scitex 2.0.0__py2.py3-none-any.whl → 2.1.0__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- scitex/__init__.py +53 -15
- scitex/__main__.py +72 -26
- scitex/__version__.py +1 -1
- scitex/_sh.py +145 -23
- scitex/ai/__init__.py +30 -16
- scitex/ai/_gen_ai/_Anthropic.py +5 -7
- scitex/ai/_gen_ai/_BaseGenAI.py +2 -2
- scitex/ai/_gen_ai/_DeepSeek.py +10 -2
- scitex/ai/_gen_ai/_Google.py +2 -2
- scitex/ai/_gen_ai/_Llama.py +2 -2
- scitex/ai/_gen_ai/_OpenAI.py +2 -2
- scitex/ai/_gen_ai/_PARAMS.py +51 -65
- scitex/ai/_gen_ai/_Perplexity.py +2 -2
- scitex/ai/_gen_ai/__init__.py +25 -14
- scitex/ai/_gen_ai/_format_output_func.py +4 -4
- scitex/ai/classification/{classifier_server.py → Classifier.py} +5 -5
- scitex/ai/classification/CrossValidationExperiment.py +374 -0
- scitex/ai/classification/__init__.py +43 -4
- scitex/ai/classification/reporters/_BaseClassificationReporter.py +281 -0
- scitex/ai/classification/reporters/_ClassificationReporter.py +773 -0
- scitex/ai/classification/reporters/_MultiClassificationReporter.py +406 -0
- scitex/ai/classification/reporters/_SingleClassificationReporter.py +1834 -0
- scitex/ai/classification/reporters/__init__.py +11 -0
- scitex/ai/classification/reporters/reporter_utils/_Plotter.py +1028 -0
- scitex/ai/classification/reporters/reporter_utils/__init__.py +80 -0
- scitex/ai/classification/reporters/reporter_utils/aggregation.py +457 -0
- scitex/ai/classification/reporters/reporter_utils/data_models.py +313 -0
- scitex/ai/classification/reporters/reporter_utils/reporting.py +1056 -0
- scitex/ai/classification/reporters/reporter_utils/storage.py +221 -0
- scitex/ai/classification/reporters/reporter_utils/validation.py +395 -0
- scitex/ai/classification/timeseries/_TimeSeriesBlockingSplit.py +568 -0
- scitex/ai/classification/timeseries/_TimeSeriesCalendarSplit.py +688 -0
- scitex/ai/classification/timeseries/_TimeSeriesMetadata.py +139 -0
- scitex/ai/classification/timeseries/_TimeSeriesSlidingWindowSplit.py +1716 -0
- scitex/ai/classification/timeseries/_TimeSeriesSlidingWindowSplit_v01-not-using-n_splits.py +1685 -0
- scitex/ai/classification/timeseries/_TimeSeriesStrategy.py +84 -0
- scitex/ai/classification/timeseries/_TimeSeriesStratifiedSplit.py +610 -0
- scitex/ai/classification/timeseries/__init__.py +39 -0
- scitex/ai/classification/timeseries/_normalize_timestamp.py +436 -0
- scitex/ai/clustering/_umap.py +2 -2
- scitex/ai/feature_extraction/vit.py +1 -0
- scitex/ai/feature_selection/__init__.py +30 -0
- scitex/ai/feature_selection/feature_selection.py +364 -0
- scitex/ai/loss/multi_task_loss.py +1 -1
- scitex/ai/metrics/__init__.py +51 -4
- scitex/ai/metrics/_calc_bacc.py +61 -0
- scitex/ai/metrics/_calc_bacc_from_conf_mat.py +38 -0
- scitex/ai/metrics/_calc_clf_report.py +78 -0
- scitex/ai/metrics/_calc_conf_mat.py +93 -0
- scitex/ai/metrics/_calc_feature_importance.py +183 -0
- scitex/ai/metrics/_calc_mcc.py +61 -0
- scitex/ai/metrics/_calc_pre_rec_auc.py +116 -0
- scitex/ai/metrics/_calc_roc_auc.py +110 -0
- scitex/ai/metrics/_calc_seizure_prediction_metrics.py +490 -0
- scitex/ai/metrics/{silhoute_score_block.py → _calc_silhouette_score.py} +15 -8
- scitex/ai/metrics/_normalize_labels.py +83 -0
- scitex/ai/plt/__init__.py +47 -8
- scitex/ai/plt/{_conf_mat.py → _plot_conf_mat.py} +158 -87
- scitex/ai/plt/_plot_feature_importance.py +323 -0
- scitex/ai/plt/_plot_learning_curve.py +345 -0
- scitex/ai/plt/_plot_optuna_study.py +225 -0
- scitex/ai/plt/_plot_pre_rec_curve.py +290 -0
- scitex/ai/plt/_plot_roc_curve.py +255 -0
- scitex/ai/training/{learning_curve_logger.py → _LearningCurveLogger.py} +197 -213
- scitex/ai/training/__init__.py +2 -2
- scitex/ai/utils/grid_search.py +3 -3
- scitex/benchmark/__init__.py +52 -0
- scitex/benchmark/benchmark.py +400 -0
- scitex/benchmark/monitor.py +370 -0
- scitex/benchmark/profiler.py +297 -0
- scitex/browser/__init__.py +48 -0
- scitex/browser/automation/CookieHandler.py +216 -0
- scitex/browser/automation/__init__.py +7 -0
- scitex/browser/collaboration/__init__.py +55 -0
- scitex/browser/collaboration/auth_helpers.py +94 -0
- scitex/browser/collaboration/collaborative_agent.py +136 -0
- scitex/browser/collaboration/credential_manager.py +188 -0
- scitex/browser/collaboration/interactive_panel.py +400 -0
- scitex/browser/collaboration/persistent_browser.py +170 -0
- scitex/browser/collaboration/shared_session.py +383 -0
- scitex/browser/collaboration/standard_interactions.py +246 -0
- scitex/browser/collaboration/visual_feedback.py +181 -0
- scitex/browser/core/BrowserMixin.py +326 -0
- scitex/browser/core/ChromeProfileManager.py +446 -0
- scitex/browser/core/__init__.py +9 -0
- scitex/browser/debugging/__init__.py +18 -0
- scitex/browser/debugging/_browser_logger.py +657 -0
- scitex/browser/debugging/_highlight_element.py +143 -0
- scitex/browser/debugging/_show_grid.py +154 -0
- scitex/browser/interaction/__init__.py +24 -0
- scitex/browser/interaction/click_center.py +149 -0
- scitex/browser/interaction/click_with_fallbacks.py +206 -0
- scitex/browser/interaction/close_popups.py +498 -0
- scitex/browser/interaction/fill_with_fallbacks.py +209 -0
- scitex/browser/pdf/__init__.py +14 -0
- scitex/browser/pdf/click_download_for_chrome_pdf_viewer.py +200 -0
- scitex/browser/pdf/detect_chrome_pdf_viewer.py +198 -0
- scitex/browser/remote/CaptchaHandler.py +434 -0
- scitex/browser/remote/ZenRowsAPIClient.py +347 -0
- scitex/browser/remote/ZenRowsBrowserManager.py +570 -0
- scitex/browser/remote/__init__.py +11 -0
- scitex/browser/stealth/HumanBehavior.py +344 -0
- scitex/browser/stealth/StealthManager.py +1008 -0
- scitex/browser/stealth/__init__.py +9 -0
- scitex/browser/template.py +122 -0
- scitex/capture/__init__.py +110 -0
- scitex/capture/__main__.py +25 -0
- scitex/capture/capture.py +848 -0
- scitex/capture/cli.py +233 -0
- scitex/capture/gif.py +344 -0
- scitex/capture/mcp_server.py +961 -0
- scitex/capture/session.py +70 -0
- scitex/capture/utils.py +705 -0
- scitex/cli/__init__.py +17 -0
- scitex/cli/cloud.py +447 -0
- scitex/cli/main.py +42 -0
- scitex/cli/scholar.py +280 -0
- scitex/context/_suppress_output.py +5 -3
- scitex/db/__init__.py +30 -3
- scitex/db/__main__.py +75 -0
- scitex/db/_check_health.py +381 -0
- scitex/db/_delete_duplicates.py +25 -386
- scitex/db/_inspect.py +335 -114
- scitex/db/_inspect_optimized.py +301 -0
- scitex/db/{_PostgreSQL.py → _postgresql/_PostgreSQL.py} +3 -3
- scitex/db/{_PostgreSQLMixins → _postgresql/_PostgreSQLMixins}/_BackupMixin.py +1 -1
- scitex/db/{_PostgreSQLMixins → _postgresql/_PostgreSQLMixins}/_BatchMixin.py +1 -1
- scitex/db/{_PostgreSQLMixins → _postgresql/_PostgreSQLMixins}/_BlobMixin.py +1 -1
- scitex/db/{_PostgreSQLMixins → _postgresql/_PostgreSQLMixins}/_ConnectionMixin.py +1 -1
- scitex/db/{_PostgreSQLMixins → _postgresql/_PostgreSQLMixins}/_MaintenanceMixin.py +1 -1
- scitex/db/{_PostgreSQLMixins → _postgresql/_PostgreSQLMixins}/_QueryMixin.py +1 -1
- scitex/db/{_PostgreSQLMixins → _postgresql/_PostgreSQLMixins}/_SchemaMixin.py +1 -1
- scitex/db/{_PostgreSQLMixins → _postgresql/_PostgreSQLMixins}/_TransactionMixin.py +1 -1
- scitex/db/_postgresql/__init__.py +6 -0
- scitex/db/_sqlite3/_SQLite3.py +210 -0
- scitex/db/_sqlite3/_SQLite3Mixins/_ArrayMixin.py +581 -0
- scitex/db/_sqlite3/_SQLite3Mixins/_ArrayMixin_v01-need-_hash-col.py +517 -0
- scitex/db/{_SQLite3Mixins → _sqlite3/_SQLite3Mixins}/_BatchMixin.py +1 -1
- scitex/db/_sqlite3/_SQLite3Mixins/_BlobMixin.py +281 -0
- scitex/db/_sqlite3/_SQLite3Mixins/_ColumnMixin.py +548 -0
- scitex/db/_sqlite3/_SQLite3Mixins/_ColumnMixin_v01-indentation-issues.py +583 -0
- scitex/db/{_SQLite3Mixins → _sqlite3/_SQLite3Mixins}/_ConnectionMixin.py +29 -13
- scitex/db/_sqlite3/_SQLite3Mixins/_GitMixin.py +583 -0
- scitex/db/{_SQLite3Mixins → _sqlite3/_SQLite3Mixins}/_ImportExportMixin.py +1 -1
- scitex/db/{_SQLite3Mixins → _sqlite3/_SQLite3Mixins}/_IndexMixin.py +1 -1
- scitex/db/{_SQLite3Mixins → _sqlite3/_SQLite3Mixins}/_MaintenanceMixin.py +2 -1
- scitex/db/{_SQLite3Mixins → _sqlite3/_SQLite3Mixins}/_QueryMixin.py +37 -10
- scitex/db/{_SQLite3Mixins → _sqlite3/_SQLite3Mixins}/_RowMixin.py +46 -6
- scitex/db/{_SQLite3Mixins → _sqlite3/_SQLite3Mixins}/_TableMixin.py +56 -10
- scitex/db/{_SQLite3Mixins → _sqlite3/_SQLite3Mixins}/_TransactionMixin.py +1 -1
- scitex/db/{_SQLite3Mixins → _sqlite3/_SQLite3Mixins}/__init__.py +14 -2
- scitex/db/_sqlite3/__init__.py +7 -0
- scitex/db/_sqlite3/_delete_duplicates.py +274 -0
- scitex/decorators/__init__.py +2 -0
- scitex/decorators/_cache_disk.py +13 -5
- scitex/decorators/_cache_disk_async.py +49 -0
- scitex/decorators/_deprecated.py +175 -10
- scitex/decorators/_timeout.py +1 -1
- scitex/dev/_analyze_code_flow.py +2 -2
- scitex/dict/_DotDict.py +73 -15
- scitex/dict/_DotDict_v01-not-handling-recursive-instantiations.py +442 -0
- scitex/dict/_DotDict_v02-not-serializing-Path-object.py +446 -0
- scitex/dict/__init__.py +2 -0
- scitex/dict/_flatten.py +27 -0
- scitex/dsp/_crop.py +2 -2
- scitex/dsp/_demo_sig.py +2 -2
- scitex/dsp/_detect_ripples.py +2 -2
- scitex/dsp/_hilbert.py +2 -2
- scitex/dsp/_listen.py +6 -6
- scitex/dsp/_modulation_index.py +2 -2
- scitex/dsp/_pac.py +1 -1
- scitex/dsp/_psd.py +2 -2
- scitex/dsp/_resample.py +2 -1
- scitex/dsp/_time.py +3 -2
- scitex/dsp/_wavelet.py +3 -2
- scitex/dsp/add_noise.py +2 -2
- scitex/dsp/example.py +1 -0
- scitex/dsp/filt.py +10 -9
- scitex/dsp/template.py +3 -2
- scitex/dsp/utils/_differential_bandpass_filters.py +1 -1
- scitex/dsp/utils/pac.py +2 -2
- scitex/dt/_normalize_timestamp.py +432 -0
- scitex/errors.py +572 -0
- scitex/gen/_DimHandler.py +2 -2
- scitex/gen/__init__.py +37 -7
- scitex/gen/_deprecated_close.py +80 -0
- scitex/gen/_deprecated_start.py +26 -0
- scitex/gen/_detect_environment.py +152 -0
- scitex/gen/_detect_notebook_path.py +169 -0
- scitex/gen/_embed.py +6 -2
- scitex/gen/_get_notebook_path.py +257 -0
- scitex/gen/_less.py +1 -1
- scitex/gen/_list_packages.py +2 -2
- scitex/gen/_norm.py +44 -9
- scitex/gen/_norm_cache.py +269 -0
- scitex/gen/_src.py +3 -5
- scitex/gen/_title_case.py +3 -3
- scitex/io/__init__.py +28 -6
- scitex/io/_glob.py +13 -7
- scitex/io/_load.py +108 -21
- scitex/io/_load_cache.py +303 -0
- scitex/io/_load_configs.py +40 -15
- scitex/io/{_H5Explorer.py → _load_modules/_H5Explorer.py} +80 -17
- scitex/io/_load_modules/_ZarrExplorer.py +114 -0
- scitex/io/_load_modules/_bibtex.py +207 -0
- scitex/io/_load_modules/_hdf5.py +53 -178
- scitex/io/_load_modules/_json.py +5 -3
- scitex/io/_load_modules/_pdf.py +871 -16
- scitex/io/_load_modules/_sqlite3.py +15 -0
- scitex/io/_load_modules/_txt.py +41 -12
- scitex/io/_load_modules/_yaml.py +4 -3
- scitex/io/_load_modules/_zarr.py +126 -0
- scitex/io/_save.py +429 -171
- scitex/io/_save_modules/__init__.py +6 -0
- scitex/io/_save_modules/_bibtex.py +194 -0
- scitex/io/_save_modules/_csv.py +8 -4
- scitex/io/_save_modules/_excel.py +174 -15
- scitex/io/_save_modules/_hdf5.py +251 -226
- scitex/io/_save_modules/_image.py +1 -3
- scitex/io/_save_modules/_json.py +49 -4
- scitex/io/_save_modules/_listed_dfs_as_csv.py +1 -3
- scitex/io/_save_modules/_listed_scalars_as_csv.py +1 -3
- scitex/io/_save_modules/_tex.py +277 -0
- scitex/io/_save_modules/_yaml.py +42 -3
- scitex/io/_save_modules/_zarr.py +160 -0
- scitex/io/utils/__init__.py +20 -0
- scitex/io/utils/h5_to_zarr.py +616 -0
- scitex/linalg/_geometric_median.py +6 -2
- scitex/{gen/_tee.py → logging/_Tee.py} +43 -84
- scitex/logging/__init__.py +122 -0
- scitex/logging/_config.py +158 -0
- scitex/logging/_context.py +103 -0
- scitex/logging/_formatters.py +128 -0
- scitex/logging/_handlers.py +64 -0
- scitex/logging/_levels.py +35 -0
- scitex/logging/_logger.py +163 -0
- scitex/logging/_print_capture.py +95 -0
- scitex/ml/__init__.py +69 -0
- scitex/{ai/genai/anthropic.py → ml/_gen_ai/_Anthropic.py} +13 -19
- scitex/{ai/genai/base_genai.py → ml/_gen_ai/_BaseGenAI.py} +5 -5
- scitex/{ai/genai/deepseek.py → ml/_gen_ai/_DeepSeek.py} +11 -16
- scitex/{ai/genai/google.py → ml/_gen_ai/_Google.py} +7 -15
- scitex/{ai/genai/groq.py → ml/_gen_ai/_Groq.py} +1 -8
- scitex/{ai/genai/llama.py → ml/_gen_ai/_Llama.py} +3 -16
- scitex/{ai/genai/openai.py → ml/_gen_ai/_OpenAI.py} +3 -3
- scitex/{ai/genai/params.py → ml/_gen_ai/_PARAMS.py} +51 -65
- scitex/{ai/genai/perplexity.py → ml/_gen_ai/_Perplexity.py} +3 -14
- scitex/ml/_gen_ai/__init__.py +43 -0
- scitex/{ai/genai/calc_cost.py → ml/_gen_ai/_calc_cost.py} +1 -1
- scitex/{ai/genai/format_output_func.py → ml/_gen_ai/_format_output_func.py} +4 -4
- scitex/{ai/genai/genai_factory.py → ml/_gen_ai/_genai_factory.py} +8 -8
- scitex/ml/activation/__init__.py +8 -0
- scitex/ml/activation/_define.py +11 -0
- scitex/{ai/classifier_server.py → ml/classification/Classifier.py} +5 -5
- scitex/ml/classification/CrossValidationExperiment.py +374 -0
- scitex/ml/classification/__init__.py +46 -0
- scitex/ml/classification/reporters/_BaseClassificationReporter.py +281 -0
- scitex/ml/classification/reporters/_ClassificationReporter.py +773 -0
- scitex/ml/classification/reporters/_MultiClassificationReporter.py +406 -0
- scitex/ml/classification/reporters/_SingleClassificationReporter.py +1834 -0
- scitex/ml/classification/reporters/__init__.py +11 -0
- scitex/ml/classification/reporters/reporter_utils/_Plotter.py +1028 -0
- scitex/ml/classification/reporters/reporter_utils/__init__.py +80 -0
- scitex/ml/classification/reporters/reporter_utils/aggregation.py +457 -0
- scitex/ml/classification/reporters/reporter_utils/data_models.py +313 -0
- scitex/ml/classification/reporters/reporter_utils/reporting.py +1056 -0
- scitex/ml/classification/reporters/reporter_utils/storage.py +221 -0
- scitex/ml/classification/reporters/reporter_utils/validation.py +395 -0
- scitex/ml/classification/timeseries/_TimeSeriesBlockingSplit.py +568 -0
- scitex/ml/classification/timeseries/_TimeSeriesCalendarSplit.py +688 -0
- scitex/ml/classification/timeseries/_TimeSeriesMetadata.py +139 -0
- scitex/ml/classification/timeseries/_TimeSeriesSlidingWindowSplit.py +1716 -0
- scitex/ml/classification/timeseries/_TimeSeriesSlidingWindowSplit_v01-not-using-n_splits.py +1685 -0
- scitex/ml/classification/timeseries/_TimeSeriesStrategy.py +84 -0
- scitex/ml/classification/timeseries/_TimeSeriesStratifiedSplit.py +610 -0
- scitex/ml/classification/timeseries/__init__.py +39 -0
- scitex/ml/classification/timeseries/_normalize_timestamp.py +436 -0
- scitex/ml/clustering/__init__.py +11 -0
- scitex/ml/clustering/_pca.py +115 -0
- scitex/ml/clustering/_umap.py +376 -0
- scitex/ml/feature_extraction/__init__.py +56 -0
- scitex/ml/feature_extraction/vit.py +149 -0
- scitex/ml/feature_selection/__init__.py +30 -0
- scitex/ml/feature_selection/feature_selection.py +364 -0
- scitex/ml/loss/_L1L2Losses.py +34 -0
- scitex/ml/loss/__init__.py +12 -0
- scitex/ml/loss/multi_task_loss.py +47 -0
- scitex/ml/metrics/__init__.py +56 -0
- scitex/ml/metrics/_calc_bacc.py +61 -0
- scitex/ml/metrics/_calc_bacc_from_conf_mat.py +38 -0
- scitex/ml/metrics/_calc_clf_report.py +78 -0
- scitex/ml/metrics/_calc_conf_mat.py +93 -0
- scitex/ml/metrics/_calc_feature_importance.py +183 -0
- scitex/ml/metrics/_calc_mcc.py +61 -0
- scitex/ml/metrics/_calc_pre_rec_auc.py +116 -0
- scitex/ml/metrics/_calc_roc_auc.py +110 -0
- scitex/ml/metrics/_calc_seizure_prediction_metrics.py +490 -0
- scitex/ml/metrics/_calc_silhouette_score.py +503 -0
- scitex/ml/metrics/_normalize_labels.py +83 -0
- scitex/ml/optim/Ranger_Deep_Learning_Optimizer/__init__.py +0 -0
- scitex/ml/optim/Ranger_Deep_Learning_Optimizer/ranger/__init__.py +3 -0
- scitex/ml/optim/Ranger_Deep_Learning_Optimizer/ranger/ranger.py +207 -0
- scitex/ml/optim/Ranger_Deep_Learning_Optimizer/ranger/ranger2020.py +238 -0
- scitex/ml/optim/Ranger_Deep_Learning_Optimizer/ranger/ranger913A.py +215 -0
- scitex/ml/optim/Ranger_Deep_Learning_Optimizer/ranger/rangerqh.py +184 -0
- scitex/ml/optim/Ranger_Deep_Learning_Optimizer/setup.py +24 -0
- scitex/ml/optim/__init__.py +13 -0
- scitex/ml/optim/_get_set.py +31 -0
- scitex/ml/optim/_optimizers.py +71 -0
- scitex/ml/plt/__init__.py +60 -0
- scitex/ml/plt/_plot_conf_mat.py +663 -0
- scitex/ml/plt/_plot_feature_importance.py +323 -0
- scitex/ml/plt/_plot_learning_curve.py +345 -0
- scitex/ml/plt/_plot_optuna_study.py +225 -0
- scitex/ml/plt/_plot_pre_rec_curve.py +290 -0
- scitex/ml/plt/_plot_roc_curve.py +255 -0
- scitex/ml/sk/__init__.py +11 -0
- scitex/ml/sk/_clf.py +58 -0
- scitex/ml/sk/_to_sktime.py +100 -0
- scitex/ml/sklearn/__init__.py +26 -0
- scitex/ml/sklearn/clf.py +58 -0
- scitex/ml/sklearn/to_sktime.py +100 -0
- scitex/{ai/training/early_stopping.py → ml/training/_EarlyStopping.py} +1 -2
- scitex/{ai → ml/training}/_LearningCurveLogger.py +198 -242
- scitex/ml/training/__init__.py +7 -0
- scitex/ml/utils/__init__.py +22 -0
- scitex/ml/utils/_check_params.py +50 -0
- scitex/ml/utils/_default_dataset.py +46 -0
- scitex/ml/utils/_format_samples_for_sktime.py +26 -0
- scitex/ml/utils/_label_encoder.py +134 -0
- scitex/ml/utils/_merge_labels.py +22 -0
- scitex/ml/utils/_sliding_window_data_augmentation.py +11 -0
- scitex/ml/utils/_under_sample.py +51 -0
- scitex/ml/utils/_verify_n_gpus.py +16 -0
- scitex/ml/utils/grid_search.py +148 -0
- scitex/nn/_BNet.py +15 -9
- scitex/nn/_Filters.py +2 -2
- scitex/nn/_ModulationIndex.py +2 -2
- scitex/nn/_PAC.py +1 -1
- scitex/nn/_Spectrogram.py +12 -3
- scitex/nn/__init__.py +9 -10
- scitex/path/__init__.py +18 -0
- scitex/path/_clean.py +4 -0
- scitex/path/_find.py +9 -4
- scitex/path/_symlink.py +348 -0
- scitex/path/_version.py +4 -3
- scitex/pd/__init__.py +2 -0
- scitex/pd/_get_unique.py +99 -0
- scitex/plt/__init__.py +114 -5
- scitex/plt/_subplots/_AxesWrapper.py +1 -3
- scitex/plt/_subplots/_AxisWrapper.py +7 -3
- scitex/plt/_subplots/_AxisWrapperMixins/_AdjustmentMixin.py +47 -13
- scitex/plt/_subplots/_AxisWrapperMixins/_MatplotlibPlotMixin.py +160 -2
- scitex/plt/_subplots/_AxisWrapperMixins/_SeabornMixin.py +26 -4
- scitex/plt/_subplots/_AxisWrapperMixins/_UnitAwareMixin.py +322 -0
- scitex/plt/_subplots/_AxisWrapperMixins/__init__.py +1 -0
- scitex/plt/_subplots/_FigWrapper.py +62 -6
- scitex/plt/_subplots/_export_as_csv.py +43 -27
- scitex/plt/_subplots/_export_as_csv_formatters/__init__.py +5 -4
- scitex/plt/_subplots/_export_as_csv_formatters/_format_annotate.py +81 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_bar.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_barh.py +20 -5
- scitex/plt/_subplots/_export_as_csv_formatters/_format_boxplot.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_contour.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_errorbar.py +35 -18
- scitex/plt/_subplots/_export_as_csv_formatters/_format_eventplot.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_fill.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_fill_between.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_hist.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_imshow.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_imshow2d.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot.py +15 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_box.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_conf_mat.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_ecdf.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_fillv.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_heatmap.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_image.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_joyplot.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_kde.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_line.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_mean_ci.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_mean_std.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_median_iqr.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_raster.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_rectangle.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_scatter.py +35 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_scatter_hist.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_shaded_line.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_violin.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_scatter.py +6 -4
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_barplot.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_boxplot.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_heatmap.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_histplot.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_jointplot.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_kdeplot.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_lineplot.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_pairplot.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_scatterplot.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_stripplot.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_swarmplot.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_violinplot.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_text.py +60 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_violin.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/_format_violinplot.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters/test_formatters.py +1 -3
- scitex/plt/_subplots/_export_as_csv_formatters.py +56 -59
- scitex/plt/ax/_style/_hide_spines.py +1 -3
- scitex/plt/ax/_style/_rotate_labels.py +180 -76
- scitex/plt/ax/_style/_rotate_labels_v01.py +248 -0
- scitex/plt/ax/_style/_set_meta.py +11 -4
- scitex/plt/ax/_style/_set_supxyt.py +3 -3
- scitex/plt/ax/_style/_set_xyt.py +3 -3
- scitex/plt/ax/_style/_share_axes.py +2 -2
- scitex/plt/color/__init__.py +4 -4
- scitex/plt/color/{_get_colors_from_cmap.py → _get_colors_from_conf_matap.py} +7 -7
- scitex/plt/utils/_configure_mpl.py +99 -86
- scitex/plt/utils/_histogram_utils.py +1 -3
- scitex/plt/utils/_is_valid_axis.py +1 -3
- scitex/plt/utils/_scitex_config.py +1 -0
- scitex/repro/__init__.py +75 -0
- scitex/{reproduce → repro}/_gen_ID.py +1 -1
- scitex/{reproduce → repro}/_gen_timestamp.py +1 -1
- scitex/repro_rng/_RandomStateManager.py +590 -0
- scitex/repro_rng/_RandomStateManager_v01-no-verbose-options.py +414 -0
- scitex/repro_rng/__init__.py +39 -0
- scitex/reproduce/__init__.py +25 -13
- scitex/reproduce/_hash_array.py +22 -0
- scitex/resource/_get_processor_usages.py +4 -4
- scitex/resource/_get_specs.py +2 -2
- scitex/resource/_log_processor_usages.py +2 -2
- scitex/rng/_RandomStateManager.py +590 -0
- scitex/rng/_RandomStateManager_v01-no-verbose-options.py +414 -0
- scitex/rng/__init__.py +39 -0
- scitex/scholar/__init__.py +309 -19
- scitex/scholar/__main__.py +319 -0
- scitex/scholar/auth/ScholarAuthManager.py +308 -0
- scitex/scholar/auth/__init__.py +12 -0
- scitex/scholar/auth/core/AuthenticationGateway.py +473 -0
- scitex/scholar/auth/core/BrowserAuthenticator.py +386 -0
- scitex/scholar/auth/core/StrategyResolver.py +309 -0
- scitex/scholar/auth/core/__init__.py +16 -0
- scitex/scholar/auth/gateway/_OpenURLLinkFinder.py +120 -0
- scitex/scholar/auth/gateway/_OpenURLResolver.py +209 -0
- scitex/scholar/auth/gateway/__init__.py +38 -0
- scitex/scholar/auth/gateway/_resolve_functions.py +101 -0
- scitex/scholar/auth/providers/BaseAuthenticator.py +166 -0
- scitex/scholar/auth/providers/EZProxyAuthenticator.py +484 -0
- scitex/scholar/auth/providers/OpenAthensAuthenticator.py +619 -0
- scitex/scholar/auth/providers/ShibbolethAuthenticator.py +686 -0
- scitex/scholar/auth/providers/__init__.py +18 -0
- scitex/scholar/auth/session/AuthCacheManager.py +189 -0
- scitex/scholar/auth/session/SessionManager.py +159 -0
- scitex/scholar/auth/session/__init__.py +11 -0
- scitex/scholar/auth/sso/BaseSSOAutomator.py +373 -0
- scitex/scholar/auth/sso/OpenAthensSSOAutomator.py +378 -0
- scitex/scholar/auth/sso/SSOAutomator.py +180 -0
- scitex/scholar/auth/sso/UniversityOfMelbourneSSOAutomator.py +380 -0
- scitex/scholar/auth/sso/__init__.py +15 -0
- scitex/scholar/browser/ScholarBrowserManager.py +705 -0
- scitex/scholar/browser/__init__.py +38 -0
- scitex/scholar/browser/utils/__init__.py +13 -0
- scitex/scholar/browser/utils/click_and_wait.py +205 -0
- scitex/scholar/browser/utils/close_unwanted_pages.py +140 -0
- scitex/scholar/browser/utils/wait_redirects.py +732 -0
- scitex/scholar/config/PublisherRules.py +132 -0
- scitex/scholar/config/ScholarConfig.py +126 -0
- scitex/scholar/config/__init__.py +17 -0
- scitex/scholar/core/Paper.py +627 -0
- scitex/scholar/core/Papers.py +722 -0
- scitex/scholar/core/Scholar.py +1975 -0
- scitex/scholar/core/__init__.py +9 -0
- scitex/scholar/impact_factor/ImpactFactorEngine.py +204 -0
- scitex/scholar/impact_factor/__init__.py +20 -0
- scitex/scholar/impact_factor/estimation/ImpactFactorEstimationEngine.py +0 -0
- scitex/scholar/impact_factor/estimation/__init__.py +40 -0
- scitex/scholar/impact_factor/estimation/build_database.py +0 -0
- scitex/scholar/impact_factor/estimation/core/__init__.py +28 -0
- scitex/scholar/impact_factor/estimation/core/cache_manager.py +523 -0
- scitex/scholar/impact_factor/estimation/core/calculator.py +355 -0
- scitex/scholar/impact_factor/estimation/core/journal_matcher.py +428 -0
- scitex/scholar/integration/__init__.py +59 -0
- scitex/scholar/integration/base.py +502 -0
- scitex/scholar/integration/mendeley/__init__.py +22 -0
- scitex/scholar/integration/mendeley/exporter.py +166 -0
- scitex/scholar/integration/mendeley/importer.py +236 -0
- scitex/scholar/integration/mendeley/linker.py +79 -0
- scitex/scholar/integration/mendeley/mapper.py +212 -0
- scitex/scholar/integration/zotero/__init__.py +27 -0
- scitex/scholar/integration/zotero/__main__.py +264 -0
- scitex/scholar/integration/zotero/exporter.py +351 -0
- scitex/scholar/integration/zotero/importer.py +372 -0
- scitex/scholar/integration/zotero/linker.py +415 -0
- scitex/scholar/integration/zotero/mapper.py +286 -0
- scitex/scholar/metadata_engines/ScholarEngine.py +588 -0
- scitex/scholar/metadata_engines/__init__.py +21 -0
- scitex/scholar/metadata_engines/individual/ArXivEngine.py +397 -0
- scitex/scholar/metadata_engines/individual/CrossRefEngine.py +274 -0
- scitex/scholar/metadata_engines/individual/CrossRefLocalEngine.py +263 -0
- scitex/scholar/metadata_engines/individual/OpenAlexEngine.py +350 -0
- scitex/scholar/metadata_engines/individual/PubMedEngine.py +329 -0
- scitex/scholar/metadata_engines/individual/SemanticScholarEngine.py +438 -0
- scitex/scholar/metadata_engines/individual/URLDOIEngine.py +410 -0
- scitex/scholar/metadata_engines/individual/_BaseDOIEngine.py +487 -0
- scitex/scholar/metadata_engines/individual/__init__.py +7 -0
- scitex/scholar/metadata_engines/utils/_PubMedConverter.py +469 -0
- scitex/scholar/metadata_engines/utils/_URLDOIExtractor.py +283 -0
- scitex/scholar/metadata_engines/utils/__init__.py +30 -0
- scitex/scholar/metadata_engines/utils/_metadata2bibtex.py +103 -0
- scitex/scholar/metadata_engines/utils/_standardize_metadata.py +376 -0
- scitex/scholar/pdf_download/ScholarPDFDownloader.py +579 -0
- scitex/scholar/pdf_download/__init__.py +5 -0
- scitex/scholar/pdf_download/strategies/__init__.py +38 -0
- scitex/scholar/pdf_download/strategies/chrome_pdf_viewer.py +376 -0
- scitex/scholar/pdf_download/strategies/direct_download.py +131 -0
- scitex/scholar/pdf_download/strategies/manual_download_fallback.py +167 -0
- scitex/scholar/pdf_download/strategies/manual_download_utils.py +996 -0
- scitex/scholar/pdf_download/strategies/response_body.py +207 -0
- scitex/scholar/pipelines/ScholarPipelineBibTeX.py +364 -0
- scitex/scholar/pipelines/ScholarPipelineParallel.py +478 -0
- scitex/scholar/pipelines/ScholarPipelineSingle.py +767 -0
- scitex/scholar/pipelines/__init__.py +49 -0
- scitex/scholar/storage/BibTeXHandler.py +1018 -0
- scitex/scholar/storage/PaperIO.py +468 -0
- scitex/scholar/storage/ScholarLibrary.py +182 -0
- scitex/scholar/storage/_DeduplicationManager.py +548 -0
- scitex/scholar/storage/_LibraryCacheManager.py +724 -0
- scitex/scholar/storage/_LibraryManager.py +1835 -0
- scitex/scholar/storage/__init__.py +28 -0
- scitex/scholar/url_finder/ScholarURLFinder.py +379 -0
- scitex/scholar/url_finder/__init__.py +7 -0
- scitex/scholar/url_finder/strategies/__init__.py +33 -0
- scitex/scholar/url_finder/strategies/find_pdf_urls_by_direct_links.py +261 -0
- scitex/scholar/url_finder/strategies/find_pdf_urls_by_dropdown.py +67 -0
- scitex/scholar/url_finder/strategies/find_pdf_urls_by_href.py +204 -0
- scitex/scholar/url_finder/strategies/find_pdf_urls_by_navigation.py +256 -0
- scitex/scholar/url_finder/strategies/find_pdf_urls_by_publisher_patterns.py +165 -0
- scitex/scholar/url_finder/strategies/find_pdf_urls_by_zotero_translators.py +163 -0
- scitex/scholar/url_finder/strategies/find_supplementary_urls_by_href.py +70 -0
- scitex/scholar/utils/__init__.py +22 -0
- scitex/scholar/utils/bibtex/__init__.py +9 -0
- scitex/scholar/utils/bibtex/_parse_bibtex.py +71 -0
- scitex/scholar/utils/cleanup/__init__.py +8 -0
- scitex/scholar/utils/cleanup/_cleanup_scholar_processes.py +96 -0
- scitex/scholar/utils/cleanup/cleanup_old_extractions.py +117 -0
- scitex/scholar/utils/text/_TextNormalizer.py +407 -0
- scitex/scholar/utils/text/__init__.py +9 -0
- scitex/scholar/zotero/__init__.py +38 -0
- scitex/session/__init__.py +51 -0
- scitex/session/_lifecycle.py +736 -0
- scitex/session/_manager.py +102 -0
- scitex/session/template.py +122 -0
- scitex/stats/__init__.py +30 -26
- scitex/stats/correct/__init__.py +21 -0
- scitex/stats/correct/_correct_bonferroni.py +551 -0
- scitex/stats/correct/_correct_fdr.py +634 -0
- scitex/stats/correct/_correct_holm.py +548 -0
- scitex/stats/correct/_correct_sidak.py +499 -0
- scitex/stats/descriptive/__init__.py +85 -0
- scitex/stats/descriptive/_circular.py +540 -0
- scitex/stats/descriptive/_describe.py +219 -0
- scitex/stats/descriptive/_nan.py +518 -0
- scitex/stats/descriptive/_real.py +189 -0
- scitex/stats/effect_sizes/__init__.py +41 -0
- scitex/stats/effect_sizes/_cliffs_delta.py +325 -0
- scitex/stats/effect_sizes/_cohens_d.py +342 -0
- scitex/stats/effect_sizes/_epsilon_squared.py +315 -0
- scitex/stats/effect_sizes/_eta_squared.py +302 -0
- scitex/stats/effect_sizes/_prob_superiority.py +296 -0
- scitex/stats/posthoc/__init__.py +19 -0
- scitex/stats/posthoc/_dunnett.py +463 -0
- scitex/stats/posthoc/_games_howell.py +383 -0
- scitex/stats/posthoc/_tukey_hsd.py +367 -0
- scitex/stats/power/__init__.py +19 -0
- scitex/stats/power/_power.py +433 -0
- scitex/stats/template.py +119 -0
- scitex/stats/utils/__init__.py +62 -0
- scitex/stats/utils/_effect_size.py +985 -0
- scitex/stats/utils/_formatters.py +270 -0
- scitex/stats/utils/_normalizers.py +927 -0
- scitex/stats/utils/_power.py +433 -0
- scitex/stats_v01/_EffectSizeCalculator.py +488 -0
- scitex/stats_v01/_StatisticalValidator.py +411 -0
- scitex/stats_v01/__init__.py +60 -0
- scitex/stats_v01/_additional_tests.py +415 -0
- scitex/{stats → stats_v01}/_p2stars.py +19 -5
- scitex/stats_v01/_two_sample_tests.py +141 -0
- scitex/stats_v01/desc/__init__.py +83 -0
- scitex/stats_v01/desc/_circular.py +540 -0
- scitex/stats_v01/desc/_describe.py +219 -0
- scitex/stats_v01/desc/_nan.py +518 -0
- scitex/{stats/desc/_nan.py → stats_v01/desc/_nan_v01-20250920_145731.py} +23 -12
- scitex/stats_v01/desc/_real.py +189 -0
- scitex/stats_v01/tests/__corr_test_optimized.py +221 -0
- scitex/stats_v01/tests/_corr_test_optimized.py +179 -0
- scitex/str/__init__.py +1 -3
- scitex/str/_clean_path.py +6 -2
- scitex/str/_latex_fallback.py +267 -160
- scitex/str/_parse.py +44 -36
- scitex/str/_printc.py +1 -3
- scitex/template/__init__.py +87 -0
- scitex/template/_create_project.py +267 -0
- scitex/template/create_pip_project.py +80 -0
- scitex/template/create_research.py +80 -0
- scitex/template/create_singularity.py +80 -0
- scitex/units.py +291 -0
- scitex/utils/_compress_hdf5.py +14 -3
- scitex/utils/_email.py +21 -2
- scitex/utils/_grid.py +6 -4
- scitex/utils/_notify.py +13 -10
- scitex/utils/_verify_scitex_format.py +589 -0
- scitex/utils/_verify_scitex_format_v01.py +370 -0
- scitex/utils/template.py +122 -0
- scitex/web/_search_pubmed.py +62 -16
- scitex-2.1.0.dist-info/LICENSE +21 -0
- scitex-2.1.0.dist-info/METADATA +677 -0
- scitex-2.1.0.dist-info/RECORD +919 -0
- {scitex-2.0.0.dist-info → scitex-2.1.0.dist-info}/WHEEL +1 -1
- scitex-2.1.0.dist-info/entry_points.txt +3 -0
- scitex/ai/__Classifiers.py +0 -101
- scitex/ai/classification/classification_reporter.py +0 -1137
- scitex/ai/classification/classifiers.py +0 -101
- scitex/ai/classification_reporter.py +0 -1161
- scitex/ai/genai/__init__.py +0 -277
- scitex/ai/genai/anthropic_provider.py +0 -320
- scitex/ai/genai/anthropic_refactored.py +0 -109
- scitex/ai/genai/auth_manager.py +0 -200
- scitex/ai/genai/base_provider.py +0 -291
- scitex/ai/genai/chat_history.py +0 -307
- scitex/ai/genai/cost_tracker.py +0 -276
- scitex/ai/genai/deepseek_provider.py +0 -251
- scitex/ai/genai/google_provider.py +0 -228
- scitex/ai/genai/groq_provider.py +0 -248
- scitex/ai/genai/image_processor.py +0 -250
- scitex/ai/genai/llama_provider.py +0 -214
- scitex/ai/genai/mock_provider.py +0 -127
- scitex/ai/genai/model_registry.py +0 -304
- scitex/ai/genai/openai_provider.py +0 -293
- scitex/ai/genai/perplexity_provider.py +0 -205
- scitex/ai/genai/provider_base.py +0 -302
- scitex/ai/genai/provider_factory.py +0 -370
- scitex/ai/genai/response_handler.py +0 -235
- scitex/ai/layer/_Pass.py +0 -21
- scitex/ai/layer/__init__.py +0 -10
- scitex/ai/layer/_switch.py +0 -8
- scitex/ai/metrics/_bACC.py +0 -51
- scitex/ai/plt/_learning_curve.py +0 -194
- scitex/ai/plt/_optuna_study.py +0 -111
- scitex/ai/plt/aucs/__init__.py +0 -2
- scitex/ai/plt/aucs/example.py +0 -60
- scitex/ai/plt/aucs/pre_rec_auc.py +0 -223
- scitex/ai/plt/aucs/roc_auc.py +0 -246
- scitex/ai/sampling/undersample.py +0 -29
- scitex/db/_SQLite3.py +0 -2136
- scitex/db/_SQLite3Mixins/_BlobMixin.py +0 -229
- scitex/gen/_close.py +0 -222
- scitex/gen/_start.py +0 -451
- scitex/general/__init__.py +0 -5
- scitex/io/_load_modules/_db.py +0 -24
- scitex/life/__init__.py +0 -10
- scitex/life/_monitor_rain.py +0 -49
- scitex/reproduce/_fix_seeds.py +0 -45
- scitex/res/__init__.py +0 -5
- scitex/scholar/_local_search.py +0 -454
- scitex/scholar/_paper.py +0 -244
- scitex/scholar/_pdf_downloader.py +0 -325
- scitex/scholar/_search.py +0 -393
- scitex/scholar/_vector_search.py +0 -370
- scitex/scholar/_web_sources.py +0 -457
- scitex/stats/desc/__init__.py +0 -40
- scitex-2.0.0.dist-info/METADATA +0 -307
- scitex-2.0.0.dist-info/RECORD +0 -572
- scitex-2.0.0.dist-info/licenses/LICENSE +0 -7
- /scitex/ai/{act → activation}/__init__.py +0 -0
- /scitex/ai/{act → activation}/_define.py +0 -0
- /scitex/ai/{early_stopping.py → training/_EarlyStopping.py} +0 -0
- /scitex/db/{_PostgreSQLMixins → _postgresql/_PostgreSQLMixins}/_ImportExportMixin.py +0 -0
- /scitex/db/{_PostgreSQLMixins → _postgresql/_PostgreSQLMixins}/_IndexMixin.py +0 -0
- /scitex/db/{_PostgreSQLMixins → _postgresql/_PostgreSQLMixins}/_RowMixin.py +0 -0
- /scitex/db/{_PostgreSQLMixins → _postgresql/_PostgreSQLMixins}/_TableMixin.py +0 -0
- /scitex/db/{_PostgreSQLMixins → _postgresql/_PostgreSQLMixins}/__init__.py +0 -0
- /scitex/{stats → stats_v01}/_calc_partial_corr.py +0 -0
- /scitex/{stats → stats_v01}/_corr_test_multi.py +0 -0
- /scitex/{stats → stats_v01}/_corr_test_wrapper.py +0 -0
- /scitex/{stats → stats_v01}/_describe_wrapper.py +0 -0
- /scitex/{stats → stats_v01}/_multiple_corrections.py +0 -0
- /scitex/{stats → stats_v01}/_nan_stats.py +0 -0
- /scitex/{stats → stats_v01}/_p2stars_wrapper.py +0 -0
- /scitex/{stats → stats_v01}/_statistical_tests.py +0 -0
- /scitex/{stats/desc/_describe.py → stats_v01/desc/_describe_v01-20250920_145731.py} +0 -0
- /scitex/{stats/desc/_real.py → stats_v01/desc/_real_v01-20250920_145731.py} +0 -0
- /scitex/{stats → stats_v01}/multiple/__init__.py +0 -0
- /scitex/{stats → stats_v01}/multiple/_bonferroni_correction.py +0 -0
- /scitex/{stats → stats_v01}/multiple/_fdr_correction.py +0 -0
- /scitex/{stats → stats_v01}/multiple/_multicompair.py +0 -0
- /scitex/{stats → stats_v01}/tests/__corr_test.py +0 -0
- /scitex/{stats → stats_v01}/tests/__corr_test_multi.py +0 -0
- /scitex/{stats → stats_v01}/tests/__corr_test_single.py +0 -0
- /scitex/{stats → stats_v01}/tests/__init__.py +0 -0
- /scitex/{stats → stats_v01}/tests/_brunner_munzel_test.py +0 -0
- /scitex/{stats → stats_v01}/tests/_nocorrelation_test.py +0 -0
- /scitex/{stats → stats_v01}/tests/_smirnov_grubbs.py +0 -0
- {scitex-2.0.0.dist-info → scitex-2.1.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,503 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
# Time-stamp: "2024-11-20 00:22:25 (ywatanabe)"
|
|
4
|
+
# File: ./scitex_repo/src/scitex/ai/silhoute_score_block.py
|
|
5
|
+
|
|
6
|
+
THIS_FILE = "/data/gpfs/projects/punim2354/ywatanabe/scitex_repo/src/scitex/ai/silhoute_score_block.py"
|
|
7
|
+
|
|
8
|
+
#!/usr/bin/env python3
|
|
9
|
+
# -*- coding: utf-8 -*-
|
|
10
|
+
# Time-stamp: "2024-11-03 03:03:13 (ywatanabe)"
|
|
11
|
+
# File: ./scitex_repo/src/scitex/ai/silhoute_score_block.py
|
|
12
|
+
|
|
13
|
+
# https://gist.github.com/AlexandreAbraham/5544803
|
|
14
|
+
|
|
15
|
+
""" Unsupervised evaluation metrics. """
|
|
16
|
+
|
|
17
|
+
# License: BSD Style.
|
|
18
|
+
|
|
19
|
+
from itertools import combinations as _combinations
|
|
20
|
+
|
|
21
|
+
import numpy as _np
|
|
22
|
+
|
|
23
|
+
# from sklearn.externals.joblib import Parallel, delayed
|
|
24
|
+
from joblib import Parallel as _Parallel
|
|
25
|
+
from joblib import delayed as _delayed
|
|
26
|
+
from sklearn.metrics.pairwise import distance_metrics as _distance_metrics
|
|
27
|
+
from sklearn.metrics.pairwise import pairwise_distances as _pairwise_distances
|
|
28
|
+
from sklearn.utils import check_random_state as _check_random_state
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
def calc_silhouette_score_slow(
|
|
32
|
+
X, labels, metric="euclidean", sample_size=None, random_state=None, **kwds
|
|
33
|
+
):
|
|
34
|
+
"""Compute the mean Silhouette Coefficient of all samples.
|
|
35
|
+
|
|
36
|
+
This method is computationally expensive compared to the reference one.
|
|
37
|
+
|
|
38
|
+
The Silhouette Coefficient is calculated using the mean intra-cluster
|
|
39
|
+
distance (a) and the mean nearest-cluster distance (b) for each sample.
|
|
40
|
+
The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``.
|
|
41
|
+
To clarrify, b is the distance between a sample and the nearest cluster
|
|
42
|
+
that b is not a part of.
|
|
43
|
+
|
|
44
|
+
This function returns the mean Silhoeutte Coefficient over all samples.
|
|
45
|
+
To obtain the values for each sample, use silhouette_samples
|
|
46
|
+
|
|
47
|
+
The best value is 1 and the worst value is -1. Values near 0 indicate
|
|
48
|
+
overlapping clusters. Negative values genly indicate that a sample has
|
|
49
|
+
been assigned to the wrong cluster, as a different cluster is more similar.
|
|
50
|
+
|
|
51
|
+
Parameters
|
|
52
|
+
----------
|
|
53
|
+
X : array [n_samples_a, n_features]
|
|
54
|
+
Feature array.
|
|
55
|
+
|
|
56
|
+
labels : array, shape = [n_samples]
|
|
57
|
+
label values for each sample
|
|
58
|
+
|
|
59
|
+
metric : string, or callable
|
|
60
|
+
The metric to use when calculating distance between instances in a
|
|
61
|
+
feature array. If metric is a string, it must be one of the options
|
|
62
|
+
allowed by metrics.pairwise._pairwise_distances. If X is the distance
|
|
63
|
+
array itself, use "precomputed" as the metric.
|
|
64
|
+
|
|
65
|
+
sample_size : int or None
|
|
66
|
+
The size of the sample to use when computing the Silhouette
|
|
67
|
+
Coefficient. If sample_size is None, no sampling is used.
|
|
68
|
+
|
|
69
|
+
random_state : integer or numpy.RandomState, optional
|
|
70
|
+
The generator used to initialize the centers. If an integer is
|
|
71
|
+
given, it fixes the seed. Defaults to the global numpy random
|
|
72
|
+
number generator.
|
|
73
|
+
|
|
74
|
+
`**kwds` : optional keyword parameters
|
|
75
|
+
Any further parameters are passed directly to the distance function.
|
|
76
|
+
If using a scipy.spatial.distance metric, the parameters are still
|
|
77
|
+
metric dependent. See the scipy docs for usage examples.
|
|
78
|
+
|
|
79
|
+
Returns
|
|
80
|
+
-------
|
|
81
|
+
silhouette : float
|
|
82
|
+
Mean Silhouette Coefficient for all samples.
|
|
83
|
+
|
|
84
|
+
References
|
|
85
|
+
----------
|
|
86
|
+
|
|
87
|
+
Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the
|
|
88
|
+
Interpretation and Validation of Cluster Analysis". Computational
|
|
89
|
+
and Applied Mathematics 20: 53-65. doi:10.1016/0377-0427(87)90125-7.
|
|
90
|
+
|
|
91
|
+
http://en.wikipedia.org/wiki/Silhouette_(clustering)
|
|
92
|
+
|
|
93
|
+
"""
|
|
94
|
+
if sample_size is not None:
|
|
95
|
+
random_state = _check_random_state(random_state)
|
|
96
|
+
indices = random_state.permutation(X.shape[0])[:sample_size]
|
|
97
|
+
if metric == "precomputed":
|
|
98
|
+
raise ValueError("Distance matrix cannot be precomputed")
|
|
99
|
+
else:
|
|
100
|
+
X, labels = X[indices], labels[indices]
|
|
101
|
+
return _np.mean(calc_silhouette_samples_slow(X, labels, metric=metric, **kwds))
|
|
102
|
+
|
|
103
|
+
|
|
104
|
+
def calc_silhouette_samples_slow(X, labels, metric="euclidean", **kwds):
|
|
105
|
+
"""Compute the Silhouette Coefficient for each sample.
|
|
106
|
+
|
|
107
|
+
The Silhoeutte Coefficient is a measure of how well samples are clustered
|
|
108
|
+
with samples that are similar to themselves. Clustering models with a high
|
|
109
|
+
Silhouette Coefficient are said to be dense, where samples in the same
|
|
110
|
+
cluster are similar to each other, and well separated, where samples in
|
|
111
|
+
different clusters are not very similar to each other.
|
|
112
|
+
|
|
113
|
+
The Silhouette Coefficient is calculated using the mean intra-cluster
|
|
114
|
+
distance (a) and the mean nearest-cluster distance (b) for each sample.
|
|
115
|
+
The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``.
|
|
116
|
+
|
|
117
|
+
This function returns the Silhoeutte Coefficient for each sample.
|
|
118
|
+
|
|
119
|
+
The best value is 1 and the worst value is -1. Values near 0 indicate
|
|
120
|
+
overlapping clusters.
|
|
121
|
+
|
|
122
|
+
Parameters
|
|
123
|
+
----------
|
|
124
|
+
X : array [n_samples_a, n_features]
|
|
125
|
+
Feature array.
|
|
126
|
+
|
|
127
|
+
labels : array, shape = [n_samples]
|
|
128
|
+
label values for each sample
|
|
129
|
+
|
|
130
|
+
metric : string, or callable
|
|
131
|
+
The metric to use when calculating distance between instances in a
|
|
132
|
+
feature array. If metric is a string, it must be one of the options
|
|
133
|
+
allowed by metrics.pairwise._pairwise_distances. If X is the distance
|
|
134
|
+
array itself, use "precomputed" as the metric.
|
|
135
|
+
|
|
136
|
+
`**kwds` : optional keyword parameters
|
|
137
|
+
Any further parameters are passed directly to the distance function.
|
|
138
|
+
If using a scipy.spatial.distance metric, the parameters are still
|
|
139
|
+
metric dependent. See the scipy docs for usage examples.
|
|
140
|
+
|
|
141
|
+
Returns
|
|
142
|
+
-------
|
|
143
|
+
silhouette : array, shape = [n_samples]
|
|
144
|
+
Silhouette Coefficient for each samples.
|
|
145
|
+
|
|
146
|
+
References
|
|
147
|
+
----------
|
|
148
|
+
|
|
149
|
+
Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the
|
|
150
|
+
Interpretation and Validation of Cluster Analysis". Computational
|
|
151
|
+
and Applied Mathematics 20: 53-65. doi:10.1016/0377-0427(87)90125-7.
|
|
152
|
+
|
|
153
|
+
http://en.wikipedia.org/wiki/Silhouette_(clustering)
|
|
154
|
+
|
|
155
|
+
"""
|
|
156
|
+
metric = _distance_metrics()[metric]
|
|
157
|
+
n = labels.shape[0]
|
|
158
|
+
A = _np.array(
|
|
159
|
+
[_intra_cluster_distance_slow(X, labels, metric, i) for i in range(n)]
|
|
160
|
+
)
|
|
161
|
+
B = _np.array(
|
|
162
|
+
[_nearest_cluster_distance_slow(X, labels, metric, i) for i in range(n)]
|
|
163
|
+
)
|
|
164
|
+
sil_samples = (B - A) / _np.maximum(A, B)
|
|
165
|
+
# nan values are for clusters of size 1, and should be 0
|
|
166
|
+
return _np.nan_to_num(sil_samples)
|
|
167
|
+
|
|
168
|
+
|
|
169
|
+
def _intra_cluster_distance_slow(X, labels, metric, i):
|
|
170
|
+
"""Calculate the mean intra-cluster distance for sample i.
|
|
171
|
+
|
|
172
|
+
Parameters
|
|
173
|
+
----------
|
|
174
|
+
X : array [n_samples_a, n_features]
|
|
175
|
+
Feature array.
|
|
176
|
+
|
|
177
|
+
labels : array, shape = [n_samples]
|
|
178
|
+
label values for each sample
|
|
179
|
+
|
|
180
|
+
metric: function
|
|
181
|
+
Pairwise metric function
|
|
182
|
+
|
|
183
|
+
i : int
|
|
184
|
+
Sample index being calculated. It is excluded from calculation and
|
|
185
|
+
used to determine the current label
|
|
186
|
+
|
|
187
|
+
Returns
|
|
188
|
+
-------
|
|
189
|
+
a : float
|
|
190
|
+
Mean intra-cluster distance for sample i
|
|
191
|
+
"""
|
|
192
|
+
indices = _np.where(labels == labels[i])[0]
|
|
193
|
+
if len(indices) == 0:
|
|
194
|
+
return 0.0
|
|
195
|
+
a = _np.mean([metric(X[i], X[j]) for j in indices if not i == j])
|
|
196
|
+
return a
|
|
197
|
+
|
|
198
|
+
|
|
199
|
+
def _nearest_cluster_distance_slow(X, labels, metric, i):
|
|
200
|
+
"""Calculate the mean nearest-cluster distance for sample i.
|
|
201
|
+
|
|
202
|
+
Parameters
|
|
203
|
+
----------
|
|
204
|
+
X : array [n_samples_a, n_features]
|
|
205
|
+
Feature array.
|
|
206
|
+
|
|
207
|
+
labels : array, shape = [n_samples]
|
|
208
|
+
label values for each sample
|
|
209
|
+
|
|
210
|
+
metric: function
|
|
211
|
+
Pairwise metric function
|
|
212
|
+
|
|
213
|
+
i : int
|
|
214
|
+
Sample index being calculated. It is used to determine the current
|
|
215
|
+
label.
|
|
216
|
+
|
|
217
|
+
Returns
|
|
218
|
+
-------
|
|
219
|
+
b : float
|
|
220
|
+
Mean nearest-cluster distance for sample i
|
|
221
|
+
"""
|
|
222
|
+
label = labels[i]
|
|
223
|
+
b = _np.min(
|
|
224
|
+
[
|
|
225
|
+
_np.mean([metric(X[i], X[j]) for j in _np.where(labels == cur_label)[0]])
|
|
226
|
+
for cur_label in set(labels)
|
|
227
|
+
if not cur_label == label
|
|
228
|
+
]
|
|
229
|
+
)
|
|
230
|
+
return b
|
|
231
|
+
|
|
232
|
+
|
|
233
|
+
def calc_silhouette_score_block(
|
|
234
|
+
X, labels, metric="euclidean", sample_size=None, random_state=None, n_jobs=1, **kwds
|
|
235
|
+
):
|
|
236
|
+
"""Compute the mean Silhouette Coefficient of all samples.
|
|
237
|
+
|
|
238
|
+
The Silhouette Coefficient is calculated using the mean intra-cluster
|
|
239
|
+
distance (a) and the mean nearest-cluster distance (b) for each sample.
|
|
240
|
+
The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``.
|
|
241
|
+
To clarrify, b is the distance between a sample and the nearest cluster
|
|
242
|
+
that b is not a part of.
|
|
243
|
+
|
|
244
|
+
This function returns the mean Silhoeutte Coefficient over all samples.
|
|
245
|
+
To obtain the values for each sample, use silhouette_samples
|
|
246
|
+
|
|
247
|
+
The best value is 1 and the worst value is -1. Values near 0 indicate
|
|
248
|
+
overlapping clusters. Negative values genly indicate that a sample has
|
|
249
|
+
been assigned to the wrong cluster, as a different cluster is more similar.
|
|
250
|
+
|
|
251
|
+
Parameters
|
|
252
|
+
----------
|
|
253
|
+
X : array [n_samples_a, n_features]
|
|
254
|
+
Feature array.
|
|
255
|
+
|
|
256
|
+
labels : array, shape = [n_samples]
|
|
257
|
+
label values for each sample
|
|
258
|
+
|
|
259
|
+
metric : string, or callable
|
|
260
|
+
The metric to use when calculating distance between instances in a
|
|
261
|
+
feature array. If metric is a string, it must be one of the options
|
|
262
|
+
allowed by metrics.pairwise._pairwise_distances. If X is the distance
|
|
263
|
+
array itself, use "precomputed" as the metric.
|
|
264
|
+
|
|
265
|
+
sample_size : int or None
|
|
266
|
+
The size of the sample to use when computing the Silhouette
|
|
267
|
+
Coefficient. If sample_size is None, no sampling is used.
|
|
268
|
+
|
|
269
|
+
random_state : integer or numpy.RandomState, optional
|
|
270
|
+
The generator used to initialize the centers. If an integer is
|
|
271
|
+
given, it fixes the seed. Defaults to the global numpy random
|
|
272
|
+
number generator.
|
|
273
|
+
|
|
274
|
+
`**kwds` : optional keyword parameters
|
|
275
|
+
Any further parameters are passed directly to the distance function.
|
|
276
|
+
If using a scipy.spatial.distance metric, the parameters are still
|
|
277
|
+
metric dependent. See the scipy docs for usage examples.
|
|
278
|
+
|
|
279
|
+
Returns
|
|
280
|
+
-------
|
|
281
|
+
silhouette : float
|
|
282
|
+
Mean Silhouette Coefficient for all samples.
|
|
283
|
+
|
|
284
|
+
References
|
|
285
|
+
----------
|
|
286
|
+
|
|
287
|
+
Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the
|
|
288
|
+
Interpretation and Validation of Cluster Analysis". Computational
|
|
289
|
+
and Applied Mathematics 20: 53-65. doi:10.1016/0377-0427(87)90125-7.
|
|
290
|
+
|
|
291
|
+
http://en.wikipedia.org/wiki/Silhouette_(clustering)
|
|
292
|
+
|
|
293
|
+
"""
|
|
294
|
+
if sample_size is not None:
|
|
295
|
+
random_state = _check_random_state(random_state)
|
|
296
|
+
indices = random_state.permutation(X.shape[0])[:sample_size]
|
|
297
|
+
if metric == "precomputed":
|
|
298
|
+
raise ValueError("Distance matrix cannot be precomputed")
|
|
299
|
+
else:
|
|
300
|
+
X, labels = X[indices], labels[indices]
|
|
301
|
+
return _np.mean(
|
|
302
|
+
calc_silhouette_samples_block(X, labels, metric=metric, n_jobs=n_jobs, **kwds)
|
|
303
|
+
)
|
|
304
|
+
|
|
305
|
+
|
|
306
|
+
def calc_silhouette_samples_block(X, labels, metric="euclidean", n_jobs=1, **kwds):
|
|
307
|
+
"""Compute the Silhouette Coefficient for each sample.
|
|
308
|
+
|
|
309
|
+
The Silhoeutte Coefficient is a measure of how well samples are clustered
|
|
310
|
+
with samples that are similar to themselves. Clustering models with a high
|
|
311
|
+
Silhouette Coefficient are said to be dense, where samples in the same
|
|
312
|
+
cluster are similar to each other, and well separated, where samples in
|
|
313
|
+
different clusters are not very similar to each other.
|
|
314
|
+
|
|
315
|
+
The Silhouette Coefficient is calculated using the mean intra-cluster
|
|
316
|
+
distance (a) and the mean nearest-cluster distance (b) for each sample.
|
|
317
|
+
The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``.
|
|
318
|
+
|
|
319
|
+
This function returns the Silhoeutte Coefficient for each sample.
|
|
320
|
+
|
|
321
|
+
The best value is 1 and the worst value is -1. Values near 0 indicate
|
|
322
|
+
overlapping clusters.
|
|
323
|
+
|
|
324
|
+
Parameters
|
|
325
|
+
----------
|
|
326
|
+
X : array [n_samples_a, n_features]
|
|
327
|
+
Feature array.
|
|
328
|
+
|
|
329
|
+
labels : array, shape = [n_samples]
|
|
330
|
+
label values for each sample
|
|
331
|
+
|
|
332
|
+
metric : string, or callable
|
|
333
|
+
The metric to use when calculating distance between instances in a
|
|
334
|
+
feature array. If metric is a string, it must be one of the options
|
|
335
|
+
allowed by metrics.pairwise._pairwise_distances. If X is the distance
|
|
336
|
+
array itself, use "precomputed" as the metric.
|
|
337
|
+
|
|
338
|
+
`**kwds` : optional keyword parameters
|
|
339
|
+
Any further parameters are passed directly to the distance function.
|
|
340
|
+
If using a scipy.spatial.distance metric, the parameters are still
|
|
341
|
+
metric dependent. See the scipy docs for usage examples.
|
|
342
|
+
|
|
343
|
+
Returns
|
|
344
|
+
-------
|
|
345
|
+
silhouette : array, shape = [n_samples]
|
|
346
|
+
Silhouette Coefficient for each samples.
|
|
347
|
+
|
|
348
|
+
References
|
|
349
|
+
----------
|
|
350
|
+
|
|
351
|
+
Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the
|
|
352
|
+
Interpretation and Validation of Cluster Analysis". Computational
|
|
353
|
+
and Applied Mathematics 20: 53-65. doi:10.1016/0377-0427(87)90125-7.
|
|
354
|
+
|
|
355
|
+
http://en.wikipedia.org/wiki/Silhouette_(clustering)
|
|
356
|
+
|
|
357
|
+
"""
|
|
358
|
+
A = _intra_cluster_distances_block(X, labels, metric, n_jobs=n_jobs, **kwds)
|
|
359
|
+
B = _nearest_cluster_distance_block(X, labels, metric, n_jobs=n_jobs, **kwds)
|
|
360
|
+
sil_samples = (B - A) / _np.maximum(A, B)
|
|
361
|
+
# nan values are for clusters of size 1, and should be 0
|
|
362
|
+
return _np.nan_to_num(sil_samples)
|
|
363
|
+
|
|
364
|
+
|
|
365
|
+
def _intra_cluster_distances_block_(subX, metric, **kwds):
|
|
366
|
+
distances = _pairwise_distances(subX, metric=metric, **kwds)
|
|
367
|
+
return distances.sum(axis=1) / (distances.shape[0] - 1)
|
|
368
|
+
|
|
369
|
+
|
|
370
|
+
def _intra_cluster_distances_block(X, labels, metric, n_jobs=1, **kwds):
|
|
371
|
+
"""Calculate the mean intra-cluster distance for sample i.
|
|
372
|
+
|
|
373
|
+
Parameters
|
|
374
|
+
----------
|
|
375
|
+
X : array [n_samples_a, n_features]
|
|
376
|
+
Feature array.
|
|
377
|
+
|
|
378
|
+
labels : array, shape = [n_samples]
|
|
379
|
+
label values for each sample
|
|
380
|
+
|
|
381
|
+
metric : string, or callable
|
|
382
|
+
The metric to use when calculating distance between instances in a
|
|
383
|
+
feature array. If metric is a string, it must be one of the options
|
|
384
|
+
allowed by metrics.pairwise._pairwise_distances. If X is the distance
|
|
385
|
+
array itself, use "precomputed" as the metric.
|
|
386
|
+
|
|
387
|
+
`**kwds` : optional keyword parameters
|
|
388
|
+
Any further parameters are passed directly to the distance function.
|
|
389
|
+
If using a scipy.spatial.distance metric, the parameters are still
|
|
390
|
+
metric dependent. See the scipy docs for usage examples.
|
|
391
|
+
|
|
392
|
+
Returns
|
|
393
|
+
-------
|
|
394
|
+
a : array [n_samples_a]
|
|
395
|
+
Mean intra-cluster distance
|
|
396
|
+
"""
|
|
397
|
+
intra_dist = _np.zeros(labels.size, dtype=float)
|
|
398
|
+
values = _Parallel(n_jobs=n_jobs)(
|
|
399
|
+
_delayed(_intra_cluster_distances_block_)(
|
|
400
|
+
X[_np.where(labels == label)[0]], metric, **kwds
|
|
401
|
+
)
|
|
402
|
+
for label in _np.unique(labels)
|
|
403
|
+
)
|
|
404
|
+
for label, values_ in zip(_np.unique(labels), values):
|
|
405
|
+
intra_dist[_np.where(labels == label)[0]] = values_
|
|
406
|
+
return intra_dist
|
|
407
|
+
|
|
408
|
+
|
|
409
|
+
def _nearest_cluster_distance_block_(subX_a, subX_b, metric, **kwds):
|
|
410
|
+
dist = _pairwise_distances(subX_a, subX_b, metric=metric, **kwds)
|
|
411
|
+
dist_a = dist.mean(axis=1)
|
|
412
|
+
dist_b = dist.mean(axis=0)
|
|
413
|
+
return dist_a, dist_b
|
|
414
|
+
|
|
415
|
+
|
|
416
|
+
def _nearest_cluster_distance_block(X, labels, metric, n_jobs=1, **kwds):
|
|
417
|
+
"""Calculate the mean nearest-cluster distance for sample i.
|
|
418
|
+
|
|
419
|
+
Parameters
|
|
420
|
+
----------
|
|
421
|
+
X : array [n_samples_a, n_features]
|
|
422
|
+
Feature array.
|
|
423
|
+
|
|
424
|
+
labels : array, shape = [n_samples]
|
|
425
|
+
label values for each sample
|
|
426
|
+
|
|
427
|
+
metric : string, or callable
|
|
428
|
+
The metric to use when calculating distance between instances in a
|
|
429
|
+
feature array. If metric is a string, it must be one of the options
|
|
430
|
+
allowed by metrics.pairwise._pairwise_distances. If X is the distance
|
|
431
|
+
array itself, use "precomputed" as the metric.
|
|
432
|
+
|
|
433
|
+
`**kwds` : optional keyword parameters
|
|
434
|
+
Any further parameters are passed directly to the distance function.
|
|
435
|
+
If using a scipy.spatial.distance metric, the parameters are still
|
|
436
|
+
metric dependent. See the scipy docs for usage examples.
|
|
437
|
+
X : array [n_samples_a, n_features]
|
|
438
|
+
Feature array.
|
|
439
|
+
|
|
440
|
+
Returns
|
|
441
|
+
-------
|
|
442
|
+
b : float
|
|
443
|
+
Mean nearest-cluster distance for sample i
|
|
444
|
+
"""
|
|
445
|
+
inter_dist = _np.empty(labels.size, dtype=float)
|
|
446
|
+
inter_dist.fill(_np.inf)
|
|
447
|
+
# Compute cluster distance between pairs of clusters
|
|
448
|
+
unique_labels = _np.unique(labels)
|
|
449
|
+
|
|
450
|
+
values = _Parallel(n_jobs=n_jobs)(
|
|
451
|
+
_delayed(_nearest_cluster_distance_block_)(
|
|
452
|
+
X[_np.where(labels == label_a)[0]],
|
|
453
|
+
X[_np.where(labels == label_b)[0]],
|
|
454
|
+
metric,
|
|
455
|
+
**kwds
|
|
456
|
+
)
|
|
457
|
+
for label_a, label_b in _combinations(unique_labels, 2)
|
|
458
|
+
)
|
|
459
|
+
|
|
460
|
+
for (label_a, label_b), (values_a, values_b) in zip(
|
|
461
|
+
_combinations(unique_labels, 2), values
|
|
462
|
+
):
|
|
463
|
+
|
|
464
|
+
indices_a = _np.where(labels == label_a)[0]
|
|
465
|
+
inter_dist[indices_a] = _np.minimum(values_a, inter_dist[indices_a])
|
|
466
|
+
del indices_a
|
|
467
|
+
indices_b = _np.where(labels == label_b)[0]
|
|
468
|
+
inter_dist[indices_b] = _np.minimum(values_b, inter_dist[indices_b])
|
|
469
|
+
del indices_b
|
|
470
|
+
return inter_dist
|
|
471
|
+
|
|
472
|
+
|
|
473
|
+
if __name__ == "__main__":
|
|
474
|
+
import time
|
|
475
|
+
|
|
476
|
+
# from sklearn.metrics.cluster.unsupervised import silhouette_score
|
|
477
|
+
from sklearn.metrics import silhouette_score
|
|
478
|
+
|
|
479
|
+
_np.random.seed(0)
|
|
480
|
+
X = _np.random.random((10000, 100))
|
|
481
|
+
y = _np.repeat(_np.arange(100), 100)
|
|
482
|
+
t0 = time.time()
|
|
483
|
+
s = silhouette_score(X, y)
|
|
484
|
+
t = time.time() - t0
|
|
485
|
+
print("Scikit silhouette (%fs): %f" % (t, s))
|
|
486
|
+
t0 = time.time()
|
|
487
|
+
s = calc_silhouette_score_block(X, y)
|
|
488
|
+
t = time.time() - t0
|
|
489
|
+
print("Block silhouette (%fs): %f" % (t, s))
|
|
490
|
+
t0 = time.time()
|
|
491
|
+
s = calc_silhouette_score_block(X, y, n_jobs=2)
|
|
492
|
+
t = time.time() - t0
|
|
493
|
+
print("Block silhouette parallel (%fs): %f" % (t, s))
|
|
494
|
+
|
|
495
|
+
|
|
496
|
+
|
|
497
|
+
# Backward compatibility aliases (deprecated, will be removed in future)
|
|
498
|
+
silhouette_score_slow = calc_silhouette_score_slow
|
|
499
|
+
silhouette_samples_slow = calc_silhouette_samples_slow
|
|
500
|
+
silhouette_score_block = calc_silhouette_score_block
|
|
501
|
+
silhouette_samples_block = calc_silhouette_samples_block
|
|
502
|
+
|
|
503
|
+
# EOF
|
|
@@ -0,0 +1,83 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
# Timestamp: "2025-10-02 (ywatanabe)"
|
|
4
|
+
# File: /home/ywatanabe/proj/scitex_repo/src/scitex/ml/metrics/_normalize_labels.py
|
|
5
|
+
|
|
6
|
+
"""Label normalization utility for classification metrics."""
|
|
7
|
+
|
|
8
|
+
__FILE__ = __file__
|
|
9
|
+
|
|
10
|
+
from typing import List, Optional, Tuple
|
|
11
|
+
import numpy as np
|
|
12
|
+
from sklearn.preprocessing import LabelEncoder
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
def normalize_labels(
|
|
16
|
+
y_true: np.ndarray,
|
|
17
|
+
y_pred: np.ndarray,
|
|
18
|
+
labels: Optional[List] = None,
|
|
19
|
+
) -> Tuple[np.ndarray, np.ndarray, List, LabelEncoder]:
|
|
20
|
+
"""
|
|
21
|
+
Normalize labels using sklearn.preprocessing.LabelEncoder.
|
|
22
|
+
|
|
23
|
+
Parameters
|
|
24
|
+
----------
|
|
25
|
+
y_true : np.ndarray
|
|
26
|
+
True labels (can be str or int)
|
|
27
|
+
y_pred : np.ndarray
|
|
28
|
+
Predicted labels (can be str or int)
|
|
29
|
+
labels : List, optional
|
|
30
|
+
Expected label list. If provided, will be used as display names.
|
|
31
|
+
|
|
32
|
+
Returns
|
|
33
|
+
-------
|
|
34
|
+
y_true_norm : np.ndarray
|
|
35
|
+
Normalized true labels (integers 0, 1, 2, ...)
|
|
36
|
+
y_pred_norm : np.ndarray
|
|
37
|
+
Normalized predicted labels (integers 0, 1, 2, ...)
|
|
38
|
+
label_names : List
|
|
39
|
+
List of label names in order
|
|
40
|
+
encoder : LabelEncoder
|
|
41
|
+
Fitted encoder for inverse transform
|
|
42
|
+
|
|
43
|
+
Notes
|
|
44
|
+
-----
|
|
45
|
+
Uses sklearn.preprocessing.LabelEncoder for robust label handling.
|
|
46
|
+
Handles the edge case where data contains integers but labels are strings
|
|
47
|
+
(e.g., y_true=[0,1,0,1] with labels=['Negative', 'Positive']).
|
|
48
|
+
"""
|
|
49
|
+
# Get unique values from data
|
|
50
|
+
all_data_labels = np.unique(np.concatenate([y_true, y_pred]))
|
|
51
|
+
|
|
52
|
+
# Create encoder
|
|
53
|
+
le = LabelEncoder()
|
|
54
|
+
|
|
55
|
+
# Handle edge case: integer data with string label names
|
|
56
|
+
if labels is not None:
|
|
57
|
+
# Check if data is integers but labels are strings
|
|
58
|
+
data_is_int = isinstance(all_data_labels[0], (int, np.integer))
|
|
59
|
+
labels_are_str = isinstance(labels[0], str)
|
|
60
|
+
|
|
61
|
+
if data_is_int and labels_are_str:
|
|
62
|
+
# Data: [0, 1], labels: ['Negative', 'Positive']
|
|
63
|
+
# Fit encoder on the integer data
|
|
64
|
+
le.fit(all_data_labels)
|
|
65
|
+
# But use provided labels as names for display
|
|
66
|
+
label_names = labels
|
|
67
|
+
else:
|
|
68
|
+
# Normal case: fit on provided labels
|
|
69
|
+
le.fit(labels)
|
|
70
|
+
label_names = list(le.classes_)
|
|
71
|
+
else:
|
|
72
|
+
# No labels provided: fit on observed data
|
|
73
|
+
le.fit(all_data_labels)
|
|
74
|
+
label_names = list(le.classes_)
|
|
75
|
+
|
|
76
|
+
# Transform to integers
|
|
77
|
+
y_true_norm = le.transform(y_true)
|
|
78
|
+
y_pred_norm = le.transform(y_pred)
|
|
79
|
+
|
|
80
|
+
return y_true_norm, y_pred_norm, label_names, le
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
# EOF
|
|
File without changes
|