scitex 2.0.0__py2.py3-none-any.whl → 2.1.0__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- scitex/__init__.py +53 -15
- scitex/__main__.py +72 -26
- scitex/__version__.py +1 -1
- scitex/_sh.py +145 -23
- scitex/ai/__init__.py +30 -16
- scitex/ai/_gen_ai/_Anthropic.py +5 -7
- scitex/ai/_gen_ai/_BaseGenAI.py +2 -2
- scitex/ai/_gen_ai/_DeepSeek.py +10 -2
- scitex/ai/_gen_ai/_Google.py +2 -2
- scitex/ai/_gen_ai/_Llama.py +2 -2
- scitex/ai/_gen_ai/_OpenAI.py +2 -2
- scitex/ai/_gen_ai/_PARAMS.py +51 -65
- scitex/ai/_gen_ai/_Perplexity.py +2 -2
- scitex/ai/_gen_ai/__init__.py +25 -14
- scitex/ai/_gen_ai/_format_output_func.py +4 -4
- scitex/ai/classification/{classifier_server.py → Classifier.py} +5 -5
- scitex/ai/classification/CrossValidationExperiment.py +374 -0
- scitex/ai/classification/__init__.py +43 -4
- scitex/ai/classification/reporters/_BaseClassificationReporter.py +281 -0
- scitex/ai/classification/reporters/_ClassificationReporter.py +773 -0
- scitex/ai/classification/reporters/_MultiClassificationReporter.py +406 -0
- scitex/ai/classification/reporters/_SingleClassificationReporter.py +1834 -0
- scitex/ai/classification/reporters/__init__.py +11 -0
- scitex/ai/classification/reporters/reporter_utils/_Plotter.py +1028 -0
- scitex/ai/classification/reporters/reporter_utils/__init__.py +80 -0
- scitex/ai/classification/reporters/reporter_utils/aggregation.py +457 -0
- scitex/ai/classification/reporters/reporter_utils/data_models.py +313 -0
- scitex/ai/classification/reporters/reporter_utils/reporting.py +1056 -0
- scitex/ai/classification/reporters/reporter_utils/storage.py +221 -0
- scitex/ai/classification/reporters/reporter_utils/validation.py +395 -0
- scitex/ai/classification/timeseries/_TimeSeriesBlockingSplit.py +568 -0
- scitex/ai/classification/timeseries/_TimeSeriesCalendarSplit.py +688 -0
- scitex/ai/classification/timeseries/_TimeSeriesMetadata.py +139 -0
- scitex/ai/classification/timeseries/_TimeSeriesSlidingWindowSplit.py +1716 -0
- scitex/ai/classification/timeseries/_TimeSeriesSlidingWindowSplit_v01-not-using-n_splits.py +1685 -0
- scitex/ai/classification/timeseries/_TimeSeriesStrategy.py +84 -0
- scitex/ai/classification/timeseries/_TimeSeriesStratifiedSplit.py +610 -0
- scitex/ai/classification/timeseries/__init__.py +39 -0
- scitex/ai/classification/timeseries/_normalize_timestamp.py +436 -0
- scitex/ai/clustering/_umap.py +2 -2
- scitex/ai/feature_extraction/vit.py +1 -0
- scitex/ai/feature_selection/__init__.py +30 -0
- scitex/ai/feature_selection/feature_selection.py +364 -0
- scitex/ai/loss/multi_task_loss.py +1 -1
- scitex/ai/metrics/__init__.py +51 -4
- scitex/ai/metrics/_calc_bacc.py +61 -0
- scitex/ai/metrics/_calc_bacc_from_conf_mat.py +38 -0
- scitex/ai/metrics/_calc_clf_report.py +78 -0
- scitex/ai/metrics/_calc_conf_mat.py +93 -0
- scitex/ai/metrics/_calc_feature_importance.py +183 -0
- scitex/ai/metrics/_calc_mcc.py +61 -0
- scitex/ai/metrics/_calc_pre_rec_auc.py +116 -0
- scitex/ai/metrics/_calc_roc_auc.py +110 -0
- scitex/ai/metrics/_calc_seizure_prediction_metrics.py +490 -0
- scitex/ai/metrics/{silhoute_score_block.py → _calc_silhouette_score.py} +15 -8
- scitex/ai/metrics/_normalize_labels.py +83 -0
- scitex/ai/plt/__init__.py +47 -8
- scitex/ai/plt/{_conf_mat.py → _plot_conf_mat.py} +158 -87
- scitex/ai/plt/_plot_feature_importance.py +323 -0
- scitex/ai/plt/_plot_learning_curve.py +345 -0
- scitex/ai/plt/_plot_optuna_study.py +225 -0
- scitex/ai/plt/_plot_pre_rec_curve.py +290 -0
- scitex/ai/plt/_plot_roc_curve.py +255 -0
- scitex/ai/training/{learning_curve_logger.py → _LearningCurveLogger.py} +197 -213
- scitex/ai/training/__init__.py +2 -2
- scitex/ai/utils/grid_search.py +3 -3
- scitex/benchmark/__init__.py +52 -0
- scitex/benchmark/benchmark.py +400 -0
- scitex/benchmark/monitor.py +370 -0
- scitex/benchmark/profiler.py +297 -0
- scitex/browser/__init__.py +48 -0
- scitex/browser/automation/CookieHandler.py +216 -0
- scitex/browser/automation/__init__.py +7 -0
- scitex/browser/collaboration/__init__.py +55 -0
- scitex/browser/collaboration/auth_helpers.py +94 -0
- scitex/browser/collaboration/collaborative_agent.py +136 -0
- scitex/browser/collaboration/credential_manager.py +188 -0
- scitex/browser/collaboration/interactive_panel.py +400 -0
- scitex/browser/collaboration/persistent_browser.py +170 -0
- scitex/browser/collaboration/shared_session.py +383 -0
- scitex/browser/collaboration/standard_interactions.py +246 -0
- scitex/browser/collaboration/visual_feedback.py +181 -0
- scitex/browser/core/BrowserMixin.py +326 -0
- scitex/browser/core/ChromeProfileManager.py +446 -0
- scitex/browser/core/__init__.py +9 -0
- scitex/browser/debugging/__init__.py +18 -0
- scitex/browser/debugging/_browser_logger.py +657 -0
- scitex/browser/debugging/_highlight_element.py +143 -0
- scitex/browser/debugging/_show_grid.py +154 -0
- scitex/browser/interaction/__init__.py +24 -0
- scitex/browser/interaction/click_center.py +149 -0
- scitex/browser/interaction/click_with_fallbacks.py +206 -0
- scitex/browser/interaction/close_popups.py +498 -0
- scitex/browser/interaction/fill_with_fallbacks.py +209 -0
- scitex/browser/pdf/__init__.py +14 -0
- scitex/browser/pdf/click_download_for_chrome_pdf_viewer.py +200 -0
- scitex/browser/pdf/detect_chrome_pdf_viewer.py +198 -0
- scitex/browser/remote/CaptchaHandler.py +434 -0
- scitex/browser/remote/ZenRowsAPIClient.py +347 -0
- scitex/browser/remote/ZenRowsBrowserManager.py +570 -0
- scitex/browser/remote/__init__.py +11 -0
- scitex/browser/stealth/HumanBehavior.py +344 -0
- scitex/browser/stealth/StealthManager.py +1008 -0
- scitex/browser/stealth/__init__.py +9 -0
- scitex/browser/template.py +122 -0
- scitex/capture/__init__.py +110 -0
- scitex/capture/__main__.py +25 -0
- scitex/capture/capture.py +848 -0
- scitex/capture/cli.py +233 -0
- scitex/capture/gif.py +344 -0
- scitex/capture/mcp_server.py +961 -0
- scitex/capture/session.py +70 -0
- scitex/capture/utils.py +705 -0
- scitex/cli/__init__.py +17 -0
- scitex/cli/cloud.py +447 -0
- scitex/cli/main.py +42 -0
- scitex/cli/scholar.py +280 -0
- scitex/context/_suppress_output.py +5 -3
- scitex/db/__init__.py +30 -3
- scitex/db/__main__.py +75 -0
- scitex/db/_check_health.py +381 -0
- scitex/db/_delete_duplicates.py +25 -386
- scitex/db/_inspect.py +335 -114
- scitex/db/_inspect_optimized.py +301 -0
- scitex/db/{_PostgreSQL.py → _postgresql/_PostgreSQL.py} +3 -3
- scitex/db/{_PostgreSQLMixins → _postgresql/_PostgreSQLMixins}/_BackupMixin.py +1 -1
- scitex/db/{_PostgreSQLMixins → _postgresql/_PostgreSQLMixins}/_BatchMixin.py +1 -1
- scitex/db/{_PostgreSQLMixins → _postgresql/_PostgreSQLMixins}/_BlobMixin.py +1 -1
- scitex/db/{_PostgreSQLMixins → _postgresql/_PostgreSQLMixins}/_ConnectionMixin.py +1 -1
- scitex/db/{_PostgreSQLMixins → _postgresql/_PostgreSQLMixins}/_MaintenanceMixin.py +1 -1
- scitex/db/{_PostgreSQLMixins → _postgresql/_PostgreSQLMixins}/_QueryMixin.py +1 -1
- scitex/db/{_PostgreSQLMixins → _postgresql/_PostgreSQLMixins}/_SchemaMixin.py +1 -1
- scitex/db/{_PostgreSQLMixins → _postgresql/_PostgreSQLMixins}/_TransactionMixin.py +1 -1
- scitex/db/_postgresql/__init__.py +6 -0
- scitex/db/_sqlite3/_SQLite3.py +210 -0
- scitex/db/_sqlite3/_SQLite3Mixins/_ArrayMixin.py +581 -0
- scitex/db/_sqlite3/_SQLite3Mixins/_ArrayMixin_v01-need-_hash-col.py +517 -0
- scitex/db/{_SQLite3Mixins → _sqlite3/_SQLite3Mixins}/_BatchMixin.py +1 -1
- scitex/db/_sqlite3/_SQLite3Mixins/_BlobMixin.py +281 -0
- scitex/db/_sqlite3/_SQLite3Mixins/_ColumnMixin.py +548 -0
- scitex/db/_sqlite3/_SQLite3Mixins/_ColumnMixin_v01-indentation-issues.py +583 -0
- scitex/db/{_SQLite3Mixins → _sqlite3/_SQLite3Mixins}/_ConnectionMixin.py +29 -13
- scitex/db/_sqlite3/_SQLite3Mixins/_GitMixin.py +583 -0
- scitex/db/{_SQLite3Mixins → _sqlite3/_SQLite3Mixins}/_ImportExportMixin.py +1 -1
- scitex/db/{_SQLite3Mixins → _sqlite3/_SQLite3Mixins}/_IndexMixin.py +1 -1
- scitex/db/{_SQLite3Mixins → _sqlite3/_SQLite3Mixins}/_MaintenanceMixin.py +2 -1
- scitex/db/{_SQLite3Mixins → _sqlite3/_SQLite3Mixins}/_QueryMixin.py +37 -10
- scitex/db/{_SQLite3Mixins → _sqlite3/_SQLite3Mixins}/_RowMixin.py +46 -6
- scitex/db/{_SQLite3Mixins → _sqlite3/_SQLite3Mixins}/_TableMixin.py +56 -10
- scitex/db/{_SQLite3Mixins → _sqlite3/_SQLite3Mixins}/_TransactionMixin.py +1 -1
- scitex/db/{_SQLite3Mixins → _sqlite3/_SQLite3Mixins}/__init__.py +14 -2
- scitex/db/_sqlite3/__init__.py +7 -0
- scitex/db/_sqlite3/_delete_duplicates.py +274 -0
- scitex/decorators/__init__.py +2 -0
- scitex/decorators/_cache_disk.py +13 -5
- scitex/decorators/_cache_disk_async.py +49 -0
- scitex/decorators/_deprecated.py +175 -10
- scitex/decorators/_timeout.py +1 -1
- scitex/dev/_analyze_code_flow.py +2 -2
- scitex/dict/_DotDict.py +73 -15
- scitex/dict/_DotDict_v01-not-handling-recursive-instantiations.py +442 -0
- scitex/dict/_DotDict_v02-not-serializing-Path-object.py +446 -0
- scitex/dict/__init__.py +2 -0
- scitex/dict/_flatten.py +27 -0
- scitex/dsp/_crop.py +2 -2
- scitex/dsp/_demo_sig.py +2 -2
- scitex/dsp/_detect_ripples.py +2 -2
- scitex/dsp/_hilbert.py +2 -2
- scitex/dsp/_listen.py +6 -6
- scitex/dsp/_modulation_index.py +2 -2
- scitex/dsp/_pac.py +1 -1
- scitex/dsp/_psd.py +2 -2
- scitex/dsp/_resample.py +2 -1
- scitex/dsp/_time.py +3 -2
- scitex/dsp/_wavelet.py +3 -2
- scitex/dsp/add_noise.py +2 -2
- scitex/dsp/example.py +1 -0
- scitex/dsp/filt.py +10 -9
- scitex/dsp/template.py +3 -2
- scitex/dsp/utils/_differential_bandpass_filters.py +1 -1
- scitex/dsp/utils/pac.py +2 -2
- scitex/dt/_normalize_timestamp.py +432 -0
- scitex/errors.py +572 -0
- scitex/gen/_DimHandler.py +2 -2
- scitex/gen/__init__.py +37 -7
- scitex/gen/_deprecated_close.py +80 -0
- scitex/gen/_deprecated_start.py +26 -0
- scitex/gen/_detect_environment.py +152 -0
- scitex/gen/_detect_notebook_path.py +169 -0
- scitex/gen/_embed.py +6 -2
- scitex/gen/_get_notebook_path.py +257 -0
- scitex/gen/_less.py +1 -1
- scitex/gen/_list_packages.py +2 -2
- scitex/gen/_norm.py +44 -9
- scitex/gen/_norm_cache.py +269 -0
- scitex/gen/_src.py +3 -5
- scitex/gen/_title_case.py +3 -3
- scitex/io/__init__.py +28 -6
- scitex/io/_glob.py +13 -7
- scitex/io/_load.py +108 -21
- scitex/io/_load_cache.py +303 -0
- scitex/io/_load_configs.py +40 -15
- scitex/io/{_H5Explorer.py → _load_modules/_H5Explorer.py} +80 -17
- scitex/io/_load_modules/_ZarrExplorer.py +114 -0
- scitex/io/_load_modules/_bibtex.py +207 -0
- scitex/io/_load_modules/_hdf5.py +53 -178
- scitex/io/_load_modules/_json.py +5 -3
- scitex/io/_load_modules/_pdf.py +871 -16
- scitex/io/_load_modules/_sqlite3.py +15 -0
- scitex/io/_load_modules/_txt.py +41 -12
- scitex/io/_load_modules/_yaml.py +4 -3
- scitex/io/_load_modules/_zarr.py +126 -0
- scitex/io/_save.py +429 -171
- scitex/io/_save_modules/__init__.py +6 -0
- scitex/io/_save_modules/_bibtex.py +194 -0
- scitex/io/_save_modules/_csv.py +8 -4
- scitex/io/_save_modules/_excel.py +174 -15
- scitex/io/_save_modules/_hdf5.py +251 -226
- scitex/io/_save_modules/_image.py +1 -3
- scitex/io/_save_modules/_json.py +49 -4
- scitex/io/_save_modules/_listed_dfs_as_csv.py +1 -3
- scitex/io/_save_modules/_listed_scalars_as_csv.py +1 -3
- scitex/io/_save_modules/_tex.py +277 -0
- scitex/io/_save_modules/_yaml.py +42 -3
- scitex/io/_save_modules/_zarr.py +160 -0
- scitex/io/utils/__init__.py +20 -0
- scitex/io/utils/h5_to_zarr.py +616 -0
- scitex/linalg/_geometric_median.py +6 -2
- scitex/{gen/_tee.py → logging/_Tee.py} +43 -84
- scitex/logging/__init__.py +122 -0
- scitex/logging/_config.py +158 -0
- scitex/logging/_context.py +103 -0
- scitex/logging/_formatters.py +128 -0
- scitex/logging/_handlers.py +64 -0
- scitex/logging/_levels.py +35 -0
- scitex/logging/_logger.py +163 -0
- scitex/logging/_print_capture.py +95 -0
- scitex/ml/__init__.py +69 -0
- scitex/{ai/genai/anthropic.py → ml/_gen_ai/_Anthropic.py} +13 -19
- scitex/{ai/genai/base_genai.py → ml/_gen_ai/_BaseGenAI.py} +5 -5
- scitex/{ai/genai/deepseek.py → ml/_gen_ai/_DeepSeek.py} +11 -16
- scitex/{ai/genai/google.py → ml/_gen_ai/_Google.py} +7 -15
- scitex/{ai/genai/groq.py → ml/_gen_ai/_Groq.py} +1 -8
- scitex/{ai/genai/llama.py → ml/_gen_ai/_Llama.py} +3 -16
- scitex/{ai/genai/openai.py → ml/_gen_ai/_OpenAI.py} +3 -3
- scitex/{ai/genai/params.py → ml/_gen_ai/_PARAMS.py} +51 -65
- scitex/{ai/genai/perplexity.py → ml/_gen_ai/_Perplexity.py} +3 -14
- scitex/ml/_gen_ai/__init__.py +43 -0
- scitex/{ai/genai/calc_cost.py → ml/_gen_ai/_calc_cost.py} +1 -1
- scitex/{ai/genai/format_output_func.py → ml/_gen_ai/_format_output_func.py} +4 -4
- scitex/{ai/genai/genai_factory.py → ml/_gen_ai/_genai_factory.py} +8 -8
- scitex/ml/activation/__init__.py +8 -0
- scitex/ml/activation/_define.py +11 -0
- scitex/{ai/classifier_server.py → ml/classification/Classifier.py} +5 -5
- scitex/ml/classification/CrossValidationExperiment.py +374 -0
- scitex/ml/classification/__init__.py +46 -0
- scitex/ml/classification/reporters/_BaseClassificationReporter.py +281 -0
- scitex/ml/classification/reporters/_ClassificationReporter.py +773 -0
- scitex/ml/classification/reporters/_MultiClassificationReporter.py +406 -0
- scitex/ml/classification/reporters/_SingleClassificationReporter.py +1834 -0
- scitex/ml/classification/reporters/__init__.py +11 -0
- scitex/ml/classification/reporters/reporter_utils/_Plotter.py +1028 -0
- scitex/ml/classification/reporters/reporter_utils/__init__.py +80 -0
- scitex/ml/classification/reporters/reporter_utils/aggregation.py +457 -0
- scitex/ml/classification/reporters/reporter_utils/data_models.py +313 -0
- scitex/ml/classification/reporters/reporter_utils/reporting.py +1056 -0
- scitex/ml/classification/reporters/reporter_utils/storage.py +221 -0
- scitex/ml/classification/reporters/reporter_utils/validation.py +395 -0
- scitex/ml/classification/timeseries/_TimeSeriesBlockingSplit.py +568 -0
- scitex/ml/classification/timeseries/_TimeSeriesCalendarSplit.py +688 -0
- scitex/ml/classification/timeseries/_TimeSeriesMetadata.py +139 -0
- scitex/ml/classification/timeseries/_TimeSeriesSlidingWindowSplit.py +1716 -0
- scitex/ml/classification/timeseries/_TimeSeriesSlidingWindowSplit_v01-not-using-n_splits.py +1685 -0
- scitex/ml/classification/timeseries/_TimeSeriesStrategy.py +84 -0
- scitex/ml/classification/timeseries/_TimeSeriesStratifiedSplit.py +610 -0
- scitex/ml/classification/timeseries/__init__.py +39 -0
- scitex/ml/classification/timeseries/_normalize_timestamp.py +436 -0
- scitex/ml/clustering/__init__.py +11 -0
- scitex/ml/clustering/_pca.py +115 -0
- scitex/ml/clustering/_umap.py +376 -0
- scitex/ml/feature_extraction/__init__.py +56 -0
- scitex/ml/feature_extraction/vit.py +149 -0
- scitex/ml/feature_selection/__init__.py +30 -0
- scitex/ml/feature_selection/feature_selection.py +364 -0
- scitex/ml/loss/_L1L2Losses.py +34 -0
- scitex/ml/loss/__init__.py +12 -0
- scitex/ml/loss/multi_task_loss.py +47 -0
- scitex/ml/metrics/__init__.py +56 -0
- scitex/ml/metrics/_calc_bacc.py +61 -0
- scitex/ml/metrics/_calc_bacc_from_conf_mat.py +38 -0
- scitex/ml/metrics/_calc_clf_report.py +78 -0
- scitex/ml/metrics/_calc_conf_mat.py +93 -0
- scitex/ml/metrics/_calc_feature_importance.py +183 -0
- scitex/ml/metrics/_calc_mcc.py +61 -0
- scitex/ml/metrics/_calc_pre_rec_auc.py +116 -0
- scitex/ml/metrics/_calc_roc_auc.py +110 -0
- scitex/ml/metrics/_calc_seizure_prediction_metrics.py +490 -0
- scitex/ml/metrics/_calc_silhouette_score.py +503 -0
- scitex/ml/metrics/_normalize_labels.py +83 -0
- scitex/ml/optim/Ranger_Deep_Learning_Optimizer/__init__.py +0 -0
- scitex/ml/optim/Ranger_Deep_Learning_Optimizer/ranger/__init__.py +3 -0
- scitex/ml/optim/Ranger_Deep_Learning_Optimizer/ranger/ranger.py +207 -0
- scitex/ml/optim/Ranger_Deep_Learning_Optimizer/ranger/ranger2020.py +238 -0
- scitex/ml/optim/Ranger_Deep_Learning_Optimizer/ranger/ranger913A.py +215 -0
- scitex/ml/optim/Ranger_Deep_Learning_Optimizer/ranger/rangerqh.py +184 -0
- scitex/ml/optim/Ranger_Deep_Learning_Optimizer/setup.py +24 -0
- scitex/ml/optim/__init__.py +13 -0
- scitex/ml/optim/_get_set.py +31 -0
- scitex/ml/optim/_optimizers.py +71 -0
- scitex/ml/plt/__init__.py +60 -0
- scitex/ml/plt/_plot_conf_mat.py +663 -0
- scitex/ml/plt/_plot_feature_importance.py +323 -0
- scitex/ml/plt/_plot_learning_curve.py +345 -0
- scitex/ml/plt/_plot_optuna_study.py +225 -0
- scitex/ml/plt/_plot_pre_rec_curve.py +290 -0
- scitex/ml/plt/_plot_roc_curve.py +255 -0
- scitex/ml/sk/__init__.py +11 -0
- scitex/ml/sk/_clf.py +58 -0
- scitex/ml/sk/_to_sktime.py +100 -0
- scitex/ml/sklearn/__init__.py +26 -0
- scitex/ml/sklearn/clf.py +58 -0
- scitex/ml/sklearn/to_sktime.py +100 -0
- scitex/{ai/training/early_stopping.py → ml/training/_EarlyStopping.py} +1 -2
- scitex/{ai → ml/training}/_LearningCurveLogger.py +198 -242
- scitex/ml/training/__init__.py +7 -0
- scitex/ml/utils/__init__.py +22 -0
- scitex/ml/utils/_check_params.py +50 -0
- scitex/ml/utils/_default_dataset.py +46 -0
- scitex/ml/utils/_format_samples_for_sktime.py +26 -0
- scitex/ml/utils/_label_encoder.py +134 -0
- scitex/ml/utils/_merge_labels.py +22 -0
- scitex/ml/utils/_sliding_window_data_augmentation.py +11 -0
- scitex/ml/utils/_under_sample.py +51 -0
- scitex/ml/utils/_verify_n_gpus.py +16 -0
- scitex/ml/utils/grid_search.py +148 -0
- scitex/nn/_BNet.py +15 -9
- scitex/nn/_Filters.py +2 -2
- scitex/nn/_ModulationIndex.py +2 -2
- scitex/nn/_PAC.py +1 -1
- scitex/nn/_Spectrogram.py +12 -3
- scitex/nn/__init__.py +9 -10
- scitex/path/__init__.py +18 -0
- scitex/path/_clean.py +4 -0
- scitex/path/_find.py +9 -4
- scitex/path/_symlink.py +348 -0
- scitex/path/_version.py +4 -3
- scitex/pd/__init__.py +2 -0
- scitex/pd/_get_unique.py +99 -0
- scitex/plt/__init__.py +114 -5
- scitex/plt/_subplots/_AxesWrapper.py +1 -3
- scitex/plt/_subplots/_AxisWrapper.py +7 -3
- scitex/plt/_subplots/_AxisWrapperMixins/_AdjustmentMixin.py +47 -13
- scitex/plt/_subplots/_AxisWrapperMixins/_MatplotlibPlotMixin.py +160 -2
- scitex/plt/_subplots/_AxisWrapperMixins/_SeabornMixin.py +26 -4
- scitex/plt/_subplots/_AxisWrapperMixins/_UnitAwareMixin.py +322 -0
- scitex/plt/_subplots/_AxisWrapperMixins/__init__.py +1 -0
- scitex/plt/_subplots/_FigWrapper.py +62 -6
- scitex/plt/_subplots/_export_as_csv.py +43 -27
- scitex/plt/_subplots/_export_as_csv_formatters/__init__.py +5 -4
- scitex/plt/_subplots/_export_as_csv_formatters/_format_annotate.py +81 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_bar.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_barh.py +20 -5
- scitex/plt/_subplots/_export_as_csv_formatters/_format_boxplot.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_contour.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_errorbar.py +35 -18
- scitex/plt/_subplots/_export_as_csv_formatters/_format_eventplot.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_fill.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_fill_between.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_hist.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_imshow.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_imshow2d.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot.py +15 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_box.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_conf_mat.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_ecdf.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_fillv.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_heatmap.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_image.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_joyplot.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_kde.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_line.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_mean_ci.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_mean_std.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_median_iqr.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_raster.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_rectangle.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_scatter.py +35 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_scatter_hist.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_shaded_line.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_violin.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_scatter.py +6 -4
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_barplot.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_boxplot.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_heatmap.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_histplot.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_jointplot.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_kdeplot.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_lineplot.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_pairplot.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_scatterplot.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_stripplot.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_swarmplot.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_violinplot.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_text.py +60 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_violin.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_violinplot.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/test_formatters.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters.py +56 -59
- scitex/plt/ax/_style/_hide_spines.py +1 -3
- scitex/plt/ax/_style/_rotate_labels.py +180 -76
- scitex/plt/ax/_style/_rotate_labels_v01.py +248 -0
- scitex/plt/ax/_style/_set_meta.py +11 -4
- scitex/plt/ax/_style/_set_supxyt.py +3 -3
- scitex/plt/ax/_style/_set_xyt.py +3 -3
- scitex/plt/ax/_style/_share_axes.py +2 -2
- scitex/plt/color/__init__.py +4 -4
- scitex/plt/color/{_get_colors_from_cmap.py → _get_colors_from_conf_matap.py} +7 -7
- scitex/plt/utils/_configure_mpl.py +99 -86
- scitex/plt/utils/_histogram_utils.py +1 -3
- scitex/plt/utils/_is_valid_axis.py +1 -3
- scitex/plt/utils/_scitex_config.py +1 -0
- scitex/repro/__init__.py +75 -0
- scitex/{reproduce → repro}/_gen_ID.py +1 -1
- scitex/{reproduce → repro}/_gen_timestamp.py +1 -1
- scitex/repro_rng/_RandomStateManager.py +590 -0
- scitex/repro_rng/_RandomStateManager_v01-no-verbose-options.py +414 -0
- scitex/repro_rng/__init__.py +39 -0
- scitex/reproduce/__init__.py +25 -13
- scitex/reproduce/_hash_array.py +22 -0
- scitex/resource/_get_processor_usages.py +4 -4
- scitex/resource/_get_specs.py +2 -2
- scitex/resource/_log_processor_usages.py +2 -2
- scitex/rng/_RandomStateManager.py +590 -0
- scitex/rng/_RandomStateManager_v01-no-verbose-options.py +414 -0
- scitex/rng/__init__.py +39 -0
- scitex/scholar/__init__.py +309 -19
- scitex/scholar/__main__.py +319 -0
- scitex/scholar/auth/ScholarAuthManager.py +308 -0
- scitex/scholar/auth/__init__.py +12 -0
- scitex/scholar/auth/core/AuthenticationGateway.py +473 -0
- scitex/scholar/auth/core/BrowserAuthenticator.py +386 -0
- scitex/scholar/auth/core/StrategyResolver.py +309 -0
- scitex/scholar/auth/core/__init__.py +16 -0
- scitex/scholar/auth/gateway/_OpenURLLinkFinder.py +120 -0
- scitex/scholar/auth/gateway/_OpenURLResolver.py +209 -0
- scitex/scholar/auth/gateway/__init__.py +38 -0
- scitex/scholar/auth/gateway/_resolve_functions.py +101 -0
- scitex/scholar/auth/providers/BaseAuthenticator.py +166 -0
- scitex/scholar/auth/providers/EZProxyAuthenticator.py +484 -0
- scitex/scholar/auth/providers/OpenAthensAuthenticator.py +619 -0
- scitex/scholar/auth/providers/ShibbolethAuthenticator.py +686 -0
- scitex/scholar/auth/providers/__init__.py +18 -0
- scitex/scholar/auth/session/AuthCacheManager.py +189 -0
- scitex/scholar/auth/session/SessionManager.py +159 -0
- scitex/scholar/auth/session/__init__.py +11 -0
- scitex/scholar/auth/sso/BaseSSOAutomator.py +373 -0
- scitex/scholar/auth/sso/OpenAthensSSOAutomator.py +378 -0
- scitex/scholar/auth/sso/SSOAutomator.py +180 -0
- scitex/scholar/auth/sso/UniversityOfMelbourneSSOAutomator.py +380 -0
- scitex/scholar/auth/sso/__init__.py +15 -0
- scitex/scholar/browser/ScholarBrowserManager.py +705 -0
- scitex/scholar/browser/__init__.py +38 -0
- scitex/scholar/browser/utils/__init__.py +13 -0
- scitex/scholar/browser/utils/click_and_wait.py +205 -0
- scitex/scholar/browser/utils/close_unwanted_pages.py +140 -0
- scitex/scholar/browser/utils/wait_redirects.py +732 -0
- scitex/scholar/config/PublisherRules.py +132 -0
- scitex/scholar/config/ScholarConfig.py +126 -0
- scitex/scholar/config/__init__.py +17 -0
- scitex/scholar/core/Paper.py +627 -0
- scitex/scholar/core/Papers.py +722 -0
- scitex/scholar/core/Scholar.py +1975 -0
- scitex/scholar/core/__init__.py +9 -0
- scitex/scholar/impact_factor/ImpactFactorEngine.py +204 -0
- scitex/scholar/impact_factor/__init__.py +20 -0
- scitex/scholar/impact_factor/estimation/ImpactFactorEstimationEngine.py +0 -0
- scitex/scholar/impact_factor/estimation/__init__.py +40 -0
- scitex/scholar/impact_factor/estimation/build_database.py +0 -0
- scitex/scholar/impact_factor/estimation/core/__init__.py +28 -0
- scitex/scholar/impact_factor/estimation/core/cache_manager.py +523 -0
- scitex/scholar/impact_factor/estimation/core/calculator.py +355 -0
- scitex/scholar/impact_factor/estimation/core/journal_matcher.py +428 -0
- scitex/scholar/integration/__init__.py +59 -0
- scitex/scholar/integration/base.py +502 -0
- scitex/scholar/integration/mendeley/__init__.py +22 -0
- scitex/scholar/integration/mendeley/exporter.py +166 -0
- scitex/scholar/integration/mendeley/importer.py +236 -0
- scitex/scholar/integration/mendeley/linker.py +79 -0
- scitex/scholar/integration/mendeley/mapper.py +212 -0
- scitex/scholar/integration/zotero/__init__.py +27 -0
- scitex/scholar/integration/zotero/__main__.py +264 -0
- scitex/scholar/integration/zotero/exporter.py +351 -0
- scitex/scholar/integration/zotero/importer.py +372 -0
- scitex/scholar/integration/zotero/linker.py +415 -0
- scitex/scholar/integration/zotero/mapper.py +286 -0
- scitex/scholar/metadata_engines/ScholarEngine.py +588 -0
- scitex/scholar/metadata_engines/__init__.py +21 -0
- scitex/scholar/metadata_engines/individual/ArXivEngine.py +397 -0
- scitex/scholar/metadata_engines/individual/CrossRefEngine.py +274 -0
- scitex/scholar/metadata_engines/individual/CrossRefLocalEngine.py +263 -0
- scitex/scholar/metadata_engines/individual/OpenAlexEngine.py +350 -0
- scitex/scholar/metadata_engines/individual/PubMedEngine.py +329 -0
- scitex/scholar/metadata_engines/individual/SemanticScholarEngine.py +438 -0
- scitex/scholar/metadata_engines/individual/URLDOIEngine.py +410 -0
- scitex/scholar/metadata_engines/individual/_BaseDOIEngine.py +487 -0
- scitex/scholar/metadata_engines/individual/__init__.py +7 -0
- scitex/scholar/metadata_engines/utils/_PubMedConverter.py +469 -0
- scitex/scholar/metadata_engines/utils/_URLDOIExtractor.py +283 -0
- scitex/scholar/metadata_engines/utils/__init__.py +30 -0
- scitex/scholar/metadata_engines/utils/_metadata2bibtex.py +103 -0
- scitex/scholar/metadata_engines/utils/_standardize_metadata.py +376 -0
- scitex/scholar/pdf_download/ScholarPDFDownloader.py +579 -0
- scitex/scholar/pdf_download/__init__.py +5 -0
- scitex/scholar/pdf_download/strategies/__init__.py +38 -0
- scitex/scholar/pdf_download/strategies/chrome_pdf_viewer.py +376 -0
- scitex/scholar/pdf_download/strategies/direct_download.py +131 -0
- scitex/scholar/pdf_download/strategies/manual_download_fallback.py +167 -0
- scitex/scholar/pdf_download/strategies/manual_download_utils.py +996 -0
- scitex/scholar/pdf_download/strategies/response_body.py +207 -0
- scitex/scholar/pipelines/ScholarPipelineBibTeX.py +364 -0
- scitex/scholar/pipelines/ScholarPipelineParallel.py +478 -0
- scitex/scholar/pipelines/ScholarPipelineSingle.py +767 -0
- scitex/scholar/pipelines/__init__.py +49 -0
- scitex/scholar/storage/BibTeXHandler.py +1018 -0
- scitex/scholar/storage/PaperIO.py +468 -0
- scitex/scholar/storage/ScholarLibrary.py +182 -0
- scitex/scholar/storage/_DeduplicationManager.py +548 -0
- scitex/scholar/storage/_LibraryCacheManager.py +724 -0
- scitex/scholar/storage/_LibraryManager.py +1835 -0
- scitex/scholar/storage/__init__.py +28 -0
- scitex/scholar/url_finder/ScholarURLFinder.py +379 -0
- scitex/scholar/url_finder/__init__.py +7 -0
- scitex/scholar/url_finder/strategies/__init__.py +33 -0
- scitex/scholar/url_finder/strategies/find_pdf_urls_by_direct_links.py +261 -0
- scitex/scholar/url_finder/strategies/find_pdf_urls_by_dropdown.py +67 -0
- scitex/scholar/url_finder/strategies/find_pdf_urls_by_href.py +204 -0
- scitex/scholar/url_finder/strategies/find_pdf_urls_by_navigation.py +256 -0
- scitex/scholar/url_finder/strategies/find_pdf_urls_by_publisher_patterns.py +165 -0
- scitex/scholar/url_finder/strategies/find_pdf_urls_by_zotero_translators.py +163 -0
- scitex/scholar/url_finder/strategies/find_supplementary_urls_by_href.py +70 -0
- scitex/scholar/utils/__init__.py +22 -0
- scitex/scholar/utils/bibtex/__init__.py +9 -0
- scitex/scholar/utils/bibtex/_parse_bibtex.py +71 -0
- scitex/scholar/utils/cleanup/__init__.py +8 -0
- scitex/scholar/utils/cleanup/_cleanup_scholar_processes.py +96 -0
- scitex/scholar/utils/cleanup/cleanup_old_extractions.py +117 -0
- scitex/scholar/utils/text/_TextNormalizer.py +407 -0
- scitex/scholar/utils/text/__init__.py +9 -0
- scitex/scholar/zotero/__init__.py +38 -0
- scitex/session/__init__.py +51 -0
- scitex/session/_lifecycle.py +736 -0
- scitex/session/_manager.py +102 -0
- scitex/session/template.py +122 -0
- scitex/stats/__init__.py +30 -26
- scitex/stats/correct/__init__.py +21 -0
- scitex/stats/correct/_correct_bonferroni.py +551 -0
- scitex/stats/correct/_correct_fdr.py +634 -0
- scitex/stats/correct/_correct_holm.py +548 -0
- scitex/stats/correct/_correct_sidak.py +499 -0
- scitex/stats/descriptive/__init__.py +85 -0
- scitex/stats/descriptive/_circular.py +540 -0
- scitex/stats/descriptive/_describe.py +219 -0
- scitex/stats/descriptive/_nan.py +518 -0
- scitex/stats/descriptive/_real.py +189 -0
- scitex/stats/effect_sizes/__init__.py +41 -0
- scitex/stats/effect_sizes/_cliffs_delta.py +325 -0
- scitex/stats/effect_sizes/_cohens_d.py +342 -0
- scitex/stats/effect_sizes/_epsilon_squared.py +315 -0
- scitex/stats/effect_sizes/_eta_squared.py +302 -0
- scitex/stats/effect_sizes/_prob_superiority.py +296 -0
- scitex/stats/posthoc/__init__.py +19 -0
- scitex/stats/posthoc/_dunnett.py +463 -0
- scitex/stats/posthoc/_games_howell.py +383 -0
- scitex/stats/posthoc/_tukey_hsd.py +367 -0
- scitex/stats/power/__init__.py +19 -0
- scitex/stats/power/_power.py +433 -0
- scitex/stats/template.py +119 -0
- scitex/stats/utils/__init__.py +62 -0
- scitex/stats/utils/_effect_size.py +985 -0
- scitex/stats/utils/_formatters.py +270 -0
- scitex/stats/utils/_normalizers.py +927 -0
- scitex/stats/utils/_power.py +433 -0
- scitex/stats_v01/_EffectSizeCalculator.py +488 -0
- scitex/stats_v01/_StatisticalValidator.py +411 -0
- scitex/stats_v01/__init__.py +60 -0
- scitex/stats_v01/_additional_tests.py +415 -0
- scitex/{stats → stats_v01}/_p2stars.py +19 -5
- scitex/stats_v01/_two_sample_tests.py +141 -0
- scitex/stats_v01/desc/__init__.py +83 -0
- scitex/stats_v01/desc/_circular.py +540 -0
- scitex/stats_v01/desc/_describe.py +219 -0
- scitex/stats_v01/desc/_nan.py +518 -0
- scitex/{stats/desc/_nan.py → stats_v01/desc/_nan_v01-20250920_145731.py} +23 -12
- scitex/stats_v01/desc/_real.py +189 -0
- scitex/stats_v01/tests/__corr_test_optimized.py +221 -0
- scitex/stats_v01/tests/_corr_test_optimized.py +179 -0
- scitex/str/__init__.py +1 -3
- scitex/str/_clean_path.py +6 -2
- scitex/str/_latex_fallback.py +267 -160
- scitex/str/_parse.py +44 -36
- scitex/str/_printc.py +1 -3
- scitex/template/__init__.py +87 -0
- scitex/template/_create_project.py +267 -0
- scitex/template/create_pip_project.py +80 -0
- scitex/template/create_research.py +80 -0
- scitex/template/create_singularity.py +80 -0
- scitex/units.py +291 -0
- scitex/utils/_compress_hdf5.py +14 -3
- scitex/utils/_email.py +21 -2
- scitex/utils/_grid.py +6 -4
- scitex/utils/_notify.py +13 -10
- scitex/utils/_verify_scitex_format.py +589 -0
- scitex/utils/_verify_scitex_format_v01.py +370 -0
- scitex/utils/template.py +122 -0
- scitex/web/_search_pubmed.py +62 -16
- scitex-2.1.0.dist-info/LICENSE +21 -0
- scitex-2.1.0.dist-info/METADATA +677 -0
- scitex-2.1.0.dist-info/RECORD +919 -0
- {scitex-2.0.0.dist-info → scitex-2.1.0.dist-info}/WHEEL +1 -1
- scitex-2.1.0.dist-info/entry_points.txt +3 -0
- scitex/ai/__Classifiers.py +0 -101
- scitex/ai/classification/classification_reporter.py +0 -1137
- scitex/ai/classification/classifiers.py +0 -101
- scitex/ai/classification_reporter.py +0 -1161
- scitex/ai/genai/__init__.py +0 -277
- scitex/ai/genai/anthropic_provider.py +0 -320
- scitex/ai/genai/anthropic_refactored.py +0 -109
- scitex/ai/genai/auth_manager.py +0 -200
- scitex/ai/genai/base_provider.py +0 -291
- scitex/ai/genai/chat_history.py +0 -307
- scitex/ai/genai/cost_tracker.py +0 -276
- scitex/ai/genai/deepseek_provider.py +0 -251
- scitex/ai/genai/google_provider.py +0 -228
- scitex/ai/genai/groq_provider.py +0 -248
- scitex/ai/genai/image_processor.py +0 -250
- scitex/ai/genai/llama_provider.py +0 -214
- scitex/ai/genai/mock_provider.py +0 -127
- scitex/ai/genai/model_registry.py +0 -304
- scitex/ai/genai/openai_provider.py +0 -293
- scitex/ai/genai/perplexity_provider.py +0 -205
- scitex/ai/genai/provider_base.py +0 -302
- scitex/ai/genai/provider_factory.py +0 -370
- scitex/ai/genai/response_handler.py +0 -235
- scitex/ai/layer/_Pass.py +0 -21
- scitex/ai/layer/__init__.py +0 -10
- scitex/ai/layer/_switch.py +0 -8
- scitex/ai/metrics/_bACC.py +0 -51
- scitex/ai/plt/_learning_curve.py +0 -194
- scitex/ai/plt/_optuna_study.py +0 -111
- scitex/ai/plt/aucs/__init__.py +0 -2
- scitex/ai/plt/aucs/example.py +0 -60
- scitex/ai/plt/aucs/pre_rec_auc.py +0 -223
- scitex/ai/plt/aucs/roc_auc.py +0 -246
- scitex/ai/sampling/undersample.py +0 -29
- scitex/db/_SQLite3.py +0 -2136
- scitex/db/_SQLite3Mixins/_BlobMixin.py +0 -229
- scitex/gen/_close.py +0 -222
- scitex/gen/_start.py +0 -451
- scitex/general/__init__.py +0 -5
- scitex/io/_load_modules/_db.py +0 -24
- scitex/life/__init__.py +0 -10
- scitex/life/_monitor_rain.py +0 -49
- scitex/reproduce/_fix_seeds.py +0 -45
- scitex/res/__init__.py +0 -5
- scitex/scholar/_local_search.py +0 -454
- scitex/scholar/_paper.py +0 -244
- scitex/scholar/_pdf_downloader.py +0 -325
- scitex/scholar/_search.py +0 -393
- scitex/scholar/_vector_search.py +0 -370
- scitex/scholar/_web_sources.py +0 -457
- scitex/stats/desc/__init__.py +0 -40
- scitex-2.0.0.dist-info/METADATA +0 -307
- scitex-2.0.0.dist-info/RECORD +0 -572
- scitex-2.0.0.dist-info/licenses/LICENSE +0 -7
- /scitex/ai/{act → activation}/__init__.py +0 -0
- /scitex/ai/{act → activation}/_define.py +0 -0
- /scitex/ai/{early_stopping.py → training/_EarlyStopping.py} +0 -0
- /scitex/db/{_PostgreSQLMixins → _postgresql/_PostgreSQLMixins}/_ImportExportMixin.py +0 -0
- /scitex/db/{_PostgreSQLMixins → _postgresql/_PostgreSQLMixins}/_IndexMixin.py +0 -0
- /scitex/db/{_PostgreSQLMixins → _postgresql/_PostgreSQLMixins}/_RowMixin.py +0 -0
- /scitex/db/{_PostgreSQLMixins → _postgresql/_PostgreSQLMixins}/_TableMixin.py +0 -0
- /scitex/db/{_PostgreSQLMixins → _postgresql/_PostgreSQLMixins}/__init__.py +0 -0
- /scitex/{stats → stats_v01}/_calc_partial_corr.py +0 -0
- /scitex/{stats → stats_v01}/_corr_test_multi.py +0 -0
- /scitex/{stats → stats_v01}/_corr_test_wrapper.py +0 -0
- /scitex/{stats → stats_v01}/_describe_wrapper.py +0 -0
- /scitex/{stats → stats_v01}/_multiple_corrections.py +0 -0
- /scitex/{stats → stats_v01}/_nan_stats.py +0 -0
- /scitex/{stats → stats_v01}/_p2stars_wrapper.py +0 -0
- /scitex/{stats → stats_v01}/_statistical_tests.py +0 -0
- /scitex/{stats/desc/_describe.py → stats_v01/desc/_describe_v01-20250920_145731.py} +0 -0
- /scitex/{stats/desc/_real.py → stats_v01/desc/_real_v01-20250920_145731.py} +0 -0
- /scitex/{stats → stats_v01}/multiple/__init__.py +0 -0
- /scitex/{stats → stats_v01}/multiple/_bonferroni_correction.py +0 -0
- /scitex/{stats → stats_v01}/multiple/_fdr_correction.py +0 -0
- /scitex/{stats → stats_v01}/multiple/_multicompair.py +0 -0
- /scitex/{stats → stats_v01}/tests/__corr_test.py +0 -0
- /scitex/{stats → stats_v01}/tests/__corr_test_multi.py +0 -0
- /scitex/{stats → stats_v01}/tests/__corr_test_single.py +0 -0
- /scitex/{stats → stats_v01}/tests/__init__.py +0 -0
- /scitex/{stats → stats_v01}/tests/_brunner_munzel_test.py +0 -0
- /scitex/{stats → stats_v01}/tests/_nocorrelation_test.py +0 -0
- /scitex/{stats → stats_v01}/tests/_smirnov_grubbs.py +0 -0
- {scitex-2.0.0.dist-info → scitex-2.1.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,207 @@
|
|
|
1
|
+
# Ranger deep learning optimizer - RAdam + Lookahead + Gradient Centralization, combined into one optimizer.
|
|
2
|
+
|
|
3
|
+
# https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer
|
|
4
|
+
# and/or
|
|
5
|
+
# https://github.com/lessw2020/Best-Deep-Learning-Optimizers
|
|
6
|
+
|
|
7
|
+
# Ranger has now been used to capture 12 records on the FastAI leaderboard.
|
|
8
|
+
|
|
9
|
+
# This version = 20.4.11
|
|
10
|
+
|
|
11
|
+
# Credits:
|
|
12
|
+
# Gradient Centralization --> https://arxiv.org/abs/2004.01461v2 (a new optimization technique for DNNs), github: https://github.com/Yonghongwei/Gradient-Centralization
|
|
13
|
+
# RAdam --> https://github.com/LiyuanLucasLiu/RAdam
|
|
14
|
+
# Lookahead --> rewritten by lessw2020, but big thanks to Github @LonePatient and @RWightman for ideas from their code.
|
|
15
|
+
# Lookahead paper --> MZhang,G Hinton https://arxiv.org/abs/1907.08610
|
|
16
|
+
|
|
17
|
+
# summary of changes:
|
|
18
|
+
# 4/11/20 - add gradient centralization option. Set new testing benchmark for accuracy with it, toggle with use_gc flag at init.
|
|
19
|
+
# full code integration with all updates at param level instead of group, moves slow weights into state dict (from generic weights),
|
|
20
|
+
# supports group learning rates (thanks @SHolderbach), fixes sporadic load from saved model issues.
|
|
21
|
+
# changes 8/31/19 - fix references to *self*.N_sma_threshold;
|
|
22
|
+
# changed eps to 1e-5 as better default than 1e-8.
|
|
23
|
+
|
|
24
|
+
import math
|
|
25
|
+
import torch
|
|
26
|
+
from torch.optim.optimizer import Optimizer, required
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
class Ranger(Optimizer):
|
|
30
|
+
|
|
31
|
+
def __init__(
|
|
32
|
+
self,
|
|
33
|
+
params,
|
|
34
|
+
lr=1e-3, # lr
|
|
35
|
+
alpha=0.5,
|
|
36
|
+
k=6,
|
|
37
|
+
N_sma_threshhold=5, # Ranger options
|
|
38
|
+
betas=(0.95, 0.999),
|
|
39
|
+
eps=1e-5,
|
|
40
|
+
weight_decay=0, # Adam options
|
|
41
|
+
# Gradient centralization on or off, applied to conv layers only or conv + fc layers
|
|
42
|
+
use_gc=True,
|
|
43
|
+
gc_conv_only=False,
|
|
44
|
+
):
|
|
45
|
+
|
|
46
|
+
# parameter checks
|
|
47
|
+
if not 0.0 <= alpha <= 1.0:
|
|
48
|
+
raise ValueError(f"Invalid slow update rate: {alpha}")
|
|
49
|
+
if not 1 <= k:
|
|
50
|
+
raise ValueError(f"Invalid lookahead steps: {k}")
|
|
51
|
+
if not lr > 0:
|
|
52
|
+
raise ValueError(f"Invalid Learning Rate: {lr}")
|
|
53
|
+
if not eps > 0:
|
|
54
|
+
raise ValueError(f"Invalid eps: {eps}")
|
|
55
|
+
|
|
56
|
+
# parameter comments:
|
|
57
|
+
# beta1 (momentum) of .95 seems to work better than .90...
|
|
58
|
+
# N_sma_threshold of 5 seems better in testing than 4.
|
|
59
|
+
# In both cases, worth testing on your dataset (.90 vs .95, 4 vs 5) to make sure which works best for you.
|
|
60
|
+
|
|
61
|
+
# prep defaults and init torch.optim base
|
|
62
|
+
defaults = dict(
|
|
63
|
+
lr=lr,
|
|
64
|
+
alpha=alpha,
|
|
65
|
+
k=k,
|
|
66
|
+
step_counter=0,
|
|
67
|
+
betas=betas,
|
|
68
|
+
N_sma_threshhold=N_sma_threshhold,
|
|
69
|
+
eps=eps,
|
|
70
|
+
weight_decay=weight_decay,
|
|
71
|
+
)
|
|
72
|
+
super().__init__(params, defaults)
|
|
73
|
+
|
|
74
|
+
# adjustable threshold
|
|
75
|
+
self.N_sma_threshhold = N_sma_threshhold
|
|
76
|
+
|
|
77
|
+
# look ahead params
|
|
78
|
+
|
|
79
|
+
self.alpha = alpha
|
|
80
|
+
self.k = k
|
|
81
|
+
|
|
82
|
+
# radam buffer for state
|
|
83
|
+
self.radam_buffer = [[None, None, None] for ind in range(10)]
|
|
84
|
+
|
|
85
|
+
# gc on or off
|
|
86
|
+
self.use_gc = use_gc
|
|
87
|
+
|
|
88
|
+
# level of gradient centralization
|
|
89
|
+
self.gc_gradient_threshold = 3 if gc_conv_only else 1
|
|
90
|
+
|
|
91
|
+
print(
|
|
92
|
+
f"Ranger optimizer loaded. \nGradient Centralization usage = {self.use_gc}"
|
|
93
|
+
)
|
|
94
|
+
if self.use_gc and self.gc_gradient_threshold == 1:
|
|
95
|
+
print(f"GC applied to both conv and fc layers")
|
|
96
|
+
elif self.use_gc and self.gc_gradient_threshold == 3:
|
|
97
|
+
print(f"GC applied to conv layers only")
|
|
98
|
+
|
|
99
|
+
def __setstate__(self, state):
|
|
100
|
+
print("set state called")
|
|
101
|
+
super(Ranger, self).__setstate__(state)
|
|
102
|
+
|
|
103
|
+
def step(self, closure=None):
|
|
104
|
+
loss = None
|
|
105
|
+
# note - below is commented out b/c I have other work that passes back the loss as a float, and thus not a callable closure.
|
|
106
|
+
# Uncomment if you need to use the actual closure...
|
|
107
|
+
|
|
108
|
+
# if closure is not None:
|
|
109
|
+
# loss = closure()
|
|
110
|
+
|
|
111
|
+
# Evaluate averages and grad, update param tensors
|
|
112
|
+
for group in self.param_groups:
|
|
113
|
+
|
|
114
|
+
for p in group["params"]:
|
|
115
|
+
if p.grad is None:
|
|
116
|
+
continue
|
|
117
|
+
grad = p.grad.data.float()
|
|
118
|
+
|
|
119
|
+
if grad.is_sparse:
|
|
120
|
+
raise RuntimeError(
|
|
121
|
+
"Ranger optimizer does not support sparse gradients"
|
|
122
|
+
)
|
|
123
|
+
|
|
124
|
+
p_data_fp32 = p.data.float()
|
|
125
|
+
|
|
126
|
+
state = self.state[p] # get state dict for this param
|
|
127
|
+
|
|
128
|
+
if (
|
|
129
|
+
len(state) == 0
|
|
130
|
+
): # if first time to run...init dictionary with our desired entries
|
|
131
|
+
# if self.first_run_check==0:
|
|
132
|
+
# self.first_run_check=1
|
|
133
|
+
# print("Initializing slow buffer...should not see this at load from saved model!")
|
|
134
|
+
state["step"] = 0
|
|
135
|
+
state["exp_avg"] = torch.zeros_like(p_data_fp32)
|
|
136
|
+
state["exp_avg_sq"] = torch.zeros_like(p_data_fp32)
|
|
137
|
+
|
|
138
|
+
# look ahead weight storage now in state dict
|
|
139
|
+
state["slow_buffer"] = torch.empty_like(p.data)
|
|
140
|
+
state["slow_buffer"].copy_(p.data)
|
|
141
|
+
|
|
142
|
+
else:
|
|
143
|
+
state["exp_avg"] = state["exp_avg"].type_as(p_data_fp32)
|
|
144
|
+
state["exp_avg_sq"] = state["exp_avg_sq"].type_as(p_data_fp32)
|
|
145
|
+
|
|
146
|
+
# begin computations
|
|
147
|
+
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
|
|
148
|
+
beta1, beta2 = group["betas"]
|
|
149
|
+
|
|
150
|
+
# GC operation for Conv layers and FC layers
|
|
151
|
+
if grad.dim() > self.gc_gradient_threshold:
|
|
152
|
+
grad.add_(-grad.mean(dim=tuple(range(1, grad.dim())), keepdim=True))
|
|
153
|
+
|
|
154
|
+
state["step"] += 1
|
|
155
|
+
|
|
156
|
+
# compute variance mov avg
|
|
157
|
+
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
|
|
158
|
+
# compute mean moving avg
|
|
159
|
+
exp_avg.mul_(beta1).add_(1 - beta1, grad)
|
|
160
|
+
|
|
161
|
+
buffered = self.radam_buffer[int(state["step"] % 10)]
|
|
162
|
+
|
|
163
|
+
if state["step"] == buffered[0]:
|
|
164
|
+
N_sma, step_size = buffered[1], buffered[2]
|
|
165
|
+
else:
|
|
166
|
+
buffered[0] = state["step"]
|
|
167
|
+
beta2_t = beta2 ** state["step"]
|
|
168
|
+
N_sma_max = 2 / (1 - beta2) - 1
|
|
169
|
+
N_sma = N_sma_max - 2 * state["step"] * beta2_t / (1 - beta2_t)
|
|
170
|
+
buffered[1] = N_sma
|
|
171
|
+
if N_sma > self.N_sma_threshhold:
|
|
172
|
+
step_size = math.sqrt(
|
|
173
|
+
(1 - beta2_t)
|
|
174
|
+
* (N_sma - 4)
|
|
175
|
+
/ (N_sma_max - 4)
|
|
176
|
+
* (N_sma - 2)
|
|
177
|
+
/ N_sma
|
|
178
|
+
* N_sma_max
|
|
179
|
+
/ (N_sma_max - 2)
|
|
180
|
+
) / (1 - beta1 ** state["step"])
|
|
181
|
+
else:
|
|
182
|
+
step_size = 1.0 / (1 - beta1 ** state["step"])
|
|
183
|
+
buffered[2] = step_size
|
|
184
|
+
|
|
185
|
+
if group["weight_decay"] != 0:
|
|
186
|
+
p_data_fp32.add_(-group["weight_decay"] * group["lr"], p_data_fp32)
|
|
187
|
+
|
|
188
|
+
# apply lr
|
|
189
|
+
if N_sma > self.N_sma_threshhold:
|
|
190
|
+
denom = exp_avg_sq.sqrt().add_(group["eps"])
|
|
191
|
+
p_data_fp32.addcdiv_(-step_size * group["lr"], exp_avg, denom)
|
|
192
|
+
else:
|
|
193
|
+
p_data_fp32.add_(-step_size * group["lr"], exp_avg)
|
|
194
|
+
|
|
195
|
+
p.data.copy_(p_data_fp32)
|
|
196
|
+
|
|
197
|
+
# integrated look ahead...
|
|
198
|
+
# we do it at the param level instead of group level
|
|
199
|
+
if state["step"] % group["k"] == 0:
|
|
200
|
+
# get access to slow param tensor
|
|
201
|
+
slow_p = state["slow_buffer"]
|
|
202
|
+
# (fast weights - slow weights) * alpha
|
|
203
|
+
slow_p.add_(self.alpha, p.data - slow_p)
|
|
204
|
+
# copy interpolated weights to RAdam param tensor
|
|
205
|
+
p.data.copy_(slow_p)
|
|
206
|
+
|
|
207
|
+
return loss
|
|
@@ -0,0 +1,238 @@
|
|
|
1
|
+
# Ranger deep learning optimizer - RAdam + Lookahead + Gradient Centralization, combined into one optimizer.
|
|
2
|
+
|
|
3
|
+
# https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer
|
|
4
|
+
# and/or
|
|
5
|
+
# https://github.com/lessw2020/Best-Deep-Learning-Optimizers
|
|
6
|
+
|
|
7
|
+
# Ranger has been used to capture 12 records on the FastAI leaderboard.
|
|
8
|
+
|
|
9
|
+
# This version = 2020.9.4
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
# Credits:
|
|
13
|
+
# Gradient Centralization --> https://arxiv.org/abs/2004.01461v2 (a new optimization technique for DNNs), github: https://github.com/Yonghongwei/Gradient-Centralization
|
|
14
|
+
# RAdam --> https://github.com/LiyuanLucasLiu/RAdam
|
|
15
|
+
# Lookahead --> rewritten by lessw2020, but big thanks to Github @LonePatient and @RWightman for ideas from their code.
|
|
16
|
+
# Lookahead paper --> MZhang,G Hinton https://arxiv.org/abs/1907.08610
|
|
17
|
+
|
|
18
|
+
# summary of changes:
|
|
19
|
+
# 9/4/20 - updated addcmul_ signature to avoid warning. Integrates latest changes from GC developer (he did the work for this), and verified on performance on private dataset.
|
|
20
|
+
# 4/11/20 - add gradient centralization option. Set new testing benchmark for accuracy with it, toggle with use_gc flag at init.
|
|
21
|
+
# full code integration with all updates at param level instead of group, moves slow weights into state dict (from generic weights),
|
|
22
|
+
# supports group learning rates (thanks @SHolderbach), fixes sporadic load from saved model issues.
|
|
23
|
+
# changes 8/31/19 - fix references to *self*.N_sma_threshold;
|
|
24
|
+
# changed eps to 1e-5 as better default than 1e-8.
|
|
25
|
+
|
|
26
|
+
import math
|
|
27
|
+
import torch
|
|
28
|
+
from torch.optim.optimizer import Optimizer, required
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
def centralized_gradient(x, use_gc=True, gc_conv_only=False):
|
|
32
|
+
"""credit - https://github.com/Yonghongwei/Gradient-Centralization"""
|
|
33
|
+
if use_gc:
|
|
34
|
+
if gc_conv_only:
|
|
35
|
+
if len(list(x.size())) > 3:
|
|
36
|
+
x.add_(-x.mean(dim=tuple(range(1, len(list(x.size())))), keepdim=True))
|
|
37
|
+
else:
|
|
38
|
+
if len(list(x.size())) > 1:
|
|
39
|
+
x.add_(-x.mean(dim=tuple(range(1, len(list(x.size())))), keepdim=True))
|
|
40
|
+
return x
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
class Ranger(Optimizer):
|
|
44
|
+
|
|
45
|
+
def __init__(
|
|
46
|
+
self,
|
|
47
|
+
params,
|
|
48
|
+
lr=1e-3, # lr
|
|
49
|
+
alpha=0.5,
|
|
50
|
+
k=6,
|
|
51
|
+
N_sma_threshhold=5, # Ranger options
|
|
52
|
+
betas=(0.95, 0.999),
|
|
53
|
+
eps=1e-5,
|
|
54
|
+
weight_decay=0, # Adam options
|
|
55
|
+
# Gradient centralization on or off, applied to conv layers only or conv + fc layers
|
|
56
|
+
use_gc=True,
|
|
57
|
+
gc_conv_only=False,
|
|
58
|
+
gc_loc=True,
|
|
59
|
+
):
|
|
60
|
+
|
|
61
|
+
# parameter checks
|
|
62
|
+
if not 0.0 <= alpha <= 1.0:
|
|
63
|
+
raise ValueError(f"Invalid slow update rate: {alpha}")
|
|
64
|
+
if not 1 <= k:
|
|
65
|
+
raise ValueError(f"Invalid lookahead steps: {k}")
|
|
66
|
+
if not lr > 0:
|
|
67
|
+
raise ValueError(f"Invalid Learning Rate: {lr}")
|
|
68
|
+
if not eps > 0:
|
|
69
|
+
raise ValueError(f"Invalid eps: {eps}")
|
|
70
|
+
|
|
71
|
+
# parameter comments:
|
|
72
|
+
# beta1 (momentum) of .95 seems to work better than .90...
|
|
73
|
+
# N_sma_threshold of 5 seems better in testing than 4.
|
|
74
|
+
# In both cases, worth testing on your dataset (.90 vs .95, 4 vs 5) to make sure which works best for you.
|
|
75
|
+
|
|
76
|
+
# prep defaults and init torch.optim base
|
|
77
|
+
defaults = dict(
|
|
78
|
+
lr=lr,
|
|
79
|
+
alpha=alpha,
|
|
80
|
+
k=k,
|
|
81
|
+
step_counter=0,
|
|
82
|
+
betas=betas,
|
|
83
|
+
N_sma_threshhold=N_sma_threshhold,
|
|
84
|
+
eps=eps,
|
|
85
|
+
weight_decay=weight_decay,
|
|
86
|
+
)
|
|
87
|
+
super().__init__(params, defaults)
|
|
88
|
+
|
|
89
|
+
# adjustable threshold
|
|
90
|
+
self.N_sma_threshhold = N_sma_threshhold
|
|
91
|
+
|
|
92
|
+
# look ahead params
|
|
93
|
+
|
|
94
|
+
self.alpha = alpha
|
|
95
|
+
self.k = k
|
|
96
|
+
|
|
97
|
+
# radam buffer for state
|
|
98
|
+
self.radam_buffer = [[None, None, None] for ind in range(10)]
|
|
99
|
+
|
|
100
|
+
# gc on or off
|
|
101
|
+
self.gc_loc = gc_loc
|
|
102
|
+
self.use_gc = use_gc
|
|
103
|
+
self.gc_conv_only = gc_conv_only
|
|
104
|
+
# level of gradient centralization
|
|
105
|
+
# self.gc_gradient_threshold = 3 if gc_conv_only else 1
|
|
106
|
+
|
|
107
|
+
print(
|
|
108
|
+
f"Ranger optimizer loaded. \nGradient Centralization usage = {self.use_gc}"
|
|
109
|
+
)
|
|
110
|
+
if self.use_gc and self.gc_conv_only == False:
|
|
111
|
+
print(f"GC applied to both conv and fc layers")
|
|
112
|
+
elif self.use_gc and self.gc_conv_only == True:
|
|
113
|
+
print(f"GC applied to conv layers only")
|
|
114
|
+
|
|
115
|
+
def __setstate__(self, state):
|
|
116
|
+
print("set state called")
|
|
117
|
+
super(Ranger, self).__setstate__(state)
|
|
118
|
+
|
|
119
|
+
def step(self, closure=None):
|
|
120
|
+
loss = None
|
|
121
|
+
# note - below is commented out b/c I have other work that passes back the loss as a float, and thus not a callable closure.
|
|
122
|
+
# Uncomment if you need to use the actual closure...
|
|
123
|
+
|
|
124
|
+
# if closure is not None:
|
|
125
|
+
# loss = closure()
|
|
126
|
+
|
|
127
|
+
# Evaluate averages and grad, update param tensors
|
|
128
|
+
for group in self.param_groups:
|
|
129
|
+
|
|
130
|
+
for p in group["params"]:
|
|
131
|
+
if p.grad is None:
|
|
132
|
+
continue
|
|
133
|
+
grad = p.grad.data.float()
|
|
134
|
+
|
|
135
|
+
if grad.is_sparse:
|
|
136
|
+
raise RuntimeError(
|
|
137
|
+
"Ranger optimizer does not support sparse gradients"
|
|
138
|
+
)
|
|
139
|
+
|
|
140
|
+
p_data_fp32 = p.data.float()
|
|
141
|
+
|
|
142
|
+
state = self.state[p] # get state dict for this param
|
|
143
|
+
|
|
144
|
+
if (
|
|
145
|
+
len(state) == 0
|
|
146
|
+
): # if first time to run...init dictionary with our desired entries
|
|
147
|
+
# if self.first_run_check==0:
|
|
148
|
+
# self.first_run_check=1
|
|
149
|
+
# print("Initializing slow buffer...should not see this at load from saved model!")
|
|
150
|
+
state["step"] = 0
|
|
151
|
+
state["exp_avg"] = torch.zeros_like(p_data_fp32)
|
|
152
|
+
state["exp_avg_sq"] = torch.zeros_like(p_data_fp32)
|
|
153
|
+
|
|
154
|
+
# look ahead weight storage now in state dict
|
|
155
|
+
state["slow_buffer"] = torch.empty_like(p.data)
|
|
156
|
+
state["slow_buffer"].copy_(p.data)
|
|
157
|
+
|
|
158
|
+
else:
|
|
159
|
+
state["exp_avg"] = state["exp_avg"].type_as(p_data_fp32)
|
|
160
|
+
state["exp_avg_sq"] = state["exp_avg_sq"].type_as(p_data_fp32)
|
|
161
|
+
|
|
162
|
+
# begin computations
|
|
163
|
+
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
|
|
164
|
+
beta1, beta2 = group["betas"]
|
|
165
|
+
|
|
166
|
+
# GC operation for Conv layers and FC layers
|
|
167
|
+
# if grad.dim() > self.gc_gradient_threshold:
|
|
168
|
+
# grad.add_(-grad.mean(dim=tuple(range(1, grad.dim())), keepdim=True))
|
|
169
|
+
if self.gc_loc:
|
|
170
|
+
grad = centralized_gradient(
|
|
171
|
+
grad, use_gc=self.use_gc, gc_conv_only=self.gc_conv_only
|
|
172
|
+
)
|
|
173
|
+
|
|
174
|
+
state["step"] += 1
|
|
175
|
+
|
|
176
|
+
# compute variance mov avg
|
|
177
|
+
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
|
|
178
|
+
|
|
179
|
+
# compute mean moving avg
|
|
180
|
+
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
|
|
181
|
+
|
|
182
|
+
buffered = self.radam_buffer[int(state["step"] % 10)]
|
|
183
|
+
|
|
184
|
+
if state["step"] == buffered[0]:
|
|
185
|
+
N_sma, step_size = buffered[1], buffered[2]
|
|
186
|
+
else:
|
|
187
|
+
buffered[0] = state["step"]
|
|
188
|
+
beta2_t = beta2 ** state["step"]
|
|
189
|
+
N_sma_max = 2 / (1 - beta2) - 1
|
|
190
|
+
N_sma = N_sma_max - 2 * state["step"] * beta2_t / (1 - beta2_t)
|
|
191
|
+
buffered[1] = N_sma
|
|
192
|
+
if N_sma > self.N_sma_threshhold:
|
|
193
|
+
step_size = math.sqrt(
|
|
194
|
+
(1 - beta2_t)
|
|
195
|
+
* (N_sma - 4)
|
|
196
|
+
/ (N_sma_max - 4)
|
|
197
|
+
* (N_sma - 2)
|
|
198
|
+
/ N_sma
|
|
199
|
+
* N_sma_max
|
|
200
|
+
/ (N_sma_max - 2)
|
|
201
|
+
) / (1 - beta1 ** state["step"])
|
|
202
|
+
else:
|
|
203
|
+
step_size = 1.0 / (1 - beta1 ** state["step"])
|
|
204
|
+
buffered[2] = step_size
|
|
205
|
+
|
|
206
|
+
# if group['weight_decay'] != 0:
|
|
207
|
+
# p_data_fp32.add_(-group['weight_decay']
|
|
208
|
+
# * group['lr'], p_data_fp32)
|
|
209
|
+
|
|
210
|
+
# apply lr
|
|
211
|
+
if N_sma > self.N_sma_threshhold:
|
|
212
|
+
denom = exp_avg_sq.sqrt().add_(group["eps"])
|
|
213
|
+
G_grad = exp_avg / denom
|
|
214
|
+
else:
|
|
215
|
+
G_grad = exp_avg
|
|
216
|
+
|
|
217
|
+
if group["weight_decay"] != 0:
|
|
218
|
+
G_grad.add_(p_data_fp32, alpha=group["weight_decay"])
|
|
219
|
+
# GC operation
|
|
220
|
+
if self.gc_loc == False:
|
|
221
|
+
G_grad = centralized_gradient(
|
|
222
|
+
G_grad, use_gc=self.use_gc, gc_conv_only=self.gc_conv_only
|
|
223
|
+
)
|
|
224
|
+
|
|
225
|
+
p_data_fp32.add_(G_grad, alpha=-step_size * group["lr"])
|
|
226
|
+
p.data.copy_(p_data_fp32)
|
|
227
|
+
|
|
228
|
+
# integrated look ahead...
|
|
229
|
+
# we do it at the param level instead of group level
|
|
230
|
+
if state["step"] % group["k"] == 0:
|
|
231
|
+
# get access to slow param tensor
|
|
232
|
+
slow_p = state["slow_buffer"]
|
|
233
|
+
# (fast weights - slow weights) * alpha
|
|
234
|
+
slow_p.add_(p.data - slow_p, alpha=self.alpha)
|
|
235
|
+
# copy interpolated weights to RAdam param tensor
|
|
236
|
+
p.data.copy_(slow_p)
|
|
237
|
+
|
|
238
|
+
return loss
|
|
@@ -0,0 +1,215 @@
|
|
|
1
|
+
# Ranger deep learning optimizer - RAdam + Lookahead + calibrated adaptive LR combined.
|
|
2
|
+
# https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer
|
|
3
|
+
|
|
4
|
+
# Ranger has now been used to capture 12 records on the FastAI leaderboard.
|
|
5
|
+
|
|
6
|
+
# This version = 9.13.19A
|
|
7
|
+
|
|
8
|
+
# Credits:
|
|
9
|
+
# RAdam --> https://github.com/LiyuanLucasLiu/RAdam
|
|
10
|
+
# Lookahead --> rewritten by lessw2020, but big thanks to Github @LonePatient and @RWightman for ideas from their code.
|
|
11
|
+
# Lookahead paper --> MZhang,G Hinton https://arxiv.org/abs/1907.08610
|
|
12
|
+
# Calibrated anisotropic adaptive learning rates - https://arxiv.org/abs/1908.00700v2
|
|
13
|
+
|
|
14
|
+
# summary of changes:
|
|
15
|
+
# full code integration with all updates at param level instead of group, moves slow weights into state dict (from generic weights),
|
|
16
|
+
# supports group learning rates (thanks @SHolderbach), fixes sporadic load from saved model issues.
|
|
17
|
+
# changes 8/31/19 - fix references to *self*.N_sma_threshold;
|
|
18
|
+
# changed eps to 1e-5 as better default than 1e-8.
|
|
19
|
+
|
|
20
|
+
import math
|
|
21
|
+
import torch
|
|
22
|
+
from torch.optim.optimizer import Optimizer, required
|
|
23
|
+
import itertools as it
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
class RangerVA(Optimizer):
|
|
27
|
+
|
|
28
|
+
def __init__(
|
|
29
|
+
self,
|
|
30
|
+
params,
|
|
31
|
+
lr=1e-3,
|
|
32
|
+
alpha=0.5,
|
|
33
|
+
k=6,
|
|
34
|
+
n_sma_threshhold=5,
|
|
35
|
+
betas=(0.95, 0.999),
|
|
36
|
+
eps=1e-5,
|
|
37
|
+
weight_decay=0,
|
|
38
|
+
amsgrad=True,
|
|
39
|
+
transformer="softplus",
|
|
40
|
+
smooth=50,
|
|
41
|
+
grad_transformer="square",
|
|
42
|
+
):
|
|
43
|
+
# parameter checks
|
|
44
|
+
if not 0.0 <= alpha <= 1.0:
|
|
45
|
+
raise ValueError(f"Invalid slow update rate: {alpha}")
|
|
46
|
+
if not 1 <= k:
|
|
47
|
+
raise ValueError(f"Invalid lookahead steps: {k}")
|
|
48
|
+
if not lr > 0:
|
|
49
|
+
raise ValueError(f"Invalid Learning Rate: {lr}")
|
|
50
|
+
if not eps > 0:
|
|
51
|
+
raise ValueError(f"Invalid eps: {eps}")
|
|
52
|
+
|
|
53
|
+
# parameter comments:
|
|
54
|
+
# beta1 (momentum) of .95 seems to work better than .90...
|
|
55
|
+
# N_sma_threshold of 5 seems better in testing than 4.
|
|
56
|
+
# In both cases, worth testing on your dataset (.90 vs .95, 4 vs 5) to make sure which works best for you.
|
|
57
|
+
|
|
58
|
+
# prep defaults and init torch.optim base
|
|
59
|
+
defaults = dict(
|
|
60
|
+
lr=lr,
|
|
61
|
+
alpha=alpha,
|
|
62
|
+
k=k,
|
|
63
|
+
step_counter=0,
|
|
64
|
+
betas=betas,
|
|
65
|
+
n_sma_threshhold=n_sma_threshhold,
|
|
66
|
+
eps=eps,
|
|
67
|
+
weight_decay=weight_decay,
|
|
68
|
+
smooth=smooth,
|
|
69
|
+
transformer=transformer,
|
|
70
|
+
grad_transformer=grad_transformer,
|
|
71
|
+
amsgrad=amsgrad,
|
|
72
|
+
)
|
|
73
|
+
super().__init__(params, defaults)
|
|
74
|
+
|
|
75
|
+
# adjustable threshold
|
|
76
|
+
self.n_sma_threshhold = n_sma_threshhold
|
|
77
|
+
|
|
78
|
+
# look ahead params
|
|
79
|
+
self.alpha = alpha
|
|
80
|
+
self.k = k
|
|
81
|
+
|
|
82
|
+
# radam buffer for state
|
|
83
|
+
self.radam_buffer = [[None, None, None] for ind in range(10)]
|
|
84
|
+
|
|
85
|
+
# self.first_run_check=0
|
|
86
|
+
|
|
87
|
+
# lookahead weights
|
|
88
|
+
# 9/2/19 - lookahead param tensors have been moved to state storage.
|
|
89
|
+
# This should resolve issues with load/save where weights were left in GPU memory from first load, slowing down future runs.
|
|
90
|
+
|
|
91
|
+
# self.slow_weights = [[p.clone().detach() for p in group['params']]
|
|
92
|
+
# for group in self.param_groups]
|
|
93
|
+
|
|
94
|
+
# don't use grad for lookahead weights
|
|
95
|
+
# for w in it.chain(*self.slow_weights):
|
|
96
|
+
# w.requires_grad = False
|
|
97
|
+
|
|
98
|
+
def __setstate__(self, state):
|
|
99
|
+
print("set state called")
|
|
100
|
+
super(RangerVA, self).__setstate__(state)
|
|
101
|
+
|
|
102
|
+
def step(self, closure=None):
|
|
103
|
+
loss = None
|
|
104
|
+
# note - below is commented out b/c I have other work that passes back the loss as a float, and thus not a callable closure.
|
|
105
|
+
# Uncomment if you need to use the actual closure...
|
|
106
|
+
|
|
107
|
+
# if closure is not None:
|
|
108
|
+
# loss = closure()
|
|
109
|
+
|
|
110
|
+
# Evaluate averages and grad, update param tensors
|
|
111
|
+
for group in self.param_groups:
|
|
112
|
+
|
|
113
|
+
for p in group["params"]:
|
|
114
|
+
if p.grad is None:
|
|
115
|
+
continue
|
|
116
|
+
grad = p.grad.data.float()
|
|
117
|
+
if grad.is_sparse:
|
|
118
|
+
raise RuntimeError(
|
|
119
|
+
"Ranger optimizer does not support sparse gradients"
|
|
120
|
+
)
|
|
121
|
+
|
|
122
|
+
amsgrad = group["amsgrad"]
|
|
123
|
+
smooth = group["smooth"]
|
|
124
|
+
grad_transformer = group["grad_transformer"]
|
|
125
|
+
|
|
126
|
+
p_data_fp32 = p.data.float()
|
|
127
|
+
|
|
128
|
+
state = self.state[p] # get state dict for this param
|
|
129
|
+
|
|
130
|
+
if (
|
|
131
|
+
len(state) == 0
|
|
132
|
+
): # if first time to run...init dictionary with our desired entries
|
|
133
|
+
# if self.first_run_check==0:
|
|
134
|
+
# self.first_run_check=1
|
|
135
|
+
# print("Initializing slow buffer...should not see this at load from saved model!")
|
|
136
|
+
state["step"] = 0
|
|
137
|
+
state["exp_avg"] = torch.zeros_like(p_data_fp32)
|
|
138
|
+
state["exp_avg_sq"] = torch.zeros_like(p_data_fp32)
|
|
139
|
+
if amsgrad:
|
|
140
|
+
# Maintains max of all exp. moving avg. of sq. grad. values
|
|
141
|
+
state["max_exp_avg_sq"] = torch.zeros_like(p.data)
|
|
142
|
+
|
|
143
|
+
# look ahead weight storage now in state dict
|
|
144
|
+
state["slow_buffer"] = torch.empty_like(p.data)
|
|
145
|
+
state["slow_buffer"].copy_(p.data)
|
|
146
|
+
|
|
147
|
+
else:
|
|
148
|
+
state["exp_avg"] = state["exp_avg"].type_as(p_data_fp32)
|
|
149
|
+
state["exp_avg_sq"] = state["exp_avg_sq"].type_as(p_data_fp32)
|
|
150
|
+
|
|
151
|
+
# begin computations
|
|
152
|
+
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
|
|
153
|
+
beta1, beta2 = group["betas"]
|
|
154
|
+
if amsgrad:
|
|
155
|
+
max_exp_avg_sq = state["max_exp_avg_sq"]
|
|
156
|
+
|
|
157
|
+
# compute variance mov avg
|
|
158
|
+
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
|
|
159
|
+
# compute mean moving avg
|
|
160
|
+
exp_avg.mul_(beta1).add_(1 - beta1, grad)
|
|
161
|
+
|
|
162
|
+
##transformer
|
|
163
|
+
if grad_transformer == "square":
|
|
164
|
+
grad_tmp = grad**2
|
|
165
|
+
elif grad_transformer == "abs":
|
|
166
|
+
grad_tmp = grad.abs()
|
|
167
|
+
|
|
168
|
+
exp_avg_sq.mul_(beta2).add_((1 - beta2) * grad_tmp)
|
|
169
|
+
|
|
170
|
+
if amsgrad:
|
|
171
|
+
# Maintains the maximum of all 2nd moment running avg. till now
|
|
172
|
+
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
|
|
173
|
+
# Use the max. for normalizing running avg. of gradient
|
|
174
|
+
denomc = max_exp_avg_sq.clone()
|
|
175
|
+
else:
|
|
176
|
+
denomc = exp_avg_sq.clone()
|
|
177
|
+
|
|
178
|
+
if grad_transformer == "square":
|
|
179
|
+
# pdb.set_trace()
|
|
180
|
+
denomc.sqrt_()
|
|
181
|
+
|
|
182
|
+
state["step"] += 1
|
|
183
|
+
|
|
184
|
+
if group["weight_decay"] != 0:
|
|
185
|
+
p_data_fp32.add_(-group["weight_decay"] * group["lr"], p_data_fp32)
|
|
186
|
+
|
|
187
|
+
bias_correction1 = 1 - beta1 ** state["step"]
|
|
188
|
+
bias_correction2 = 1 - beta2 ** state["step"]
|
|
189
|
+
step_size = group["lr"] * math.sqrt(bias_correction2) / bias_correction1
|
|
190
|
+
|
|
191
|
+
# ...let's use calibrated alr
|
|
192
|
+
if group["transformer"] == "softplus":
|
|
193
|
+
sp = torch.nn.Softplus(smooth)
|
|
194
|
+
denomf = sp(denomc)
|
|
195
|
+
p_data_fp32.addcdiv_(-step_size, exp_avg, denomf)
|
|
196
|
+
|
|
197
|
+
else:
|
|
198
|
+
|
|
199
|
+
denom = exp_avg_sq.sqrt().add_(group["eps"])
|
|
200
|
+
p_data_fp32.addcdiv_(-step_size * group["lr"], exp_avg, denom)
|
|
201
|
+
|
|
202
|
+
p.data.copy_(p_data_fp32)
|
|
203
|
+
|
|
204
|
+
# integrated look ahead...
|
|
205
|
+
# we do it at the param level instead of group level
|
|
206
|
+
if state["step"] % group["k"] == 0:
|
|
207
|
+
slow_p = state["slow_buffer"] # get access to slow param tensor
|
|
208
|
+
slow_p.add_(
|
|
209
|
+
self.alpha, p.data - slow_p
|
|
210
|
+
) # (fast weights - slow weights) * alpha
|
|
211
|
+
p.data.copy_(
|
|
212
|
+
slow_p
|
|
213
|
+
) # copy interpolated weights to RAdam param tensor
|
|
214
|
+
|
|
215
|
+
return loss
|