sequenzo 0.1.17__cp310-cp310-macosx_10_9_universal2.whl → 0.1.19__cp310-cp310-macosx_10_9_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (423) hide show
  1. sequenzo/__init__.py +64 -8
  2. sequenzo/big_data/clara/clara.py +1 -1
  3. sequenzo/big_data/clara/utils/get_weighted_diss.c +155 -155
  4. sequenzo/big_data/clara/utils/get_weighted_diss.cpython-310-darwin.so +0 -0
  5. sequenzo/clustering/KMedoids.py +39 -0
  6. sequenzo/clustering/hierarchical_clustering.py +304 -8
  7. sequenzo/define_sequence_data.py +44 -3
  8. sequenzo/dissimilarity_measures/c_code.cpython-310-darwin.so +0 -0
  9. sequenzo/dissimilarity_measures/get_distance_matrix.py +1 -2
  10. sequenzo/dissimilarity_measures/get_substitution_cost_matrix.py +1 -1
  11. sequenzo/dissimilarity_measures/src/DHDdistance.cpp +13 -37
  12. sequenzo/dissimilarity_measures/src/LCPdistance.cpp +13 -37
  13. sequenzo/dissimilarity_measures/src/OMdistance.cpp +12 -47
  14. sequenzo/dissimilarity_measures/src/OMspellDistance.cpp +103 -67
  15. sequenzo/dissimilarity_measures/src/dp_utils.h +160 -0
  16. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_arithmetic.hpp +41 -16
  17. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_complex.hpp +4 -0
  18. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_details.hpp +7 -0
  19. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_logical.hpp +10 -0
  20. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_math.hpp +127 -43
  21. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_memory.hpp +30 -2
  22. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_swizzle.hpp +174 -0
  23. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_trigo.hpp +14 -5
  24. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx.hpp +111 -54
  25. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx2.hpp +131 -9
  26. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512bw.hpp +11 -113
  27. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512dq.hpp +39 -7
  28. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512f.hpp +336 -30
  29. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vbmi.hpp +9 -37
  30. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vbmi2.hpp +58 -0
  31. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_common.hpp +1 -0
  32. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_common_fwd.hpp +35 -2
  33. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_constants.hpp +3 -1
  34. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_emulated.hpp +17 -0
  35. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_avx.hpp +13 -0
  36. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_sse.hpp +18 -0
  37. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma4.hpp +13 -0
  38. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_isa.hpp +8 -0
  39. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_neon.hpp +363 -34
  40. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_neon64.hpp +7 -0
  41. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_rvv.hpp +13 -0
  42. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_scalar.hpp +41 -4
  43. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse2.hpp +252 -16
  44. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse3.hpp +9 -0
  45. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_ssse3.hpp +12 -1
  46. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sve.hpp +7 -0
  47. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_vsx.hpp +892 -0
  48. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_wasm.hpp +78 -1
  49. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_arch.hpp +3 -1
  50. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_config.hpp +13 -2
  51. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_cpuid.hpp +5 -0
  52. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_inline.hpp +5 -1
  53. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_all_registers.hpp +2 -0
  54. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_api.hpp +64 -1
  55. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_batch.hpp +36 -0
  56. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_rvv_register.hpp +40 -31
  57. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_traits.hpp +8 -0
  58. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_vsx_register.hpp +77 -0
  59. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/xsimd.hpp +6 -0
  60. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +155 -155
  61. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cpython-310-darwin.so +0 -0
  62. sequenzo/dissimilarity_measures/utils/seqconc.c +155 -155
  63. sequenzo/dissimilarity_measures/utils/seqconc.cpython-310-darwin.so +0 -0
  64. sequenzo/dissimilarity_measures/utils/seqdss.c +155 -155
  65. sequenzo/dissimilarity_measures/utils/seqdss.cpython-310-darwin.so +0 -0
  66. sequenzo/dissimilarity_measures/utils/seqdur.c +155 -155
  67. sequenzo/dissimilarity_measures/utils/seqdur.cpython-310-darwin.so +0 -0
  68. sequenzo/dissimilarity_measures/utils/seqlength.c +155 -155
  69. sequenzo/dissimilarity_measures/utils/seqlength.cpython-310-darwin.so +0 -0
  70. sequenzo/multidomain/cat.py +0 -53
  71. sequenzo/multidomain/idcd.py +0 -1
  72. sequenzo/openmp_setup.py +233 -0
  73. sequenzo/sequence_characteristics/__init__.py +4 -0
  74. sequenzo/sequence_characteristics/complexity_index.py +17 -57
  75. sequenzo/sequence_characteristics/overall_cross_sectional_entropy.py +177 -111
  76. sequenzo/sequence_characteristics/plot_characteristics.py +30 -11
  77. sequenzo/sequence_characteristics/simple_characteristics.py +1 -0
  78. sequenzo/sequence_characteristics/state_frequencies_and_entropy_per_sequence.py +9 -3
  79. sequenzo/sequence_characteristics/turbulence.py +47 -67
  80. sequenzo/sequence_characteristics/variance_of_spell_durations.py +19 -9
  81. sequenzo/sequence_characteristics/within_sequence_entropy.py +5 -58
  82. sequenzo/visualization/plot_sequence_index.py +58 -35
  83. sequenzo/visualization/plot_state_distribution.py +57 -36
  84. sequenzo/visualization/plot_transition_matrix.py +21 -22
  85. sequenzo/with_event_history_analysis/__init__.py +35 -0
  86. sequenzo/with_event_history_analysis/sequence_analysis_multi_state_model.py +850 -0
  87. sequenzo/with_event_history_analysis/sequence_history_analysis.py +283 -0
  88. {sequenzo-0.1.17.dist-info → sequenzo-0.1.19.dist-info}/METADATA +48 -14
  89. sequenzo-0.1.19.dist-info/RECORD +215 -0
  90. sequenzo/dissimilarity_measures/setup.py +0 -35
  91. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -688
  92. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT.h +0 -558
  93. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  94. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  95. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  96. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  97. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  98. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  99. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  100. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  101. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  102. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  103. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  104. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  105. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  106. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  107. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  108. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  109. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -486
  110. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -247
  111. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -114
  112. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -501
  113. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -282
  114. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -235
  115. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  116. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -870
  117. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -199
  118. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -206
  119. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Scaling.h +0 -188
  120. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Transform.h +0 -1563
  121. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Translation.h +0 -202
  122. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Umeyama.h +0 -166
  123. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  124. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -110
  125. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/Householder.h +0 -176
  126. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/HouseholderSequence.h +0 -545
  127. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  128. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  129. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  130. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  131. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  132. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  133. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  134. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  135. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -483
  136. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  137. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/Determinant.h +0 -117
  138. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/FullPivLU.h +0 -877
  139. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/InverseImpl.h +0 -432
  140. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -624
  141. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  142. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/arch/InverseSize4.h +0 -351
  143. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  144. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -435
  145. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  146. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -153
  147. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  148. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  149. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  150. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  151. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  152. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  153. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -434
  154. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  155. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  156. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/BDCSVD.h +0 -1366
  157. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD.h +0 -812
  158. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  159. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/SVDBase.h +0 -376
  160. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  161. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  162. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  163. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -378
  164. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  165. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  166. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  167. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -270
  168. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseBlock.h +0 -571
  169. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  170. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  171. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  172. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  173. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  174. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  175. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -98
  176. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  177. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMap.h +0 -305
  178. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  179. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  180. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  181. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseProduct.h +0 -181
  182. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -49
  183. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -397
  184. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  185. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  186. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  187. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  188. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  189. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -186
  190. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseVector.h +0 -478
  191. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -254
  192. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  193. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU.h +0 -923
  194. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  195. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  196. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  197. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  198. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  199. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  200. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  201. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  202. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  203. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  204. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  205. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  206. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  207. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  208. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  209. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  210. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseQR/SparseQR.h +0 -758
  211. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -116
  212. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdList.h +0 -106
  213. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -131
  214. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/details.h +0 -84
  215. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  216. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  217. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Image.h +0 -82
  218. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Kernel.h +0 -79
  219. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -55
  220. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/blas.h +0 -440
  221. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapack.h +0 -152
  222. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke.h +0 -16292
  223. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -17
  224. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  225. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  226. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -1442
  227. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  228. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  229. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  230. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  231. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  232. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -149
  233. sequenzo/dissimilarity_measures/src/eigen/blas/BandTriangularSolver.h +0 -97
  234. sequenzo/dissimilarity_measures/src/eigen/blas/GeneralRank1Update.h +0 -44
  235. sequenzo/dissimilarity_measures/src/eigen/blas/PackedSelfadjointProduct.h +0 -53
  236. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularMatrixVector.h +0 -79
  237. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularSolverVector.h +0 -88
  238. sequenzo/dissimilarity_measures/src/eigen/blas/Rank2Update.h +0 -57
  239. sequenzo/dissimilarity_measures/src/eigen/blas/common.h +0 -175
  240. sequenzo/dissimilarity_measures/src/eigen/blas/f2c/datatypes.h +0 -24
  241. sequenzo/dissimilarity_measures/src/eigen/blas/level1_cplx_impl.h +0 -155
  242. sequenzo/dissimilarity_measures/src/eigen/blas/level1_impl.h +0 -144
  243. sequenzo/dissimilarity_measures/src/eigen/blas/level1_real_impl.h +0 -122
  244. sequenzo/dissimilarity_measures/src/eigen/blas/level2_cplx_impl.h +0 -360
  245. sequenzo/dissimilarity_measures/src/eigen/blas/level2_impl.h +0 -553
  246. sequenzo/dissimilarity_measures/src/eigen/blas/level2_real_impl.h +0 -306
  247. sequenzo/dissimilarity_measures/src/eigen/blas/level3_impl.h +0 -702
  248. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/__init__.py +0 -1
  249. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/printers.py +0 -314
  250. sequenzo/dissimilarity_measures/src/eigen/lapack/lapack_common.h +0 -29
  251. sequenzo/dissimilarity_measures/src/eigen/scripts/relicense.py +0 -69
  252. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  253. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  254. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  255. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  256. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  257. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  258. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  259. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  260. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  261. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  262. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  263. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  264. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  265. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  266. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  267. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  268. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  269. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  270. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  271. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  272. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  273. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  274. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  275. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  276. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  277. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  278. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  279. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  280. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  281. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  282. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  283. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  284. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  285. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  286. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  287. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  288. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  289. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  290. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  291. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  292. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  293. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  294. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  295. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  296. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  297. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  298. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  299. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  300. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  301. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  302. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  303. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  304. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  305. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  306. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  307. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  308. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  309. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  310. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  311. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  312. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  313. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  314. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  315. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  316. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  317. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  318. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  319. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  320. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  321. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  322. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  323. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  324. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  325. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  326. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  327. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  328. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  329. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  330. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  331. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  332. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  333. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  334. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  335. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  336. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  337. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  338. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  339. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  340. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  341. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  342. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  343. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  344. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  345. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  346. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  347. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  348. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  349. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  350. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  351. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  352. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  353. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  354. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  355. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  356. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  357. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  358. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  359. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  360. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  361. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  362. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  363. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  364. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  365. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  366. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  367. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  368. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  369. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  370. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  371. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  372. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  373. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  374. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  375. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  376. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  377. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  378. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  379. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  380. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  381. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  382. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  383. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  384. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  385. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  386. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  387. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  388. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  389. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  390. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  391. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  392. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  393. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  394. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  395. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  396. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  397. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  398. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  399. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  400. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  401. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  402. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  403. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  404. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  405. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  406. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  407. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  408. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  409. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  410. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  411. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  412. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  413. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  414. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  415. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  416. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  417. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h +0 -507
  418. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  419. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  420. sequenzo-0.1.17.dist-info/RECORD +0 -537
  421. {sequenzo-0.1.17.dist-info → sequenzo-0.1.19.dist-info}/WHEEL +0 -0
  422. {sequenzo-0.1.17.dist-info → sequenzo-0.1.19.dist-info}/licenses/LICENSE +0 -0
  423. {sequenzo-0.1.17.dist-info → sequenzo-0.1.19.dist-info}/top_level.txt +0 -0
@@ -1,877 +0,0 @@
1
- // This file is part of Eigen, a lightweight C++ template library
2
- // for linear algebra.
3
- //
4
- // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
5
- //
6
- // This Source Code Form is subject to the terms of the Mozilla
7
- // Public License v. 2.0. If a copy of the MPL was not distributed
8
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
-
10
- #ifndef EIGEN_LU_H
11
- #define EIGEN_LU_H
12
-
13
- namespace Eigen {
14
-
15
- namespace internal {
16
- template<typename _MatrixType> struct traits<FullPivLU<_MatrixType> >
17
- : traits<_MatrixType>
18
- {
19
- typedef MatrixXpr XprKind;
20
- typedef SolverStorage StorageKind;
21
- typedef int StorageIndex;
22
- enum { Flags = 0 };
23
- };
24
-
25
- } // end namespace internal
26
-
27
- /** \ingroup LU_Module
28
- *
29
- * \class FullPivLU
30
- *
31
- * \brief LU decomposition of a matrix with complete pivoting, and related features
32
- *
33
- * \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition
34
- *
35
- * This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A is
36
- * decomposed as \f$ A = P^{-1} L U Q^{-1} \f$ where L is unit-lower-triangular, U is
37
- * upper-triangular, and P and Q are permutation matrices. This is a rank-revealing LU
38
- * decomposition. The eigenvalues (diagonal coefficients) of U are sorted in such a way that any
39
- * zeros are at the end.
40
- *
41
- * This decomposition provides the generic approach to solving systems of linear equations, computing
42
- * the rank, invertibility, inverse, kernel, and determinant.
43
- *
44
- * This LU decomposition is very stable and well tested with large matrices. However there are use cases where the SVD
45
- * decomposition is inherently more stable and/or flexible. For example, when computing the kernel of a matrix,
46
- * working with the SVD allows to select the smallest singular values of the matrix, something that
47
- * the LU decomposition doesn't see.
48
- *
49
- * The data of the LU decomposition can be directly accessed through the methods matrixLU(),
50
- * permutationP(), permutationQ().
51
- *
52
- * As an example, here is how the original matrix can be retrieved:
53
- * \include class_FullPivLU.cpp
54
- * Output: \verbinclude class_FullPivLU.out
55
- *
56
- * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
57
- *
58
- * \sa MatrixBase::fullPivLu(), MatrixBase::determinant(), MatrixBase::inverse()
59
- */
60
- template<typename _MatrixType> class FullPivLU
61
- : public SolverBase<FullPivLU<_MatrixType> >
62
- {
63
- public:
64
- typedef _MatrixType MatrixType;
65
- typedef SolverBase<FullPivLU> Base;
66
- friend class SolverBase<FullPivLU>;
67
-
68
- EIGEN_GENERIC_PUBLIC_INTERFACE(FullPivLU)
69
- enum {
70
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
71
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
72
- };
73
- typedef typename internal::plain_row_type<MatrixType, StorageIndex>::type IntRowVectorType;
74
- typedef typename internal::plain_col_type<MatrixType, StorageIndex>::type IntColVectorType;
75
- typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationQType;
76
- typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationPType;
77
- typedef typename MatrixType::PlainObject PlainObject;
78
-
79
- /**
80
- * \brief Default Constructor.
81
- *
82
- * The default constructor is useful in cases in which the user intends to
83
- * perform decompositions via LU::compute(const MatrixType&).
84
- */
85
- FullPivLU();
86
-
87
- /** \brief Default Constructor with memory preallocation
88
- *
89
- * Like the default constructor but with preallocation of the internal data
90
- * according to the specified problem \a size.
91
- * \sa FullPivLU()
92
- */
93
- FullPivLU(Index rows, Index cols);
94
-
95
- /** Constructor.
96
- *
97
- * \param matrix the matrix of which to compute the LU decomposition.
98
- * It is required to be nonzero.
99
- */
100
- template<typename InputType>
101
- explicit FullPivLU(const EigenBase<InputType>& matrix);
102
-
103
- /** \brief Constructs a LU factorization from a given matrix
104
- *
105
- * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref.
106
- *
107
- * \sa FullPivLU(const EigenBase&)
108
- */
109
- template<typename InputType>
110
- explicit FullPivLU(EigenBase<InputType>& matrix);
111
-
112
- /** Computes the LU decomposition of the given matrix.
113
- *
114
- * \param matrix the matrix of which to compute the LU decomposition.
115
- * It is required to be nonzero.
116
- *
117
- * \returns a reference to *this
118
- */
119
- template<typename InputType>
120
- FullPivLU& compute(const EigenBase<InputType>& matrix) {
121
- m_lu = matrix.derived();
122
- computeInPlace();
123
- return *this;
124
- }
125
-
126
- /** \returns the LU decomposition matrix: the upper-triangular part is U, the
127
- * unit-lower-triangular part is L (at least for square matrices; in the non-square
128
- * case, special care is needed, see the documentation of class FullPivLU).
129
- *
130
- * \sa matrixL(), matrixU()
131
- */
132
- inline const MatrixType& matrixLU() const
133
- {
134
- eigen_assert(m_isInitialized && "LU is not initialized.");
135
- return m_lu;
136
- }
137
-
138
- /** \returns the number of nonzero pivots in the LU decomposition.
139
- * Here nonzero is meant in the exact sense, not in a fuzzy sense.
140
- * So that notion isn't really intrinsically interesting, but it is
141
- * still useful when implementing algorithms.
142
- *
143
- * \sa rank()
144
- */
145
- inline Index nonzeroPivots() const
146
- {
147
- eigen_assert(m_isInitialized && "LU is not initialized.");
148
- return m_nonzero_pivots;
149
- }
150
-
151
- /** \returns the absolute value of the biggest pivot, i.e. the biggest
152
- * diagonal coefficient of U.
153
- */
154
- RealScalar maxPivot() const { return m_maxpivot; }
155
-
156
- /** \returns the permutation matrix P
157
- *
158
- * \sa permutationQ()
159
- */
160
- EIGEN_DEVICE_FUNC inline const PermutationPType& permutationP() const
161
- {
162
- eigen_assert(m_isInitialized && "LU is not initialized.");
163
- return m_p;
164
- }
165
-
166
- /** \returns the permutation matrix Q
167
- *
168
- * \sa permutationP()
169
- */
170
- inline const PermutationQType& permutationQ() const
171
- {
172
- eigen_assert(m_isInitialized && "LU is not initialized.");
173
- return m_q;
174
- }
175
-
176
- /** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix
177
- * will form a basis of the kernel.
178
- *
179
- * \note If the kernel has dimension zero, then the returned matrix is a column-vector filled with zeros.
180
- *
181
- * \note This method has to determine which pivots should be considered nonzero.
182
- * For that, it uses the threshold value that you can control by calling
183
- * setThreshold(const RealScalar&).
184
- *
185
- * Example: \include FullPivLU_kernel.cpp
186
- * Output: \verbinclude FullPivLU_kernel.out
187
- *
188
- * \sa image()
189
- */
190
- inline const internal::kernel_retval<FullPivLU> kernel() const
191
- {
192
- eigen_assert(m_isInitialized && "LU is not initialized.");
193
- return internal::kernel_retval<FullPivLU>(*this);
194
- }
195
-
196
- /** \returns the image of the matrix, also called its column-space. The columns of the returned matrix
197
- * will form a basis of the image (column-space).
198
- *
199
- * \param originalMatrix the original matrix, of which *this is the LU decomposition.
200
- * The reason why it is needed to pass it here, is that this allows
201
- * a large optimization, as otherwise this method would need to reconstruct it
202
- * from the LU decomposition.
203
- *
204
- * \note If the image has dimension zero, then the returned matrix is a column-vector filled with zeros.
205
- *
206
- * \note This method has to determine which pivots should be considered nonzero.
207
- * For that, it uses the threshold value that you can control by calling
208
- * setThreshold(const RealScalar&).
209
- *
210
- * Example: \include FullPivLU_image.cpp
211
- * Output: \verbinclude FullPivLU_image.out
212
- *
213
- * \sa kernel()
214
- */
215
- inline const internal::image_retval<FullPivLU>
216
- image(const MatrixType& originalMatrix) const
217
- {
218
- eigen_assert(m_isInitialized && "LU is not initialized.");
219
- return internal::image_retval<FullPivLU>(*this, originalMatrix);
220
- }
221
-
222
- #ifdef EIGEN_PARSED_BY_DOXYGEN
223
- /** \return a solution x to the equation Ax=b, where A is the matrix of which
224
- * *this is the LU decomposition.
225
- *
226
- * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
227
- * the only requirement in order for the equation to make sense is that
228
- * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
229
- *
230
- * \returns a solution.
231
- *
232
- * \note_about_checking_solutions
233
- *
234
- * \note_about_arbitrary_choice_of_solution
235
- * \note_about_using_kernel_to_study_multiple_solutions
236
- *
237
- * Example: \include FullPivLU_solve.cpp
238
- * Output: \verbinclude FullPivLU_solve.out
239
- *
240
- * \sa TriangularView::solve(), kernel(), inverse()
241
- */
242
- template<typename Rhs>
243
- inline const Solve<FullPivLU, Rhs>
244
- solve(const MatrixBase<Rhs>& b) const;
245
- #endif
246
-
247
- /** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is
248
- the LU decomposition.
249
- */
250
- inline RealScalar rcond() const
251
- {
252
- eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
253
- return internal::rcond_estimate_helper(m_l1_norm, *this);
254
- }
255
-
256
- /** \returns the determinant of the matrix of which
257
- * *this is the LU decomposition. It has only linear complexity
258
- * (that is, O(n) where n is the dimension of the square matrix)
259
- * as the LU decomposition has already been computed.
260
- *
261
- * \note This is only for square matrices.
262
- *
263
- * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
264
- * optimized paths.
265
- *
266
- * \warning a determinant can be very big or small, so for matrices
267
- * of large enough dimension, there is a risk of overflow/underflow.
268
- *
269
- * \sa MatrixBase::determinant()
270
- */
271
- typename internal::traits<MatrixType>::Scalar determinant() const;
272
-
273
- /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
274
- * who need to determine when pivots are to be considered nonzero. This is not used for the
275
- * LU decomposition itself.
276
- *
277
- * When it needs to get the threshold value, Eigen calls threshold(). By default, this
278
- * uses a formula to automatically determine a reasonable threshold.
279
- * Once you have called the present method setThreshold(const RealScalar&),
280
- * your value is used instead.
281
- *
282
- * \param threshold The new value to use as the threshold.
283
- *
284
- * A pivot will be considered nonzero if its absolute value is strictly greater than
285
- * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
286
- * where maxpivot is the biggest pivot.
287
- *
288
- * If you want to come back to the default behavior, call setThreshold(Default_t)
289
- */
290
- FullPivLU& setThreshold(const RealScalar& threshold)
291
- {
292
- m_usePrescribedThreshold = true;
293
- m_prescribedThreshold = threshold;
294
- return *this;
295
- }
296
-
297
- /** Allows to come back to the default behavior, letting Eigen use its default formula for
298
- * determining the threshold.
299
- *
300
- * You should pass the special object Eigen::Default as parameter here.
301
- * \code lu.setThreshold(Eigen::Default); \endcode
302
- *
303
- * See the documentation of setThreshold(const RealScalar&).
304
- */
305
- FullPivLU& setThreshold(Default_t)
306
- {
307
- m_usePrescribedThreshold = false;
308
- return *this;
309
- }
310
-
311
- /** Returns the threshold that will be used by certain methods such as rank().
312
- *
313
- * See the documentation of setThreshold(const RealScalar&).
314
- */
315
- RealScalar threshold() const
316
- {
317
- eigen_assert(m_isInitialized || m_usePrescribedThreshold);
318
- return m_usePrescribedThreshold ? m_prescribedThreshold
319
- // this formula comes from experimenting (see "LU precision tuning" thread on the list)
320
- // and turns out to be identical to Higham's formula used already in LDLt.
321
- : NumTraits<Scalar>::epsilon() * RealScalar(m_lu.diagonalSize());
322
- }
323
-
324
- /** \returns the rank of the matrix of which *this is the LU decomposition.
325
- *
326
- * \note This method has to determine which pivots should be considered nonzero.
327
- * For that, it uses the threshold value that you can control by calling
328
- * setThreshold(const RealScalar&).
329
- */
330
- inline Index rank() const
331
- {
332
- using std::abs;
333
- eigen_assert(m_isInitialized && "LU is not initialized.");
334
- RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
335
- Index result = 0;
336
- for(Index i = 0; i < m_nonzero_pivots; ++i)
337
- result += (abs(m_lu.coeff(i,i)) > premultiplied_threshold);
338
- return result;
339
- }
340
-
341
- /** \returns the dimension of the kernel of the matrix of which *this is the LU decomposition.
342
- *
343
- * \note This method has to determine which pivots should be considered nonzero.
344
- * For that, it uses the threshold value that you can control by calling
345
- * setThreshold(const RealScalar&).
346
- */
347
- inline Index dimensionOfKernel() const
348
- {
349
- eigen_assert(m_isInitialized && "LU is not initialized.");
350
- return cols() - rank();
351
- }
352
-
353
- /** \returns true if the matrix of which *this is the LU decomposition represents an injective
354
- * linear map, i.e. has trivial kernel; false otherwise.
355
- *
356
- * \note This method has to determine which pivots should be considered nonzero.
357
- * For that, it uses the threshold value that you can control by calling
358
- * setThreshold(const RealScalar&).
359
- */
360
- inline bool isInjective() const
361
- {
362
- eigen_assert(m_isInitialized && "LU is not initialized.");
363
- return rank() == cols();
364
- }
365
-
366
- /** \returns true if the matrix of which *this is the LU decomposition represents a surjective
367
- * linear map; false otherwise.
368
- *
369
- * \note This method has to determine which pivots should be considered nonzero.
370
- * For that, it uses the threshold value that you can control by calling
371
- * setThreshold(const RealScalar&).
372
- */
373
- inline bool isSurjective() const
374
- {
375
- eigen_assert(m_isInitialized && "LU is not initialized.");
376
- return rank() == rows();
377
- }
378
-
379
- /** \returns true if the matrix of which *this is the LU decomposition is invertible.
380
- *
381
- * \note This method has to determine which pivots should be considered nonzero.
382
- * For that, it uses the threshold value that you can control by calling
383
- * setThreshold(const RealScalar&).
384
- */
385
- inline bool isInvertible() const
386
- {
387
- eigen_assert(m_isInitialized && "LU is not initialized.");
388
- return isInjective() && (m_lu.rows() == m_lu.cols());
389
- }
390
-
391
- /** \returns the inverse of the matrix of which *this is the LU decomposition.
392
- *
393
- * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
394
- * Use isInvertible() to first determine whether this matrix is invertible.
395
- *
396
- * \sa MatrixBase::inverse()
397
- */
398
- inline const Inverse<FullPivLU> inverse() const
399
- {
400
- eigen_assert(m_isInitialized && "LU is not initialized.");
401
- eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!");
402
- return Inverse<FullPivLU>(*this);
403
- }
404
-
405
- MatrixType reconstructedMatrix() const;
406
-
407
- EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
408
- inline Index rows() const EIGEN_NOEXCEPT { return m_lu.rows(); }
409
- EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
410
- inline Index cols() const EIGEN_NOEXCEPT { return m_lu.cols(); }
411
-
412
- #ifndef EIGEN_PARSED_BY_DOXYGEN
413
- template<typename RhsType, typename DstType>
414
- void _solve_impl(const RhsType &rhs, DstType &dst) const;
415
-
416
- template<bool Conjugate, typename RhsType, typename DstType>
417
- void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const;
418
- #endif
419
-
420
- protected:
421
-
422
- static void check_template_parameters()
423
- {
424
- EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
425
- }
426
-
427
- void computeInPlace();
428
-
429
- MatrixType m_lu;
430
- PermutationPType m_p;
431
- PermutationQType m_q;
432
- IntColVectorType m_rowsTranspositions;
433
- IntRowVectorType m_colsTranspositions;
434
- Index m_nonzero_pivots;
435
- RealScalar m_l1_norm;
436
- RealScalar m_maxpivot, m_prescribedThreshold;
437
- signed char m_det_pq;
438
- bool m_isInitialized, m_usePrescribedThreshold;
439
- };
440
-
441
- template<typename MatrixType>
442
- FullPivLU<MatrixType>::FullPivLU()
443
- : m_isInitialized(false), m_usePrescribedThreshold(false)
444
- {
445
- }
446
-
447
- template<typename MatrixType>
448
- FullPivLU<MatrixType>::FullPivLU(Index rows, Index cols)
449
- : m_lu(rows, cols),
450
- m_p(rows),
451
- m_q(cols),
452
- m_rowsTranspositions(rows),
453
- m_colsTranspositions(cols),
454
- m_isInitialized(false),
455
- m_usePrescribedThreshold(false)
456
- {
457
- }
458
-
459
- template<typename MatrixType>
460
- template<typename InputType>
461
- FullPivLU<MatrixType>::FullPivLU(const EigenBase<InputType>& matrix)
462
- : m_lu(matrix.rows(), matrix.cols()),
463
- m_p(matrix.rows()),
464
- m_q(matrix.cols()),
465
- m_rowsTranspositions(matrix.rows()),
466
- m_colsTranspositions(matrix.cols()),
467
- m_isInitialized(false),
468
- m_usePrescribedThreshold(false)
469
- {
470
- compute(matrix.derived());
471
- }
472
-
473
- template<typename MatrixType>
474
- template<typename InputType>
475
- FullPivLU<MatrixType>::FullPivLU(EigenBase<InputType>& matrix)
476
- : m_lu(matrix.derived()),
477
- m_p(matrix.rows()),
478
- m_q(matrix.cols()),
479
- m_rowsTranspositions(matrix.rows()),
480
- m_colsTranspositions(matrix.cols()),
481
- m_isInitialized(false),
482
- m_usePrescribedThreshold(false)
483
- {
484
- computeInPlace();
485
- }
486
-
487
- template<typename MatrixType>
488
- void FullPivLU<MatrixType>::computeInPlace()
489
- {
490
- check_template_parameters();
491
-
492
- // the permutations are stored as int indices, so just to be sure:
493
- eigen_assert(m_lu.rows()<=NumTraits<int>::highest() && m_lu.cols()<=NumTraits<int>::highest());
494
-
495
- m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff();
496
-
497
- const Index size = m_lu.diagonalSize();
498
- const Index rows = m_lu.rows();
499
- const Index cols = m_lu.cols();
500
-
501
- // will store the transpositions, before we accumulate them at the end.
502
- // can't accumulate on-the-fly because that will be done in reverse order for the rows.
503
- m_rowsTranspositions.resize(m_lu.rows());
504
- m_colsTranspositions.resize(m_lu.cols());
505
- Index number_of_transpositions = 0; // number of NONTRIVIAL transpositions, i.e. m_rowsTranspositions[i]!=i
506
-
507
- m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
508
- m_maxpivot = RealScalar(0);
509
-
510
- for(Index k = 0; k < size; ++k)
511
- {
512
- // First, we need to find the pivot.
513
-
514
- // biggest coefficient in the remaining bottom-right corner (starting at row k, col k)
515
- Index row_of_biggest_in_corner, col_of_biggest_in_corner;
516
- typedef internal::scalar_score_coeff_op<Scalar> Scoring;
517
- typedef typename Scoring::result_type Score;
518
- Score biggest_in_corner;
519
- biggest_in_corner = m_lu.bottomRightCorner(rows-k, cols-k)
520
- .unaryExpr(Scoring())
521
- .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
522
- row_of_biggest_in_corner += k; // correct the values! since they were computed in the corner,
523
- col_of_biggest_in_corner += k; // need to add k to them.
524
-
525
- if(biggest_in_corner==Score(0))
526
- {
527
- // before exiting, make sure to initialize the still uninitialized transpositions
528
- // in a sane state without destroying what we already have.
529
- m_nonzero_pivots = k;
530
- for(Index i = k; i < size; ++i)
531
- {
532
- m_rowsTranspositions.coeffRef(i) = internal::convert_index<StorageIndex>(i);
533
- m_colsTranspositions.coeffRef(i) = internal::convert_index<StorageIndex>(i);
534
- }
535
- break;
536
- }
537
-
538
- RealScalar abs_pivot = internal::abs_knowing_score<Scalar>()(m_lu(row_of_biggest_in_corner, col_of_biggest_in_corner), biggest_in_corner);
539
- if(abs_pivot > m_maxpivot) m_maxpivot = abs_pivot;
540
-
541
- // Now that we've found the pivot, we need to apply the row/col swaps to
542
- // bring it to the location (k,k).
543
-
544
- m_rowsTranspositions.coeffRef(k) = internal::convert_index<StorageIndex>(row_of_biggest_in_corner);
545
- m_colsTranspositions.coeffRef(k) = internal::convert_index<StorageIndex>(col_of_biggest_in_corner);
546
- if(k != row_of_biggest_in_corner) {
547
- m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner));
548
- ++number_of_transpositions;
549
- }
550
- if(k != col_of_biggest_in_corner) {
551
- m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner));
552
- ++number_of_transpositions;
553
- }
554
-
555
- // Now that the pivot is at the right location, we update the remaining
556
- // bottom-right corner by Gaussian elimination.
557
-
558
- if(k<rows-1)
559
- m_lu.col(k).tail(rows-k-1) /= m_lu.coeff(k,k);
560
- if(k<size-1)
561
- m_lu.block(k+1,k+1,rows-k-1,cols-k-1).noalias() -= m_lu.col(k).tail(rows-k-1) * m_lu.row(k).tail(cols-k-1);
562
- }
563
-
564
- // the main loop is over, we still have to accumulate the transpositions to find the
565
- // permutations P and Q
566
-
567
- m_p.setIdentity(rows);
568
- for(Index k = size-1; k >= 0; --k)
569
- m_p.applyTranspositionOnTheRight(k, m_rowsTranspositions.coeff(k));
570
-
571
- m_q.setIdentity(cols);
572
- for(Index k = 0; k < size; ++k)
573
- m_q.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k));
574
-
575
- m_det_pq = (number_of_transpositions%2) ? -1 : 1;
576
-
577
- m_isInitialized = true;
578
- }
579
-
580
- template<typename MatrixType>
581
- typename internal::traits<MatrixType>::Scalar FullPivLU<MatrixType>::determinant() const
582
- {
583
- eigen_assert(m_isInitialized && "LU is not initialized.");
584
- eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the determinant of a non-square matrix!");
585
- return Scalar(m_det_pq) * Scalar(m_lu.diagonal().prod());
586
- }
587
-
588
- /** \returns the matrix represented by the decomposition,
589
- * i.e., it returns the product: \f$ P^{-1} L U Q^{-1} \f$.
590
- * This function is provided for debug purposes. */
591
- template<typename MatrixType>
592
- MatrixType FullPivLU<MatrixType>::reconstructedMatrix() const
593
- {
594
- eigen_assert(m_isInitialized && "LU is not initialized.");
595
- const Index smalldim = (std::min)(m_lu.rows(), m_lu.cols());
596
- // LU
597
- MatrixType res(m_lu.rows(),m_lu.cols());
598
- // FIXME the .toDenseMatrix() should not be needed...
599
- res = m_lu.leftCols(smalldim)
600
- .template triangularView<UnitLower>().toDenseMatrix()
601
- * m_lu.topRows(smalldim)
602
- .template triangularView<Upper>().toDenseMatrix();
603
-
604
- // P^{-1}(LU)
605
- res = m_p.inverse() * res;
606
-
607
- // (P^{-1}LU)Q^{-1}
608
- res = res * m_q.inverse();
609
-
610
- return res;
611
- }
612
-
613
- /********* Implementation of kernel() **************************************************/
614
-
615
- namespace internal {
616
- template<typename _MatrixType>
617
- struct kernel_retval<FullPivLU<_MatrixType> >
618
- : kernel_retval_base<FullPivLU<_MatrixType> >
619
- {
620
- EIGEN_MAKE_KERNEL_HELPERS(FullPivLU<_MatrixType>)
621
-
622
- enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
623
- MatrixType::MaxColsAtCompileTime,
624
- MatrixType::MaxRowsAtCompileTime)
625
- };
626
-
627
- template<typename Dest> void evalTo(Dest& dst) const
628
- {
629
- using std::abs;
630
- const Index cols = dec().matrixLU().cols(), dimker = cols - rank();
631
- if(dimker == 0)
632
- {
633
- // The Kernel is just {0}, so it doesn't have a basis properly speaking, but let's
634
- // avoid crashing/asserting as that depends on floating point calculations. Let's
635
- // just return a single column vector filled with zeros.
636
- dst.setZero();
637
- return;
638
- }
639
-
640
- /* Let us use the following lemma:
641
- *
642
- * Lemma: If the matrix A has the LU decomposition PAQ = LU,
643
- * then Ker A = Q(Ker U).
644
- *
645
- * Proof: trivial: just keep in mind that P, Q, L are invertible.
646
- */
647
-
648
- /* Thus, all we need to do is to compute Ker U, and then apply Q.
649
- *
650
- * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end.
651
- * Thus, the diagonal of U ends with exactly
652
- * dimKer zero's. Let us use that to construct dimKer linearly
653
- * independent vectors in Ker U.
654
- */
655
-
656
- Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
657
- RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
658
- Index p = 0;
659
- for(Index i = 0; i < dec().nonzeroPivots(); ++i)
660
- if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
661
- pivots.coeffRef(p++) = i;
662
- eigen_internal_assert(p == rank());
663
-
664
- // we construct a temporaty trapezoid matrix m, by taking the U matrix and
665
- // permuting the rows and cols to bring the nonnegligible pivots to the top of
666
- // the main diagonal. We need that to be able to apply our triangular solvers.
667
- // FIXME when we get triangularView-for-rectangular-matrices, this can be simplified
668
- Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, MatrixType::Options,
669
- MaxSmallDimAtCompileTime, MatrixType::MaxColsAtCompileTime>
670
- m(dec().matrixLU().block(0, 0, rank(), cols));
671
- for(Index i = 0; i < rank(); ++i)
672
- {
673
- if(i) m.row(i).head(i).setZero();
674
- m.row(i).tail(cols-i) = dec().matrixLU().row(pivots.coeff(i)).tail(cols-i);
675
- }
676
- m.block(0, 0, rank(), rank());
677
- m.block(0, 0, rank(), rank()).template triangularView<StrictlyLower>().setZero();
678
- for(Index i = 0; i < rank(); ++i)
679
- m.col(i).swap(m.col(pivots.coeff(i)));
680
-
681
- // ok, we have our trapezoid matrix, we can apply the triangular solver.
682
- // notice that the math behind this suggests that we should apply this to the
683
- // negative of the RHS, but for performance we just put the negative sign elsewhere, see below.
684
- m.topLeftCorner(rank(), rank())
685
- .template triangularView<Upper>().solveInPlace(
686
- m.topRightCorner(rank(), dimker)
687
- );
688
-
689
- // now we must undo the column permutation that we had applied!
690
- for(Index i = rank()-1; i >= 0; --i)
691
- m.col(i).swap(m.col(pivots.coeff(i)));
692
-
693
- // see the negative sign in the next line, that's what we were talking about above.
694
- for(Index i = 0; i < rank(); ++i) dst.row(dec().permutationQ().indices().coeff(i)) = -m.row(i).tail(dimker);
695
- for(Index i = rank(); i < cols; ++i) dst.row(dec().permutationQ().indices().coeff(i)).setZero();
696
- for(Index k = 0; k < dimker; ++k) dst.coeffRef(dec().permutationQ().indices().coeff(rank()+k), k) = Scalar(1);
697
- }
698
- };
699
-
700
- /***** Implementation of image() *****************************************************/
701
-
702
- template<typename _MatrixType>
703
- struct image_retval<FullPivLU<_MatrixType> >
704
- : image_retval_base<FullPivLU<_MatrixType> >
705
- {
706
- EIGEN_MAKE_IMAGE_HELPERS(FullPivLU<_MatrixType>)
707
-
708
- enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
709
- MatrixType::MaxColsAtCompileTime,
710
- MatrixType::MaxRowsAtCompileTime)
711
- };
712
-
713
- template<typename Dest> void evalTo(Dest& dst) const
714
- {
715
- using std::abs;
716
- if(rank() == 0)
717
- {
718
- // The Image is just {0}, so it doesn't have a basis properly speaking, but let's
719
- // avoid crashing/asserting as that depends on floating point calculations. Let's
720
- // just return a single column vector filled with zeros.
721
- dst.setZero();
722
- return;
723
- }
724
-
725
- Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
726
- RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
727
- Index p = 0;
728
- for(Index i = 0; i < dec().nonzeroPivots(); ++i)
729
- if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
730
- pivots.coeffRef(p++) = i;
731
- eigen_internal_assert(p == rank());
732
-
733
- for(Index i = 0; i < rank(); ++i)
734
- dst.col(i) = originalMatrix().col(dec().permutationQ().indices().coeff(pivots.coeff(i)));
735
- }
736
- };
737
-
738
- /***** Implementation of solve() *****************************************************/
739
-
740
- } // end namespace internal
741
-
742
- #ifndef EIGEN_PARSED_BY_DOXYGEN
743
- template<typename _MatrixType>
744
- template<typename RhsType, typename DstType>
745
- void FullPivLU<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
746
- {
747
- /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
748
- * So we proceed as follows:
749
- * Step 1: compute c = P * rhs.
750
- * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible.
751
- * Step 3: replace c by the solution x to Ux = c. May or may not exist.
752
- * Step 4: result = Q * c;
753
- */
754
-
755
- const Index rows = this->rows(),
756
- cols = this->cols(),
757
- nonzero_pivots = this->rank();
758
- const Index smalldim = (std::min)(rows, cols);
759
-
760
- if(nonzero_pivots == 0)
761
- {
762
- dst.setZero();
763
- return;
764
- }
765
-
766
- typename RhsType::PlainObject c(rhs.rows(), rhs.cols());
767
-
768
- // Step 1
769
- c = permutationP() * rhs;
770
-
771
- // Step 2
772
- m_lu.topLeftCorner(smalldim,smalldim)
773
- .template triangularView<UnitLower>()
774
- .solveInPlace(c.topRows(smalldim));
775
- if(rows>cols)
776
- c.bottomRows(rows-cols) -= m_lu.bottomRows(rows-cols) * c.topRows(cols);
777
-
778
- // Step 3
779
- m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots)
780
- .template triangularView<Upper>()
781
- .solveInPlace(c.topRows(nonzero_pivots));
782
-
783
- // Step 4
784
- for(Index i = 0; i < nonzero_pivots; ++i)
785
- dst.row(permutationQ().indices().coeff(i)) = c.row(i);
786
- for(Index i = nonzero_pivots; i < m_lu.cols(); ++i)
787
- dst.row(permutationQ().indices().coeff(i)).setZero();
788
- }
789
-
790
- template<typename _MatrixType>
791
- template<bool Conjugate, typename RhsType, typename DstType>
792
- void FullPivLU<_MatrixType>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
793
- {
794
- /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1},
795
- * and since permutations are real and unitary, we can write this
796
- * as A^T = Q U^T L^T P,
797
- * So we proceed as follows:
798
- * Step 1: compute c = Q^T rhs.
799
- * Step 2: replace c by the solution x to U^T x = c. May or may not exist.
800
- * Step 3: replace c by the solution x to L^T x = c.
801
- * Step 4: result = P^T c.
802
- * If Conjugate is true, replace "^T" by "^*" above.
803
- */
804
-
805
- const Index rows = this->rows(), cols = this->cols(),
806
- nonzero_pivots = this->rank();
807
- const Index smalldim = (std::min)(rows, cols);
808
-
809
- if(nonzero_pivots == 0)
810
- {
811
- dst.setZero();
812
- return;
813
- }
814
-
815
- typename RhsType::PlainObject c(rhs.rows(), rhs.cols());
816
-
817
- // Step 1
818
- c = permutationQ().inverse() * rhs;
819
-
820
- // Step 2
821
- m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots)
822
- .template triangularView<Upper>()
823
- .transpose()
824
- .template conjugateIf<Conjugate>()
825
- .solveInPlace(c.topRows(nonzero_pivots));
826
-
827
- // Step 3
828
- m_lu.topLeftCorner(smalldim, smalldim)
829
- .template triangularView<UnitLower>()
830
- .transpose()
831
- .template conjugateIf<Conjugate>()
832
- .solveInPlace(c.topRows(smalldim));
833
-
834
- // Step 4
835
- PermutationPType invp = permutationP().inverse().eval();
836
- for(Index i = 0; i < smalldim; ++i)
837
- dst.row(invp.indices().coeff(i)) = c.row(i);
838
- for(Index i = smalldim; i < rows; ++i)
839
- dst.row(invp.indices().coeff(i)).setZero();
840
- }
841
-
842
- #endif
843
-
844
- namespace internal {
845
-
846
-
847
- /***** Implementation of inverse() *****************************************************/
848
- template<typename DstXprType, typename MatrixType>
849
- struct Assignment<DstXprType, Inverse<FullPivLU<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename FullPivLU<MatrixType>::Scalar>, Dense2Dense>
850
- {
851
- typedef FullPivLU<MatrixType> LuType;
852
- typedef Inverse<LuType> SrcXprType;
853
- static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename MatrixType::Scalar> &)
854
- {
855
- dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
856
- }
857
- };
858
- } // end namespace internal
859
-
860
- /******* MatrixBase methods *****************************************************************/
861
-
862
- /** \lu_module
863
- *
864
- * \return the full-pivoting LU decomposition of \c *this.
865
- *
866
- * \sa class FullPivLU
867
- */
868
- template<typename Derived>
869
- inline const FullPivLU<typename MatrixBase<Derived>::PlainObject>
870
- MatrixBase<Derived>::fullPivLu() const
871
- {
872
- return FullPivLU<PlainObject>(eval());
873
- }
874
-
875
- } // end namespace Eigen
876
-
877
- #endif // EIGEN_LU_H