semantic-link-labs 0.8.3__py3-none-any.whl → 0.8.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of semantic-link-labs might be problematic. Click here for more details.
- {semantic_link_labs-0.8.3.dist-info → semantic_link_labs-0.8.4.dist-info}/METADATA +33 -8
- {semantic_link_labs-0.8.3.dist-info → semantic_link_labs-0.8.4.dist-info}/RECORD +101 -98
- {semantic_link_labs-0.8.3.dist-info → semantic_link_labs-0.8.4.dist-info}/WHEEL +1 -1
- sempy_labs/__init__.py +24 -0
- sempy_labs/_bpa_translation/_model/_translations_am-ET.po +24 -5
- sempy_labs/_bpa_translation/_model/_translations_ar-AE.po +28 -4
- sempy_labs/_bpa_translation/_model/_translations_bg-BG.po +34 -4
- sempy_labs/_bpa_translation/_model/_translations_ca-ES.po +33 -4
- sempy_labs/_bpa_translation/_model/_translations_cs-CZ.po +31 -4
- sempy_labs/_bpa_translation/_model/_translations_da-DK.po +31 -4
- sempy_labs/_bpa_translation/_model/_translations_de-DE.po +34 -4
- sempy_labs/_bpa_translation/_model/_translations_el-GR.po +36 -4
- sempy_labs/_bpa_translation/_model/_translations_es-ES.po +90 -58
- sempy_labs/_bpa_translation/_model/_translations_fa-IR.po +31 -5
- sempy_labs/_bpa_translation/_model/_translations_fi-FI.po +31 -4
- sempy_labs/_bpa_translation/_model/_translations_fr-FR.po +34 -4
- sempy_labs/_bpa_translation/_model/_translations_ga-IE.po +34 -4
- sempy_labs/_bpa_translation/_model/_translations_he-IL.po +28 -4
- sempy_labs/_bpa_translation/_model/_translations_hi-IN.po +32 -4
- sempy_labs/_bpa_translation/_model/_translations_hu-HU.po +32 -4
- sempy_labs/_bpa_translation/_model/_translations_id-ID.po +32 -4
- sempy_labs/_bpa_translation/_model/_translations_is-IS.po +31 -4
- sempy_labs/_bpa_translation/_model/_translations_it-IT.po +34 -4
- sempy_labs/_bpa_translation/_model/_translations_ja-JP.po +24 -4
- sempy_labs/_bpa_translation/_model/_translations_ko-KR.po +72 -56
- sempy_labs/_bpa_translation/_model/_translations_mt-MT.po +34 -4
- sempy_labs/_bpa_translation/_model/_translations_nl-NL.po +34 -4
- sempy_labs/_bpa_translation/_model/_translations_pl-PL.po +95 -71
- sempy_labs/_bpa_translation/_model/_translations_pt-BR.po +32 -4
- sempy_labs/_bpa_translation/_model/_translations_pt-PT.po +32 -4
- sempy_labs/_bpa_translation/_model/_translations_ro-RO.po +33 -4
- sempy_labs/_bpa_translation/_model/_translations_ru-RU.po +34 -4
- sempy_labs/_bpa_translation/_model/_translations_sk-SK.po +31 -4
- sempy_labs/_bpa_translation/_model/_translations_sl-SL.po +32 -4
- sempy_labs/_bpa_translation/_model/_translations_sv-SE.po +32 -4
- sempy_labs/_bpa_translation/_model/_translations_ta-IN.po +32 -4
- sempy_labs/_bpa_translation/_model/_translations_te-IN.po +31 -4
- sempy_labs/_bpa_translation/_model/_translations_th-TH.po +31 -4
- sempy_labs/_bpa_translation/_model/_translations_tr-TR.po +32 -4
- sempy_labs/_bpa_translation/_model/_translations_uk-UA.po +100 -72
- sempy_labs/_bpa_translation/_model/_translations_zh-CN.po +23 -5
- sempy_labs/_bpa_translation/_model/_translations_zu-ZA.po +32 -4
- sempy_labs/_capacities.py +49 -14
- sempy_labs/_capacity_migration.py +1 -7
- sempy_labs/_data_pipelines.py +6 -0
- sempy_labs/_dataflows.py +4 -0
- sempy_labs/_deployment_pipelines.py +13 -7
- sempy_labs/_environments.py +6 -0
- sempy_labs/_eventhouses.py +6 -0
- sempy_labs/_eventstreams.py +6 -0
- sempy_labs/_external_data_shares.py +6 -4
- sempy_labs/_generate_semantic_model.py +26 -3
- sempy_labs/_git.py +14 -14
- sempy_labs/_helper_functions.py +172 -0
- sempy_labs/_icons.py +55 -22
- sempy_labs/_kql_databases.py +6 -0
- sempy_labs/_kql_querysets.py +6 -0
- sempy_labs/_list_functions.py +1 -1
- sempy_labs/_managed_private_endpoints.py +166 -0
- sempy_labs/_mirrored_warehouses.py +2 -0
- sempy_labs/_ml_experiments.py +6 -0
- sempy_labs/_ml_models.py +6 -0
- sempy_labs/_model_bpa.py +6 -1
- sempy_labs/_model_bpa_bulk.py +11 -25
- sempy_labs/_model_bpa_rules.py +8 -3
- sempy_labs/_notebooks.py +107 -12
- sempy_labs/_query_scale_out.py +8 -6
- sempy_labs/_refresh_semantic_model.py +299 -49
- sempy_labs/_spark.py +12 -5
- sempy_labs/_translations.py +2 -0
- sempy_labs/_vertipaq.py +58 -67
- sempy_labs/_warehouses.py +79 -0
- sempy_labs/_workloads.py +128 -0
- sempy_labs/_workspace_identity.py +4 -4
- sempy_labs/_workspaces.py +14 -1
- sempy_labs/admin/_basic_functions.py +85 -43
- sempy_labs/admin/_domains.py +18 -18
- sempy_labs/directlake/__init__.py +2 -0
- sempy_labs/directlake/_directlake_schema_sync.py +2 -1
- sempy_labs/directlake/_dl_helper.py +4 -1
- sempy_labs/directlake/_get_shared_expression.py +7 -1
- sempy_labs/directlake/_guardrails.py +2 -1
- sempy_labs/directlake/_show_unsupported_directlake_objects.py +1 -7
- sempy_labs/directlake/_update_directlake_model_lakehouse_connection.py +78 -0
- sempy_labs/directlake/_update_directlake_partition_entity.py +13 -32
- sempy_labs/lakehouse/_get_lakehouse_tables.py +6 -2
- sempy_labs/lakehouse/_shortcuts.py +4 -0
- sempy_labs/migration/_migrate_calctables_to_lakehouse.py +3 -2
- sempy_labs/migration/_migrate_calctables_to_semantic_model.py +2 -0
- sempy_labs/migration/_migrate_model_objects_to_semantic_model.py +2 -8
- sempy_labs/migration/_migrate_tables_columns_to_semantic_model.py +17 -0
- sempy_labs/migration/_migration_validation.py +2 -0
- sempy_labs/migration/_refresh_calc_tables.py +1 -0
- sempy_labs/report/__init__.py +4 -1
- sempy_labs/report/_generate_report.py +6 -0
- sempy_labs/report/_paginated.py +74 -0
- sempy_labs/report/_report_functions.py +6 -0
- sempy_labs/report/_report_rebind.py +2 -0
- sempy_labs/tom/_model.py +64 -33
- {semantic_link_labs-0.8.3.dist-info → semantic_link_labs-0.8.4.dist-info}/LICENSE +0 -0
- {semantic_link_labs-0.8.3.dist-info → semantic_link_labs-0.8.4.dist-info}/top_level.txt +0 -0
sempy_labs/_model_bpa_bulk.py
CHANGED
|
@@ -59,24 +59,6 @@ def run_model_bpa_bulk(
|
|
|
59
59
|
|
|
60
60
|
skip_models.extend(["ModelBPA", "Fabric Capacity Metrics"])
|
|
61
61
|
|
|
62
|
-
cols = [
|
|
63
|
-
"Capacity Name",
|
|
64
|
-
"Capacity Id",
|
|
65
|
-
"Workspace Name",
|
|
66
|
-
"Workspace Id",
|
|
67
|
-
"Dataset Name",
|
|
68
|
-
"Dataset Id",
|
|
69
|
-
"Configured By",
|
|
70
|
-
"Rule Name",
|
|
71
|
-
"Category",
|
|
72
|
-
"Severity",
|
|
73
|
-
"Object Type",
|
|
74
|
-
"Object Name",
|
|
75
|
-
"Description",
|
|
76
|
-
"URL",
|
|
77
|
-
"RunId",
|
|
78
|
-
"Timestamp",
|
|
79
|
-
]
|
|
80
62
|
now = datetime.datetime.now()
|
|
81
63
|
output_table = "modelbparesults"
|
|
82
64
|
lakehouse_workspace = fabric.resolve_workspace_name()
|
|
@@ -106,7 +88,7 @@ def run_model_bpa_bulk(
|
|
|
106
88
|
wksp = r["Name"]
|
|
107
89
|
wksp_id = r["Id"]
|
|
108
90
|
capacity_id, capacity_name = resolve_workspace_capacity(workspace=wksp)
|
|
109
|
-
df = pd.DataFrame(columns=
|
|
91
|
+
df = pd.DataFrame(columns=list(icons.bpa_schema.keys()))
|
|
110
92
|
dfD = fabric.list_datasets(workspace=wksp, mode="rest")
|
|
111
93
|
|
|
112
94
|
# Exclude default semantic models
|
|
@@ -137,8 +119,8 @@ def run_model_bpa_bulk(
|
|
|
137
119
|
rules=rules,
|
|
138
120
|
extended=extended,
|
|
139
121
|
)
|
|
140
|
-
bpa_df["Capacity Id"] = capacity_id
|
|
141
122
|
bpa_df["Capacity Name"] = capacity_name
|
|
123
|
+
bpa_df["Capacity Id"] = capacity_id
|
|
142
124
|
bpa_df["Workspace Name"] = wksp
|
|
143
125
|
bpa_df["Workspace Id"] = wksp_id
|
|
144
126
|
bpa_df["Dataset Name"] = dataset_name
|
|
@@ -146,7 +128,7 @@ def run_model_bpa_bulk(
|
|
|
146
128
|
bpa_df["Configured By"] = config_by
|
|
147
129
|
bpa_df["Timestamp"] = now
|
|
148
130
|
bpa_df["RunId"] = runId
|
|
149
|
-
bpa_df = bpa_df[
|
|
131
|
+
bpa_df = bpa_df[list(icons.bpa_schema.keys())]
|
|
150
132
|
|
|
151
133
|
bpa_df["RunId"] = bpa_df["RunId"].astype("int")
|
|
152
134
|
|
|
@@ -166,10 +148,17 @@ def run_model_bpa_bulk(
|
|
|
166
148
|
print(
|
|
167
149
|
f"{icons.in_progress} Saving the Model BPA results of the '{wksp}' workspace to the '{output_table}' within the '{lakehouse}' lakehouse within the '{lakehouse_workspace}' workspace..."
|
|
168
150
|
)
|
|
151
|
+
|
|
152
|
+
schema = {
|
|
153
|
+
key.replace(" ", "_"): value
|
|
154
|
+
for key, value in icons.bpa_schema.items()
|
|
155
|
+
}
|
|
156
|
+
|
|
169
157
|
save_as_delta_table(
|
|
170
158
|
dataframe=df,
|
|
171
159
|
delta_table_name=output_table,
|
|
172
160
|
write_mode="append",
|
|
161
|
+
schema=schema,
|
|
173
162
|
merge_schema=True,
|
|
174
163
|
)
|
|
175
164
|
print(
|
|
@@ -203,9 +192,6 @@ def create_model_bpa_semantic_model(
|
|
|
203
192
|
The workspace in which the lakehouse resides.
|
|
204
193
|
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
205
194
|
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
206
|
-
|
|
207
|
-
Returns
|
|
208
|
-
-------
|
|
209
195
|
"""
|
|
210
196
|
|
|
211
197
|
from sempy_labs._helper_functions import resolve_lakehouse_name
|
|
@@ -244,7 +230,7 @@ def create_model_bpa_semantic_model(
|
|
|
244
230
|
tom.model
|
|
245
231
|
|
|
246
232
|
dyn_connect()
|
|
247
|
-
|
|
233
|
+
icons.sll_tags.append("ModelBPABulk")
|
|
248
234
|
table_exists = False
|
|
249
235
|
with connect_semantic_model(
|
|
250
236
|
dataset=dataset, readonly=False, workspace=lakehouse_workspace
|
sempy_labs/_model_bpa_rules.py
CHANGED
|
@@ -158,6 +158,7 @@ def model_bpa_rules(
|
|
|
158
158
|
and r.ToTable.Name == obj.Name
|
|
159
159
|
for r in tom.used_in_relationships(object=obj)
|
|
160
160
|
),
|
|
161
|
+
"When using DirectQuery, dimension tables should be set to Dual mode in order to improve query performance.",
|
|
161
162
|
"https://learn.microsoft.com/power-bi/transform-model/desktop-storage-mode#propagation-of-the-dual-setting",
|
|
162
163
|
),
|
|
163
164
|
(
|
|
@@ -492,6 +493,7 @@ def model_bpa_rules(
|
|
|
492
493
|
obj.Expression,
|
|
493
494
|
flags=re.IGNORECASE,
|
|
494
495
|
),
|
|
496
|
+
"Adding a constant value may lead to performance degradation.",
|
|
495
497
|
),
|
|
496
498
|
(
|
|
497
499
|
"DAX Expressions",
|
|
@@ -643,14 +645,15 @@ def model_bpa_rules(
|
|
|
643
645
|
"Calculation groups with no calculation items",
|
|
644
646
|
lambda obj, tom: obj.CalculationGroup is not None
|
|
645
647
|
and not any(obj.CalculationGroup.CalculationItems),
|
|
648
|
+
"Calculation groups have no function unless they have calculation items.",
|
|
646
649
|
),
|
|
647
650
|
(
|
|
648
651
|
"Maintenance",
|
|
649
|
-
"Column",
|
|
652
|
+
["Column", "Measure", "Table"],
|
|
650
653
|
"Info",
|
|
651
654
|
"Visible objects with no description",
|
|
652
655
|
lambda obj, tom: obj.IsHidden is False and len(obj.Description) == 0,
|
|
653
|
-
"
|
|
656
|
+
"Add descriptions to objects. These descriptions are shown on hover within the Field List in Power BI Desktop. Additionally, you can leverage these descriptions to create an automated data dictionary.",
|
|
654
657
|
),
|
|
655
658
|
(
|
|
656
659
|
"Formatting",
|
|
@@ -710,6 +713,7 @@ def model_bpa_rules(
|
|
|
710
713
|
"Percentages should be formatted with thousands separators and 1 decimal",
|
|
711
714
|
lambda obj, tom: "%" in obj.FormatString
|
|
712
715
|
and obj.FormatString != "#,0.0%;-#,0.0%;#,0.0%",
|
|
716
|
+
"For a better user experience, percengage measures should be formatted with a '%' sign.",
|
|
713
717
|
),
|
|
714
718
|
(
|
|
715
719
|
"Formatting",
|
|
@@ -719,6 +723,7 @@ def model_bpa_rules(
|
|
|
719
723
|
lambda obj, tom: "$" not in obj.FormatString
|
|
720
724
|
and "%" not in obj.FormatString
|
|
721
725
|
and obj.FormatString not in ["#,0", "#,0.0"],
|
|
726
|
+
"For a better user experience, whole numbers should be formatted with commas.",
|
|
722
727
|
),
|
|
723
728
|
(
|
|
724
729
|
"Formatting",
|
|
@@ -731,7 +736,7 @@ def model_bpa_rules(
|
|
|
731
736
|
and r.FromCardinality == TOM.RelationshipEndCardinality.Many
|
|
732
737
|
for r in tom.used_in_relationships(object=obj)
|
|
733
738
|
),
|
|
734
|
-
"Foreign keys should always be hidden.",
|
|
739
|
+
"Foreign keys should always be hidden as they should not be used by end users.",
|
|
735
740
|
),
|
|
736
741
|
(
|
|
737
742
|
"Formatting",
|
sempy_labs/_notebooks.py
CHANGED
|
@@ -18,6 +18,8 @@ def get_notebook_definition(
|
|
|
18
18
|
"""
|
|
19
19
|
Obtains the notebook definition.
|
|
20
20
|
|
|
21
|
+
This is a wrapper function for the following API: `Items - Get Notebook Definition <https://learn.microsoft.com/rest/api/fabric/notebook/items/get-notebook-definition`_.
|
|
22
|
+
|
|
21
23
|
Parameters
|
|
22
24
|
----------
|
|
23
25
|
notebook_name : str
|
|
@@ -63,6 +65,7 @@ def import_notebook_from_web(
|
|
|
63
65
|
url: str,
|
|
64
66
|
description: Optional[str] = None,
|
|
65
67
|
workspace: Optional[str] = None,
|
|
68
|
+
overwrite: bool = False,
|
|
66
69
|
):
|
|
67
70
|
"""
|
|
68
71
|
Creates a new notebook within a workspace based on a Jupyter notebook hosted in the web.
|
|
@@ -83,16 +86,12 @@ def import_notebook_from_web(
|
|
|
83
86
|
The name of the workspace.
|
|
84
87
|
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
85
88
|
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
89
|
+
overwrite : bool, default=False
|
|
90
|
+
If set to True, overwrites the existing notebook in the workspace if it exists.
|
|
86
91
|
"""
|
|
87
92
|
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
dfI = fabric.list_items(workspace=workspace, type="Notebook")
|
|
91
|
-
dfI_filt = dfI[dfI["Display Name"] == notebook_name]
|
|
92
|
-
if len(dfI_filt) > 0:
|
|
93
|
-
raise ValueError(
|
|
94
|
-
f"{icons.red_dot} The '{notebook_name}' already exists within the '{workspace}' workspace."
|
|
95
|
-
)
|
|
93
|
+
if workspace is None:
|
|
94
|
+
workspace = fabric.resolve_workspace_name(workspace)
|
|
96
95
|
|
|
97
96
|
# Fix links to go to the raw github file
|
|
98
97
|
starting_text = "https://github.com/"
|
|
@@ -105,11 +104,56 @@ def import_notebook_from_web(
|
|
|
105
104
|
response = requests.get(url)
|
|
106
105
|
if response.status_code != 200:
|
|
107
106
|
raise FabricHTTPException(response)
|
|
108
|
-
|
|
109
|
-
|
|
107
|
+
|
|
108
|
+
dfI = fabric.list_items(workspace=workspace, type="Notebook")
|
|
109
|
+
dfI_filt = dfI[dfI["Display Name"] == notebook_name]
|
|
110
|
+
if len(dfI_filt) == 0:
|
|
111
|
+
create_notebook(
|
|
112
|
+
name=notebook_name,
|
|
113
|
+
notebook_content=response.content,
|
|
114
|
+
workspace=workspace,
|
|
115
|
+
description=description,
|
|
116
|
+
)
|
|
117
|
+
elif len(dfI_filt) > 0 and overwrite:
|
|
118
|
+
update_notebook_definition(
|
|
119
|
+
name=notebook_name, notebook_content=response.content, workspace=workspace
|
|
120
|
+
)
|
|
121
|
+
else:
|
|
122
|
+
raise ValueError(
|
|
123
|
+
f"{icons.red_dot} The '{notebook_name}' already exists within the '{workspace}' workspace and 'overwrite' is set to False."
|
|
124
|
+
)
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
def create_notebook(
|
|
128
|
+
name: str,
|
|
129
|
+
notebook_content: str,
|
|
130
|
+
description: Optional[str] = None,
|
|
131
|
+
workspace: Optional[str] = None,
|
|
132
|
+
):
|
|
133
|
+
"""
|
|
134
|
+
Creates a new notebook with a definition within a workspace.
|
|
135
|
+
|
|
136
|
+
Parameters
|
|
137
|
+
----------
|
|
138
|
+
name : str
|
|
139
|
+
The name of the notebook to be created.
|
|
140
|
+
notebook_content : str
|
|
141
|
+
The Jupyter notebook content (not in Base64 format).
|
|
142
|
+
description : str, default=None
|
|
143
|
+
The description of the notebook.
|
|
144
|
+
Defaults to None which does not place a description.
|
|
145
|
+
workspace : str, default=None
|
|
146
|
+
The name of the workspace.
|
|
147
|
+
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
148
|
+
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
149
|
+
"""
|
|
150
|
+
|
|
151
|
+
(workspace, workspace_id) = resolve_workspace_name_and_id(workspace)
|
|
152
|
+
client = fabric.FabricRestClient()
|
|
153
|
+
notebook_payload = base64.b64encode(notebook_content)
|
|
110
154
|
|
|
111
155
|
request_body = {
|
|
112
|
-
"displayName":
|
|
156
|
+
"displayName": name,
|
|
113
157
|
"definition": {
|
|
114
158
|
"format": "ipynb",
|
|
115
159
|
"parts": [
|
|
@@ -129,5 +173,56 @@ def import_notebook_from_web(
|
|
|
129
173
|
lro(client, response, status_codes=[201, 202])
|
|
130
174
|
|
|
131
175
|
print(
|
|
132
|
-
f"{icons.green_dot} The '{
|
|
176
|
+
f"{icons.green_dot} The '{name}' notebook was created within the '{workspace}' workspace."
|
|
177
|
+
)
|
|
178
|
+
|
|
179
|
+
|
|
180
|
+
def update_notebook_definition(
|
|
181
|
+
name: str, notebook_content: str, workspace: Optional[str] = None
|
|
182
|
+
):
|
|
183
|
+
"""
|
|
184
|
+
Updates an existing notebook with a new definition.
|
|
185
|
+
|
|
186
|
+
Parameters
|
|
187
|
+
----------
|
|
188
|
+
name : str
|
|
189
|
+
The name of the notebook to be created.
|
|
190
|
+
notebook_content : str
|
|
191
|
+
The Jupyter notebook content (not in Base64 format).
|
|
192
|
+
workspace : str, default=None
|
|
193
|
+
The name of the workspace.
|
|
194
|
+
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
195
|
+
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
196
|
+
"""
|
|
197
|
+
|
|
198
|
+
(workspace, workspace_id) = resolve_workspace_name_and_id(workspace)
|
|
199
|
+
client = fabric.FabricRestClient()
|
|
200
|
+
notebook_payload = base64.b64encode(notebook_content)
|
|
201
|
+
notebook_id = fabric.resolve_item_id(
|
|
202
|
+
item_name=name, type="Notebook", workspace=workspace
|
|
203
|
+
)
|
|
204
|
+
|
|
205
|
+
request_body = {
|
|
206
|
+
"displayName": name,
|
|
207
|
+
"definition": {
|
|
208
|
+
"format": "ipynb",
|
|
209
|
+
"parts": [
|
|
210
|
+
{
|
|
211
|
+
"path": "notebook-content.py",
|
|
212
|
+
"payload": notebook_payload,
|
|
213
|
+
"payloadType": "InlineBase64",
|
|
214
|
+
}
|
|
215
|
+
],
|
|
216
|
+
},
|
|
217
|
+
}
|
|
218
|
+
|
|
219
|
+
response = client.post(
|
|
220
|
+
f"v1/workspaces/{workspace_id}/notebooks/{notebook_id}/updateDefinition",
|
|
221
|
+
json=request_body,
|
|
222
|
+
)
|
|
223
|
+
|
|
224
|
+
lro(client, response, return_status_code=True)
|
|
225
|
+
|
|
226
|
+
print(
|
|
227
|
+
f"{icons.green_dot} The '{name}' notebook was updated within the '{workspace}' workspace."
|
|
133
228
|
)
|
sempy_labs/_query_scale_out.py
CHANGED
|
@@ -13,6 +13,8 @@ def qso_sync(dataset: str, workspace: Optional[str] = None):
|
|
|
13
13
|
"""
|
|
14
14
|
Triggers a query scale-out sync of read-only replicas for the specified dataset from the specified workspace.
|
|
15
15
|
|
|
16
|
+
This is a wrapper function for the following API: `Datasets - Trigger Query Scale Out Sync In Group <https://learn.microsoft.com/rest/api/power-bi/datasets/trigger-query-scale-out-sync-in-group`_.
|
|
17
|
+
|
|
16
18
|
Parameters
|
|
17
19
|
----------
|
|
18
20
|
dataset : str
|
|
@@ -23,8 +25,6 @@ def qso_sync(dataset: str, workspace: Optional[str] = None):
|
|
|
23
25
|
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
24
26
|
"""
|
|
25
27
|
|
|
26
|
-
# https://learn.microsoft.com/en-us/rest/api/power-bi/datasets/trigger-query-scale-out-sync-in-group
|
|
27
|
-
|
|
28
28
|
(workspace, workspace_id) = resolve_workspace_name_and_id(workspace)
|
|
29
29
|
dataset_id = resolve_dataset_id(dataset, workspace)
|
|
30
30
|
|
|
@@ -46,6 +46,8 @@ def qso_sync_status(
|
|
|
46
46
|
"""
|
|
47
47
|
Returns the query scale-out sync status for the specified dataset from the specified workspace.
|
|
48
48
|
|
|
49
|
+
This is a wrapper function for the following API: `Datasets - Get Query Scale Out Sync Status In Group <https://learn.microsoft.com/rest/api/power-bi/datasets/get-query-scale-out-sync-status-in-group`_.
|
|
50
|
+
|
|
49
51
|
Parameters
|
|
50
52
|
----------
|
|
51
53
|
dataset : str
|
|
@@ -61,8 +63,6 @@ def qso_sync_status(
|
|
|
61
63
|
2 pandas dataframes showing the query scale-out sync status.
|
|
62
64
|
"""
|
|
63
65
|
|
|
64
|
-
# https://learn.microsoft.com/en-us/rest/api/power-bi/datasets/get-query-scale-out-sync-status-in-group
|
|
65
|
-
|
|
66
66
|
df = pd.DataFrame(
|
|
67
67
|
columns=[
|
|
68
68
|
"Scale Out Status",
|
|
@@ -143,6 +143,8 @@ def disable_qso(dataset: str, workspace: Optional[str] = None) -> pd.DataFrame:
|
|
|
143
143
|
"""
|
|
144
144
|
Sets the max read-only replicas to 0, disabling query scale out.
|
|
145
145
|
|
|
146
|
+
This is a wrapper function for the following API: `Datasets - Update Dataset In Group <https://learn.microsoft.com/rest/api/power-bi/datasets/update-dataset-in-group`_.
|
|
147
|
+
|
|
146
148
|
Parameters
|
|
147
149
|
----------
|
|
148
150
|
dataset : str
|
|
@@ -188,6 +190,8 @@ def set_qso(
|
|
|
188
190
|
"""
|
|
189
191
|
Sets the query scale out settings for a semantic model.
|
|
190
192
|
|
|
193
|
+
This is a wrapper function for the following API: `Datasets - Update Dataset In Group <https://learn.microsoft.com/rest/api/power-bi/datasets/update-dataset-in-group`_.
|
|
194
|
+
|
|
191
195
|
Parameters
|
|
192
196
|
----------
|
|
193
197
|
dataset : str
|
|
@@ -209,8 +213,6 @@ def set_qso(
|
|
|
209
213
|
|
|
210
214
|
from sempy_labs._helper_functions import is_default_semantic_model
|
|
211
215
|
|
|
212
|
-
# https://learn.microsoft.com/en-us/rest/api/power-bi/datasets/update-dataset-in-group
|
|
213
|
-
|
|
214
216
|
(workspace, workspace_id) = resolve_workspace_name_and_id(workspace)
|
|
215
217
|
dataset_id = resolve_dataset_id(dataset, workspace)
|
|
216
218
|
|