y1, Scalar)::run(x);
1953
- }
1954
-
1955
- } // end namespace numext
1956
-
1957
- } // end namespace Eigen
1958
-
1959
- #endif // EIGEN_BESSEL_FUNCTIONS_H