semantic-link-labs 0.8.3__py3-none-any.whl → 0.8.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of semantic-link-labs might be problematic. Click here for more details.
- {semantic_link_labs-0.8.3.dist-info → semantic_link_labs-0.8.4.dist-info}/METADATA +33 -8
- {semantic_link_labs-0.8.3.dist-info → semantic_link_labs-0.8.4.dist-info}/RECORD +101 -98
- {semantic_link_labs-0.8.3.dist-info → semantic_link_labs-0.8.4.dist-info}/WHEEL +1 -1
- sempy_labs/__init__.py +24 -0
- sempy_labs/_bpa_translation/_model/_translations_am-ET.po +24 -5
- sempy_labs/_bpa_translation/_model/_translations_ar-AE.po +28 -4
- sempy_labs/_bpa_translation/_model/_translations_bg-BG.po +34 -4
- sempy_labs/_bpa_translation/_model/_translations_ca-ES.po +33 -4
- sempy_labs/_bpa_translation/_model/_translations_cs-CZ.po +31 -4
- sempy_labs/_bpa_translation/_model/_translations_da-DK.po +31 -4
- sempy_labs/_bpa_translation/_model/_translations_de-DE.po +34 -4
- sempy_labs/_bpa_translation/_model/_translations_el-GR.po +36 -4
- sempy_labs/_bpa_translation/_model/_translations_es-ES.po +90 -58
- sempy_labs/_bpa_translation/_model/_translations_fa-IR.po +31 -5
- sempy_labs/_bpa_translation/_model/_translations_fi-FI.po +31 -4
- sempy_labs/_bpa_translation/_model/_translations_fr-FR.po +34 -4
- sempy_labs/_bpa_translation/_model/_translations_ga-IE.po +34 -4
- sempy_labs/_bpa_translation/_model/_translations_he-IL.po +28 -4
- sempy_labs/_bpa_translation/_model/_translations_hi-IN.po +32 -4
- sempy_labs/_bpa_translation/_model/_translations_hu-HU.po +32 -4
- sempy_labs/_bpa_translation/_model/_translations_id-ID.po +32 -4
- sempy_labs/_bpa_translation/_model/_translations_is-IS.po +31 -4
- sempy_labs/_bpa_translation/_model/_translations_it-IT.po +34 -4
- sempy_labs/_bpa_translation/_model/_translations_ja-JP.po +24 -4
- sempy_labs/_bpa_translation/_model/_translations_ko-KR.po +72 -56
- sempy_labs/_bpa_translation/_model/_translations_mt-MT.po +34 -4
- sempy_labs/_bpa_translation/_model/_translations_nl-NL.po +34 -4
- sempy_labs/_bpa_translation/_model/_translations_pl-PL.po +95 -71
- sempy_labs/_bpa_translation/_model/_translations_pt-BR.po +32 -4
- sempy_labs/_bpa_translation/_model/_translations_pt-PT.po +32 -4
- sempy_labs/_bpa_translation/_model/_translations_ro-RO.po +33 -4
- sempy_labs/_bpa_translation/_model/_translations_ru-RU.po +34 -4
- sempy_labs/_bpa_translation/_model/_translations_sk-SK.po +31 -4
- sempy_labs/_bpa_translation/_model/_translations_sl-SL.po +32 -4
- sempy_labs/_bpa_translation/_model/_translations_sv-SE.po +32 -4
- sempy_labs/_bpa_translation/_model/_translations_ta-IN.po +32 -4
- sempy_labs/_bpa_translation/_model/_translations_te-IN.po +31 -4
- sempy_labs/_bpa_translation/_model/_translations_th-TH.po +31 -4
- sempy_labs/_bpa_translation/_model/_translations_tr-TR.po +32 -4
- sempy_labs/_bpa_translation/_model/_translations_uk-UA.po +100 -72
- sempy_labs/_bpa_translation/_model/_translations_zh-CN.po +23 -5
- sempy_labs/_bpa_translation/_model/_translations_zu-ZA.po +32 -4
- sempy_labs/_capacities.py +49 -14
- sempy_labs/_capacity_migration.py +1 -7
- sempy_labs/_data_pipelines.py +6 -0
- sempy_labs/_dataflows.py +4 -0
- sempy_labs/_deployment_pipelines.py +13 -7
- sempy_labs/_environments.py +6 -0
- sempy_labs/_eventhouses.py +6 -0
- sempy_labs/_eventstreams.py +6 -0
- sempy_labs/_external_data_shares.py +6 -4
- sempy_labs/_generate_semantic_model.py +26 -3
- sempy_labs/_git.py +14 -14
- sempy_labs/_helper_functions.py +172 -0
- sempy_labs/_icons.py +55 -22
- sempy_labs/_kql_databases.py +6 -0
- sempy_labs/_kql_querysets.py +6 -0
- sempy_labs/_list_functions.py +1 -1
- sempy_labs/_managed_private_endpoints.py +166 -0
- sempy_labs/_mirrored_warehouses.py +2 -0
- sempy_labs/_ml_experiments.py +6 -0
- sempy_labs/_ml_models.py +6 -0
- sempy_labs/_model_bpa.py +6 -1
- sempy_labs/_model_bpa_bulk.py +11 -25
- sempy_labs/_model_bpa_rules.py +8 -3
- sempy_labs/_notebooks.py +107 -12
- sempy_labs/_query_scale_out.py +8 -6
- sempy_labs/_refresh_semantic_model.py +299 -49
- sempy_labs/_spark.py +12 -5
- sempy_labs/_translations.py +2 -0
- sempy_labs/_vertipaq.py +58 -67
- sempy_labs/_warehouses.py +79 -0
- sempy_labs/_workloads.py +128 -0
- sempy_labs/_workspace_identity.py +4 -4
- sempy_labs/_workspaces.py +14 -1
- sempy_labs/admin/_basic_functions.py +85 -43
- sempy_labs/admin/_domains.py +18 -18
- sempy_labs/directlake/__init__.py +2 -0
- sempy_labs/directlake/_directlake_schema_sync.py +2 -1
- sempy_labs/directlake/_dl_helper.py +4 -1
- sempy_labs/directlake/_get_shared_expression.py +7 -1
- sempy_labs/directlake/_guardrails.py +2 -1
- sempy_labs/directlake/_show_unsupported_directlake_objects.py +1 -7
- sempy_labs/directlake/_update_directlake_model_lakehouse_connection.py +78 -0
- sempy_labs/directlake/_update_directlake_partition_entity.py +13 -32
- sempy_labs/lakehouse/_get_lakehouse_tables.py +6 -2
- sempy_labs/lakehouse/_shortcuts.py +4 -0
- sempy_labs/migration/_migrate_calctables_to_lakehouse.py +3 -2
- sempy_labs/migration/_migrate_calctables_to_semantic_model.py +2 -0
- sempy_labs/migration/_migrate_model_objects_to_semantic_model.py +2 -8
- sempy_labs/migration/_migrate_tables_columns_to_semantic_model.py +17 -0
- sempy_labs/migration/_migration_validation.py +2 -0
- sempy_labs/migration/_refresh_calc_tables.py +1 -0
- sempy_labs/report/__init__.py +4 -1
- sempy_labs/report/_generate_report.py +6 -0
- sempy_labs/report/_paginated.py +74 -0
- sempy_labs/report/_report_functions.py +6 -0
- sempy_labs/report/_report_rebind.py +2 -0
- sempy_labs/tom/_model.py +64 -33
- {semantic_link_labs-0.8.3.dist-info → semantic_link_labs-0.8.4.dist-info}/LICENSE +0 -0
- {semantic_link_labs-0.8.3.dist-info → semantic_link_labs-0.8.4.dist-info}/top_level.txt +0 -0
sempy_labs/_helper_functions.py
CHANGED
|
@@ -13,6 +13,8 @@ from uuid import UUID
|
|
|
13
13
|
import sempy_labs._icons as icons
|
|
14
14
|
import urllib.parse
|
|
15
15
|
from azure.core.credentials import TokenCredential, AccessToken
|
|
16
|
+
import numpy as np
|
|
17
|
+
from IPython.display import display, HTML
|
|
16
18
|
|
|
17
19
|
|
|
18
20
|
def create_abfss_path(
|
|
@@ -1145,3 +1147,173 @@ def _get_max_run_id(lakehouse: str, table_name: str) -> int:
|
|
|
1145
1147
|
max_run_id = dfSpark.collect()[0][0]
|
|
1146
1148
|
|
|
1147
1149
|
return max_run_id
|
|
1150
|
+
|
|
1151
|
+
|
|
1152
|
+
def _make_list_unique(my_list):
|
|
1153
|
+
|
|
1154
|
+
return list(set(my_list))
|
|
1155
|
+
|
|
1156
|
+
|
|
1157
|
+
def _get_partition_map(dataset: str, workspace: Optional[str] = None) -> pd.DataFrame:
|
|
1158
|
+
|
|
1159
|
+
if workspace is None:
|
|
1160
|
+
workspace = fabric.resolve_workspace_name()
|
|
1161
|
+
|
|
1162
|
+
partitions = fabric.evaluate_dax(
|
|
1163
|
+
dataset=dataset,
|
|
1164
|
+
workspace=workspace,
|
|
1165
|
+
dax_string="""
|
|
1166
|
+
select [ID] AS [PartitionID], [TableID], [Name] AS [PartitionName] from $system.tmschema_partitions
|
|
1167
|
+
""",
|
|
1168
|
+
)
|
|
1169
|
+
|
|
1170
|
+
tables = fabric.evaluate_dax(
|
|
1171
|
+
dataset=dataset,
|
|
1172
|
+
workspace=workspace,
|
|
1173
|
+
dax_string="""
|
|
1174
|
+
select [ID] AS [TableID], [Name] AS [TableName] from $system.tmschema_tables
|
|
1175
|
+
""",
|
|
1176
|
+
)
|
|
1177
|
+
|
|
1178
|
+
partition_map = pd.merge(partitions, tables, on="TableID", how="left")
|
|
1179
|
+
partition_map["PartitionID"] = partition_map["PartitionID"].astype(str)
|
|
1180
|
+
partition_counts = partition_map.groupby("TableID")["PartitionID"].transform(
|
|
1181
|
+
"count"
|
|
1182
|
+
)
|
|
1183
|
+
partition_map["Object Name"] = partition_map.apply(
|
|
1184
|
+
lambda row: (
|
|
1185
|
+
f"'{row['TableName']}'[{row['PartitionName']}]"
|
|
1186
|
+
if partition_counts[row.name] > 1
|
|
1187
|
+
else row["TableName"]
|
|
1188
|
+
),
|
|
1189
|
+
axis=1,
|
|
1190
|
+
)
|
|
1191
|
+
return partition_map
|
|
1192
|
+
|
|
1193
|
+
|
|
1194
|
+
def _show_chart(spec, title):
|
|
1195
|
+
|
|
1196
|
+
h = f"""
|
|
1197
|
+
<!DOCTYPE html>
|
|
1198
|
+
<html>
|
|
1199
|
+
<head>
|
|
1200
|
+
<script src="https://cdn.jsdelivr.net/npm/vega@5"></script>
|
|
1201
|
+
<script src="https://cdn.jsdelivr.net/npm/vega-lite@5"></script>
|
|
1202
|
+
<script src="https://cdn.jsdelivr.net/npm/vega-embed@6"></script>
|
|
1203
|
+
<style>
|
|
1204
|
+
table, th, td {{
|
|
1205
|
+
border: 10px solid #e7e9eb;
|
|
1206
|
+
border-collapse: collapse;
|
|
1207
|
+
}}
|
|
1208
|
+
</style>
|
|
1209
|
+
</head>
|
|
1210
|
+
<body>
|
|
1211
|
+
<table>
|
|
1212
|
+
<tr>
|
|
1213
|
+
<td style="text-align: center;">
|
|
1214
|
+
<h1>{title}</h1>
|
|
1215
|
+
</td>
|
|
1216
|
+
</tr>
|
|
1217
|
+
<tr>
|
|
1218
|
+
<td>
|
|
1219
|
+
<div id="vis"></div>
|
|
1220
|
+
</td>
|
|
1221
|
+
</tr>
|
|
1222
|
+
</table>
|
|
1223
|
+
<script type="text/javascript">
|
|
1224
|
+
var spec = {spec};
|
|
1225
|
+
var opt = {{"renderer": "canvas", "actions": false}};
|
|
1226
|
+
vegaEmbed("#vis", spec, opt);
|
|
1227
|
+
</script>
|
|
1228
|
+
</body>
|
|
1229
|
+
</html>"""
|
|
1230
|
+
|
|
1231
|
+
display(HTML(h))
|
|
1232
|
+
|
|
1233
|
+
|
|
1234
|
+
def _process_and_display_chart(df, title, widget):
|
|
1235
|
+
|
|
1236
|
+
# Convert time columns to milliseconds
|
|
1237
|
+
df["Start"] = df["Start Time"].astype(np.int64) / int(1e6)
|
|
1238
|
+
df["End"] = df["End Time"].astype(np.int64) / int(1e6)
|
|
1239
|
+
|
|
1240
|
+
# Calculate the time offset for proper Gantt chart rendering
|
|
1241
|
+
Offset = min(df["Start"])
|
|
1242
|
+
df["Start"] = df["Start"] - Offset
|
|
1243
|
+
df["End"] = df["End"] - Offset
|
|
1244
|
+
|
|
1245
|
+
# Vega-Lite spec for Gantt chart
|
|
1246
|
+
spec = (
|
|
1247
|
+
"""{
|
|
1248
|
+
"$schema": "https://vega.github.io/schema/vega-lite/v5.json",
|
|
1249
|
+
"description": "A simple bar chart with ranged data (aka Gantt Chart).",
|
|
1250
|
+
"data": { "values": """
|
|
1251
|
+
+ df.to_json(orient="records")
|
|
1252
|
+
+ """ },
|
|
1253
|
+
"width": 700,
|
|
1254
|
+
"height": 400,
|
|
1255
|
+
"mark": "bar",
|
|
1256
|
+
"encoding": {
|
|
1257
|
+
"y": {
|
|
1258
|
+
"field": "Object Name",
|
|
1259
|
+
"type": "ordinal",
|
|
1260
|
+
"axis": {
|
|
1261
|
+
"labelFontSize": 15,
|
|
1262
|
+
"titleFontSize": 20,
|
|
1263
|
+
"title": "Object"
|
|
1264
|
+
}
|
|
1265
|
+
},
|
|
1266
|
+
"x": {
|
|
1267
|
+
"field": "Start",
|
|
1268
|
+
"type": "quantitative",
|
|
1269
|
+
"title": "milliseconds",
|
|
1270
|
+
"axis": {
|
|
1271
|
+
"titleFontSize": 20
|
|
1272
|
+
}
|
|
1273
|
+
},
|
|
1274
|
+
"x2": {"field": "End"},
|
|
1275
|
+
"color": {
|
|
1276
|
+
"field": "Event Subclass",
|
|
1277
|
+
"scale": {
|
|
1278
|
+
"domain": ["Process", "ExecuteSql"],
|
|
1279
|
+
"range": ["#FFC000","#0070C0"]
|
|
1280
|
+
},
|
|
1281
|
+
"legend": {
|
|
1282
|
+
"labelFontSize": 20,
|
|
1283
|
+
"titleFontSize": 20,
|
|
1284
|
+
"title": "Event Type"
|
|
1285
|
+
}
|
|
1286
|
+
},
|
|
1287
|
+
"tooltip": [
|
|
1288
|
+
{"field": "Duration", "type": "quantitative", "format": ","},
|
|
1289
|
+
{"field": "Cpu Time", "type": "quantitative", "format": ","},
|
|
1290
|
+
{"field": "Event Subclass", "type": "nominal"}
|
|
1291
|
+
]
|
|
1292
|
+
}
|
|
1293
|
+
}"""
|
|
1294
|
+
)
|
|
1295
|
+
|
|
1296
|
+
with widget:
|
|
1297
|
+
widget.clear_output(wait=True)
|
|
1298
|
+
_show_chart(spec, title=title)
|
|
1299
|
+
|
|
1300
|
+
|
|
1301
|
+
def _convert_data_type(input_data_type: str) -> str:
|
|
1302
|
+
|
|
1303
|
+
data_type_mapping = {
|
|
1304
|
+
"string": "String",
|
|
1305
|
+
"int": "Int64",
|
|
1306
|
+
"tinyint": "Int64",
|
|
1307
|
+
"smallint": "Int64",
|
|
1308
|
+
"bigint": "Int64",
|
|
1309
|
+
"boolean": "Boolean",
|
|
1310
|
+
"timestamp": "DateTime",
|
|
1311
|
+
"date": "DateTime",
|
|
1312
|
+
"double": "Double",
|
|
1313
|
+
"float": "Double",
|
|
1314
|
+
}
|
|
1315
|
+
|
|
1316
|
+
if "decimal" in input_data_type:
|
|
1317
|
+
return "Decimal"
|
|
1318
|
+
else:
|
|
1319
|
+
return data_type_mapping.get(input_data_type)
|
sempy_labs/_icons.py
CHANGED
|
@@ -10,20 +10,6 @@ bullet = "\u2022"
|
|
|
10
10
|
warning = "⚠️"
|
|
11
11
|
error = "\u274C"
|
|
12
12
|
info = "ℹ️"
|
|
13
|
-
data_type_mapping = {
|
|
14
|
-
"string": "String",
|
|
15
|
-
"int": "Int64",
|
|
16
|
-
"tinyint": "Int64",
|
|
17
|
-
"smallint": "Int64",
|
|
18
|
-
"bigint": "Int64",
|
|
19
|
-
"boolean": "Boolean",
|
|
20
|
-
"timestamp": "DateTime",
|
|
21
|
-
"date": "DateTime",
|
|
22
|
-
"decimal(38,18)": "Decimal",
|
|
23
|
-
"decimal(19,4)": "Decimal",
|
|
24
|
-
"double": "Double",
|
|
25
|
-
"float": "Double",
|
|
26
|
-
}
|
|
27
13
|
measure_icon = "\u2211"
|
|
28
14
|
table_icon = "\u229E"
|
|
29
15
|
column_icon = "\u229F"
|
|
@@ -93,14 +79,15 @@ sku_mapping = {
|
|
|
93
79
|
"P4": "F512",
|
|
94
80
|
"P5": "F1024",
|
|
95
81
|
}
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
"
|
|
99
|
-
"
|
|
100
|
-
"
|
|
101
|
-
"
|
|
102
|
-
"
|
|
103
|
-
|
|
82
|
+
|
|
83
|
+
refresh_type_mapping = {
|
|
84
|
+
"full": "full",
|
|
85
|
+
"auto": "automatic",
|
|
86
|
+
"data": "dataOnly",
|
|
87
|
+
"calc": "calculate",
|
|
88
|
+
"clear": "clearValues",
|
|
89
|
+
"defrag": "defragment",
|
|
90
|
+
}
|
|
104
91
|
|
|
105
92
|
itemTypes = {
|
|
106
93
|
"DataPipeline": "dataPipelines",
|
|
@@ -114,3 +101,49 @@ itemTypes = {
|
|
|
114
101
|
"Warehouse": "warehouses",
|
|
115
102
|
}
|
|
116
103
|
default_schema = "dbo"
|
|
104
|
+
|
|
105
|
+
data_type_string = "string"
|
|
106
|
+
data_type_long = "long"
|
|
107
|
+
data_type_timestamp = "timestamp"
|
|
108
|
+
data_type_double = "double"
|
|
109
|
+
data_type_bool = "bool"
|
|
110
|
+
int_format = "int"
|
|
111
|
+
pct_format = "pct"
|
|
112
|
+
no_format = ""
|
|
113
|
+
|
|
114
|
+
bpa_schema = {
|
|
115
|
+
"Capacity Name": data_type_string,
|
|
116
|
+
"Capacity Id": data_type_string,
|
|
117
|
+
"Workspace Name": data_type_string,
|
|
118
|
+
"Workspace Id": data_type_string,
|
|
119
|
+
"Dataset Name": data_type_string,
|
|
120
|
+
"Dataset Id": data_type_string,
|
|
121
|
+
"Configured By": data_type_string,
|
|
122
|
+
"Rule Name": data_type_string,
|
|
123
|
+
"Category": data_type_string,
|
|
124
|
+
"Severity": data_type_string,
|
|
125
|
+
"Object Type": data_type_string,
|
|
126
|
+
"Object Name": data_type_string,
|
|
127
|
+
"Description": data_type_string,
|
|
128
|
+
"URL": data_type_string,
|
|
129
|
+
"RunId": data_type_long,
|
|
130
|
+
"Timestamp": data_type_timestamp,
|
|
131
|
+
}
|
|
132
|
+
|
|
133
|
+
sll_ann_name = "PBI_ProTooling"
|
|
134
|
+
sll_prefix = "SLL_"
|
|
135
|
+
sll_tags = []
|
|
136
|
+
base_cols = ["EventClass", "EventSubclass", "CurrentTime", "TextData"]
|
|
137
|
+
end_cols = base_cols + [
|
|
138
|
+
"StartTime",
|
|
139
|
+
"EndTime",
|
|
140
|
+
"Duration",
|
|
141
|
+
"CpuTime",
|
|
142
|
+
"Success",
|
|
143
|
+
"IntegerData",
|
|
144
|
+
"ObjectID",
|
|
145
|
+
]
|
|
146
|
+
refresh_event_schema = {
|
|
147
|
+
"JobGraph": base_cols,
|
|
148
|
+
"ProgressReportEnd": end_cols,
|
|
149
|
+
}
|
sempy_labs/_kql_databases.py
CHANGED
|
@@ -14,6 +14,8 @@ def list_kql_databases(workspace: Optional[str] = None) -> pd.DataFrame:
|
|
|
14
14
|
"""
|
|
15
15
|
Shows the KQL databases within a workspace.
|
|
16
16
|
|
|
17
|
+
This is a wrapper function for the following API: `Items - List KQL Databases <https://learn.microsoft.com/rest/api/fabric/kqldatabase/items/list-kql-databases`_.
|
|
18
|
+
|
|
17
19
|
Parameters
|
|
18
20
|
----------
|
|
19
21
|
workspace : str, default=None
|
|
@@ -72,6 +74,8 @@ def create_kql_database(
|
|
|
72
74
|
"""
|
|
73
75
|
Creates a KQL database.
|
|
74
76
|
|
|
77
|
+
This is a wrapper function for the following API: `Items - Create KQL Database <https://learn.microsoft.com/rest/api/fabric/kqldatabase/items/create-kql-database`_.
|
|
78
|
+
|
|
75
79
|
Parameters
|
|
76
80
|
----------
|
|
77
81
|
name: str
|
|
@@ -107,6 +111,8 @@ def delete_kql_database(name: str, workspace: Optional[str] = None):
|
|
|
107
111
|
"""
|
|
108
112
|
Deletes a KQL database.
|
|
109
113
|
|
|
114
|
+
This is a wrapper function for the following API: `Items - Delete KQL Database <https://learn.microsoft.com/rest/api/fabric/kqldatabase/items/delete-kql-database`_.
|
|
115
|
+
|
|
110
116
|
Parameters
|
|
111
117
|
----------
|
|
112
118
|
name: str
|
sempy_labs/_kql_querysets.py
CHANGED
|
@@ -14,6 +14,8 @@ def list_kql_querysets(workspace: Optional[str] = None) -> pd.DataFrame:
|
|
|
14
14
|
"""
|
|
15
15
|
Shows the KQL querysets within a workspace.
|
|
16
16
|
|
|
17
|
+
This is a wrapper function for the following API: `Items - List KQL Querysets <https://learn.microsoft.com/rest/api/fabric/kqlqueryset/items/list-kql-querysets`_.
|
|
18
|
+
|
|
17
19
|
Parameters
|
|
18
20
|
----------
|
|
19
21
|
workspace : str, default=None
|
|
@@ -62,6 +64,8 @@ def create_kql_queryset(
|
|
|
62
64
|
"""
|
|
63
65
|
Creates a KQL queryset.
|
|
64
66
|
|
|
67
|
+
This is a wrapper function for the following API: `Items - Create KQL Queryset <https://learn.microsoft.com/rest/api/fabric/kqlqueryset/items/create-kql-queryset`_.
|
|
68
|
+
|
|
65
69
|
Parameters
|
|
66
70
|
----------
|
|
67
71
|
name: str
|
|
@@ -97,6 +101,8 @@ def delete_kql_queryset(name: str, workspace: Optional[str] = None):
|
|
|
97
101
|
"""
|
|
98
102
|
Deletes a KQL queryset.
|
|
99
103
|
|
|
104
|
+
This is a wrapper function for the following API: `Items - Delete KQL Queryset <https://learn.microsoft.com/rest/api/fabric/kqlqueryset/items/delete-kql-queryset`_.
|
|
105
|
+
|
|
100
106
|
Parameters
|
|
101
107
|
----------
|
|
102
108
|
name: str
|
sempy_labs/_list_functions.py
CHANGED
|
@@ -1515,7 +1515,7 @@ def list_semantic_model_object_report_usage(
|
|
|
1515
1515
|
"Object Type": object_type,
|
|
1516
1516
|
}
|
|
1517
1517
|
df = pd.concat([df, pd.DataFrame(new_data, index=[0])], ignore_index=True)
|
|
1518
|
-
df["
|
|
1518
|
+
df["Object Type"] = df["Object Type"].replace(
|
|
1519
1519
|
"Attribute Hierarchy", "Column"
|
|
1520
1520
|
)
|
|
1521
1521
|
if object_type in ["Measure", "Calc Column", "Calc Table", "Hierarchy"]:
|
|
@@ -0,0 +1,166 @@
|
|
|
1
|
+
import sempy.fabric as fabric
|
|
2
|
+
import pandas as pd
|
|
3
|
+
import sempy_labs._icons as icons
|
|
4
|
+
from typing import Optional
|
|
5
|
+
from sempy_labs._helper_functions import (
|
|
6
|
+
resolve_workspace_name_and_id,
|
|
7
|
+
lro,
|
|
8
|
+
pagination,
|
|
9
|
+
)
|
|
10
|
+
from sempy.fabric.exceptions import FabricHTTPException
|
|
11
|
+
from uuid import UUID
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
def create_managed_private_endpoint(
|
|
15
|
+
name: str,
|
|
16
|
+
target_private_link_resource_id: UUID,
|
|
17
|
+
target_subresource_type: str,
|
|
18
|
+
request_message: Optional[str] = None,
|
|
19
|
+
workspace: Optional[str] = None,
|
|
20
|
+
):
|
|
21
|
+
"""
|
|
22
|
+
Creates a managed private endpoint.
|
|
23
|
+
|
|
24
|
+
This is a wrapper function for the following API: `Managed Private Endpoints - Create Workspace Managed Private Endpoint <https://learn.microsoft.com/rest/api/fabric/core/managed-private-endpoints/create-workspace-managed-private-endpoint>`.
|
|
25
|
+
|
|
26
|
+
Parameters
|
|
27
|
+
----------
|
|
28
|
+
name: str
|
|
29
|
+
Name of the managed private endpoint.
|
|
30
|
+
target_private_link_resource_id: UUID
|
|
31
|
+
Resource Id of data source for which private endpoint needs to be created.
|
|
32
|
+
target_subresource_type : str
|
|
33
|
+
Sub-resource pointing to Private-link resoure.
|
|
34
|
+
request_message : str, default=None
|
|
35
|
+
Message to approve private endpoint request. Should not be more than 140 characters.
|
|
36
|
+
workspace : str, default=None
|
|
37
|
+
The Fabric workspace name.
|
|
38
|
+
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
39
|
+
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
40
|
+
"""
|
|
41
|
+
|
|
42
|
+
(workspace, workspace_id) = resolve_workspace_name_and_id(workspace)
|
|
43
|
+
|
|
44
|
+
request_body = {
|
|
45
|
+
"name": name,
|
|
46
|
+
"targetPrivateLinkResourceId": target_private_link_resource_id,
|
|
47
|
+
"targetSubresourceType": target_subresource_type,
|
|
48
|
+
}
|
|
49
|
+
|
|
50
|
+
if request_message is not None:
|
|
51
|
+
if len(request_message) > 140:
|
|
52
|
+
raise ValueError(
|
|
53
|
+
f"{icons.red_dot} The request message cannot be more than 140 characters."
|
|
54
|
+
)
|
|
55
|
+
request_body["requestMessage"] = request_message
|
|
56
|
+
|
|
57
|
+
client = fabric.FabricRestClient()
|
|
58
|
+
response = client.post(
|
|
59
|
+
f"/v1/workspaces/{workspace_id}/managedPrivateEndpoints", json=request_body
|
|
60
|
+
)
|
|
61
|
+
|
|
62
|
+
lro(client, response, status_codes=[201, 202])
|
|
63
|
+
|
|
64
|
+
print(
|
|
65
|
+
f"{icons.green_dot} The '{name}' managed private endpoint has been created within the '{workspace}' workspace."
|
|
66
|
+
)
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
def list_managed_private_endpoints(workspace: Optional[str] = None) -> pd.DataFrame:
|
|
70
|
+
"""
|
|
71
|
+
Shows the managed private endpoints within a workspace.
|
|
72
|
+
|
|
73
|
+
This is a wrapper function for the following API: `Managed Private Endpoints - List Workspace Managed Private Endpoints <https://learn.microsoft.com/rest/api/fabric/core/managed-private-endpoints/list-workspace-managed-private-endpoints>`.
|
|
74
|
+
|
|
75
|
+
Parameters
|
|
76
|
+
----------
|
|
77
|
+
workspace : str, default=None
|
|
78
|
+
The Fabric workspace name.
|
|
79
|
+
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
80
|
+
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
81
|
+
|
|
82
|
+
Returns
|
|
83
|
+
-------
|
|
84
|
+
pandas.DataFrame
|
|
85
|
+
A pandas dataframe showing the managed private endpoints within a workspace.
|
|
86
|
+
"""
|
|
87
|
+
|
|
88
|
+
df = pd.DataFrame(
|
|
89
|
+
columns=[
|
|
90
|
+
"Managed Private Endpoint Name",
|
|
91
|
+
"Managed Private Endpoint Id",
|
|
92
|
+
"Target Private Link Resource Id",
|
|
93
|
+
"Provisioning State",
|
|
94
|
+
"Connection Status",
|
|
95
|
+
"Connection Description",
|
|
96
|
+
"Target Subresource Type",
|
|
97
|
+
]
|
|
98
|
+
)
|
|
99
|
+
|
|
100
|
+
(workspace, workspace_id) = resolve_workspace_name_and_id(workspace)
|
|
101
|
+
|
|
102
|
+
client = fabric.FabricRestClient()
|
|
103
|
+
response = client.get(f"/v1/workspaces/{workspace_id}/managedPrivateEndpoints")
|
|
104
|
+
if response.status_code != 200:
|
|
105
|
+
raise FabricHTTPException(response)
|
|
106
|
+
|
|
107
|
+
responses = pagination(client, response)
|
|
108
|
+
|
|
109
|
+
for r in responses:
|
|
110
|
+
for v in r.get("value", []):
|
|
111
|
+
conn = v.get("connectionState", {})
|
|
112
|
+
new_data = {
|
|
113
|
+
"Managed Private Endpoint Name": v.get("name"),
|
|
114
|
+
"Managed Private Endpoint Id": v.get("id"),
|
|
115
|
+
"Target Private Link Resource Id": v.get("targetPrivateLinkResourceId"),
|
|
116
|
+
"Provisioning State": v.get("provisioningState"),
|
|
117
|
+
"Connection Status": conn.get("status"),
|
|
118
|
+
"Connection Description": conn.get("description"),
|
|
119
|
+
"Target Subresource Type": v.get("targetSubresourceType"),
|
|
120
|
+
}
|
|
121
|
+
df = pd.concat([df, pd.DataFrame(new_data, index=[0])], ignore_index=True)
|
|
122
|
+
|
|
123
|
+
return df
|
|
124
|
+
|
|
125
|
+
|
|
126
|
+
def delete_managed_private_endpoint(
|
|
127
|
+
managed_private_endpoint: str, workspace: Optional[str] = None
|
|
128
|
+
):
|
|
129
|
+
"""
|
|
130
|
+
Deletes a Fabric managed private endpoint.
|
|
131
|
+
|
|
132
|
+
This is a wrapper function for the following API: `Managed Private Endpoints - Delete Workspace Managed Private Endpoint <https://learn.microsoft.com/rest/api/fabric/core/managed-private-endpoints/delete-workspace-managed-private-endpoint>`.
|
|
133
|
+
|
|
134
|
+
Parameters
|
|
135
|
+
----------
|
|
136
|
+
managed_private_endpoint: str
|
|
137
|
+
Name of the managed private endpoint.
|
|
138
|
+
workspace : str, default=None
|
|
139
|
+
The Fabric workspace name.
|
|
140
|
+
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
141
|
+
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
142
|
+
"""
|
|
143
|
+
|
|
144
|
+
(workspace, workspace_id) = resolve_workspace_name_and_id(workspace)
|
|
145
|
+
|
|
146
|
+
df = list_managed_private_endpoints(workspace=workspace)
|
|
147
|
+
df_filt = df[df["Managed Private Endpoint Name"] == managed_private_endpoint]
|
|
148
|
+
|
|
149
|
+
if len(df_filt) == 0:
|
|
150
|
+
raise ValueError(
|
|
151
|
+
f"{icons.red_dot} The '{managed_private_endpoint}' managed private endpoint does not exist within the '{workspace}' workspace."
|
|
152
|
+
)
|
|
153
|
+
|
|
154
|
+
item_id = df_filt["Managed Private Endpoint Id"].iloc[0]
|
|
155
|
+
|
|
156
|
+
client = fabric.FabricRestClient()
|
|
157
|
+
response = client.delete(
|
|
158
|
+
f"/v1/workspaces/{workspace_id}/managedPrivateEndpoints/{item_id}"
|
|
159
|
+
)
|
|
160
|
+
|
|
161
|
+
if response.status_code != 200:
|
|
162
|
+
raise FabricHTTPException(response)
|
|
163
|
+
|
|
164
|
+
print(
|
|
165
|
+
f"{icons.green_dot} The '{managed_private_endpoint}' managed private endpoint within the '{workspace}' workspace has been deleted."
|
|
166
|
+
)
|
|
@@ -12,6 +12,8 @@ def list_mirrored_warehouses(workspace: Optional[str] = None) -> pd.DataFrame:
|
|
|
12
12
|
"""
|
|
13
13
|
Shows the mirrored warehouses within a workspace.
|
|
14
14
|
|
|
15
|
+
This is a wrapper function for the following API: `Items - List Mirrored Warehouses <https://learn.microsoft.com/rest/api/fabric/mirroredwarehouse/items/list-mirrored-warehouses`_.
|
|
16
|
+
|
|
15
17
|
Parameters
|
|
16
18
|
----------
|
|
17
19
|
workspace : str, default=None
|
sempy_labs/_ml_experiments.py
CHANGED
|
@@ -14,6 +14,8 @@ def list_ml_experiments(workspace: Optional[str] = None) -> pd.DataFrame:
|
|
|
14
14
|
"""
|
|
15
15
|
Shows the ML experiments within a workspace.
|
|
16
16
|
|
|
17
|
+
This is a wrapper function for the following API: `Items - List ML Experiments <https://learn.microsoft.com/rest/api/fabric/mlexperiment/items/list-ml-experiments`_.
|
|
18
|
+
|
|
17
19
|
Parameters
|
|
18
20
|
----------
|
|
19
21
|
workspace : str, default=None
|
|
@@ -60,6 +62,8 @@ def create_ml_experiment(
|
|
|
60
62
|
"""
|
|
61
63
|
Creates a Fabric ML experiment.
|
|
62
64
|
|
|
65
|
+
This is a wrapper function for the following API: `Items - Create ML Experiment <https://learn.microsoft.com/rest/api/fabric/mlexperiment/items/create-ml-experiment`_.
|
|
66
|
+
|
|
63
67
|
Parameters
|
|
64
68
|
----------
|
|
65
69
|
name: str
|
|
@@ -95,6 +99,8 @@ def delete_ml_experiment(name: str, workspace: Optional[str] = None):
|
|
|
95
99
|
"""
|
|
96
100
|
Deletes a Fabric ML experiment.
|
|
97
101
|
|
|
102
|
+
This is a wrapper function for the following API: `Items - Delete ML Experiment <https://learn.microsoft.com/rest/api/fabric/mlexperiment/items/delete-ml-experiment`_.
|
|
103
|
+
|
|
98
104
|
Parameters
|
|
99
105
|
----------
|
|
100
106
|
name: str
|
sempy_labs/_ml_models.py
CHANGED
|
@@ -14,6 +14,8 @@ def list_ml_models(workspace: Optional[str] = None) -> pd.DataFrame:
|
|
|
14
14
|
"""
|
|
15
15
|
Shows the ML models within a workspace.
|
|
16
16
|
|
|
17
|
+
This is a wrapper function for the following API: `Items - List ML Models <https://learn.microsoft.com/rest/api/fabric/mlmodel/items/list-ml-models`_.
|
|
18
|
+
|
|
17
19
|
Parameters
|
|
18
20
|
----------
|
|
19
21
|
workspace : str, default=None
|
|
@@ -60,6 +62,8 @@ def create_ml_model(
|
|
|
60
62
|
"""
|
|
61
63
|
Creates a Fabric ML model.
|
|
62
64
|
|
|
65
|
+
This is a wrapper function for the following API: `Items - Create ML Model <https://learn.microsoft.com/rest/api/fabric/mlmodel/items/create-ml-model`_.
|
|
66
|
+
|
|
63
67
|
Parameters
|
|
64
68
|
----------
|
|
65
69
|
name: str
|
|
@@ -93,6 +97,8 @@ def delete_ml_model(name: str, workspace: Optional[str] = None):
|
|
|
93
97
|
"""
|
|
94
98
|
Deletes a Fabric ML model.
|
|
95
99
|
|
|
100
|
+
This is a wrapper function for the following API: `Items - Delete ML Model <https://learn.microsoft.com/rest/api/fabric/mlmodel/items/delete-ml-model`_.
|
|
101
|
+
|
|
96
102
|
Parameters
|
|
97
103
|
----------
|
|
98
104
|
name: str
|
sempy_labs/_model_bpa.py
CHANGED
|
@@ -56,7 +56,7 @@ def run_model_bpa(
|
|
|
56
56
|
extended : bool, default=False
|
|
57
57
|
If True, runs the set_vertipaq_annotations function to collect Vertipaq Analyzer statistics to be used in the analysis of the semantic model.
|
|
58
58
|
language : str, default=None
|
|
59
|
-
Specifying a language code (i.e. 'it-IT' for Italian) will auto-translate the Category, Rule Name and Description into the specified language.
|
|
59
|
+
Specifying a language name or code (i.e. 'it-IT' for Italian) will auto-translate the Category, Rule Name and Description into the specified language.
|
|
60
60
|
Defaults to None which resolves to English.
|
|
61
61
|
|
|
62
62
|
Returns
|
|
@@ -113,6 +113,7 @@ def run_model_bpa(
|
|
|
113
113
|
)
|
|
114
114
|
|
|
115
115
|
if extended:
|
|
116
|
+
icons.sll_tags.append("ModelBPAExtended")
|
|
116
117
|
with connect_semantic_model(
|
|
117
118
|
dataset=dataset, workspace=workspace, readonly=False
|
|
118
119
|
) as tom:
|
|
@@ -387,10 +388,14 @@ def run_model_bpa(
|
|
|
387
388
|
dfExport.insert(5, colName, dfExport.pop(colName))
|
|
388
389
|
|
|
389
390
|
dfExport.columns = dfExport.columns.str.replace(" ", "_")
|
|
391
|
+
schema = {
|
|
392
|
+
key.replace(" ", "_"): value for key, value in icons.bpa_schema.items()
|
|
393
|
+
}
|
|
390
394
|
save_as_delta_table(
|
|
391
395
|
dataframe=dfExport,
|
|
392
396
|
delta_table_name=delta_table_name,
|
|
393
397
|
write_mode="append",
|
|
398
|
+
schema=schema,
|
|
394
399
|
merge_schema=True,
|
|
395
400
|
)
|
|
396
401
|
|