scipy 1.16.2__cp311-cp311-win_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1530) hide show
  1. scipy/__config__.py +161 -0
  2. scipy/__init__.py +150 -0
  3. scipy/_cyutility.cp311-win_arm64.lib +0 -0
  4. scipy/_cyutility.cp311-win_arm64.pyd +0 -0
  5. scipy/_distributor_init.py +18 -0
  6. scipy/_lib/__init__.py +14 -0
  7. scipy/_lib/_array_api.py +931 -0
  8. scipy/_lib/_array_api_compat_vendor.py +9 -0
  9. scipy/_lib/_array_api_no_0d.py +103 -0
  10. scipy/_lib/_bunch.py +229 -0
  11. scipy/_lib/_ccallback.py +251 -0
  12. scipy/_lib/_ccallback_c.cp311-win_arm64.lib +0 -0
  13. scipy/_lib/_ccallback_c.cp311-win_arm64.pyd +0 -0
  14. scipy/_lib/_disjoint_set.py +254 -0
  15. scipy/_lib/_docscrape.py +761 -0
  16. scipy/_lib/_elementwise_iterative_method.py +346 -0
  17. scipy/_lib/_fpumode.cp311-win_arm64.lib +0 -0
  18. scipy/_lib/_fpumode.cp311-win_arm64.pyd +0 -0
  19. scipy/_lib/_gcutils.py +105 -0
  20. scipy/_lib/_pep440.py +487 -0
  21. scipy/_lib/_sparse.py +41 -0
  22. scipy/_lib/_test_ccallback.cp311-win_arm64.lib +0 -0
  23. scipy/_lib/_test_ccallback.cp311-win_arm64.pyd +0 -0
  24. scipy/_lib/_test_deprecation_call.cp311-win_arm64.lib +0 -0
  25. scipy/_lib/_test_deprecation_call.cp311-win_arm64.pyd +0 -0
  26. scipy/_lib/_test_deprecation_def.cp311-win_arm64.lib +0 -0
  27. scipy/_lib/_test_deprecation_def.cp311-win_arm64.pyd +0 -0
  28. scipy/_lib/_testutils.py +373 -0
  29. scipy/_lib/_threadsafety.py +58 -0
  30. scipy/_lib/_tmpdirs.py +86 -0
  31. scipy/_lib/_uarray/LICENSE +29 -0
  32. scipy/_lib/_uarray/__init__.py +116 -0
  33. scipy/_lib/_uarray/_backend.py +707 -0
  34. scipy/_lib/_uarray/_uarray.cp311-win_arm64.lib +0 -0
  35. scipy/_lib/_uarray/_uarray.cp311-win_arm64.pyd +0 -0
  36. scipy/_lib/_util.py +1283 -0
  37. scipy/_lib/array_api_compat/__init__.py +22 -0
  38. scipy/_lib/array_api_compat/_internal.py +59 -0
  39. scipy/_lib/array_api_compat/common/__init__.py +1 -0
  40. scipy/_lib/array_api_compat/common/_aliases.py +727 -0
  41. scipy/_lib/array_api_compat/common/_fft.py +213 -0
  42. scipy/_lib/array_api_compat/common/_helpers.py +1058 -0
  43. scipy/_lib/array_api_compat/common/_linalg.py +232 -0
  44. scipy/_lib/array_api_compat/common/_typing.py +192 -0
  45. scipy/_lib/array_api_compat/cupy/__init__.py +13 -0
  46. scipy/_lib/array_api_compat/cupy/_aliases.py +156 -0
  47. scipy/_lib/array_api_compat/cupy/_info.py +336 -0
  48. scipy/_lib/array_api_compat/cupy/_typing.py +31 -0
  49. scipy/_lib/array_api_compat/cupy/fft.py +36 -0
  50. scipy/_lib/array_api_compat/cupy/linalg.py +49 -0
  51. scipy/_lib/array_api_compat/dask/__init__.py +0 -0
  52. scipy/_lib/array_api_compat/dask/array/__init__.py +12 -0
  53. scipy/_lib/array_api_compat/dask/array/_aliases.py +376 -0
  54. scipy/_lib/array_api_compat/dask/array/_info.py +416 -0
  55. scipy/_lib/array_api_compat/dask/array/fft.py +21 -0
  56. scipy/_lib/array_api_compat/dask/array/linalg.py +72 -0
  57. scipy/_lib/array_api_compat/numpy/__init__.py +28 -0
  58. scipy/_lib/array_api_compat/numpy/_aliases.py +190 -0
  59. scipy/_lib/array_api_compat/numpy/_info.py +366 -0
  60. scipy/_lib/array_api_compat/numpy/_typing.py +30 -0
  61. scipy/_lib/array_api_compat/numpy/fft.py +35 -0
  62. scipy/_lib/array_api_compat/numpy/linalg.py +143 -0
  63. scipy/_lib/array_api_compat/torch/__init__.py +22 -0
  64. scipy/_lib/array_api_compat/torch/_aliases.py +855 -0
  65. scipy/_lib/array_api_compat/torch/_info.py +369 -0
  66. scipy/_lib/array_api_compat/torch/_typing.py +3 -0
  67. scipy/_lib/array_api_compat/torch/fft.py +85 -0
  68. scipy/_lib/array_api_compat/torch/linalg.py +121 -0
  69. scipy/_lib/array_api_extra/__init__.py +38 -0
  70. scipy/_lib/array_api_extra/_delegation.py +171 -0
  71. scipy/_lib/array_api_extra/_lib/__init__.py +1 -0
  72. scipy/_lib/array_api_extra/_lib/_at.py +463 -0
  73. scipy/_lib/array_api_extra/_lib/_backends.py +46 -0
  74. scipy/_lib/array_api_extra/_lib/_funcs.py +937 -0
  75. scipy/_lib/array_api_extra/_lib/_lazy.py +357 -0
  76. scipy/_lib/array_api_extra/_lib/_testing.py +278 -0
  77. scipy/_lib/array_api_extra/_lib/_utils/__init__.py +1 -0
  78. scipy/_lib/array_api_extra/_lib/_utils/_compat.py +74 -0
  79. scipy/_lib/array_api_extra/_lib/_utils/_compat.pyi +45 -0
  80. scipy/_lib/array_api_extra/_lib/_utils/_helpers.py +559 -0
  81. scipy/_lib/array_api_extra/_lib/_utils/_typing.py +10 -0
  82. scipy/_lib/array_api_extra/_lib/_utils/_typing.pyi +105 -0
  83. scipy/_lib/array_api_extra/testing.py +359 -0
  84. scipy/_lib/cobyqa/__init__.py +20 -0
  85. scipy/_lib/cobyqa/framework.py +1240 -0
  86. scipy/_lib/cobyqa/main.py +1506 -0
  87. scipy/_lib/cobyqa/models.py +1529 -0
  88. scipy/_lib/cobyqa/problem.py +1296 -0
  89. scipy/_lib/cobyqa/settings.py +132 -0
  90. scipy/_lib/cobyqa/subsolvers/__init__.py +14 -0
  91. scipy/_lib/cobyqa/subsolvers/geometry.py +387 -0
  92. scipy/_lib/cobyqa/subsolvers/optim.py +1203 -0
  93. scipy/_lib/cobyqa/utils/__init__.py +18 -0
  94. scipy/_lib/cobyqa/utils/exceptions.py +22 -0
  95. scipy/_lib/cobyqa/utils/math.py +77 -0
  96. scipy/_lib/cobyqa/utils/versions.py +67 -0
  97. scipy/_lib/decorator.py +399 -0
  98. scipy/_lib/deprecation.py +274 -0
  99. scipy/_lib/doccer.py +366 -0
  100. scipy/_lib/messagestream.cp311-win_arm64.lib +0 -0
  101. scipy/_lib/messagestream.cp311-win_arm64.pyd +0 -0
  102. scipy/_lib/pyprima/__init__.py +212 -0
  103. scipy/_lib/pyprima/cobyla/__init__.py +0 -0
  104. scipy/_lib/pyprima/cobyla/cobyla.py +559 -0
  105. scipy/_lib/pyprima/cobyla/cobylb.py +714 -0
  106. scipy/_lib/pyprima/cobyla/geometry.py +226 -0
  107. scipy/_lib/pyprima/cobyla/initialize.py +215 -0
  108. scipy/_lib/pyprima/cobyla/trustregion.py +492 -0
  109. scipy/_lib/pyprima/cobyla/update.py +289 -0
  110. scipy/_lib/pyprima/common/__init__.py +0 -0
  111. scipy/_lib/pyprima/common/_bounds.py +34 -0
  112. scipy/_lib/pyprima/common/_linear_constraints.py +46 -0
  113. scipy/_lib/pyprima/common/_nonlinear_constraints.py +54 -0
  114. scipy/_lib/pyprima/common/_project.py +173 -0
  115. scipy/_lib/pyprima/common/checkbreak.py +93 -0
  116. scipy/_lib/pyprima/common/consts.py +47 -0
  117. scipy/_lib/pyprima/common/evaluate.py +99 -0
  118. scipy/_lib/pyprima/common/history.py +38 -0
  119. scipy/_lib/pyprima/common/infos.py +30 -0
  120. scipy/_lib/pyprima/common/linalg.py +435 -0
  121. scipy/_lib/pyprima/common/message.py +290 -0
  122. scipy/_lib/pyprima/common/powalg.py +131 -0
  123. scipy/_lib/pyprima/common/preproc.py +277 -0
  124. scipy/_lib/pyprima/common/present.py +5 -0
  125. scipy/_lib/pyprima/common/ratio.py +54 -0
  126. scipy/_lib/pyprima/common/redrho.py +47 -0
  127. scipy/_lib/pyprima/common/selectx.py +296 -0
  128. scipy/_lib/tests/__init__.py +0 -0
  129. scipy/_lib/tests/test__gcutils.py +110 -0
  130. scipy/_lib/tests/test__pep440.py +67 -0
  131. scipy/_lib/tests/test__testutils.py +32 -0
  132. scipy/_lib/tests/test__threadsafety.py +51 -0
  133. scipy/_lib/tests/test__util.py +641 -0
  134. scipy/_lib/tests/test_array_api.py +322 -0
  135. scipy/_lib/tests/test_bunch.py +169 -0
  136. scipy/_lib/tests/test_ccallback.py +196 -0
  137. scipy/_lib/tests/test_config.py +45 -0
  138. scipy/_lib/tests/test_deprecation.py +10 -0
  139. scipy/_lib/tests/test_doccer.py +143 -0
  140. scipy/_lib/tests/test_import_cycles.py +18 -0
  141. scipy/_lib/tests/test_public_api.py +482 -0
  142. scipy/_lib/tests/test_scipy_version.py +28 -0
  143. scipy/_lib/tests/test_tmpdirs.py +48 -0
  144. scipy/_lib/tests/test_warnings.py +137 -0
  145. scipy/_lib/uarray.py +31 -0
  146. scipy/cluster/__init__.py +31 -0
  147. scipy/cluster/_hierarchy.cp311-win_arm64.lib +0 -0
  148. scipy/cluster/_hierarchy.cp311-win_arm64.pyd +0 -0
  149. scipy/cluster/_optimal_leaf_ordering.cp311-win_arm64.lib +0 -0
  150. scipy/cluster/_optimal_leaf_ordering.cp311-win_arm64.pyd +0 -0
  151. scipy/cluster/_vq.cp311-win_arm64.lib +0 -0
  152. scipy/cluster/_vq.cp311-win_arm64.pyd +0 -0
  153. scipy/cluster/hierarchy.py +4348 -0
  154. scipy/cluster/tests/__init__.py +0 -0
  155. scipy/cluster/tests/hierarchy_test_data.py +145 -0
  156. scipy/cluster/tests/test_disjoint_set.py +202 -0
  157. scipy/cluster/tests/test_hierarchy.py +1238 -0
  158. scipy/cluster/tests/test_vq.py +434 -0
  159. scipy/cluster/vq.py +832 -0
  160. scipy/conftest.py +683 -0
  161. scipy/constants/__init__.py +358 -0
  162. scipy/constants/_codata.py +2266 -0
  163. scipy/constants/_constants.py +369 -0
  164. scipy/constants/codata.py +21 -0
  165. scipy/constants/constants.py +53 -0
  166. scipy/constants/tests/__init__.py +0 -0
  167. scipy/constants/tests/test_codata.py +78 -0
  168. scipy/constants/tests/test_constants.py +83 -0
  169. scipy/datasets/__init__.py +90 -0
  170. scipy/datasets/_download_all.py +71 -0
  171. scipy/datasets/_fetchers.py +225 -0
  172. scipy/datasets/_registry.py +26 -0
  173. scipy/datasets/_utils.py +81 -0
  174. scipy/datasets/tests/__init__.py +0 -0
  175. scipy/datasets/tests/test_data.py +128 -0
  176. scipy/differentiate/__init__.py +27 -0
  177. scipy/differentiate/_differentiate.py +1129 -0
  178. scipy/differentiate/tests/__init__.py +0 -0
  179. scipy/differentiate/tests/test_differentiate.py +694 -0
  180. scipy/fft/__init__.py +114 -0
  181. scipy/fft/_backend.py +196 -0
  182. scipy/fft/_basic.py +1650 -0
  183. scipy/fft/_basic_backend.py +197 -0
  184. scipy/fft/_debug_backends.py +22 -0
  185. scipy/fft/_fftlog.py +223 -0
  186. scipy/fft/_fftlog_backend.py +200 -0
  187. scipy/fft/_helper.py +348 -0
  188. scipy/fft/_pocketfft/LICENSE.md +25 -0
  189. scipy/fft/_pocketfft/__init__.py +9 -0
  190. scipy/fft/_pocketfft/basic.py +251 -0
  191. scipy/fft/_pocketfft/helper.py +249 -0
  192. scipy/fft/_pocketfft/pypocketfft.cp311-win_arm64.lib +0 -0
  193. scipy/fft/_pocketfft/pypocketfft.cp311-win_arm64.pyd +0 -0
  194. scipy/fft/_pocketfft/realtransforms.py +109 -0
  195. scipy/fft/_pocketfft/tests/__init__.py +0 -0
  196. scipy/fft/_pocketfft/tests/test_basic.py +1011 -0
  197. scipy/fft/_pocketfft/tests/test_real_transforms.py +505 -0
  198. scipy/fft/_realtransforms.py +706 -0
  199. scipy/fft/_realtransforms_backend.py +63 -0
  200. scipy/fft/tests/__init__.py +0 -0
  201. scipy/fft/tests/mock_backend.py +96 -0
  202. scipy/fft/tests/test_backend.py +98 -0
  203. scipy/fft/tests/test_basic.py +504 -0
  204. scipy/fft/tests/test_fftlog.py +215 -0
  205. scipy/fft/tests/test_helper.py +558 -0
  206. scipy/fft/tests/test_multithreading.py +84 -0
  207. scipy/fft/tests/test_real_transforms.py +247 -0
  208. scipy/fftpack/__init__.py +103 -0
  209. scipy/fftpack/_basic.py +428 -0
  210. scipy/fftpack/_helper.py +115 -0
  211. scipy/fftpack/_pseudo_diffs.py +554 -0
  212. scipy/fftpack/_realtransforms.py +598 -0
  213. scipy/fftpack/basic.py +20 -0
  214. scipy/fftpack/convolve.cp311-win_arm64.lib +0 -0
  215. scipy/fftpack/convolve.cp311-win_arm64.pyd +0 -0
  216. scipy/fftpack/helper.py +19 -0
  217. scipy/fftpack/pseudo_diffs.py +22 -0
  218. scipy/fftpack/realtransforms.py +19 -0
  219. scipy/fftpack/tests/__init__.py +0 -0
  220. scipy/fftpack/tests/fftw_double_ref.npz +0 -0
  221. scipy/fftpack/tests/fftw_longdouble_ref.npz +0 -0
  222. scipy/fftpack/tests/fftw_single_ref.npz +0 -0
  223. scipy/fftpack/tests/test.npz +0 -0
  224. scipy/fftpack/tests/test_basic.py +877 -0
  225. scipy/fftpack/tests/test_helper.py +54 -0
  226. scipy/fftpack/tests/test_import.py +33 -0
  227. scipy/fftpack/tests/test_pseudo_diffs.py +388 -0
  228. scipy/fftpack/tests/test_real_transforms.py +836 -0
  229. scipy/integrate/__init__.py +122 -0
  230. scipy/integrate/_bvp.py +1160 -0
  231. scipy/integrate/_cubature.py +729 -0
  232. scipy/integrate/_dop.cp311-win_arm64.lib +0 -0
  233. scipy/integrate/_dop.cp311-win_arm64.pyd +0 -0
  234. scipy/integrate/_ivp/__init__.py +8 -0
  235. scipy/integrate/_ivp/base.py +290 -0
  236. scipy/integrate/_ivp/bdf.py +478 -0
  237. scipy/integrate/_ivp/common.py +451 -0
  238. scipy/integrate/_ivp/dop853_coefficients.py +193 -0
  239. scipy/integrate/_ivp/ivp.py +755 -0
  240. scipy/integrate/_ivp/lsoda.py +224 -0
  241. scipy/integrate/_ivp/radau.py +572 -0
  242. scipy/integrate/_ivp/rk.py +601 -0
  243. scipy/integrate/_ivp/tests/__init__.py +0 -0
  244. scipy/integrate/_ivp/tests/test_ivp.py +1287 -0
  245. scipy/integrate/_ivp/tests/test_rk.py +37 -0
  246. scipy/integrate/_lebedev.py +5450 -0
  247. scipy/integrate/_lsoda.cp311-win_arm64.lib +0 -0
  248. scipy/integrate/_lsoda.cp311-win_arm64.pyd +0 -0
  249. scipy/integrate/_ode.py +1395 -0
  250. scipy/integrate/_odepack.cp311-win_arm64.lib +0 -0
  251. scipy/integrate/_odepack.cp311-win_arm64.pyd +0 -0
  252. scipy/integrate/_odepack_py.py +273 -0
  253. scipy/integrate/_quad_vec.py +674 -0
  254. scipy/integrate/_quadpack.cp311-win_arm64.lib +0 -0
  255. scipy/integrate/_quadpack.cp311-win_arm64.pyd +0 -0
  256. scipy/integrate/_quadpack_py.py +1283 -0
  257. scipy/integrate/_quadrature.py +1336 -0
  258. scipy/integrate/_rules/__init__.py +12 -0
  259. scipy/integrate/_rules/_base.py +518 -0
  260. scipy/integrate/_rules/_gauss_kronrod.py +202 -0
  261. scipy/integrate/_rules/_gauss_legendre.py +62 -0
  262. scipy/integrate/_rules/_genz_malik.py +210 -0
  263. scipy/integrate/_tanhsinh.py +1385 -0
  264. scipy/integrate/_test_multivariate.cp311-win_arm64.lib +0 -0
  265. scipy/integrate/_test_multivariate.cp311-win_arm64.pyd +0 -0
  266. scipy/integrate/_test_odeint_banded.cp311-win_arm64.lib +0 -0
  267. scipy/integrate/_test_odeint_banded.cp311-win_arm64.pyd +0 -0
  268. scipy/integrate/_vode.cp311-win_arm64.lib +0 -0
  269. scipy/integrate/_vode.cp311-win_arm64.pyd +0 -0
  270. scipy/integrate/dop.py +15 -0
  271. scipy/integrate/lsoda.py +15 -0
  272. scipy/integrate/odepack.py +17 -0
  273. scipy/integrate/quadpack.py +23 -0
  274. scipy/integrate/tests/__init__.py +0 -0
  275. scipy/integrate/tests/test__quad_vec.py +211 -0
  276. scipy/integrate/tests/test_banded_ode_solvers.py +305 -0
  277. scipy/integrate/tests/test_bvp.py +714 -0
  278. scipy/integrate/tests/test_cubature.py +1375 -0
  279. scipy/integrate/tests/test_integrate.py +840 -0
  280. scipy/integrate/tests/test_odeint_jac.py +74 -0
  281. scipy/integrate/tests/test_quadpack.py +680 -0
  282. scipy/integrate/tests/test_quadrature.py +730 -0
  283. scipy/integrate/tests/test_tanhsinh.py +1171 -0
  284. scipy/integrate/vode.py +15 -0
  285. scipy/interpolate/__init__.py +228 -0
  286. scipy/interpolate/_bary_rational.py +715 -0
  287. scipy/interpolate/_bsplines.py +2469 -0
  288. scipy/interpolate/_cubic.py +973 -0
  289. scipy/interpolate/_dfitpack.cp311-win_arm64.lib +0 -0
  290. scipy/interpolate/_dfitpack.cp311-win_arm64.pyd +0 -0
  291. scipy/interpolate/_dierckx.cp311-win_arm64.lib +0 -0
  292. scipy/interpolate/_dierckx.cp311-win_arm64.pyd +0 -0
  293. scipy/interpolate/_fitpack.cp311-win_arm64.lib +0 -0
  294. scipy/interpolate/_fitpack.cp311-win_arm64.pyd +0 -0
  295. scipy/interpolate/_fitpack2.py +2397 -0
  296. scipy/interpolate/_fitpack_impl.py +811 -0
  297. scipy/interpolate/_fitpack_py.py +898 -0
  298. scipy/interpolate/_fitpack_repro.py +996 -0
  299. scipy/interpolate/_interpnd.cp311-win_arm64.lib +0 -0
  300. scipy/interpolate/_interpnd.cp311-win_arm64.pyd +0 -0
  301. scipy/interpolate/_interpolate.py +2266 -0
  302. scipy/interpolate/_ndbspline.py +415 -0
  303. scipy/interpolate/_ndgriddata.py +329 -0
  304. scipy/interpolate/_pade.py +67 -0
  305. scipy/interpolate/_polyint.py +1025 -0
  306. scipy/interpolate/_ppoly.cp311-win_arm64.lib +0 -0
  307. scipy/interpolate/_ppoly.cp311-win_arm64.pyd +0 -0
  308. scipy/interpolate/_rbf.py +290 -0
  309. scipy/interpolate/_rbfinterp.py +550 -0
  310. scipy/interpolate/_rbfinterp_pythran.cp311-win_arm64.lib +0 -0
  311. scipy/interpolate/_rbfinterp_pythran.cp311-win_arm64.pyd +0 -0
  312. scipy/interpolate/_rgi.py +764 -0
  313. scipy/interpolate/_rgi_cython.cp311-win_arm64.lib +0 -0
  314. scipy/interpolate/_rgi_cython.cp311-win_arm64.pyd +0 -0
  315. scipy/interpolate/dfitpack.py +24 -0
  316. scipy/interpolate/fitpack.py +31 -0
  317. scipy/interpolate/fitpack2.py +29 -0
  318. scipy/interpolate/interpnd.py +24 -0
  319. scipy/interpolate/interpolate.py +30 -0
  320. scipy/interpolate/ndgriddata.py +23 -0
  321. scipy/interpolate/polyint.py +24 -0
  322. scipy/interpolate/rbf.py +18 -0
  323. scipy/interpolate/tests/__init__.py +0 -0
  324. scipy/interpolate/tests/data/bug-1310.npz +0 -0
  325. scipy/interpolate/tests/data/estimate_gradients_hang.npy +0 -0
  326. scipy/interpolate/tests/data/gcvspl.npz +0 -0
  327. scipy/interpolate/tests/test_bary_rational.py +368 -0
  328. scipy/interpolate/tests/test_bsplines.py +3754 -0
  329. scipy/interpolate/tests/test_fitpack.py +519 -0
  330. scipy/interpolate/tests/test_fitpack2.py +1431 -0
  331. scipy/interpolate/tests/test_gil.py +64 -0
  332. scipy/interpolate/tests/test_interpnd.py +452 -0
  333. scipy/interpolate/tests/test_interpolate.py +2630 -0
  334. scipy/interpolate/tests/test_ndgriddata.py +308 -0
  335. scipy/interpolate/tests/test_pade.py +107 -0
  336. scipy/interpolate/tests/test_polyint.py +972 -0
  337. scipy/interpolate/tests/test_rbf.py +246 -0
  338. scipy/interpolate/tests/test_rbfinterp.py +534 -0
  339. scipy/interpolate/tests/test_rgi.py +1151 -0
  340. scipy/io/__init__.py +116 -0
  341. scipy/io/_fast_matrix_market/__init__.py +600 -0
  342. scipy/io/_fast_matrix_market/_fmm_core.cp311-win_arm64.lib +0 -0
  343. scipy/io/_fast_matrix_market/_fmm_core.cp311-win_arm64.pyd +0 -0
  344. scipy/io/_fortran.py +354 -0
  345. scipy/io/_harwell_boeing/__init__.py +7 -0
  346. scipy/io/_harwell_boeing/_fortran_format_parser.py +316 -0
  347. scipy/io/_harwell_boeing/hb.py +571 -0
  348. scipy/io/_harwell_boeing/tests/__init__.py +0 -0
  349. scipy/io/_harwell_boeing/tests/test_fortran_format.py +74 -0
  350. scipy/io/_harwell_boeing/tests/test_hb.py +70 -0
  351. scipy/io/_idl.py +917 -0
  352. scipy/io/_mmio.py +968 -0
  353. scipy/io/_netcdf.py +1104 -0
  354. scipy/io/_test_fortran.cp311-win_arm64.lib +0 -0
  355. scipy/io/_test_fortran.cp311-win_arm64.pyd +0 -0
  356. scipy/io/arff/__init__.py +28 -0
  357. scipy/io/arff/_arffread.py +873 -0
  358. scipy/io/arff/arffread.py +19 -0
  359. scipy/io/arff/tests/__init__.py +0 -0
  360. scipy/io/arff/tests/data/iris.arff +225 -0
  361. scipy/io/arff/tests/data/missing.arff +8 -0
  362. scipy/io/arff/tests/data/nodata.arff +11 -0
  363. scipy/io/arff/tests/data/quoted_nominal.arff +13 -0
  364. scipy/io/arff/tests/data/quoted_nominal_spaces.arff +13 -0
  365. scipy/io/arff/tests/data/test1.arff +10 -0
  366. scipy/io/arff/tests/data/test10.arff +8 -0
  367. scipy/io/arff/tests/data/test11.arff +11 -0
  368. scipy/io/arff/tests/data/test2.arff +15 -0
  369. scipy/io/arff/tests/data/test3.arff +6 -0
  370. scipy/io/arff/tests/data/test4.arff +11 -0
  371. scipy/io/arff/tests/data/test5.arff +26 -0
  372. scipy/io/arff/tests/data/test6.arff +12 -0
  373. scipy/io/arff/tests/data/test7.arff +15 -0
  374. scipy/io/arff/tests/data/test8.arff +12 -0
  375. scipy/io/arff/tests/data/test9.arff +14 -0
  376. scipy/io/arff/tests/test_arffread.py +421 -0
  377. scipy/io/harwell_boeing.py +17 -0
  378. scipy/io/idl.py +17 -0
  379. scipy/io/matlab/__init__.py +66 -0
  380. scipy/io/matlab/_byteordercodes.py +75 -0
  381. scipy/io/matlab/_mio.py +375 -0
  382. scipy/io/matlab/_mio4.py +632 -0
  383. scipy/io/matlab/_mio5.py +901 -0
  384. scipy/io/matlab/_mio5_params.py +281 -0
  385. scipy/io/matlab/_mio5_utils.cp311-win_arm64.lib +0 -0
  386. scipy/io/matlab/_mio5_utils.cp311-win_arm64.pyd +0 -0
  387. scipy/io/matlab/_mio_utils.cp311-win_arm64.lib +0 -0
  388. scipy/io/matlab/_mio_utils.cp311-win_arm64.pyd +0 -0
  389. scipy/io/matlab/_miobase.py +435 -0
  390. scipy/io/matlab/_streams.cp311-win_arm64.lib +0 -0
  391. scipy/io/matlab/_streams.cp311-win_arm64.pyd +0 -0
  392. scipy/io/matlab/byteordercodes.py +17 -0
  393. scipy/io/matlab/mio.py +16 -0
  394. scipy/io/matlab/mio4.py +17 -0
  395. scipy/io/matlab/mio5.py +19 -0
  396. scipy/io/matlab/mio5_params.py +18 -0
  397. scipy/io/matlab/mio5_utils.py +17 -0
  398. scipy/io/matlab/mio_utils.py +17 -0
  399. scipy/io/matlab/miobase.py +16 -0
  400. scipy/io/matlab/streams.py +16 -0
  401. scipy/io/matlab/tests/__init__.py +0 -0
  402. scipy/io/matlab/tests/data/bad_miuint32.mat +0 -0
  403. scipy/io/matlab/tests/data/bad_miutf8_array_name.mat +0 -0
  404. scipy/io/matlab/tests/data/big_endian.mat +0 -0
  405. scipy/io/matlab/tests/data/broken_utf8.mat +0 -0
  406. scipy/io/matlab/tests/data/corrupted_zlib_checksum.mat +0 -0
  407. scipy/io/matlab/tests/data/corrupted_zlib_data.mat +0 -0
  408. scipy/io/matlab/tests/data/debigged_m4.mat +0 -0
  409. scipy/io/matlab/tests/data/japanese_utf8.txt +5 -0
  410. scipy/io/matlab/tests/data/little_endian.mat +0 -0
  411. scipy/io/matlab/tests/data/logical_sparse.mat +0 -0
  412. scipy/io/matlab/tests/data/malformed1.mat +0 -0
  413. scipy/io/matlab/tests/data/miuint32_for_miint32.mat +0 -0
  414. scipy/io/matlab/tests/data/miutf8_array_name.mat +0 -0
  415. scipy/io/matlab/tests/data/nasty_duplicate_fieldnames.mat +0 -0
  416. scipy/io/matlab/tests/data/one_by_zero_char.mat +0 -0
  417. scipy/io/matlab/tests/data/parabola.mat +0 -0
  418. scipy/io/matlab/tests/data/single_empty_string.mat +0 -0
  419. scipy/io/matlab/tests/data/some_functions.mat +0 -0
  420. scipy/io/matlab/tests/data/sqr.mat +0 -0
  421. scipy/io/matlab/tests/data/test3dmatrix_6.1_SOL2.mat +0 -0
  422. scipy/io/matlab/tests/data/test3dmatrix_6.5.1_GLNX86.mat +0 -0
  423. scipy/io/matlab/tests/data/test3dmatrix_7.1_GLNX86.mat +0 -0
  424. scipy/io/matlab/tests/data/test3dmatrix_7.4_GLNX86.mat +0 -0
  425. scipy/io/matlab/tests/data/test_empty_struct.mat +0 -0
  426. scipy/io/matlab/tests/data/test_mat4_le_floats.mat +0 -0
  427. scipy/io/matlab/tests/data/test_skip_variable.mat +0 -0
  428. scipy/io/matlab/tests/data/testbool_8_WIN64.mat +0 -0
  429. scipy/io/matlab/tests/data/testcell_6.1_SOL2.mat +0 -0
  430. scipy/io/matlab/tests/data/testcell_6.5.1_GLNX86.mat +0 -0
  431. scipy/io/matlab/tests/data/testcell_7.1_GLNX86.mat +0 -0
  432. scipy/io/matlab/tests/data/testcell_7.4_GLNX86.mat +0 -0
  433. scipy/io/matlab/tests/data/testcellnest_6.1_SOL2.mat +0 -0
  434. scipy/io/matlab/tests/data/testcellnest_6.5.1_GLNX86.mat +0 -0
  435. scipy/io/matlab/tests/data/testcellnest_7.1_GLNX86.mat +0 -0
  436. scipy/io/matlab/tests/data/testcellnest_7.4_GLNX86.mat +0 -0
  437. scipy/io/matlab/tests/data/testcomplex_4.2c_SOL2.mat +0 -0
  438. scipy/io/matlab/tests/data/testcomplex_6.1_SOL2.mat +0 -0
  439. scipy/io/matlab/tests/data/testcomplex_6.5.1_GLNX86.mat +0 -0
  440. scipy/io/matlab/tests/data/testcomplex_7.1_GLNX86.mat +0 -0
  441. scipy/io/matlab/tests/data/testcomplex_7.4_GLNX86.mat +0 -0
  442. scipy/io/matlab/tests/data/testdouble_4.2c_SOL2.mat +0 -0
  443. scipy/io/matlab/tests/data/testdouble_6.1_SOL2.mat +0 -0
  444. scipy/io/matlab/tests/data/testdouble_6.5.1_GLNX86.mat +0 -0
  445. scipy/io/matlab/tests/data/testdouble_7.1_GLNX86.mat +0 -0
  446. scipy/io/matlab/tests/data/testdouble_7.4_GLNX86.mat +0 -0
  447. scipy/io/matlab/tests/data/testemptycell_5.3_SOL2.mat +0 -0
  448. scipy/io/matlab/tests/data/testemptycell_6.5.1_GLNX86.mat +0 -0
  449. scipy/io/matlab/tests/data/testemptycell_7.1_GLNX86.mat +0 -0
  450. scipy/io/matlab/tests/data/testemptycell_7.4_GLNX86.mat +0 -0
  451. scipy/io/matlab/tests/data/testfunc_7.4_GLNX86.mat +0 -0
  452. scipy/io/matlab/tests/data/testhdf5_7.4_GLNX86.mat +0 -0
  453. scipy/io/matlab/tests/data/testmatrix_4.2c_SOL2.mat +0 -0
  454. scipy/io/matlab/tests/data/testmatrix_6.1_SOL2.mat +0 -0
  455. scipy/io/matlab/tests/data/testmatrix_6.5.1_GLNX86.mat +0 -0
  456. scipy/io/matlab/tests/data/testmatrix_7.1_GLNX86.mat +0 -0
  457. scipy/io/matlab/tests/data/testmatrix_7.4_GLNX86.mat +0 -0
  458. scipy/io/matlab/tests/data/testminus_4.2c_SOL2.mat +0 -0
  459. scipy/io/matlab/tests/data/testminus_6.1_SOL2.mat +0 -0
  460. scipy/io/matlab/tests/data/testminus_6.5.1_GLNX86.mat +0 -0
  461. scipy/io/matlab/tests/data/testminus_7.1_GLNX86.mat +0 -0
  462. scipy/io/matlab/tests/data/testminus_7.4_GLNX86.mat +0 -0
  463. scipy/io/matlab/tests/data/testmulti_4.2c_SOL2.mat +0 -0
  464. scipy/io/matlab/tests/data/testmulti_7.1_GLNX86.mat +0 -0
  465. scipy/io/matlab/tests/data/testmulti_7.4_GLNX86.mat +0 -0
  466. scipy/io/matlab/tests/data/testobject_6.1_SOL2.mat +0 -0
  467. scipy/io/matlab/tests/data/testobject_6.5.1_GLNX86.mat +0 -0
  468. scipy/io/matlab/tests/data/testobject_7.1_GLNX86.mat +0 -0
  469. scipy/io/matlab/tests/data/testobject_7.4_GLNX86.mat +0 -0
  470. scipy/io/matlab/tests/data/testonechar_4.2c_SOL2.mat +0 -0
  471. scipy/io/matlab/tests/data/testonechar_6.1_SOL2.mat +0 -0
  472. scipy/io/matlab/tests/data/testonechar_6.5.1_GLNX86.mat +0 -0
  473. scipy/io/matlab/tests/data/testonechar_7.1_GLNX86.mat +0 -0
  474. scipy/io/matlab/tests/data/testonechar_7.4_GLNX86.mat +0 -0
  475. scipy/io/matlab/tests/data/testscalarcell_7.4_GLNX86.mat +0 -0
  476. scipy/io/matlab/tests/data/testsimplecell.mat +0 -0
  477. scipy/io/matlab/tests/data/testsparse_4.2c_SOL2.mat +0 -0
  478. scipy/io/matlab/tests/data/testsparse_6.1_SOL2.mat +0 -0
  479. scipy/io/matlab/tests/data/testsparse_6.5.1_GLNX86.mat +0 -0
  480. scipy/io/matlab/tests/data/testsparse_7.1_GLNX86.mat +0 -0
  481. scipy/io/matlab/tests/data/testsparse_7.4_GLNX86.mat +0 -0
  482. scipy/io/matlab/tests/data/testsparsecomplex_4.2c_SOL2.mat +0 -0
  483. scipy/io/matlab/tests/data/testsparsecomplex_6.1_SOL2.mat +0 -0
  484. scipy/io/matlab/tests/data/testsparsecomplex_6.5.1_GLNX86.mat +0 -0
  485. scipy/io/matlab/tests/data/testsparsecomplex_7.1_GLNX86.mat +0 -0
  486. scipy/io/matlab/tests/data/testsparsecomplex_7.4_GLNX86.mat +0 -0
  487. scipy/io/matlab/tests/data/testsparsefloat_7.4_GLNX86.mat +0 -0
  488. scipy/io/matlab/tests/data/teststring_4.2c_SOL2.mat +0 -0
  489. scipy/io/matlab/tests/data/teststring_6.1_SOL2.mat +0 -0
  490. scipy/io/matlab/tests/data/teststring_6.5.1_GLNX86.mat +0 -0
  491. scipy/io/matlab/tests/data/teststring_7.1_GLNX86.mat +0 -0
  492. scipy/io/matlab/tests/data/teststring_7.4_GLNX86.mat +0 -0
  493. scipy/io/matlab/tests/data/teststringarray_4.2c_SOL2.mat +0 -0
  494. scipy/io/matlab/tests/data/teststringarray_6.1_SOL2.mat +0 -0
  495. scipy/io/matlab/tests/data/teststringarray_6.5.1_GLNX86.mat +0 -0
  496. scipy/io/matlab/tests/data/teststringarray_7.1_GLNX86.mat +0 -0
  497. scipy/io/matlab/tests/data/teststringarray_7.4_GLNX86.mat +0 -0
  498. scipy/io/matlab/tests/data/teststruct_6.1_SOL2.mat +0 -0
  499. scipy/io/matlab/tests/data/teststruct_6.5.1_GLNX86.mat +0 -0
  500. scipy/io/matlab/tests/data/teststruct_7.1_GLNX86.mat +0 -0
  501. scipy/io/matlab/tests/data/teststruct_7.4_GLNX86.mat +0 -0
  502. scipy/io/matlab/tests/data/teststructarr_6.1_SOL2.mat +0 -0
  503. scipy/io/matlab/tests/data/teststructarr_6.5.1_GLNX86.mat +0 -0
  504. scipy/io/matlab/tests/data/teststructarr_7.1_GLNX86.mat +0 -0
  505. scipy/io/matlab/tests/data/teststructarr_7.4_GLNX86.mat +0 -0
  506. scipy/io/matlab/tests/data/teststructnest_6.1_SOL2.mat +0 -0
  507. scipy/io/matlab/tests/data/teststructnest_6.5.1_GLNX86.mat +0 -0
  508. scipy/io/matlab/tests/data/teststructnest_7.1_GLNX86.mat +0 -0
  509. scipy/io/matlab/tests/data/teststructnest_7.4_GLNX86.mat +0 -0
  510. scipy/io/matlab/tests/data/testunicode_7.1_GLNX86.mat +0 -0
  511. scipy/io/matlab/tests/data/testunicode_7.4_GLNX86.mat +0 -0
  512. scipy/io/matlab/tests/data/testvec_4_GLNX86.mat +0 -0
  513. scipy/io/matlab/tests/test_byteordercodes.py +29 -0
  514. scipy/io/matlab/tests/test_mio.py +1399 -0
  515. scipy/io/matlab/tests/test_mio5_utils.py +179 -0
  516. scipy/io/matlab/tests/test_mio_funcs.py +51 -0
  517. scipy/io/matlab/tests/test_mio_utils.py +45 -0
  518. scipy/io/matlab/tests/test_miobase.py +32 -0
  519. scipy/io/matlab/tests/test_pathological.py +33 -0
  520. scipy/io/matlab/tests/test_streams.py +241 -0
  521. scipy/io/mmio.py +17 -0
  522. scipy/io/netcdf.py +17 -0
  523. scipy/io/tests/__init__.py +0 -0
  524. scipy/io/tests/data/Transparent Busy.ani +0 -0
  525. scipy/io/tests/data/array_float32_1d.sav +0 -0
  526. scipy/io/tests/data/array_float32_2d.sav +0 -0
  527. scipy/io/tests/data/array_float32_3d.sav +0 -0
  528. scipy/io/tests/data/array_float32_4d.sav +0 -0
  529. scipy/io/tests/data/array_float32_5d.sav +0 -0
  530. scipy/io/tests/data/array_float32_6d.sav +0 -0
  531. scipy/io/tests/data/array_float32_7d.sav +0 -0
  532. scipy/io/tests/data/array_float32_8d.sav +0 -0
  533. scipy/io/tests/data/array_float32_pointer_1d.sav +0 -0
  534. scipy/io/tests/data/array_float32_pointer_2d.sav +0 -0
  535. scipy/io/tests/data/array_float32_pointer_3d.sav +0 -0
  536. scipy/io/tests/data/array_float32_pointer_4d.sav +0 -0
  537. scipy/io/tests/data/array_float32_pointer_5d.sav +0 -0
  538. scipy/io/tests/data/array_float32_pointer_6d.sav +0 -0
  539. scipy/io/tests/data/array_float32_pointer_7d.sav +0 -0
  540. scipy/io/tests/data/array_float32_pointer_8d.sav +0 -0
  541. scipy/io/tests/data/example_1.nc +0 -0
  542. scipy/io/tests/data/example_2.nc +0 -0
  543. scipy/io/tests/data/example_3_maskedvals.nc +0 -0
  544. scipy/io/tests/data/fortran-3x3d-2i.dat +0 -0
  545. scipy/io/tests/data/fortran-mixed.dat +0 -0
  546. scipy/io/tests/data/fortran-sf8-11x1x10.dat +0 -0
  547. scipy/io/tests/data/fortran-sf8-15x10x22.dat +0 -0
  548. scipy/io/tests/data/fortran-sf8-1x1x1.dat +0 -0
  549. scipy/io/tests/data/fortran-sf8-1x1x5.dat +0 -0
  550. scipy/io/tests/data/fortran-sf8-1x1x7.dat +0 -0
  551. scipy/io/tests/data/fortran-sf8-1x3x5.dat +0 -0
  552. scipy/io/tests/data/fortran-si4-11x1x10.dat +0 -0
  553. scipy/io/tests/data/fortran-si4-15x10x22.dat +0 -0
  554. scipy/io/tests/data/fortran-si4-1x1x1.dat +0 -0
  555. scipy/io/tests/data/fortran-si4-1x1x5.dat +0 -0
  556. scipy/io/tests/data/fortran-si4-1x1x7.dat +0 -0
  557. scipy/io/tests/data/fortran-si4-1x3x5.dat +0 -0
  558. scipy/io/tests/data/invalid_pointer.sav +0 -0
  559. scipy/io/tests/data/null_pointer.sav +0 -0
  560. scipy/io/tests/data/scalar_byte.sav +0 -0
  561. scipy/io/tests/data/scalar_byte_descr.sav +0 -0
  562. scipy/io/tests/data/scalar_complex32.sav +0 -0
  563. scipy/io/tests/data/scalar_complex64.sav +0 -0
  564. scipy/io/tests/data/scalar_float32.sav +0 -0
  565. scipy/io/tests/data/scalar_float64.sav +0 -0
  566. scipy/io/tests/data/scalar_heap_pointer.sav +0 -0
  567. scipy/io/tests/data/scalar_int16.sav +0 -0
  568. scipy/io/tests/data/scalar_int32.sav +0 -0
  569. scipy/io/tests/data/scalar_int64.sav +0 -0
  570. scipy/io/tests/data/scalar_string.sav +0 -0
  571. scipy/io/tests/data/scalar_uint16.sav +0 -0
  572. scipy/io/tests/data/scalar_uint32.sav +0 -0
  573. scipy/io/tests/data/scalar_uint64.sav +0 -0
  574. scipy/io/tests/data/struct_arrays.sav +0 -0
  575. scipy/io/tests/data/struct_arrays_byte_idl80.sav +0 -0
  576. scipy/io/tests/data/struct_arrays_replicated.sav +0 -0
  577. scipy/io/tests/data/struct_arrays_replicated_3d.sav +0 -0
  578. scipy/io/tests/data/struct_inherit.sav +0 -0
  579. scipy/io/tests/data/struct_pointer_arrays.sav +0 -0
  580. scipy/io/tests/data/struct_pointer_arrays_replicated.sav +0 -0
  581. scipy/io/tests/data/struct_pointer_arrays_replicated_3d.sav +0 -0
  582. scipy/io/tests/data/struct_pointers.sav +0 -0
  583. scipy/io/tests/data/struct_pointers_replicated.sav +0 -0
  584. scipy/io/tests/data/struct_pointers_replicated_3d.sav +0 -0
  585. scipy/io/tests/data/struct_scalars.sav +0 -0
  586. scipy/io/tests/data/struct_scalars_replicated.sav +0 -0
  587. scipy/io/tests/data/struct_scalars_replicated_3d.sav +0 -0
  588. scipy/io/tests/data/test-1234Hz-le-1ch-10S-20bit-extra.wav +0 -0
  589. scipy/io/tests/data/test-44100Hz-2ch-32bit-float-be.wav +0 -0
  590. scipy/io/tests/data/test-44100Hz-2ch-32bit-float-le.wav +0 -0
  591. scipy/io/tests/data/test-44100Hz-be-1ch-4bytes.wav +0 -0
  592. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof-no-data.wav +0 -0
  593. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof.wav +0 -0
  594. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-incomplete-chunk.wav +0 -0
  595. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-rf64.wav +0 -0
  596. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes.wav +0 -0
  597. scipy/io/tests/data/test-48000Hz-2ch-64bit-float-le-wavex.wav +0 -0
  598. scipy/io/tests/data/test-8000Hz-be-3ch-5S-24bit.wav +0 -0
  599. scipy/io/tests/data/test-8000Hz-le-1ch-1byte-ulaw.wav +0 -0
  600. scipy/io/tests/data/test-8000Hz-le-2ch-1byteu.wav +0 -0
  601. scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-inconsistent.wav +0 -0
  602. scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-rf64.wav +0 -0
  603. scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit.wav +0 -0
  604. scipy/io/tests/data/test-8000Hz-le-3ch-5S-36bit.wav +0 -0
  605. scipy/io/tests/data/test-8000Hz-le-3ch-5S-45bit.wav +0 -0
  606. scipy/io/tests/data/test-8000Hz-le-3ch-5S-53bit.wav +0 -0
  607. scipy/io/tests/data/test-8000Hz-le-3ch-5S-64bit.wav +0 -0
  608. scipy/io/tests/data/test-8000Hz-le-4ch-9S-12bit.wav +0 -0
  609. scipy/io/tests/data/test-8000Hz-le-5ch-9S-5bit.wav +0 -0
  610. scipy/io/tests/data/various_compressed.sav +0 -0
  611. scipy/io/tests/test_fortran.py +264 -0
  612. scipy/io/tests/test_idl.py +483 -0
  613. scipy/io/tests/test_mmio.py +831 -0
  614. scipy/io/tests/test_netcdf.py +550 -0
  615. scipy/io/tests/test_paths.py +93 -0
  616. scipy/io/tests/test_wavfile.py +501 -0
  617. scipy/io/wavfile.py +938 -0
  618. scipy/linalg/__init__.pxd +1 -0
  619. scipy/linalg/__init__.py +236 -0
  620. scipy/linalg/_basic.py +2146 -0
  621. scipy/linalg/_blas_subroutines.h +164 -0
  622. scipy/linalg/_cythonized_array_utils.cp311-win_arm64.lib +0 -0
  623. scipy/linalg/_cythonized_array_utils.cp311-win_arm64.pyd +0 -0
  624. scipy/linalg/_cythonized_array_utils.pxd +40 -0
  625. scipy/linalg/_cythonized_array_utils.pyi +16 -0
  626. scipy/linalg/_decomp.py +1645 -0
  627. scipy/linalg/_decomp_cholesky.py +413 -0
  628. scipy/linalg/_decomp_cossin.py +236 -0
  629. scipy/linalg/_decomp_interpolative.cp311-win_arm64.lib +0 -0
  630. scipy/linalg/_decomp_interpolative.cp311-win_arm64.pyd +0 -0
  631. scipy/linalg/_decomp_ldl.py +356 -0
  632. scipy/linalg/_decomp_lu.py +401 -0
  633. scipy/linalg/_decomp_lu_cython.cp311-win_arm64.lib +0 -0
  634. scipy/linalg/_decomp_lu_cython.cp311-win_arm64.pyd +0 -0
  635. scipy/linalg/_decomp_lu_cython.pyi +6 -0
  636. scipy/linalg/_decomp_polar.py +113 -0
  637. scipy/linalg/_decomp_qr.py +494 -0
  638. scipy/linalg/_decomp_qz.py +452 -0
  639. scipy/linalg/_decomp_schur.py +336 -0
  640. scipy/linalg/_decomp_svd.py +545 -0
  641. scipy/linalg/_decomp_update.cp311-win_arm64.lib +0 -0
  642. scipy/linalg/_decomp_update.cp311-win_arm64.pyd +0 -0
  643. scipy/linalg/_expm_frechet.py +417 -0
  644. scipy/linalg/_fblas.cp311-win_arm64.lib +0 -0
  645. scipy/linalg/_fblas.cp311-win_arm64.pyd +0 -0
  646. scipy/linalg/_flapack.cp311-win_arm64.lib +0 -0
  647. scipy/linalg/_flapack.cp311-win_arm64.pyd +0 -0
  648. scipy/linalg/_lapack_subroutines.h +1521 -0
  649. scipy/linalg/_linalg_pythran.cp311-win_arm64.lib +0 -0
  650. scipy/linalg/_linalg_pythran.cp311-win_arm64.pyd +0 -0
  651. scipy/linalg/_matfuncs.py +1050 -0
  652. scipy/linalg/_matfuncs_expm.cp311-win_arm64.lib +0 -0
  653. scipy/linalg/_matfuncs_expm.cp311-win_arm64.pyd +0 -0
  654. scipy/linalg/_matfuncs_expm.pyi +6 -0
  655. scipy/linalg/_matfuncs_inv_ssq.py +886 -0
  656. scipy/linalg/_matfuncs_schur_sqrtm.cp311-win_arm64.lib +0 -0
  657. scipy/linalg/_matfuncs_schur_sqrtm.cp311-win_arm64.pyd +0 -0
  658. scipy/linalg/_matfuncs_sqrtm.py +107 -0
  659. scipy/linalg/_matfuncs_sqrtm_triu.cp311-win_arm64.lib +0 -0
  660. scipy/linalg/_matfuncs_sqrtm_triu.cp311-win_arm64.pyd +0 -0
  661. scipy/linalg/_misc.py +191 -0
  662. scipy/linalg/_procrustes.py +113 -0
  663. scipy/linalg/_sketches.py +189 -0
  664. scipy/linalg/_solve_toeplitz.cp311-win_arm64.lib +0 -0
  665. scipy/linalg/_solve_toeplitz.cp311-win_arm64.pyd +0 -0
  666. scipy/linalg/_solvers.py +862 -0
  667. scipy/linalg/_special_matrices.py +1322 -0
  668. scipy/linalg/_testutils.py +65 -0
  669. scipy/linalg/basic.py +23 -0
  670. scipy/linalg/blas.py +495 -0
  671. scipy/linalg/cython_blas.cp311-win_arm64.lib +0 -0
  672. scipy/linalg/cython_blas.cp311-win_arm64.pyd +0 -0
  673. scipy/linalg/cython_blas.pxd +169 -0
  674. scipy/linalg/cython_blas.pyx +1432 -0
  675. scipy/linalg/cython_lapack.cp311-win_arm64.lib +0 -0
  676. scipy/linalg/cython_lapack.cp311-win_arm64.pyd +0 -0
  677. scipy/linalg/cython_lapack.pxd +1528 -0
  678. scipy/linalg/cython_lapack.pyx +12045 -0
  679. scipy/linalg/decomp.py +23 -0
  680. scipy/linalg/decomp_cholesky.py +21 -0
  681. scipy/linalg/decomp_lu.py +21 -0
  682. scipy/linalg/decomp_qr.py +20 -0
  683. scipy/linalg/decomp_schur.py +21 -0
  684. scipy/linalg/decomp_svd.py +21 -0
  685. scipy/linalg/interpolative.py +989 -0
  686. scipy/linalg/lapack.py +1081 -0
  687. scipy/linalg/matfuncs.py +23 -0
  688. scipy/linalg/misc.py +21 -0
  689. scipy/linalg/special_matrices.py +22 -0
  690. scipy/linalg/tests/__init__.py +0 -0
  691. scipy/linalg/tests/_cython_examples/extending.pyx +23 -0
  692. scipy/linalg/tests/_cython_examples/meson.build +34 -0
  693. scipy/linalg/tests/data/carex_15_data.npz +0 -0
  694. scipy/linalg/tests/data/carex_18_data.npz +0 -0
  695. scipy/linalg/tests/data/carex_19_data.npz +0 -0
  696. scipy/linalg/tests/data/carex_20_data.npz +0 -0
  697. scipy/linalg/tests/data/carex_6_data.npz +0 -0
  698. scipy/linalg/tests/data/gendare_20170120_data.npz +0 -0
  699. scipy/linalg/tests/test_basic.py +2074 -0
  700. scipy/linalg/tests/test_batch.py +588 -0
  701. scipy/linalg/tests/test_blas.py +1127 -0
  702. scipy/linalg/tests/test_cython_blas.py +118 -0
  703. scipy/linalg/tests/test_cython_lapack.py +22 -0
  704. scipy/linalg/tests/test_cythonized_array_utils.py +130 -0
  705. scipy/linalg/tests/test_decomp.py +3189 -0
  706. scipy/linalg/tests/test_decomp_cholesky.py +268 -0
  707. scipy/linalg/tests/test_decomp_cossin.py +314 -0
  708. scipy/linalg/tests/test_decomp_ldl.py +137 -0
  709. scipy/linalg/tests/test_decomp_lu.py +308 -0
  710. scipy/linalg/tests/test_decomp_polar.py +110 -0
  711. scipy/linalg/tests/test_decomp_update.py +1701 -0
  712. scipy/linalg/tests/test_extending.py +46 -0
  713. scipy/linalg/tests/test_fblas.py +607 -0
  714. scipy/linalg/tests/test_interpolative.py +232 -0
  715. scipy/linalg/tests/test_lapack.py +3620 -0
  716. scipy/linalg/tests/test_matfuncs.py +1125 -0
  717. scipy/linalg/tests/test_matmul_toeplitz.py +136 -0
  718. scipy/linalg/tests/test_procrustes.py +214 -0
  719. scipy/linalg/tests/test_sketches.py +118 -0
  720. scipy/linalg/tests/test_solve_toeplitz.py +150 -0
  721. scipy/linalg/tests/test_solvers.py +844 -0
  722. scipy/linalg/tests/test_special_matrices.py +636 -0
  723. scipy/misc/__init__.py +6 -0
  724. scipy/misc/common.py +6 -0
  725. scipy/misc/doccer.py +6 -0
  726. scipy/ndimage/__init__.py +174 -0
  727. scipy/ndimage/_ctest.cp311-win_arm64.lib +0 -0
  728. scipy/ndimage/_ctest.cp311-win_arm64.pyd +0 -0
  729. scipy/ndimage/_cytest.cp311-win_arm64.lib +0 -0
  730. scipy/ndimage/_cytest.cp311-win_arm64.pyd +0 -0
  731. scipy/ndimage/_delegators.py +303 -0
  732. scipy/ndimage/_filters.py +2422 -0
  733. scipy/ndimage/_fourier.py +306 -0
  734. scipy/ndimage/_interpolation.py +1033 -0
  735. scipy/ndimage/_measurements.py +1689 -0
  736. scipy/ndimage/_morphology.py +2634 -0
  737. scipy/ndimage/_nd_image.cp311-win_arm64.lib +0 -0
  738. scipy/ndimage/_nd_image.cp311-win_arm64.pyd +0 -0
  739. scipy/ndimage/_ndimage_api.py +16 -0
  740. scipy/ndimage/_ni_docstrings.py +214 -0
  741. scipy/ndimage/_ni_label.cp311-win_arm64.lib +0 -0
  742. scipy/ndimage/_ni_label.cp311-win_arm64.pyd +0 -0
  743. scipy/ndimage/_ni_support.py +139 -0
  744. scipy/ndimage/_rank_filter_1d.cp311-win_arm64.lib +0 -0
  745. scipy/ndimage/_rank_filter_1d.cp311-win_arm64.pyd +0 -0
  746. scipy/ndimage/_support_alternative_backends.py +84 -0
  747. scipy/ndimage/filters.py +27 -0
  748. scipy/ndimage/fourier.py +21 -0
  749. scipy/ndimage/interpolation.py +22 -0
  750. scipy/ndimage/measurements.py +24 -0
  751. scipy/ndimage/morphology.py +27 -0
  752. scipy/ndimage/tests/__init__.py +12 -0
  753. scipy/ndimage/tests/data/label_inputs.txt +21 -0
  754. scipy/ndimage/tests/data/label_results.txt +294 -0
  755. scipy/ndimage/tests/data/label_strels.txt +42 -0
  756. scipy/ndimage/tests/dots.png +0 -0
  757. scipy/ndimage/tests/test_c_api.py +102 -0
  758. scipy/ndimage/tests/test_datatypes.py +67 -0
  759. scipy/ndimage/tests/test_filters.py +3083 -0
  760. scipy/ndimage/tests/test_fourier.py +187 -0
  761. scipy/ndimage/tests/test_interpolation.py +1491 -0
  762. scipy/ndimage/tests/test_measurements.py +1592 -0
  763. scipy/ndimage/tests/test_morphology.py +2950 -0
  764. scipy/ndimage/tests/test_ni_support.py +78 -0
  765. scipy/ndimage/tests/test_splines.py +70 -0
  766. scipy/odr/__init__.py +131 -0
  767. scipy/odr/__odrpack.cp311-win_arm64.lib +0 -0
  768. scipy/odr/__odrpack.cp311-win_arm64.pyd +0 -0
  769. scipy/odr/_add_newdocs.py +34 -0
  770. scipy/odr/_models.py +315 -0
  771. scipy/odr/_odrpack.py +1154 -0
  772. scipy/odr/models.py +20 -0
  773. scipy/odr/odrpack.py +21 -0
  774. scipy/odr/tests/__init__.py +0 -0
  775. scipy/odr/tests/test_odr.py +607 -0
  776. scipy/optimize/__init__.pxd +1 -0
  777. scipy/optimize/__init__.py +460 -0
  778. scipy/optimize/_basinhopping.py +741 -0
  779. scipy/optimize/_bglu_dense.cp311-win_arm64.lib +0 -0
  780. scipy/optimize/_bglu_dense.cp311-win_arm64.pyd +0 -0
  781. scipy/optimize/_bracket.py +706 -0
  782. scipy/optimize/_chandrupatla.py +551 -0
  783. scipy/optimize/_cobyla_py.py +297 -0
  784. scipy/optimize/_cobyqa_py.py +72 -0
  785. scipy/optimize/_constraints.py +598 -0
  786. scipy/optimize/_dcsrch.py +728 -0
  787. scipy/optimize/_differentiable_functions.py +835 -0
  788. scipy/optimize/_differentialevolution.py +1970 -0
  789. scipy/optimize/_direct.cp311-win_arm64.lib +0 -0
  790. scipy/optimize/_direct.cp311-win_arm64.pyd +0 -0
  791. scipy/optimize/_direct_py.py +280 -0
  792. scipy/optimize/_dual_annealing.py +732 -0
  793. scipy/optimize/_elementwise.py +798 -0
  794. scipy/optimize/_group_columns.cp311-win_arm64.lib +0 -0
  795. scipy/optimize/_group_columns.cp311-win_arm64.pyd +0 -0
  796. scipy/optimize/_hessian_update_strategy.py +479 -0
  797. scipy/optimize/_highspy/__init__.py +0 -0
  798. scipy/optimize/_highspy/_core.cp311-win_arm64.lib +0 -0
  799. scipy/optimize/_highspy/_core.cp311-win_arm64.pyd +0 -0
  800. scipy/optimize/_highspy/_highs_options.cp311-win_arm64.lib +0 -0
  801. scipy/optimize/_highspy/_highs_options.cp311-win_arm64.pyd +0 -0
  802. scipy/optimize/_highspy/_highs_wrapper.py +338 -0
  803. scipy/optimize/_isotonic.py +157 -0
  804. scipy/optimize/_lbfgsb.cp311-win_arm64.lib +0 -0
  805. scipy/optimize/_lbfgsb.cp311-win_arm64.pyd +0 -0
  806. scipy/optimize/_lbfgsb_py.py +634 -0
  807. scipy/optimize/_linesearch.py +896 -0
  808. scipy/optimize/_linprog.py +733 -0
  809. scipy/optimize/_linprog_doc.py +1434 -0
  810. scipy/optimize/_linprog_highs.py +422 -0
  811. scipy/optimize/_linprog_ip.py +1141 -0
  812. scipy/optimize/_linprog_rs.py +572 -0
  813. scipy/optimize/_linprog_simplex.py +663 -0
  814. scipy/optimize/_linprog_util.py +1521 -0
  815. scipy/optimize/_lsap.cp311-win_arm64.lib +0 -0
  816. scipy/optimize/_lsap.cp311-win_arm64.pyd +0 -0
  817. scipy/optimize/_lsq/__init__.py +5 -0
  818. scipy/optimize/_lsq/bvls.py +183 -0
  819. scipy/optimize/_lsq/common.py +731 -0
  820. scipy/optimize/_lsq/dogbox.py +345 -0
  821. scipy/optimize/_lsq/givens_elimination.cp311-win_arm64.lib +0 -0
  822. scipy/optimize/_lsq/givens_elimination.cp311-win_arm64.pyd +0 -0
  823. scipy/optimize/_lsq/least_squares.py +1044 -0
  824. scipy/optimize/_lsq/lsq_linear.py +361 -0
  825. scipy/optimize/_lsq/trf.py +587 -0
  826. scipy/optimize/_lsq/trf_linear.py +249 -0
  827. scipy/optimize/_milp.py +394 -0
  828. scipy/optimize/_minimize.py +1199 -0
  829. scipy/optimize/_minpack.cp311-win_arm64.lib +0 -0
  830. scipy/optimize/_minpack.cp311-win_arm64.pyd +0 -0
  831. scipy/optimize/_minpack_py.py +1178 -0
  832. scipy/optimize/_moduleTNC.cp311-win_arm64.lib +0 -0
  833. scipy/optimize/_moduleTNC.cp311-win_arm64.pyd +0 -0
  834. scipy/optimize/_nnls.py +96 -0
  835. scipy/optimize/_nonlin.py +1634 -0
  836. scipy/optimize/_numdiff.py +963 -0
  837. scipy/optimize/_optimize.py +4169 -0
  838. scipy/optimize/_pava_pybind.cp311-win_arm64.lib +0 -0
  839. scipy/optimize/_pava_pybind.cp311-win_arm64.pyd +0 -0
  840. scipy/optimize/_qap.py +760 -0
  841. scipy/optimize/_remove_redundancy.py +522 -0
  842. scipy/optimize/_root.py +732 -0
  843. scipy/optimize/_root_scalar.py +538 -0
  844. scipy/optimize/_shgo.py +1606 -0
  845. scipy/optimize/_shgo_lib/__init__.py +0 -0
  846. scipy/optimize/_shgo_lib/_complex.py +1225 -0
  847. scipy/optimize/_shgo_lib/_vertex.py +460 -0
  848. scipy/optimize/_slsqp_py.py +603 -0
  849. scipy/optimize/_slsqplib.cp311-win_arm64.lib +0 -0
  850. scipy/optimize/_slsqplib.cp311-win_arm64.pyd +0 -0
  851. scipy/optimize/_spectral.py +260 -0
  852. scipy/optimize/_tnc.py +438 -0
  853. scipy/optimize/_trlib/__init__.py +12 -0
  854. scipy/optimize/_trlib/_trlib.cp311-win_arm64.lib +0 -0
  855. scipy/optimize/_trlib/_trlib.cp311-win_arm64.pyd +0 -0
  856. scipy/optimize/_trustregion.py +318 -0
  857. scipy/optimize/_trustregion_constr/__init__.py +6 -0
  858. scipy/optimize/_trustregion_constr/canonical_constraint.py +390 -0
  859. scipy/optimize/_trustregion_constr/equality_constrained_sqp.py +231 -0
  860. scipy/optimize/_trustregion_constr/minimize_trustregion_constr.py +584 -0
  861. scipy/optimize/_trustregion_constr/projections.py +411 -0
  862. scipy/optimize/_trustregion_constr/qp_subproblem.py +637 -0
  863. scipy/optimize/_trustregion_constr/report.py +49 -0
  864. scipy/optimize/_trustregion_constr/tests/__init__.py +0 -0
  865. scipy/optimize/_trustregion_constr/tests/test_canonical_constraint.py +296 -0
  866. scipy/optimize/_trustregion_constr/tests/test_nested_minimize.py +39 -0
  867. scipy/optimize/_trustregion_constr/tests/test_projections.py +214 -0
  868. scipy/optimize/_trustregion_constr/tests/test_qp_subproblem.py +645 -0
  869. scipy/optimize/_trustregion_constr/tests/test_report.py +34 -0
  870. scipy/optimize/_trustregion_constr/tr_interior_point.py +361 -0
  871. scipy/optimize/_trustregion_dogleg.py +122 -0
  872. scipy/optimize/_trustregion_exact.py +437 -0
  873. scipy/optimize/_trustregion_krylov.py +65 -0
  874. scipy/optimize/_trustregion_ncg.py +126 -0
  875. scipy/optimize/_tstutils.py +972 -0
  876. scipy/optimize/_zeros.cp311-win_arm64.lib +0 -0
  877. scipy/optimize/_zeros.cp311-win_arm64.pyd +0 -0
  878. scipy/optimize/_zeros_py.py +1475 -0
  879. scipy/optimize/cobyla.py +19 -0
  880. scipy/optimize/cython_optimize/__init__.py +133 -0
  881. scipy/optimize/cython_optimize/_zeros.cp311-win_arm64.lib +0 -0
  882. scipy/optimize/cython_optimize/_zeros.cp311-win_arm64.pyd +0 -0
  883. scipy/optimize/cython_optimize/_zeros.pxd +33 -0
  884. scipy/optimize/cython_optimize/c_zeros.pxd +26 -0
  885. scipy/optimize/cython_optimize.pxd +11 -0
  886. scipy/optimize/elementwise.py +38 -0
  887. scipy/optimize/lbfgsb.py +23 -0
  888. scipy/optimize/linesearch.py +18 -0
  889. scipy/optimize/minpack.py +27 -0
  890. scipy/optimize/minpack2.py +17 -0
  891. scipy/optimize/moduleTNC.py +19 -0
  892. scipy/optimize/nonlin.py +29 -0
  893. scipy/optimize/optimize.py +40 -0
  894. scipy/optimize/slsqp.py +22 -0
  895. scipy/optimize/tests/__init__.py +0 -0
  896. scipy/optimize/tests/_cython_examples/extending.pyx +43 -0
  897. scipy/optimize/tests/_cython_examples/meson.build +32 -0
  898. scipy/optimize/tests/test__basinhopping.py +535 -0
  899. scipy/optimize/tests/test__differential_evolution.py +1703 -0
  900. scipy/optimize/tests/test__dual_annealing.py +416 -0
  901. scipy/optimize/tests/test__linprog_clean_inputs.py +312 -0
  902. scipy/optimize/tests/test__numdiff.py +885 -0
  903. scipy/optimize/tests/test__remove_redundancy.py +228 -0
  904. scipy/optimize/tests/test__root.py +124 -0
  905. scipy/optimize/tests/test__shgo.py +1164 -0
  906. scipy/optimize/tests/test__spectral.py +226 -0
  907. scipy/optimize/tests/test_bracket.py +896 -0
  908. scipy/optimize/tests/test_chandrupatla.py +982 -0
  909. scipy/optimize/tests/test_cobyla.py +195 -0
  910. scipy/optimize/tests/test_cobyqa.py +252 -0
  911. scipy/optimize/tests/test_constraint_conversion.py +286 -0
  912. scipy/optimize/tests/test_constraints.py +255 -0
  913. scipy/optimize/tests/test_cython_optimize.py +92 -0
  914. scipy/optimize/tests/test_differentiable_functions.py +1025 -0
  915. scipy/optimize/tests/test_direct.py +321 -0
  916. scipy/optimize/tests/test_extending.py +28 -0
  917. scipy/optimize/tests/test_hessian_update_strategy.py +300 -0
  918. scipy/optimize/tests/test_isotonic_regression.py +167 -0
  919. scipy/optimize/tests/test_lbfgsb_hessinv.py +65 -0
  920. scipy/optimize/tests/test_lbfgsb_setulb.py +122 -0
  921. scipy/optimize/tests/test_least_squares.py +986 -0
  922. scipy/optimize/tests/test_linear_assignment.py +116 -0
  923. scipy/optimize/tests/test_linesearch.py +328 -0
  924. scipy/optimize/tests/test_linprog.py +2577 -0
  925. scipy/optimize/tests/test_lsq_common.py +297 -0
  926. scipy/optimize/tests/test_lsq_linear.py +287 -0
  927. scipy/optimize/tests/test_milp.py +459 -0
  928. scipy/optimize/tests/test_minimize_constrained.py +845 -0
  929. scipy/optimize/tests/test_minpack.py +1194 -0
  930. scipy/optimize/tests/test_nnls.py +469 -0
  931. scipy/optimize/tests/test_nonlin.py +572 -0
  932. scipy/optimize/tests/test_optimize.py +3344 -0
  933. scipy/optimize/tests/test_quadratic_assignment.py +455 -0
  934. scipy/optimize/tests/test_regression.py +40 -0
  935. scipy/optimize/tests/test_slsqp.py +645 -0
  936. scipy/optimize/tests/test_tnc.py +345 -0
  937. scipy/optimize/tests/test_trustregion.py +110 -0
  938. scipy/optimize/tests/test_trustregion_exact.py +351 -0
  939. scipy/optimize/tests/test_trustregion_krylov.py +170 -0
  940. scipy/optimize/tests/test_zeros.py +998 -0
  941. scipy/optimize/tnc.py +22 -0
  942. scipy/optimize/zeros.py +26 -0
  943. scipy/signal/__init__.py +316 -0
  944. scipy/signal/_arraytools.py +264 -0
  945. scipy/signal/_czt.py +575 -0
  946. scipy/signal/_delegators.py +568 -0
  947. scipy/signal/_filter_design.py +5893 -0
  948. scipy/signal/_fir_filter_design.py +1458 -0
  949. scipy/signal/_lti_conversion.py +534 -0
  950. scipy/signal/_ltisys.py +3546 -0
  951. scipy/signal/_max_len_seq.py +139 -0
  952. scipy/signal/_max_len_seq_inner.cp311-win_arm64.lib +0 -0
  953. scipy/signal/_max_len_seq_inner.cp311-win_arm64.pyd +0 -0
  954. scipy/signal/_peak_finding.py +1310 -0
  955. scipy/signal/_peak_finding_utils.cp311-win_arm64.lib +0 -0
  956. scipy/signal/_peak_finding_utils.cp311-win_arm64.pyd +0 -0
  957. scipy/signal/_polyutils.py +172 -0
  958. scipy/signal/_savitzky_golay.py +357 -0
  959. scipy/signal/_short_time_fft.py +2228 -0
  960. scipy/signal/_signal_api.py +30 -0
  961. scipy/signal/_signaltools.py +5309 -0
  962. scipy/signal/_sigtools.cp311-win_arm64.lib +0 -0
  963. scipy/signal/_sigtools.cp311-win_arm64.pyd +0 -0
  964. scipy/signal/_sosfilt.cp311-win_arm64.lib +0 -0
  965. scipy/signal/_sosfilt.cp311-win_arm64.pyd +0 -0
  966. scipy/signal/_spectral_py.py +2471 -0
  967. scipy/signal/_spline.cp311-win_arm64.lib +0 -0
  968. scipy/signal/_spline.cp311-win_arm64.pyd +0 -0
  969. scipy/signal/_spline.pyi +34 -0
  970. scipy/signal/_spline_filters.py +848 -0
  971. scipy/signal/_support_alternative_backends.py +73 -0
  972. scipy/signal/_upfirdn.py +219 -0
  973. scipy/signal/_upfirdn_apply.cp311-win_arm64.lib +0 -0
  974. scipy/signal/_upfirdn_apply.cp311-win_arm64.pyd +0 -0
  975. scipy/signal/_waveforms.py +687 -0
  976. scipy/signal/_wavelets.py +29 -0
  977. scipy/signal/bsplines.py +21 -0
  978. scipy/signal/filter_design.py +28 -0
  979. scipy/signal/fir_filter_design.py +21 -0
  980. scipy/signal/lti_conversion.py +20 -0
  981. scipy/signal/ltisys.py +25 -0
  982. scipy/signal/signaltools.py +27 -0
  983. scipy/signal/spectral.py +21 -0
  984. scipy/signal/spline.py +18 -0
  985. scipy/signal/tests/__init__.py +0 -0
  986. scipy/signal/tests/_scipy_spectral_test_shim.py +311 -0
  987. scipy/signal/tests/mpsig.py +122 -0
  988. scipy/signal/tests/test_array_tools.py +111 -0
  989. scipy/signal/tests/test_bsplines.py +365 -0
  990. scipy/signal/tests/test_cont2discrete.py +424 -0
  991. scipy/signal/tests/test_czt.py +221 -0
  992. scipy/signal/tests/test_dltisys.py +599 -0
  993. scipy/signal/tests/test_filter_design.py +4744 -0
  994. scipy/signal/tests/test_fir_filter_design.py +851 -0
  995. scipy/signal/tests/test_ltisys.py +1225 -0
  996. scipy/signal/tests/test_max_len_seq.py +71 -0
  997. scipy/signal/tests/test_peak_finding.py +915 -0
  998. scipy/signal/tests/test_result_type.py +51 -0
  999. scipy/signal/tests/test_savitzky_golay.py +363 -0
  1000. scipy/signal/tests/test_short_time_fft.py +1107 -0
  1001. scipy/signal/tests/test_signaltools.py +4735 -0
  1002. scipy/signal/tests/test_spectral.py +2141 -0
  1003. scipy/signal/tests/test_splines.py +427 -0
  1004. scipy/signal/tests/test_upfirdn.py +322 -0
  1005. scipy/signal/tests/test_waveforms.py +400 -0
  1006. scipy/signal/tests/test_wavelets.py +59 -0
  1007. scipy/signal/tests/test_windows.py +987 -0
  1008. scipy/signal/waveforms.py +20 -0
  1009. scipy/signal/wavelets.py +17 -0
  1010. scipy/signal/windows/__init__.py +52 -0
  1011. scipy/signal/windows/_windows.py +2513 -0
  1012. scipy/signal/windows/windows.py +23 -0
  1013. scipy/sparse/__init__.py +350 -0
  1014. scipy/sparse/_base.py +1613 -0
  1015. scipy/sparse/_bsr.py +880 -0
  1016. scipy/sparse/_compressed.py +1328 -0
  1017. scipy/sparse/_construct.py +1454 -0
  1018. scipy/sparse/_coo.py +1581 -0
  1019. scipy/sparse/_csc.py +367 -0
  1020. scipy/sparse/_csparsetools.cp311-win_arm64.lib +0 -0
  1021. scipy/sparse/_csparsetools.cp311-win_arm64.pyd +0 -0
  1022. scipy/sparse/_csr.py +558 -0
  1023. scipy/sparse/_data.py +569 -0
  1024. scipy/sparse/_dia.py +677 -0
  1025. scipy/sparse/_dok.py +669 -0
  1026. scipy/sparse/_extract.py +178 -0
  1027. scipy/sparse/_index.py +444 -0
  1028. scipy/sparse/_lil.py +632 -0
  1029. scipy/sparse/_matrix.py +169 -0
  1030. scipy/sparse/_matrix_io.py +167 -0
  1031. scipy/sparse/_sparsetools.cp311-win_arm64.lib +0 -0
  1032. scipy/sparse/_sparsetools.cp311-win_arm64.pyd +0 -0
  1033. scipy/sparse/_spfuncs.py +76 -0
  1034. scipy/sparse/_sputils.py +632 -0
  1035. scipy/sparse/base.py +24 -0
  1036. scipy/sparse/bsr.py +22 -0
  1037. scipy/sparse/compressed.py +20 -0
  1038. scipy/sparse/construct.py +38 -0
  1039. scipy/sparse/coo.py +23 -0
  1040. scipy/sparse/csc.py +22 -0
  1041. scipy/sparse/csgraph/__init__.py +210 -0
  1042. scipy/sparse/csgraph/_flow.cp311-win_arm64.lib +0 -0
  1043. scipy/sparse/csgraph/_flow.cp311-win_arm64.pyd +0 -0
  1044. scipy/sparse/csgraph/_laplacian.py +563 -0
  1045. scipy/sparse/csgraph/_matching.cp311-win_arm64.lib +0 -0
  1046. scipy/sparse/csgraph/_matching.cp311-win_arm64.pyd +0 -0
  1047. scipy/sparse/csgraph/_min_spanning_tree.cp311-win_arm64.lib +0 -0
  1048. scipy/sparse/csgraph/_min_spanning_tree.cp311-win_arm64.pyd +0 -0
  1049. scipy/sparse/csgraph/_reordering.cp311-win_arm64.lib +0 -0
  1050. scipy/sparse/csgraph/_reordering.cp311-win_arm64.pyd +0 -0
  1051. scipy/sparse/csgraph/_shortest_path.cp311-win_arm64.lib +0 -0
  1052. scipy/sparse/csgraph/_shortest_path.cp311-win_arm64.pyd +0 -0
  1053. scipy/sparse/csgraph/_tools.cp311-win_arm64.lib +0 -0
  1054. scipy/sparse/csgraph/_tools.cp311-win_arm64.pyd +0 -0
  1055. scipy/sparse/csgraph/_traversal.cp311-win_arm64.lib +0 -0
  1056. scipy/sparse/csgraph/_traversal.cp311-win_arm64.pyd +0 -0
  1057. scipy/sparse/csgraph/_validation.py +66 -0
  1058. scipy/sparse/csgraph/tests/__init__.py +0 -0
  1059. scipy/sparse/csgraph/tests/test_connected_components.py +119 -0
  1060. scipy/sparse/csgraph/tests/test_conversions.py +61 -0
  1061. scipy/sparse/csgraph/tests/test_flow.py +209 -0
  1062. scipy/sparse/csgraph/tests/test_graph_laplacian.py +368 -0
  1063. scipy/sparse/csgraph/tests/test_matching.py +307 -0
  1064. scipy/sparse/csgraph/tests/test_pydata_sparse.py +197 -0
  1065. scipy/sparse/csgraph/tests/test_reordering.py +70 -0
  1066. scipy/sparse/csgraph/tests/test_shortest_path.py +540 -0
  1067. scipy/sparse/csgraph/tests/test_spanning_tree.py +66 -0
  1068. scipy/sparse/csgraph/tests/test_traversal.py +148 -0
  1069. scipy/sparse/csr.py +22 -0
  1070. scipy/sparse/data.py +18 -0
  1071. scipy/sparse/dia.py +22 -0
  1072. scipy/sparse/dok.py +22 -0
  1073. scipy/sparse/extract.py +23 -0
  1074. scipy/sparse/lil.py +22 -0
  1075. scipy/sparse/linalg/__init__.py +148 -0
  1076. scipy/sparse/linalg/_dsolve/__init__.py +71 -0
  1077. scipy/sparse/linalg/_dsolve/_add_newdocs.py +147 -0
  1078. scipy/sparse/linalg/_dsolve/_superlu.cp311-win_arm64.lib +0 -0
  1079. scipy/sparse/linalg/_dsolve/_superlu.cp311-win_arm64.pyd +0 -0
  1080. scipy/sparse/linalg/_dsolve/linsolve.py +882 -0
  1081. scipy/sparse/linalg/_dsolve/tests/__init__.py +0 -0
  1082. scipy/sparse/linalg/_dsolve/tests/test_linsolve.py +928 -0
  1083. scipy/sparse/linalg/_eigen/__init__.py +22 -0
  1084. scipy/sparse/linalg/_eigen/_svds.py +540 -0
  1085. scipy/sparse/linalg/_eigen/_svds_doc.py +382 -0
  1086. scipy/sparse/linalg/_eigen/arpack/COPYING +45 -0
  1087. scipy/sparse/linalg/_eigen/arpack/__init__.py +20 -0
  1088. scipy/sparse/linalg/_eigen/arpack/_arpack.cp311-win_arm64.lib +0 -0
  1089. scipy/sparse/linalg/_eigen/arpack/_arpack.cp311-win_arm64.pyd +0 -0
  1090. scipy/sparse/linalg/_eigen/arpack/arpack.py +1706 -0
  1091. scipy/sparse/linalg/_eigen/arpack/tests/__init__.py +0 -0
  1092. scipy/sparse/linalg/_eigen/arpack/tests/test_arpack.py +717 -0
  1093. scipy/sparse/linalg/_eigen/lobpcg/__init__.py +16 -0
  1094. scipy/sparse/linalg/_eigen/lobpcg/lobpcg.py +1110 -0
  1095. scipy/sparse/linalg/_eigen/lobpcg/tests/__init__.py +0 -0
  1096. scipy/sparse/linalg/_eigen/lobpcg/tests/test_lobpcg.py +725 -0
  1097. scipy/sparse/linalg/_eigen/tests/__init__.py +0 -0
  1098. scipy/sparse/linalg/_eigen/tests/test_svds.py +886 -0
  1099. scipy/sparse/linalg/_expm_multiply.py +816 -0
  1100. scipy/sparse/linalg/_interface.py +920 -0
  1101. scipy/sparse/linalg/_isolve/__init__.py +20 -0
  1102. scipy/sparse/linalg/_isolve/_gcrotmk.py +503 -0
  1103. scipy/sparse/linalg/_isolve/iterative.py +1051 -0
  1104. scipy/sparse/linalg/_isolve/lgmres.py +230 -0
  1105. scipy/sparse/linalg/_isolve/lsmr.py +486 -0
  1106. scipy/sparse/linalg/_isolve/lsqr.py +589 -0
  1107. scipy/sparse/linalg/_isolve/minres.py +372 -0
  1108. scipy/sparse/linalg/_isolve/tests/__init__.py +0 -0
  1109. scipy/sparse/linalg/_isolve/tests/test_gcrotmk.py +183 -0
  1110. scipy/sparse/linalg/_isolve/tests/test_iterative.py +809 -0
  1111. scipy/sparse/linalg/_isolve/tests/test_lgmres.py +225 -0
  1112. scipy/sparse/linalg/_isolve/tests/test_lsmr.py +185 -0
  1113. scipy/sparse/linalg/_isolve/tests/test_lsqr.py +120 -0
  1114. scipy/sparse/linalg/_isolve/tests/test_minres.py +97 -0
  1115. scipy/sparse/linalg/_isolve/tests/test_utils.py +9 -0
  1116. scipy/sparse/linalg/_isolve/tfqmr.py +179 -0
  1117. scipy/sparse/linalg/_isolve/utils.py +121 -0
  1118. scipy/sparse/linalg/_matfuncs.py +940 -0
  1119. scipy/sparse/linalg/_norm.py +195 -0
  1120. scipy/sparse/linalg/_onenormest.py +467 -0
  1121. scipy/sparse/linalg/_propack/_cpropack.cp311-win_arm64.lib +0 -0
  1122. scipy/sparse/linalg/_propack/_cpropack.cp311-win_arm64.pyd +0 -0
  1123. scipy/sparse/linalg/_propack/_dpropack.cp311-win_arm64.lib +0 -0
  1124. scipy/sparse/linalg/_propack/_dpropack.cp311-win_arm64.pyd +0 -0
  1125. scipy/sparse/linalg/_propack/_spropack.cp311-win_arm64.lib +0 -0
  1126. scipy/sparse/linalg/_propack/_spropack.cp311-win_arm64.pyd +0 -0
  1127. scipy/sparse/linalg/_propack/_zpropack.cp311-win_arm64.lib +0 -0
  1128. scipy/sparse/linalg/_propack/_zpropack.cp311-win_arm64.pyd +0 -0
  1129. scipy/sparse/linalg/_special_sparse_arrays.py +949 -0
  1130. scipy/sparse/linalg/_svdp.py +309 -0
  1131. scipy/sparse/linalg/dsolve.py +22 -0
  1132. scipy/sparse/linalg/eigen.py +21 -0
  1133. scipy/sparse/linalg/interface.py +20 -0
  1134. scipy/sparse/linalg/isolve.py +22 -0
  1135. scipy/sparse/linalg/matfuncs.py +18 -0
  1136. scipy/sparse/linalg/tests/__init__.py +0 -0
  1137. scipy/sparse/linalg/tests/propack_test_data.npz +0 -0
  1138. scipy/sparse/linalg/tests/test_expm_multiply.py +367 -0
  1139. scipy/sparse/linalg/tests/test_interface.py +561 -0
  1140. scipy/sparse/linalg/tests/test_matfuncs.py +592 -0
  1141. scipy/sparse/linalg/tests/test_norm.py +154 -0
  1142. scipy/sparse/linalg/tests/test_onenormest.py +252 -0
  1143. scipy/sparse/linalg/tests/test_propack.py +165 -0
  1144. scipy/sparse/linalg/tests/test_pydata_sparse.py +272 -0
  1145. scipy/sparse/linalg/tests/test_special_sparse_arrays.py +337 -0
  1146. scipy/sparse/sparsetools.py +17 -0
  1147. scipy/sparse/spfuncs.py +17 -0
  1148. scipy/sparse/sputils.py +17 -0
  1149. scipy/sparse/tests/__init__.py +0 -0
  1150. scipy/sparse/tests/data/csc_py2.npz +0 -0
  1151. scipy/sparse/tests/data/csc_py3.npz +0 -0
  1152. scipy/sparse/tests/test_arithmetic1d.py +341 -0
  1153. scipy/sparse/tests/test_array_api.py +561 -0
  1154. scipy/sparse/tests/test_base.py +5870 -0
  1155. scipy/sparse/tests/test_common1d.py +447 -0
  1156. scipy/sparse/tests/test_construct.py +872 -0
  1157. scipy/sparse/tests/test_coo.py +1119 -0
  1158. scipy/sparse/tests/test_csc.py +98 -0
  1159. scipy/sparse/tests/test_csr.py +214 -0
  1160. scipy/sparse/tests/test_dok.py +209 -0
  1161. scipy/sparse/tests/test_extract.py +51 -0
  1162. scipy/sparse/tests/test_indexing1d.py +603 -0
  1163. scipy/sparse/tests/test_matrix_io.py +109 -0
  1164. scipy/sparse/tests/test_minmax1d.py +128 -0
  1165. scipy/sparse/tests/test_sparsetools.py +344 -0
  1166. scipy/sparse/tests/test_spfuncs.py +97 -0
  1167. scipy/sparse/tests/test_sputils.py +424 -0
  1168. scipy/spatial/__init__.py +129 -0
  1169. scipy/spatial/_ckdtree.cp311-win_arm64.lib +0 -0
  1170. scipy/spatial/_ckdtree.cp311-win_arm64.pyd +0 -0
  1171. scipy/spatial/_distance_pybind.cp311-win_arm64.lib +0 -0
  1172. scipy/spatial/_distance_pybind.cp311-win_arm64.pyd +0 -0
  1173. scipy/spatial/_distance_wrap.cp311-win_arm64.lib +0 -0
  1174. scipy/spatial/_distance_wrap.cp311-win_arm64.pyd +0 -0
  1175. scipy/spatial/_geometric_slerp.py +238 -0
  1176. scipy/spatial/_hausdorff.cp311-win_arm64.lib +0 -0
  1177. scipy/spatial/_hausdorff.cp311-win_arm64.pyd +0 -0
  1178. scipy/spatial/_kdtree.py +920 -0
  1179. scipy/spatial/_plotutils.py +274 -0
  1180. scipy/spatial/_procrustes.py +132 -0
  1181. scipy/spatial/_qhull.cp311-win_arm64.lib +0 -0
  1182. scipy/spatial/_qhull.cp311-win_arm64.pyd +0 -0
  1183. scipy/spatial/_qhull.pyi +213 -0
  1184. scipy/spatial/_spherical_voronoi.py +341 -0
  1185. scipy/spatial/_voronoi.cp311-win_arm64.lib +0 -0
  1186. scipy/spatial/_voronoi.cp311-win_arm64.pyd +0 -0
  1187. scipy/spatial/_voronoi.pyi +4 -0
  1188. scipy/spatial/ckdtree.py +18 -0
  1189. scipy/spatial/distance.py +3147 -0
  1190. scipy/spatial/distance.pyi +210 -0
  1191. scipy/spatial/kdtree.py +25 -0
  1192. scipy/spatial/qhull.py +25 -0
  1193. scipy/spatial/qhull_src/COPYING_QHULL.txt +39 -0
  1194. scipy/spatial/tests/__init__.py +0 -0
  1195. scipy/spatial/tests/data/cdist-X1.txt +10 -0
  1196. scipy/spatial/tests/data/cdist-X2.txt +20 -0
  1197. scipy/spatial/tests/data/degenerate_pointset.npz +0 -0
  1198. scipy/spatial/tests/data/iris.txt +150 -0
  1199. scipy/spatial/tests/data/pdist-boolean-inp.txt +20 -0
  1200. scipy/spatial/tests/data/pdist-chebyshev-ml-iris.txt +1 -0
  1201. scipy/spatial/tests/data/pdist-chebyshev-ml.txt +1 -0
  1202. scipy/spatial/tests/data/pdist-cityblock-ml-iris.txt +1 -0
  1203. scipy/spatial/tests/data/pdist-cityblock-ml.txt +1 -0
  1204. scipy/spatial/tests/data/pdist-correlation-ml-iris.txt +1 -0
  1205. scipy/spatial/tests/data/pdist-correlation-ml.txt +1 -0
  1206. scipy/spatial/tests/data/pdist-cosine-ml-iris.txt +1 -0
  1207. scipy/spatial/tests/data/pdist-cosine-ml.txt +1 -0
  1208. scipy/spatial/tests/data/pdist-double-inp.txt +20 -0
  1209. scipy/spatial/tests/data/pdist-euclidean-ml-iris.txt +1 -0
  1210. scipy/spatial/tests/data/pdist-euclidean-ml.txt +1 -0
  1211. scipy/spatial/tests/data/pdist-hamming-ml.txt +1 -0
  1212. scipy/spatial/tests/data/pdist-jaccard-ml.txt +1 -0
  1213. scipy/spatial/tests/data/pdist-jensenshannon-ml-iris.txt +1 -0
  1214. scipy/spatial/tests/data/pdist-jensenshannon-ml.txt +1 -0
  1215. scipy/spatial/tests/data/pdist-minkowski-3.2-ml-iris.txt +1 -0
  1216. scipy/spatial/tests/data/pdist-minkowski-3.2-ml.txt +1 -0
  1217. scipy/spatial/tests/data/pdist-minkowski-5.8-ml-iris.txt +1 -0
  1218. scipy/spatial/tests/data/pdist-seuclidean-ml-iris.txt +1 -0
  1219. scipy/spatial/tests/data/pdist-seuclidean-ml.txt +1 -0
  1220. scipy/spatial/tests/data/pdist-spearman-ml.txt +1 -0
  1221. scipy/spatial/tests/data/random-bool-data.txt +100 -0
  1222. scipy/spatial/tests/data/random-double-data.txt +100 -0
  1223. scipy/spatial/tests/data/random-int-data.txt +100 -0
  1224. scipy/spatial/tests/data/random-uint-data.txt +100 -0
  1225. scipy/spatial/tests/data/selfdual-4d-polytope.txt +27 -0
  1226. scipy/spatial/tests/test__plotutils.py +91 -0
  1227. scipy/spatial/tests/test__procrustes.py +116 -0
  1228. scipy/spatial/tests/test_distance.py +2389 -0
  1229. scipy/spatial/tests/test_hausdorff.py +199 -0
  1230. scipy/spatial/tests/test_kdtree.py +1536 -0
  1231. scipy/spatial/tests/test_qhull.py +1313 -0
  1232. scipy/spatial/tests/test_slerp.py +417 -0
  1233. scipy/spatial/tests/test_spherical_voronoi.py +358 -0
  1234. scipy/spatial/transform/__init__.py +31 -0
  1235. scipy/spatial/transform/_rigid_transform.cp311-win_arm64.lib +0 -0
  1236. scipy/spatial/transform/_rigid_transform.cp311-win_arm64.pyd +0 -0
  1237. scipy/spatial/transform/_rotation.cp311-win_arm64.lib +0 -0
  1238. scipy/spatial/transform/_rotation.cp311-win_arm64.pyd +0 -0
  1239. scipy/spatial/transform/_rotation_groups.py +140 -0
  1240. scipy/spatial/transform/_rotation_spline.py +460 -0
  1241. scipy/spatial/transform/rotation.py +21 -0
  1242. scipy/spatial/transform/tests/__init__.py +0 -0
  1243. scipy/spatial/transform/tests/test_rigid_transform.py +1221 -0
  1244. scipy/spatial/transform/tests/test_rotation.py +2569 -0
  1245. scipy/spatial/transform/tests/test_rotation_groups.py +169 -0
  1246. scipy/spatial/transform/tests/test_rotation_spline.py +183 -0
  1247. scipy/special/__init__.pxd +1 -0
  1248. scipy/special/__init__.py +841 -0
  1249. scipy/special/_add_newdocs.py +9961 -0
  1250. scipy/special/_basic.py +3576 -0
  1251. scipy/special/_comb.cp311-win_arm64.lib +0 -0
  1252. scipy/special/_comb.cp311-win_arm64.pyd +0 -0
  1253. scipy/special/_ellip_harm.py +214 -0
  1254. scipy/special/_ellip_harm_2.cp311-win_arm64.lib +0 -0
  1255. scipy/special/_ellip_harm_2.cp311-win_arm64.pyd +0 -0
  1256. scipy/special/_gufuncs.cp311-win_arm64.lib +0 -0
  1257. scipy/special/_gufuncs.cp311-win_arm64.pyd +0 -0
  1258. scipy/special/_input_validation.py +17 -0
  1259. scipy/special/_lambertw.py +149 -0
  1260. scipy/special/_logsumexp.py +426 -0
  1261. scipy/special/_mptestutils.py +453 -0
  1262. scipy/special/_multiufuncs.py +610 -0
  1263. scipy/special/_orthogonal.py +2592 -0
  1264. scipy/special/_orthogonal.pyi +330 -0
  1265. scipy/special/_precompute/__init__.py +0 -0
  1266. scipy/special/_precompute/cosine_cdf.py +17 -0
  1267. scipy/special/_precompute/expn_asy.py +54 -0
  1268. scipy/special/_precompute/gammainc_asy.py +116 -0
  1269. scipy/special/_precompute/gammainc_data.py +124 -0
  1270. scipy/special/_precompute/hyp2f1_data.py +484 -0
  1271. scipy/special/_precompute/lambertw.py +68 -0
  1272. scipy/special/_precompute/loggamma.py +43 -0
  1273. scipy/special/_precompute/struve_convergence.py +131 -0
  1274. scipy/special/_precompute/utils.py +38 -0
  1275. scipy/special/_precompute/wright_bessel.py +342 -0
  1276. scipy/special/_precompute/wright_bessel_data.py +152 -0
  1277. scipy/special/_precompute/wrightomega.py +41 -0
  1278. scipy/special/_precompute/zetac.py +27 -0
  1279. scipy/special/_sf_error.py +15 -0
  1280. scipy/special/_specfun.cp311-win_arm64.lib +0 -0
  1281. scipy/special/_specfun.cp311-win_arm64.pyd +0 -0
  1282. scipy/special/_special_ufuncs.cp311-win_arm64.lib +0 -0
  1283. scipy/special/_special_ufuncs.cp311-win_arm64.pyd +0 -0
  1284. scipy/special/_spfun_stats.py +106 -0
  1285. scipy/special/_spherical_bessel.py +397 -0
  1286. scipy/special/_support_alternative_backends.py +295 -0
  1287. scipy/special/_test_internal.cp311-win_arm64.lib +0 -0
  1288. scipy/special/_test_internal.cp311-win_arm64.pyd +0 -0
  1289. scipy/special/_test_internal.pyi +9 -0
  1290. scipy/special/_testutils.py +321 -0
  1291. scipy/special/_ufuncs.cp311-win_arm64.lib +0 -0
  1292. scipy/special/_ufuncs.cp311-win_arm64.pyd +0 -0
  1293. scipy/special/_ufuncs.pyi +522 -0
  1294. scipy/special/_ufuncs.pyx +13173 -0
  1295. scipy/special/_ufuncs_cxx.cp311-win_arm64.lib +0 -0
  1296. scipy/special/_ufuncs_cxx.cp311-win_arm64.pyd +0 -0
  1297. scipy/special/_ufuncs_cxx.pxd +142 -0
  1298. scipy/special/_ufuncs_cxx.pyx +427 -0
  1299. scipy/special/_ufuncs_cxx_defs.h +147 -0
  1300. scipy/special/_ufuncs_defs.h +57 -0
  1301. scipy/special/add_newdocs.py +15 -0
  1302. scipy/special/basic.py +87 -0
  1303. scipy/special/cython_special.cp311-win_arm64.lib +0 -0
  1304. scipy/special/cython_special.cp311-win_arm64.pyd +0 -0
  1305. scipy/special/cython_special.pxd +259 -0
  1306. scipy/special/cython_special.pyi +3 -0
  1307. scipy/special/orthogonal.py +45 -0
  1308. scipy/special/sf_error.py +20 -0
  1309. scipy/special/specfun.py +24 -0
  1310. scipy/special/spfun_stats.py +17 -0
  1311. scipy/special/tests/__init__.py +0 -0
  1312. scipy/special/tests/_cython_examples/extending.pyx +12 -0
  1313. scipy/special/tests/_cython_examples/meson.build +34 -0
  1314. scipy/special/tests/data/__init__.py +0 -0
  1315. scipy/special/tests/data/boost.npz +0 -0
  1316. scipy/special/tests/data/gsl.npz +0 -0
  1317. scipy/special/tests/data/local.npz +0 -0
  1318. scipy/special/tests/test_basic.py +4815 -0
  1319. scipy/special/tests/test_bdtr.py +112 -0
  1320. scipy/special/tests/test_boost_ufuncs.py +64 -0
  1321. scipy/special/tests/test_boxcox.py +125 -0
  1322. scipy/special/tests/test_cdflib.py +712 -0
  1323. scipy/special/tests/test_cdft_asymptotic.py +49 -0
  1324. scipy/special/tests/test_cephes_intp_cast.py +29 -0
  1325. scipy/special/tests/test_cosine_distr.py +83 -0
  1326. scipy/special/tests/test_cython_special.py +363 -0
  1327. scipy/special/tests/test_data.py +719 -0
  1328. scipy/special/tests/test_dd.py +42 -0
  1329. scipy/special/tests/test_digamma.py +45 -0
  1330. scipy/special/tests/test_ellip_harm.py +278 -0
  1331. scipy/special/tests/test_erfinv.py +89 -0
  1332. scipy/special/tests/test_exponential_integrals.py +118 -0
  1333. scipy/special/tests/test_extending.py +28 -0
  1334. scipy/special/tests/test_faddeeva.py +85 -0
  1335. scipy/special/tests/test_gamma.py +12 -0
  1336. scipy/special/tests/test_gammainc.py +152 -0
  1337. scipy/special/tests/test_hyp2f1.py +2566 -0
  1338. scipy/special/tests/test_hypergeometric.py +234 -0
  1339. scipy/special/tests/test_iv_ratio.py +249 -0
  1340. scipy/special/tests/test_kolmogorov.py +491 -0
  1341. scipy/special/tests/test_lambertw.py +109 -0
  1342. scipy/special/tests/test_legendre.py +1518 -0
  1343. scipy/special/tests/test_log1mexp.py +85 -0
  1344. scipy/special/tests/test_loggamma.py +70 -0
  1345. scipy/special/tests/test_logit.py +162 -0
  1346. scipy/special/tests/test_logsumexp.py +469 -0
  1347. scipy/special/tests/test_mpmath.py +2293 -0
  1348. scipy/special/tests/test_nan_inputs.py +65 -0
  1349. scipy/special/tests/test_ndtr.py +77 -0
  1350. scipy/special/tests/test_ndtri_exp.py +94 -0
  1351. scipy/special/tests/test_orthogonal.py +821 -0
  1352. scipy/special/tests/test_orthogonal_eval.py +275 -0
  1353. scipy/special/tests/test_owens_t.py +53 -0
  1354. scipy/special/tests/test_pcf.py +24 -0
  1355. scipy/special/tests/test_pdtr.py +48 -0
  1356. scipy/special/tests/test_powm1.py +65 -0
  1357. scipy/special/tests/test_precompute_expn_asy.py +24 -0
  1358. scipy/special/tests/test_precompute_gammainc.py +108 -0
  1359. scipy/special/tests/test_precompute_utils.py +36 -0
  1360. scipy/special/tests/test_round.py +18 -0
  1361. scipy/special/tests/test_sf_error.py +146 -0
  1362. scipy/special/tests/test_sici.py +36 -0
  1363. scipy/special/tests/test_specfun.py +48 -0
  1364. scipy/special/tests/test_spence.py +32 -0
  1365. scipy/special/tests/test_spfun_stats.py +61 -0
  1366. scipy/special/tests/test_sph_harm.py +85 -0
  1367. scipy/special/tests/test_spherical_bessel.py +400 -0
  1368. scipy/special/tests/test_support_alternative_backends.py +248 -0
  1369. scipy/special/tests/test_trig.py +72 -0
  1370. scipy/special/tests/test_ufunc_signatures.py +46 -0
  1371. scipy/special/tests/test_wright_bessel.py +205 -0
  1372. scipy/special/tests/test_wrightomega.py +117 -0
  1373. scipy/special/tests/test_zeta.py +301 -0
  1374. scipy/stats/__init__.py +670 -0
  1375. scipy/stats/_ansari_swilk_statistics.cp311-win_arm64.lib +0 -0
  1376. scipy/stats/_ansari_swilk_statistics.cp311-win_arm64.pyd +0 -0
  1377. scipy/stats/_axis_nan_policy.py +692 -0
  1378. scipy/stats/_biasedurn.cp311-win_arm64.lib +0 -0
  1379. scipy/stats/_biasedurn.cp311-win_arm64.pyd +0 -0
  1380. scipy/stats/_biasedurn.pxd +27 -0
  1381. scipy/stats/_binned_statistic.py +795 -0
  1382. scipy/stats/_binomtest.py +375 -0
  1383. scipy/stats/_bws_test.py +177 -0
  1384. scipy/stats/_censored_data.py +459 -0
  1385. scipy/stats/_common.py +5 -0
  1386. scipy/stats/_constants.py +42 -0
  1387. scipy/stats/_continued_fraction.py +387 -0
  1388. scipy/stats/_continuous_distns.py +12486 -0
  1389. scipy/stats/_correlation.py +210 -0
  1390. scipy/stats/_covariance.py +636 -0
  1391. scipy/stats/_crosstab.py +204 -0
  1392. scipy/stats/_discrete_distns.py +2098 -0
  1393. scipy/stats/_distn_infrastructure.py +4201 -0
  1394. scipy/stats/_distr_params.py +299 -0
  1395. scipy/stats/_distribution_infrastructure.py +5750 -0
  1396. scipy/stats/_entropy.py +428 -0
  1397. scipy/stats/_finite_differences.py +145 -0
  1398. scipy/stats/_fit.py +1351 -0
  1399. scipy/stats/_hypotests.py +2060 -0
  1400. scipy/stats/_kde.py +732 -0
  1401. scipy/stats/_ksstats.py +600 -0
  1402. scipy/stats/_levy_stable/__init__.py +1231 -0
  1403. scipy/stats/_levy_stable/levyst.cp311-win_arm64.lib +0 -0
  1404. scipy/stats/_levy_stable/levyst.cp311-win_arm64.pyd +0 -0
  1405. scipy/stats/_mannwhitneyu.py +492 -0
  1406. scipy/stats/_mgc.py +550 -0
  1407. scipy/stats/_morestats.py +4626 -0
  1408. scipy/stats/_mstats_basic.py +3658 -0
  1409. scipy/stats/_mstats_extras.py +521 -0
  1410. scipy/stats/_multicomp.py +449 -0
  1411. scipy/stats/_multivariate.py +7281 -0
  1412. scipy/stats/_new_distributions.py +452 -0
  1413. scipy/stats/_odds_ratio.py +466 -0
  1414. scipy/stats/_page_trend_test.py +486 -0
  1415. scipy/stats/_probability_distribution.py +1964 -0
  1416. scipy/stats/_qmc.py +2956 -0
  1417. scipy/stats/_qmc_cy.cp311-win_arm64.lib +0 -0
  1418. scipy/stats/_qmc_cy.cp311-win_arm64.pyd +0 -0
  1419. scipy/stats/_qmc_cy.pyi +54 -0
  1420. scipy/stats/_qmvnt.py +454 -0
  1421. scipy/stats/_qmvnt_cy.cp311-win_arm64.lib +0 -0
  1422. scipy/stats/_qmvnt_cy.cp311-win_arm64.pyd +0 -0
  1423. scipy/stats/_quantile.py +335 -0
  1424. scipy/stats/_rcont/__init__.py +4 -0
  1425. scipy/stats/_rcont/rcont.cp311-win_arm64.lib +0 -0
  1426. scipy/stats/_rcont/rcont.cp311-win_arm64.pyd +0 -0
  1427. scipy/stats/_relative_risk.py +263 -0
  1428. scipy/stats/_resampling.py +2352 -0
  1429. scipy/stats/_result_classes.py +40 -0
  1430. scipy/stats/_sampling.py +1314 -0
  1431. scipy/stats/_sensitivity_analysis.py +713 -0
  1432. scipy/stats/_sobol.cp311-win_arm64.lib +0 -0
  1433. scipy/stats/_sobol.cp311-win_arm64.pyd +0 -0
  1434. scipy/stats/_sobol.pyi +54 -0
  1435. scipy/stats/_sobol_direction_numbers.npz +0 -0
  1436. scipy/stats/_stats.cp311-win_arm64.lib +0 -0
  1437. scipy/stats/_stats.cp311-win_arm64.pyd +0 -0
  1438. scipy/stats/_stats.pxd +10 -0
  1439. scipy/stats/_stats_mstats_common.py +322 -0
  1440. scipy/stats/_stats_py.py +11089 -0
  1441. scipy/stats/_stats_pythran.cp311-win_arm64.lib +0 -0
  1442. scipy/stats/_stats_pythran.cp311-win_arm64.pyd +0 -0
  1443. scipy/stats/_survival.py +683 -0
  1444. scipy/stats/_tukeylambda_stats.py +199 -0
  1445. scipy/stats/_unuran/__init__.py +0 -0
  1446. scipy/stats/_unuran/unuran_wrapper.cp311-win_arm64.lib +0 -0
  1447. scipy/stats/_unuran/unuran_wrapper.cp311-win_arm64.pyd +0 -0
  1448. scipy/stats/_unuran/unuran_wrapper.pyi +179 -0
  1449. scipy/stats/_variation.py +126 -0
  1450. scipy/stats/_warnings_errors.py +38 -0
  1451. scipy/stats/_wilcoxon.py +265 -0
  1452. scipy/stats/biasedurn.py +16 -0
  1453. scipy/stats/contingency.py +521 -0
  1454. scipy/stats/distributions.py +24 -0
  1455. scipy/stats/kde.py +18 -0
  1456. scipy/stats/morestats.py +27 -0
  1457. scipy/stats/mstats.py +140 -0
  1458. scipy/stats/mstats_basic.py +42 -0
  1459. scipy/stats/mstats_extras.py +25 -0
  1460. scipy/stats/mvn.py +17 -0
  1461. scipy/stats/qmc.py +236 -0
  1462. scipy/stats/sampling.py +73 -0
  1463. scipy/stats/stats.py +41 -0
  1464. scipy/stats/tests/__init__.py +0 -0
  1465. scipy/stats/tests/common_tests.py +356 -0
  1466. scipy/stats/tests/data/_mvt.py +171 -0
  1467. scipy/stats/tests/data/fisher_exact_results_from_r.py +607 -0
  1468. scipy/stats/tests/data/jf_skew_t_gamlss_pdf_data.npy +0 -0
  1469. scipy/stats/tests/data/levy_stable/stable-Z1-cdf-sample-data.npy +0 -0
  1470. scipy/stats/tests/data/levy_stable/stable-Z1-pdf-sample-data.npy +0 -0
  1471. scipy/stats/tests/data/levy_stable/stable-loc-scale-sample-data.npy +0 -0
  1472. scipy/stats/tests/data/nist_anova/AtmWtAg.dat +108 -0
  1473. scipy/stats/tests/data/nist_anova/SiRstv.dat +85 -0
  1474. scipy/stats/tests/data/nist_anova/SmLs01.dat +249 -0
  1475. scipy/stats/tests/data/nist_anova/SmLs02.dat +1869 -0
  1476. scipy/stats/tests/data/nist_anova/SmLs03.dat +18069 -0
  1477. scipy/stats/tests/data/nist_anova/SmLs04.dat +249 -0
  1478. scipy/stats/tests/data/nist_anova/SmLs05.dat +1869 -0
  1479. scipy/stats/tests/data/nist_anova/SmLs06.dat +18069 -0
  1480. scipy/stats/tests/data/nist_anova/SmLs07.dat +249 -0
  1481. scipy/stats/tests/data/nist_anova/SmLs08.dat +1869 -0
  1482. scipy/stats/tests/data/nist_anova/SmLs09.dat +18069 -0
  1483. scipy/stats/tests/data/nist_linregress/Norris.dat +97 -0
  1484. scipy/stats/tests/data/rel_breitwigner_pdf_sample_data_ROOT.npy +0 -0
  1485. scipy/stats/tests/data/studentized_range_mpmath_ref.json +1499 -0
  1486. scipy/stats/tests/test_axis_nan_policy.py +1388 -0
  1487. scipy/stats/tests/test_binned_statistic.py +568 -0
  1488. scipy/stats/tests/test_censored_data.py +152 -0
  1489. scipy/stats/tests/test_contingency.py +294 -0
  1490. scipy/stats/tests/test_continued_fraction.py +173 -0
  1491. scipy/stats/tests/test_continuous.py +2198 -0
  1492. scipy/stats/tests/test_continuous_basic.py +1053 -0
  1493. scipy/stats/tests/test_continuous_fit_censored.py +683 -0
  1494. scipy/stats/tests/test_correlation.py +80 -0
  1495. scipy/stats/tests/test_crosstab.py +115 -0
  1496. scipy/stats/tests/test_discrete_basic.py +580 -0
  1497. scipy/stats/tests/test_discrete_distns.py +700 -0
  1498. scipy/stats/tests/test_distributions.py +10413 -0
  1499. scipy/stats/tests/test_entropy.py +322 -0
  1500. scipy/stats/tests/test_fast_gen_inversion.py +435 -0
  1501. scipy/stats/tests/test_fit.py +1090 -0
  1502. scipy/stats/tests/test_hypotests.py +1991 -0
  1503. scipy/stats/tests/test_kdeoth.py +676 -0
  1504. scipy/stats/tests/test_marray.py +289 -0
  1505. scipy/stats/tests/test_mgc.py +217 -0
  1506. scipy/stats/tests/test_morestats.py +3259 -0
  1507. scipy/stats/tests/test_mstats_basic.py +2071 -0
  1508. scipy/stats/tests/test_mstats_extras.py +172 -0
  1509. scipy/stats/tests/test_multicomp.py +405 -0
  1510. scipy/stats/tests/test_multivariate.py +4381 -0
  1511. scipy/stats/tests/test_odds_ratio.py +148 -0
  1512. scipy/stats/tests/test_qmc.py +1492 -0
  1513. scipy/stats/tests/test_quantile.py +199 -0
  1514. scipy/stats/tests/test_rank.py +345 -0
  1515. scipy/stats/tests/test_relative_risk.py +95 -0
  1516. scipy/stats/tests/test_resampling.py +2000 -0
  1517. scipy/stats/tests/test_sampling.py +1450 -0
  1518. scipy/stats/tests/test_sensitivity_analysis.py +310 -0
  1519. scipy/stats/tests/test_stats.py +9707 -0
  1520. scipy/stats/tests/test_survival.py +466 -0
  1521. scipy/stats/tests/test_tukeylambda_stats.py +85 -0
  1522. scipy/stats/tests/test_variation.py +216 -0
  1523. scipy/version.py +12 -0
  1524. scipy-1.16.2.dist-info/DELVEWHEEL +2 -0
  1525. scipy-1.16.2.dist-info/LICENSE.txt +912 -0
  1526. scipy-1.16.2.dist-info/METADATA +1061 -0
  1527. scipy-1.16.2.dist-info/RECORD +1530 -0
  1528. scipy-1.16.2.dist-info/WHEEL +4 -0
  1529. scipy.libs/msvcp140-5f1c5dd31916990d94181e07bc3afb32.dll +0 -0
  1530. scipy.libs/scipy_openblas-f3ac85b1f412f7e86514c923dc4058d1.dll +0 -0
scipy/stats/_fit.py ADDED
@@ -0,0 +1,1351 @@
1
+ import warnings
2
+ from collections import namedtuple
3
+ import numpy as np
4
+ from scipy import optimize, stats
5
+ from scipy._lib._util import check_random_state, _transition_to_rng
6
+
7
+
8
+ def _combine_bounds(name, user_bounds, shape_domain, integral):
9
+ """Intersection of user-defined bounds and distribution PDF/PMF domain"""
10
+
11
+ user_bounds = np.atleast_1d(user_bounds)
12
+
13
+ if user_bounds[0] > user_bounds[1]:
14
+ message = (f"There are no values for `{name}` on the interval "
15
+ f"{list(user_bounds)}.")
16
+ raise ValueError(message)
17
+
18
+ bounds = (max(user_bounds[0], shape_domain[0]),
19
+ min(user_bounds[1], shape_domain[1]))
20
+
21
+ if integral and (np.ceil(bounds[0]) > np.floor(bounds[1])):
22
+ message = (f"There are no integer values for `{name}` on the interval "
23
+ f"defined by the user-provided bounds and the domain "
24
+ "of the distribution.")
25
+ raise ValueError(message)
26
+ elif not integral and (bounds[0] > bounds[1]):
27
+ message = (f"There are no values for `{name}` on the interval "
28
+ f"defined by the user-provided bounds and the domain "
29
+ "of the distribution.")
30
+ raise ValueError(message)
31
+
32
+ if not np.all(np.isfinite(bounds)):
33
+ message = (f"The intersection of user-provided bounds for `{name}` "
34
+ f"and the domain of the distribution is not finite. Please "
35
+ f"provide finite bounds for shape `{name}` in `bounds`.")
36
+ raise ValueError(message)
37
+
38
+ return bounds
39
+
40
+
41
+ class FitResult:
42
+ r"""Result of fitting a discrete or continuous distribution to data
43
+
44
+ Attributes
45
+ ----------
46
+ params : namedtuple
47
+ A namedtuple containing the maximum likelihood estimates of the
48
+ shape parameters, location, and (if applicable) scale of the
49
+ distribution.
50
+ success : bool or None
51
+ Whether the optimizer considered the optimization to terminate
52
+ successfully or not.
53
+ message : str or None
54
+ Any status message provided by the optimizer.
55
+
56
+ """
57
+
58
+ def __init__(self, dist, data, discrete, res):
59
+ self._dist = dist
60
+ self._data = data
61
+ self.discrete = discrete
62
+ self.pxf = getattr(dist, "pmf", None) or getattr(dist, "pdf", None)
63
+
64
+ shape_names = [] if dist.shapes is None else dist.shapes.split(", ")
65
+ if not discrete:
66
+ FitParams = namedtuple('FitParams', shape_names + ['loc', 'scale'])
67
+ else:
68
+ FitParams = namedtuple('FitParams', shape_names + ['loc'])
69
+
70
+ self.params = FitParams(*res.x)
71
+
72
+ # Optimizer can report success even when nllf is infinite
73
+ if res.success and not np.isfinite(self.nllf()):
74
+ res.success = False
75
+ res.message = ("Optimization converged to parameter values that "
76
+ "are inconsistent with the data.")
77
+ self.success = getattr(res, "success", None)
78
+ self.message = getattr(res, "message", None)
79
+
80
+ def __repr__(self):
81
+ keys = ["params", "success", "message"]
82
+ m = max(map(len, keys)) + 1
83
+ return '\n'.join([key.rjust(m) + ': ' + repr(getattr(self, key))
84
+ for key in keys if getattr(self, key) is not None])
85
+
86
+ def nllf(self, params=None, data=None):
87
+ """Negative log-likelihood function
88
+
89
+ Evaluates the negative of the log-likelihood function of the provided
90
+ data at the provided parameters.
91
+
92
+ Parameters
93
+ ----------
94
+ params : tuple, optional
95
+ The shape parameters, location, and (if applicable) scale of the
96
+ distribution as a single tuple. Default is the maximum likelihood
97
+ estimates (``self.params``).
98
+ data : array_like, optional
99
+ The data for which the log-likelihood function is to be evaluated.
100
+ Default is the data to which the distribution was fit.
101
+
102
+ Returns
103
+ -------
104
+ nllf : float
105
+ The negative of the log-likelihood function.
106
+
107
+ """
108
+ params = params if params is not None else self.params
109
+ data = data if data is not None else self._data
110
+ return self._dist.nnlf(theta=params, x=data)
111
+
112
+ def plot(self, ax=None, *, plot_type="hist"):
113
+ """Visually compare the data against the fitted distribution.
114
+
115
+ Available only if `matplotlib` is installed.
116
+
117
+ Parameters
118
+ ----------
119
+ ax : `matplotlib.axes.Axes`
120
+ Axes object to draw the plot onto, otherwise uses the current Axes.
121
+ plot_type : {"hist", "qq", "pp", "cdf"}
122
+ Type of plot to draw. Options include:
123
+
124
+ - "hist": Superposes the PDF/PMF of the fitted distribution
125
+ over a normalized histogram of the data.
126
+ - "qq": Scatter plot of theoretical quantiles against the
127
+ empirical quantiles. Specifically, the x-coordinates are the
128
+ values of the fitted distribution PPF evaluated at the
129
+ percentiles ``(np.arange(1, n) - 0.5)/n``, where ``n`` is the
130
+ number of data points, and the y-coordinates are the sorted
131
+ data points.
132
+ - "pp": Scatter plot of theoretical percentiles against the
133
+ observed percentiles. Specifically, the x-coordinates are the
134
+ percentiles ``(np.arange(1, n) - 0.5)/n``, where ``n`` is
135
+ the number of data points, and the y-coordinates are the values
136
+ of the fitted distribution CDF evaluated at the sorted
137
+ data points.
138
+ - "cdf": Superposes the CDF of the fitted distribution over the
139
+ empirical CDF. Specifically, the x-coordinates of the empirical
140
+ CDF are the sorted data points, and the y-coordinates are the
141
+ percentiles ``(np.arange(1, n) - 0.5)/n``, where ``n`` is
142
+ the number of data points.
143
+
144
+ Returns
145
+ -------
146
+ ax : `matplotlib.axes.Axes`
147
+ The matplotlib Axes object on which the plot was drawn.
148
+
149
+ Examples
150
+ --------
151
+ >>> import numpy as np
152
+ >>> from scipy import stats
153
+ >>> import matplotlib.pyplot as plt # matplotlib must be installed
154
+ >>> rng = np.random.default_rng()
155
+ >>> data = stats.nbinom(5, 0.5).rvs(size=1000, random_state=rng)
156
+ >>> bounds = [(0, 30), (0, 1)]
157
+ >>> res = stats.fit(stats.nbinom, data, bounds)
158
+ >>> ax = res.plot() # save matplotlib Axes object
159
+
160
+ The `matplotlib.axes.Axes` object can be used to customize the plot.
161
+ See `matplotlib.axes.Axes` documentation for details.
162
+
163
+ >>> ax.set_xlabel('number of trials') # customize axis label
164
+ >>> ax.get_children()[0].set_linewidth(5) # customize line widths
165
+ >>> ax.legend()
166
+ >>> plt.show()
167
+ """
168
+ try:
169
+ import matplotlib # noqa: F401
170
+ except ModuleNotFoundError as exc:
171
+ message = "matplotlib must be installed to use method `plot`."
172
+ raise ModuleNotFoundError(message) from exc
173
+
174
+ plots = {'histogram': self._hist_plot, 'qq': self._qq_plot,
175
+ 'pp': self._pp_plot, 'cdf': self._cdf_plot,
176
+ 'hist': self._hist_plot}
177
+ if plot_type.lower() not in plots:
178
+ message = f"`plot_type` must be one of {set(plots.keys())}"
179
+ raise ValueError(message)
180
+ plot = plots[plot_type.lower()]
181
+
182
+ if ax is None:
183
+ import matplotlib.pyplot as plt
184
+ ax = plt.gca()
185
+
186
+ fit_params = np.atleast_1d(self.params)
187
+
188
+ return plot(ax=ax, fit_params=fit_params)
189
+
190
+ def _hist_plot(self, ax, fit_params):
191
+ from matplotlib.ticker import MaxNLocator
192
+
193
+ support = self._dist.support(*fit_params)
194
+ lb = support[0] if np.isfinite(support[0]) else min(self._data)
195
+ ub = support[1] if np.isfinite(support[1]) else max(self._data)
196
+ pxf = "PMF" if self.discrete else "PDF"
197
+
198
+ if self.discrete:
199
+ x = np.arange(lb, ub + 2)
200
+ y = self.pxf(x, *fit_params)
201
+ ax.vlines(x[:-1], 0, y[:-1], label='Fitted Distribution PMF',
202
+ color='C0')
203
+ options = dict(density=True, bins=x, align='left', color='C1')
204
+ ax.xaxis.set_major_locator(MaxNLocator(integer=True))
205
+ ax.set_xlabel('k')
206
+ ax.set_ylabel('PMF')
207
+ else:
208
+ x = np.linspace(lb, ub, 200)
209
+ y = self.pxf(x, *fit_params)
210
+ ax.plot(x, y, '--', label='Fitted Distribution PDF', color='C0')
211
+ options = dict(density=True, bins=50, align='mid', color='C1')
212
+ ax.set_xlabel('x')
213
+ ax.set_ylabel('PDF')
214
+
215
+ if len(self._data) > 50 or self.discrete:
216
+ ax.hist(self._data, label="Histogram of Data", **options)
217
+ else:
218
+ ax.plot(self._data, np.zeros_like(self._data), "*",
219
+ label='Data', color='C1')
220
+
221
+ ax.set_title(rf"Fitted $\tt {self._dist.name}$ {pxf} and Histogram")
222
+ ax.legend(*ax.get_legend_handles_labels())
223
+ return ax
224
+
225
+ def _qp_plot(self, ax, fit_params, qq):
226
+ data = np.sort(self._data)
227
+ ps = self._plotting_positions(len(self._data))
228
+
229
+ if qq:
230
+ qp = "Quantiles"
231
+ plot_type = 'Q-Q'
232
+ x = self._dist.ppf(ps, *fit_params)
233
+ y = data
234
+ else:
235
+ qp = "Percentiles"
236
+ plot_type = 'P-P'
237
+ x = ps
238
+ y = self._dist.cdf(data, *fit_params)
239
+
240
+ ax.plot(x, y, '.', label=f'Fitted Distribution {plot_type}',
241
+ color='C0', zorder=1)
242
+ xlim = ax.get_xlim()
243
+ ylim = ax.get_ylim()
244
+ lim = [min(xlim[0], ylim[0]), max(xlim[1], ylim[1])]
245
+ if not qq:
246
+ lim = max(lim[0], 0), min(lim[1], 1)
247
+
248
+ if self.discrete and qq:
249
+ q_min, q_max = int(lim[0]), int(lim[1]+1)
250
+ q_ideal = np.arange(q_min, q_max)
251
+ # q_ideal = np.unique(self._dist.ppf(ps, *fit_params))
252
+ ax.plot(q_ideal, q_ideal, 'o', label='Reference', color='k',
253
+ alpha=0.25, markerfacecolor='none', clip_on=True)
254
+ elif self.discrete and not qq:
255
+ # The intent of this is to match the plot that would be produced
256
+ # if x were continuous on [0, 1] and y were cdf(ppf(x)).
257
+ # It can be approximated by letting x = np.linspace(0, 1, 1000),
258
+ # but this might not look great when zooming in. The vertical
259
+ # portions are included to indicate where the transition occurs
260
+ # where the data completely obscures the horizontal portions.
261
+ p_min, p_max = lim
262
+ a, b = self._dist.support(*fit_params)
263
+ p_min = max(p_min, 0 if np.isfinite(a) else 1e-3)
264
+ p_max = min(p_max, 1 if np.isfinite(b) else 1-1e-3)
265
+ q_min, q_max = self._dist.ppf([p_min, p_max], *fit_params)
266
+ qs = np.arange(q_min-1, q_max+1)
267
+ ps = self._dist.cdf(qs, *fit_params)
268
+ ax.step(ps, ps, '-', label='Reference', color='k', alpha=0.25,
269
+ clip_on=True)
270
+ else:
271
+ ax.plot(lim, lim, '-', label='Reference', color='k', alpha=0.25,
272
+ clip_on=True)
273
+
274
+ ax.set_xlim(lim)
275
+ ax.set_ylim(lim)
276
+ ax.set_xlabel(rf"Fitted $\tt {self._dist.name}$ Theoretical {qp}")
277
+ ax.set_ylabel(f"Data {qp}")
278
+ ax.set_title(rf"Fitted $\tt {self._dist.name}$ {plot_type} Plot")
279
+ ax.legend(*ax.get_legend_handles_labels())
280
+ ax.set_aspect('equal')
281
+ return ax
282
+
283
+ def _qq_plot(self, **kwargs):
284
+ return self._qp_plot(qq=True, **kwargs)
285
+
286
+ def _pp_plot(self, **kwargs):
287
+ return self._qp_plot(qq=False, **kwargs)
288
+
289
+ def _plotting_positions(self, n, a=.5):
290
+ # See https://en.wikipedia.org/wiki/Q%E2%80%93Q_plot#Plotting_positions
291
+ k = np.arange(1, n+1)
292
+ return (k-a) / (n + 1 - 2*a)
293
+
294
+ def _cdf_plot(self, ax, fit_params):
295
+ data = np.sort(self._data)
296
+ ecdf = self._plotting_positions(len(self._data))
297
+ ls = '--' if len(np.unique(data)) < 30 else '.'
298
+ xlabel = 'k' if self.discrete else 'x'
299
+ ax.step(data, ecdf, ls, label='Empirical CDF', color='C1', zorder=0)
300
+
301
+ xlim = ax.get_xlim()
302
+ q = np.linspace(*xlim, 300)
303
+ tcdf = self._dist.cdf(q, *fit_params)
304
+
305
+ ax.plot(q, tcdf, label='Fitted Distribution CDF', color='C0', zorder=1)
306
+ ax.set_xlim(xlim)
307
+ ax.set_ylim(0, 1)
308
+ ax.set_xlabel(xlabel)
309
+ ax.set_ylabel("CDF")
310
+ ax.set_title(rf"Fitted $\tt {self._dist.name}$ and Empirical CDF")
311
+ handles, labels = ax.get_legend_handles_labels()
312
+ ax.legend(handles[::-1], labels[::-1])
313
+ return ax
314
+
315
+
316
+ def fit(dist, data, bounds=None, *, guess=None, method='mle',
317
+ optimizer=optimize.differential_evolution):
318
+ r"""Fit a discrete or continuous distribution to data
319
+
320
+ Given a distribution, data, and bounds on the parameters of the
321
+ distribution, return maximum likelihood estimates of the parameters.
322
+
323
+ Parameters
324
+ ----------
325
+ dist : `scipy.stats.rv_continuous` or `scipy.stats.rv_discrete`
326
+ The object representing the distribution to be fit to the data.
327
+ data : 1D array_like
328
+ The data to which the distribution is to be fit. If the data contain
329
+ any of ``np.nan``, ``np.inf``, or -``np.inf``, the fit method will
330
+ raise a ``ValueError``.
331
+ bounds : dict or sequence of tuples, optional
332
+ If a dictionary, each key is the name of a parameter of the
333
+ distribution, and the corresponding value is a tuple containing the
334
+ lower and upper bound on that parameter. If the distribution is
335
+ defined only for a finite range of values of that parameter, no entry
336
+ for that parameter is required; e.g., some distributions have
337
+ parameters which must be on the interval [0, 1]. Bounds for parameters
338
+ location (``loc``) and scale (``scale``) are optional; by default,
339
+ they are fixed to 0 and 1, respectively.
340
+
341
+ If a sequence, element *i* is a tuple containing the lower and upper
342
+ bound on the *i*\ th parameter of the distribution. In this case,
343
+ bounds for *all* distribution shape parameters must be provided.
344
+ Optionally, bounds for location and scale may follow the
345
+ distribution shape parameters.
346
+
347
+ If a shape is to be held fixed (e.g. if it is known), the
348
+ lower and upper bounds may be equal. If a user-provided lower or upper
349
+ bound is beyond a bound of the domain for which the distribution is
350
+ defined, the bound of the distribution's domain will replace the
351
+ user-provided value. Similarly, parameters which must be integral
352
+ will be constrained to integral values within the user-provided bounds.
353
+ guess : dict or array_like, optional
354
+ If a dictionary, each key is the name of a parameter of the
355
+ distribution, and the corresponding value is a guess for the value
356
+ of the parameter.
357
+
358
+ If a sequence, element *i* is a guess for the *i*\ th parameter of the
359
+ distribution. In this case, guesses for *all* distribution shape
360
+ parameters must be provided.
361
+
362
+ If `guess` is not provided, guesses for the decision variables will
363
+ not be passed to the optimizer. If `guess` is provided, guesses for
364
+ any missing parameters will be set at the mean of the lower and
365
+ upper bounds. Guesses for parameters which must be integral will be
366
+ rounded to integral values, and guesses that lie outside the
367
+ intersection of the user-provided bounds and the domain of the
368
+ distribution will be clipped.
369
+ method : {'mle', 'mse'}
370
+ With ``method="mle"`` (default), the fit is computed by minimizing
371
+ the negative log-likelihood function. A large, finite penalty
372
+ (rather than infinite negative log-likelihood) is applied for
373
+ observations beyond the support of the distribution.
374
+ With ``method="mse"``, the fit is computed by minimizing
375
+ the negative log-product spacing function. The same penalty is applied
376
+ for observations beyond the support. We follow the approach of [1]_,
377
+ which is generalized for samples with repeated observations.
378
+ optimizer : callable, optional
379
+ `optimizer` is a callable that accepts the following positional
380
+ argument.
381
+
382
+ fun : callable
383
+ The objective function to be optimized. `fun` accepts one argument
384
+ ``x``, candidate shape parameters of the distribution, and returns
385
+ the objective function value given ``x``, `dist`, and the provided
386
+ `data`.
387
+ The job of `optimizer` is to find values of the decision variables
388
+ that minimizes `fun`.
389
+
390
+ `optimizer` must also accept the following keyword argument.
391
+
392
+ bounds : sequence of tuples
393
+ The bounds on values of the decision variables; each element will
394
+ be a tuple containing the lower and upper bound on a decision
395
+ variable.
396
+
397
+ If `guess` is provided, `optimizer` must also accept the following
398
+ keyword argument.
399
+
400
+ x0 : array_like
401
+ The guesses for each decision variable.
402
+
403
+ If the distribution has any shape parameters that must be integral or
404
+ if the distribution is discrete and the location parameter is not
405
+ fixed, `optimizer` must also accept the following keyword argument.
406
+
407
+ integrality : array_like of bools
408
+ For each decision variable, True if the decision variable
409
+ must be constrained to integer values and False if the decision
410
+ variable is continuous.
411
+
412
+ `optimizer` must return an object, such as an instance of
413
+ `scipy.optimize.OptimizeResult`, which holds the optimal values of
414
+ the decision variables in an attribute ``x``. If attributes
415
+ ``fun``, ``status``, or ``message`` are provided, they will be
416
+ included in the result object returned by `fit`.
417
+
418
+ Returns
419
+ -------
420
+ result : `~scipy.stats._result_classes.FitResult`
421
+ An object with the following fields.
422
+
423
+ params : namedtuple
424
+ A namedtuple containing the maximum likelihood estimates of the
425
+ shape parameters, location, and (if applicable) scale of the
426
+ distribution.
427
+ success : bool or None
428
+ Whether the optimizer considered the optimization to terminate
429
+ successfully or not.
430
+ message : str or None
431
+ Any status message provided by the optimizer.
432
+
433
+ The object has the following method:
434
+
435
+ nllf(params=None, data=None)
436
+ By default, the negative log-likelihood function at the fitted
437
+ `params` for the given `data`. Accepts a tuple containing
438
+ alternative shapes, location, and scale of the distribution and
439
+ an array of alternative data.
440
+
441
+ plot(ax=None)
442
+ Superposes the PDF/PMF of the fitted distribution over a normalized
443
+ histogram of the data.
444
+
445
+ See Also
446
+ --------
447
+ rv_continuous, rv_discrete
448
+
449
+ Notes
450
+ -----
451
+ Optimization is more likely to converge to the maximum likelihood estimate
452
+ when the user provides tight bounds containing the maximum likelihood
453
+ estimate. For example, when fitting a binomial distribution to data, the
454
+ number of experiments underlying each sample may be known, in which case
455
+ the corresponding shape parameter ``n`` can be fixed.
456
+
457
+ References
458
+ ----------
459
+ .. [1] Shao, Yongzhao, and Marjorie G. Hahn. "Maximum product of spacings
460
+ method: a unified formulation with illustration of strong
461
+ consistency." Illinois Journal of Mathematics 43.3 (1999): 489-499.
462
+
463
+ Examples
464
+ --------
465
+ Suppose we wish to fit a distribution to the following data.
466
+
467
+ >>> import numpy as np
468
+ >>> from scipy import stats
469
+ >>> rng = np.random.default_rng()
470
+ >>> dist = stats.nbinom
471
+ >>> shapes = (5, 0.5)
472
+ >>> data = dist.rvs(*shapes, size=1000, random_state=rng)
473
+
474
+ Suppose we do not know how the data were generated, but we suspect that
475
+ it follows a negative binomial distribution with parameters *n* and *p*\.
476
+ (See `scipy.stats.nbinom`.) We believe that the parameter *n* was fewer
477
+ than 30, and we know that the parameter *p* must lie on the interval
478
+ [0, 1]. We record this information in a variable `bounds` and pass
479
+ this information to `fit`.
480
+
481
+ >>> bounds = [(0, 30), (0, 1)]
482
+ >>> res = stats.fit(dist, data, bounds)
483
+
484
+ `fit` searches within the user-specified `bounds` for the
485
+ values that best match the data (in the sense of maximum likelihood
486
+ estimation). In this case, it found shape values similar to those
487
+ from which the data were actually generated.
488
+
489
+ >>> res.params
490
+ FitParams(n=5.0, p=0.5028157644634368, loc=0.0) # may vary
491
+
492
+ We can visualize the results by superposing the probability mass function
493
+ of the distribution (with the shapes fit to the data) over a normalized
494
+ histogram of the data.
495
+
496
+ >>> import matplotlib.pyplot as plt # matplotlib must be installed to plot
497
+ >>> res.plot()
498
+ >>> plt.show()
499
+
500
+ Note that the estimate for *n* was exactly integral; this is because
501
+ the domain of the `nbinom` PMF includes only integral *n*, and the `nbinom`
502
+ object "knows" that. `nbinom` also knows that the shape *p* must be a
503
+ value between 0 and 1. In such a case - when the domain of the distribution
504
+ with respect to a parameter is finite - we are not required to specify
505
+ bounds for the parameter.
506
+
507
+ >>> bounds = {'n': (0, 30)} # omit parameter p using a `dict`
508
+ >>> res2 = stats.fit(dist, data, bounds)
509
+ >>> res2.params
510
+ FitParams(n=5.0, p=0.5016492009232932, loc=0.0) # may vary
511
+
512
+ If we wish to force the distribution to be fit with *n* fixed at 6, we can
513
+ set both the lower and upper bounds on *n* to 6. Note, however, that the
514
+ value of the objective function being optimized is typically worse (higher)
515
+ in this case.
516
+
517
+ >>> bounds = {'n': (6, 6)} # fix parameter `n`
518
+ >>> res3 = stats.fit(dist, data, bounds)
519
+ >>> res3.params
520
+ FitParams(n=6.0, p=0.5486556076755706, loc=0.0) # may vary
521
+ >>> res3.nllf() > res.nllf()
522
+ True # may vary
523
+
524
+ Note that the numerical results of the previous examples are typical, but
525
+ they may vary because the default optimizer used by `fit`,
526
+ `scipy.optimize.differential_evolution`, is stochastic. However, we can
527
+ customize the settings used by the optimizer to ensure reproducibility -
528
+ or even use a different optimizer entirely - using the `optimizer`
529
+ parameter.
530
+
531
+ >>> from scipy.optimize import differential_evolution
532
+ >>> rng = np.random.default_rng(767585560716548)
533
+ >>> def optimizer(fun, bounds, *, integrality):
534
+ ... return differential_evolution(fun, bounds, strategy='best2bin',
535
+ ... rng=rng, integrality=integrality)
536
+ >>> bounds = [(0, 30), (0, 1)]
537
+ >>> res4 = stats.fit(dist, data, bounds, optimizer=optimizer)
538
+ >>> res4.params
539
+ FitParams(n=5.0, p=0.5015183149259951, loc=0.0)
540
+
541
+ """
542
+ # --- Input Validation / Standardization --- #
543
+ user_bounds = bounds
544
+ user_guess = guess
545
+
546
+ # distribution input validation and information collection
547
+ if hasattr(dist, "pdf"): # can't use isinstance for types
548
+ default_bounds = {'loc': (0, 0), 'scale': (1, 1)}
549
+ discrete = False
550
+ elif hasattr(dist, "pmf"):
551
+ default_bounds = {'loc': (0, 0)}
552
+ discrete = True
553
+ else:
554
+ message = ("`dist` must be an instance of `rv_continuous` "
555
+ "or `rv_discrete.`")
556
+ raise ValueError(message)
557
+
558
+ try:
559
+ param_info = dist._param_info()
560
+ except AttributeError as e:
561
+ message = (f"Distribution `{dist.name}` is not yet supported by "
562
+ "`scipy.stats.fit` because shape information has "
563
+ "not been defined.")
564
+ raise ValueError(message) from e
565
+
566
+ # data input validation
567
+ data = np.asarray(data)
568
+ if data.ndim != 1:
569
+ message = "`data` must be exactly one-dimensional."
570
+ raise ValueError(message)
571
+ if not (np.issubdtype(data.dtype, np.number)
572
+ and np.all(np.isfinite(data))):
573
+ message = "All elements of `data` must be finite numbers."
574
+ raise ValueError(message)
575
+
576
+ # bounds input validation and information collection
577
+ n_params = len(param_info)
578
+ n_shapes = n_params - (1 if discrete else 2)
579
+ param_list = [param.name for param in param_info]
580
+ param_names = ", ".join(param_list)
581
+ shape_names = ", ".join(param_list[:n_shapes])
582
+
583
+ if user_bounds is None:
584
+ user_bounds = {}
585
+
586
+ if isinstance(user_bounds, dict):
587
+ default_bounds.update(user_bounds)
588
+ user_bounds = default_bounds
589
+ user_bounds_array = np.empty((n_params, 2))
590
+ for i in range(n_params):
591
+ param_name = param_info[i].name
592
+ user_bound = user_bounds.pop(param_name, None)
593
+ if user_bound is None:
594
+ user_bound = param_info[i].domain
595
+ user_bounds_array[i] = user_bound
596
+ if user_bounds:
597
+ message = ("Bounds provided for the following unrecognized "
598
+ f"parameters will be ignored: {set(user_bounds)}")
599
+ warnings.warn(message, RuntimeWarning, stacklevel=2)
600
+
601
+ else:
602
+ try:
603
+ user_bounds = np.asarray(user_bounds, dtype=float)
604
+ if user_bounds.size == 0:
605
+ user_bounds = np.empty((0, 2))
606
+ except ValueError as e:
607
+ message = ("Each element of a `bounds` sequence must be a tuple "
608
+ "containing two elements: the lower and upper bound of "
609
+ "a distribution parameter.")
610
+ raise ValueError(message) from e
611
+ if (user_bounds.ndim != 2 or user_bounds.shape[1] != 2):
612
+ message = ("Each element of `bounds` must be a tuple specifying "
613
+ "the lower and upper bounds of a shape parameter")
614
+ raise ValueError(message)
615
+ if user_bounds.shape[0] < n_shapes:
616
+ message = (f"A `bounds` sequence must contain at least {n_shapes} "
617
+ "elements: tuples specifying the lower and upper "
618
+ f"bounds of all shape parameters {shape_names}.")
619
+ raise ValueError(message)
620
+ if user_bounds.shape[0] > n_params:
621
+ message = ("A `bounds` sequence may not contain more than "
622
+ f"{n_params} elements: tuples specifying the lower and "
623
+ "upper bounds of distribution parameters "
624
+ f"{param_names}.")
625
+ raise ValueError(message)
626
+
627
+ user_bounds_array = np.empty((n_params, 2))
628
+ user_bounds_array[n_shapes:] = list(default_bounds.values())
629
+ user_bounds_array[:len(user_bounds)] = user_bounds
630
+
631
+ user_bounds = user_bounds_array
632
+ validated_bounds = []
633
+ for i in range(n_params):
634
+ name = param_info[i].name
635
+ user_bound = user_bounds_array[i]
636
+ param_domain = param_info[i].domain
637
+ integral = param_info[i].integrality
638
+ combined = _combine_bounds(name, user_bound, param_domain, integral)
639
+ validated_bounds.append(combined)
640
+
641
+ bounds = np.asarray(validated_bounds)
642
+ integrality = [param.integrality for param in param_info]
643
+
644
+ # guess input validation
645
+
646
+ if user_guess is None:
647
+ guess_array = None
648
+ elif isinstance(user_guess, dict):
649
+ default_guess = {param.name: np.mean(bound)
650
+ for param, bound in zip(param_info, bounds)}
651
+ unrecognized = set(user_guess) - set(default_guess)
652
+ if unrecognized:
653
+ message = ("Guesses provided for the following unrecognized "
654
+ f"parameters will be ignored: {unrecognized}")
655
+ warnings.warn(message, RuntimeWarning, stacklevel=2)
656
+ default_guess.update(user_guess)
657
+
658
+ message = ("Each element of `guess` must be a scalar "
659
+ "guess for a distribution parameter.")
660
+ try:
661
+ guess_array = np.asarray([default_guess[param.name]
662
+ for param in param_info], dtype=float)
663
+ except ValueError as e:
664
+ raise ValueError(message) from e
665
+
666
+ else:
667
+ message = ("Each element of `guess` must be a scalar "
668
+ "guess for a distribution parameter.")
669
+ try:
670
+ user_guess = np.asarray(user_guess, dtype=float)
671
+ except ValueError as e:
672
+ raise ValueError(message) from e
673
+ if user_guess.ndim != 1:
674
+ raise ValueError(message)
675
+ if user_guess.shape[0] < n_shapes:
676
+ message = (f"A `guess` sequence must contain at least {n_shapes} "
677
+ "elements: scalar guesses for the distribution shape "
678
+ f"parameters {shape_names}.")
679
+ raise ValueError(message)
680
+ if user_guess.shape[0] > n_params:
681
+ message = ("A `guess` sequence may not contain more than "
682
+ f"{n_params} elements: scalar guesses for the "
683
+ f"distribution parameters {param_names}.")
684
+ raise ValueError(message)
685
+
686
+ guess_array = np.mean(bounds, axis=1)
687
+ guess_array[:len(user_guess)] = user_guess
688
+
689
+ if guess_array is not None:
690
+ guess_rounded = guess_array.copy()
691
+
692
+ guess_rounded[integrality] = np.round(guess_rounded[integrality])
693
+ rounded = np.where(guess_rounded != guess_array)[0]
694
+ for i in rounded:
695
+ message = (f"Guess for parameter `{param_info[i].name}` "
696
+ f"rounded from {guess_array[i]} to {guess_rounded[i]}.")
697
+ warnings.warn(message, RuntimeWarning, stacklevel=2)
698
+
699
+ guess_clipped = np.clip(guess_rounded, bounds[:, 0], bounds[:, 1])
700
+ clipped = np.where(guess_clipped != guess_rounded)[0]
701
+ for i in clipped:
702
+ message = (f"Guess for parameter `{param_info[i].name}` "
703
+ f"clipped from {guess_rounded[i]} to "
704
+ f"{guess_clipped[i]}.")
705
+ warnings.warn(message, RuntimeWarning, stacklevel=2)
706
+
707
+ guess = guess_clipped
708
+ else:
709
+ guess = None
710
+
711
+ # --- Fitting --- #
712
+ def nllf(free_params, data=data): # bind data NOW
713
+ with np.errstate(invalid='ignore', divide='ignore'):
714
+ return dist._penalized_nnlf(free_params, data)
715
+
716
+ def nlpsf(free_params, data=data): # bind data NOW
717
+ with np.errstate(invalid='ignore', divide='ignore'):
718
+ return dist._penalized_nlpsf(free_params, data)
719
+
720
+ methods = {'mle': nllf, 'mse': nlpsf}
721
+ objective = methods[method.lower()]
722
+
723
+ with np.errstate(invalid='ignore', divide='ignore'):
724
+ kwds = {}
725
+ if bounds is not None:
726
+ kwds['bounds'] = bounds
727
+ if np.any(integrality):
728
+ kwds['integrality'] = integrality
729
+ if guess is not None:
730
+ kwds['x0'] = guess
731
+ res = optimizer(objective, **kwds)
732
+
733
+ return FitResult(dist, data, discrete, res)
734
+
735
+
736
+ GoodnessOfFitResult = namedtuple('GoodnessOfFitResult',
737
+ ('fit_result', 'statistic', 'pvalue',
738
+ 'null_distribution'))
739
+
740
+
741
+ @_transition_to_rng('random_state')
742
+ def goodness_of_fit(dist, data, *, known_params=None, fit_params=None,
743
+ guessed_params=None, statistic='ad', n_mc_samples=9999,
744
+ rng=None):
745
+ r"""
746
+ Perform a goodness of fit test comparing data to a distribution family.
747
+
748
+ Given a distribution family and data, perform a test of the null hypothesis
749
+ that the data were drawn from a distribution in that family. Any known
750
+ parameters of the distribution may be specified. Remaining parameters of
751
+ the distribution will be fit to the data, and the p-value of the test
752
+ is computed accordingly. Several statistics for comparing the distribution
753
+ to data are available.
754
+
755
+ Parameters
756
+ ----------
757
+ dist : `scipy.stats.rv_continuous`
758
+ The object representing the distribution family under the null
759
+ hypothesis.
760
+ data : 1D array_like
761
+ Finite, uncensored data to be tested.
762
+ known_params : dict, optional
763
+ A dictionary containing name-value pairs of known distribution
764
+ parameters. Monte Carlo samples are randomly drawn from the
765
+ null-hypothesized distribution with these values of the parameters.
766
+ Before the statistic is evaluated for the observed `data` and each
767
+ Monte Carlo sample, only remaining unknown parameters of the
768
+ null-hypothesized distribution family are fit to the samples; the
769
+ known parameters are held fixed. If all parameters of the distribution
770
+ family are known, then the step of fitting the distribution family to
771
+ each sample is omitted.
772
+ fit_params : dict, optional
773
+ A dictionary containing name-value pairs of distribution parameters
774
+ that have already been fit to the data, e.g. using `scipy.stats.fit`
775
+ or the ``fit`` method of `dist`. Monte Carlo samples are drawn from the
776
+ null-hypothesized distribution with these specified values of the
777
+ parameter. However, these and all other unknown parameters of the
778
+ null-hypothesized distribution family are always fit to the sample,
779
+ whether that is the observed `data` or a Monte Carlo sample, before
780
+ the statistic is evaluated.
781
+ guessed_params : dict, optional
782
+ A dictionary containing name-value pairs of distribution parameters
783
+ which have been guessed. These parameters are always considered as
784
+ free parameters and are fit both to the provided `data` as well as
785
+ to the Monte Carlo samples drawn from the null-hypothesized
786
+ distribution. The purpose of these `guessed_params` is to be used as
787
+ initial values for the numerical fitting procedure.
788
+ statistic : {"ad", "ks", "cvm", "filliben"} or callable, optional
789
+ The statistic used to compare data to a distribution after fitting
790
+ unknown parameters of the distribution family to the data. The
791
+ Anderson-Darling ("ad") [1]_, Kolmogorov-Smirnov ("ks") [1]_,
792
+ Cramer-von Mises ("cvm") [1]_, and Filliben ("filliben") [7]_
793
+ statistics are available. Alternatively, a callable with signature
794
+ ``(dist, data, axis)`` may be supplied to compute the statistic. Here
795
+ ``dist`` is a frozen distribution object (potentially with array
796
+ parameters), ``data`` is an array of Monte Carlo samples (of
797
+ compatible shape), and ``axis`` is the axis of ``data`` along which
798
+ the statistic must be computed.
799
+ n_mc_samples : int, default: 9999
800
+ The number of Monte Carlo samples drawn from the null hypothesized
801
+ distribution to form the null distribution of the statistic. The
802
+ sample size of each is the same as the given `data`.
803
+ rng : `numpy.random.Generator`, optional
804
+ Pseudorandom number generator state. When `rng` is None, a new
805
+ `numpy.random.Generator` is created using entropy from the
806
+ operating system. Types other than `numpy.random.Generator` are
807
+ passed to `numpy.random.default_rng` to instantiate a ``Generator``.
808
+
809
+ Returns
810
+ -------
811
+ res : GoodnessOfFitResult
812
+ An object with the following attributes.
813
+
814
+ fit_result : `~scipy.stats._result_classes.FitResult`
815
+ An object representing the fit of the provided `dist` to `data`.
816
+ This object includes the values of distribution family parameters
817
+ that fully define the null-hypothesized distribution, that is,
818
+ the distribution from which Monte Carlo samples are drawn.
819
+ statistic : float
820
+ The value of the statistic comparing provided `data` to the
821
+ null-hypothesized distribution.
822
+ pvalue : float
823
+ The proportion of elements in the null distribution with
824
+ statistic values at least as extreme as the statistic value of the
825
+ provided `data`.
826
+ null_distribution : ndarray
827
+ The value of the statistic for each Monte Carlo sample
828
+ drawn from the null-hypothesized distribution.
829
+
830
+ Notes
831
+ -----
832
+ This is a generalized Monte Carlo goodness-of-fit procedure, special cases
833
+ of which correspond with various Anderson-Darling tests, Lilliefors' test,
834
+ etc. The test is described in [2]_, [3]_, and [4]_ as a parametric
835
+ bootstrap test. This is a Monte Carlo test in which parameters that
836
+ specify the distribution from which samples are drawn have been estimated
837
+ from the data. We describe the test using "Monte Carlo" rather than
838
+ "parametric bootstrap" throughout to avoid confusion with the more familiar
839
+ nonparametric bootstrap, and describe how the test is performed below.
840
+
841
+ *Traditional goodness of fit tests*
842
+
843
+ Traditionally, critical values corresponding with a fixed set of
844
+ significance levels are pre-calculated using Monte Carlo methods. Users
845
+ perform the test by calculating the value of the test statistic only for
846
+ their observed `data` and comparing this value to tabulated critical
847
+ values. This practice is not very flexible, as tables are not available for
848
+ all distributions and combinations of known and unknown parameter values.
849
+ Also, results can be inaccurate when critical values are interpolated from
850
+ limited tabulated data to correspond with the user's sample size and
851
+ fitted parameter values. To overcome these shortcomings, this function
852
+ allows the user to perform the Monte Carlo trials adapted to their
853
+ particular data.
854
+
855
+ *Algorithmic overview*
856
+
857
+ In brief, this routine executes the following steps:
858
+
859
+ 1. Fit unknown parameters to the given `data`, thereby forming the
860
+ "null-hypothesized" distribution, and compute the statistic of
861
+ this pair of data and distribution.
862
+ 2. Draw random samples from this null-hypothesized distribution.
863
+ 3. Fit the unknown parameters to each random sample.
864
+ 4. Calculate the statistic between each sample and the distribution that
865
+ has been fit to the sample.
866
+ 5. Compare the value of the statistic corresponding with `data` from (1)
867
+ against the values of the statistic corresponding with the random
868
+ samples from (4). The p-value is the proportion of samples with a
869
+ statistic value greater than or equal to the statistic of the observed
870
+ data.
871
+
872
+ In more detail, the steps are as follows.
873
+
874
+ First, any unknown parameters of the distribution family specified by
875
+ `dist` are fit to the provided `data` using maximum likelihood estimation.
876
+ (One exception is the normal distribution with unknown location and scale:
877
+ we use the bias-corrected standard deviation ``np.std(data, ddof=1)`` for
878
+ the scale as recommended in [1]_.)
879
+ These values of the parameters specify a particular member of the
880
+ distribution family referred to as the "null-hypothesized distribution",
881
+ that is, the distribution from which the data were sampled under the null
882
+ hypothesis. The `statistic`, which compares data to a distribution, is
883
+ computed between `data` and the null-hypothesized distribution.
884
+
885
+ Next, many (specifically `n_mc_samples`) new samples, each containing the
886
+ same number of observations as `data`, are drawn from the
887
+ null-hypothesized distribution. All unknown parameters of the distribution
888
+ family `dist` are fit to *each resample*, and the `statistic` is computed
889
+ between each sample and its corresponding fitted distribution. These
890
+ values of the statistic form the Monte Carlo null distribution (not to be
891
+ confused with the "null-hypothesized distribution" above).
892
+
893
+ The p-value of the test is the proportion of statistic values in the Monte
894
+ Carlo null distribution that are at least as extreme as the statistic value
895
+ of the provided `data`. More precisely, the p-value is given by
896
+
897
+ .. math::
898
+
899
+ p = \frac{b + 1}
900
+ {m + 1}
901
+
902
+ where :math:`b` is the number of statistic values in the Monte Carlo null
903
+ distribution that are greater than or equal to the statistic value
904
+ calculated for `data`, and :math:`m` is the number of elements in the
905
+ Monte Carlo null distribution (`n_mc_samples`). The addition of :math:`1`
906
+ to the numerator and denominator can be thought of as including the
907
+ value of the statistic corresponding with `data` in the null distribution,
908
+ but a more formal explanation is given in [5]_.
909
+
910
+ *Limitations*
911
+
912
+ The test can be very slow for some distribution families because unknown
913
+ parameters of the distribution family must be fit to each of the Monte
914
+ Carlo samples, and for most distributions in SciPy, distribution fitting
915
+ performed via numerical optimization.
916
+
917
+ *Anti-Pattern*
918
+
919
+ For this reason, it may be tempting
920
+ to treat parameters of the distribution pre-fit to `data` (by the user)
921
+ as though they were `known_params`, as specification of all parameters of
922
+ the distribution precludes the need to fit the distribution to each Monte
923
+ Carlo sample. (This is essentially how the original Kilmogorov-Smirnov
924
+ test is performed.) Although such a test can provide evidence against the
925
+ null hypothesis, the test is conservative in the sense that small p-values
926
+ will tend to (greatly) *overestimate* the probability of making a type I
927
+ error (that is, rejecting the null hypothesis although it is true), and the
928
+ power of the test is low (that is, it is less likely to reject the null
929
+ hypothesis even when the null hypothesis is false).
930
+ This is because the Monte Carlo samples are less likely to agree with the
931
+ null-hypothesized distribution as well as `data`. This tends to increase
932
+ the values of the statistic recorded in the null distribution, so that a
933
+ larger number of them exceed the value of statistic for `data`, thereby
934
+ inflating the p-value.
935
+
936
+ References
937
+ ----------
938
+ .. [1] M. A. Stephens (1974). "EDF Statistics for Goodness of Fit and
939
+ Some Comparisons." Journal of the American Statistical Association,
940
+ Vol. 69, pp. 730-737.
941
+ .. [2] W. Stute, W. G. Manteiga, and M. P. Quindimil (1993).
942
+ "Bootstrap based goodness-of-fit-tests." Metrika 40.1: 243-256.
943
+ .. [3] C. Genest, & B Rémillard. (2008). "Validity of the parametric
944
+ bootstrap for goodness-of-fit testing in semiparametric models."
945
+ Annales de l'IHP Probabilités et statistiques. Vol. 44. No. 6.
946
+ .. [4] I. Kojadinovic and J. Yan (2012). "Goodness-of-fit testing based on
947
+ a weighted bootstrap: A fast large-sample alternative to the
948
+ parametric bootstrap." Canadian Journal of Statistics 40.3: 480-500.
949
+ .. [5] B. Phipson and G. K. Smyth (2010). "Permutation P-values Should
950
+ Never Be Zero: Calculating Exact P-values When Permutations Are
951
+ Randomly Drawn." Statistical Applications in Genetics and Molecular
952
+ Biology 9.1.
953
+ .. [6] H. W. Lilliefors (1967). "On the Kolmogorov-Smirnov test for
954
+ normality with mean and variance unknown." Journal of the American
955
+ statistical Association 62.318: 399-402.
956
+ .. [7] Filliben, James J. "The probability plot correlation coefficient
957
+ test for normality." Technometrics 17.1 (1975): 111-117.
958
+
959
+ Examples
960
+ --------
961
+ A well-known test of the null hypothesis that data were drawn from a
962
+ given distribution is the Kolmogorov-Smirnov (KS) test, available in SciPy
963
+ as `scipy.stats.ks_1samp`. Suppose we wish to test whether the following
964
+ data:
965
+
966
+ >>> import numpy as np
967
+ >>> from scipy import stats
968
+ >>> rng = np.random.default_rng()
969
+ >>> x = stats.uniform.rvs(size=75, random_state=rng)
970
+
971
+ were sampled from a normal distribution. To perform a KS test, the
972
+ empirical distribution function of the observed data will be compared
973
+ against the (theoretical) cumulative distribution function of a normal
974
+ distribution. Of course, to do this, the normal distribution under the null
975
+ hypothesis must be fully specified. This is commonly done by first fitting
976
+ the ``loc`` and ``scale`` parameters of the distribution to the observed
977
+ data, then performing the test.
978
+
979
+ >>> loc, scale = np.mean(x), np.std(x, ddof=1)
980
+ >>> cdf = stats.norm(loc, scale).cdf
981
+ >>> stats.ks_1samp(x, cdf)
982
+ KstestResult(statistic=0.1119257570456813,
983
+ pvalue=0.2827756409939257,
984
+ statistic_location=0.7751845155861765,
985
+ statistic_sign=-1)
986
+
987
+ An advantage of the KS-test is that the p-value - the probability of
988
+ obtaining a value of the test statistic under the null hypothesis as
989
+ extreme as the value obtained from the observed data - can be calculated
990
+ exactly and efficiently. `goodness_of_fit` can only approximate these
991
+ results.
992
+
993
+ >>> known_params = {'loc': loc, 'scale': scale}
994
+ >>> res = stats.goodness_of_fit(stats.norm, x, known_params=known_params,
995
+ ... statistic='ks', rng=rng)
996
+ >>> res.statistic, res.pvalue
997
+ (0.1119257570456813, 0.2788)
998
+
999
+ The statistic matches exactly, but the p-value is estimated by forming
1000
+ a "Monte Carlo null distribution", that is, by explicitly drawing random
1001
+ samples from `scipy.stats.norm` with the provided parameters and
1002
+ calculating the stastic for each. The fraction of these statistic values
1003
+ at least as extreme as ``res.statistic`` approximates the exact p-value
1004
+ calculated by `scipy.stats.ks_1samp`.
1005
+
1006
+ However, in many cases, we would prefer to test only that the data were
1007
+ sampled from one of *any* member of the normal distribution family, not
1008
+ specifically from the normal distribution with the location and scale
1009
+ fitted to the observed sample. In this case, Lilliefors [6]_ argued that
1010
+ the KS test is far too conservative (that is, the p-value overstates
1011
+ the actual probability of rejecting a true null hypothesis) and thus lacks
1012
+ power - the ability to reject the null hypothesis when the null hypothesis
1013
+ is actually false.
1014
+ Indeed, our p-value above is approximately 0.28, which is far too large
1015
+ to reject the null hypothesis at any common significance level.
1016
+
1017
+ Consider why this might be. Note that in the KS test above, the statistic
1018
+ always compares data against the CDF of a normal distribution fitted to the
1019
+ *observed data*. This tends to reduce the value of the statistic for the
1020
+ observed data, but it is "unfair" when computing the statistic for other
1021
+ samples, such as those we randomly draw to form the Monte Carlo null
1022
+ distribution. It is easy to correct for this: whenever we compute the KS
1023
+ statistic of a sample, we use the CDF of a normal distribution fitted
1024
+ to *that sample*. The null distribution in this case has not been
1025
+ calculated exactly and is tyically approximated using Monte Carlo methods
1026
+ as described above. This is where `goodness_of_fit` excels.
1027
+
1028
+ >>> res = stats.goodness_of_fit(stats.norm, x, statistic='ks',
1029
+ ... rng=rng)
1030
+ >>> res.statistic, res.pvalue
1031
+ (0.1119257570456813, 0.0196)
1032
+
1033
+ Indeed, this p-value is much smaller, and small enough to (correctly)
1034
+ reject the null hypothesis at common significance levels, including 5% and
1035
+ 2.5%.
1036
+
1037
+ However, the KS statistic is not very sensitive to all deviations from
1038
+ normality. The original advantage of the KS statistic was the ability
1039
+ to compute the null distribution theoretically, but a more sensitive
1040
+ statistic - resulting in a higher test power - can be used now that we can
1041
+ approximate the null distribution
1042
+ computationally. The Anderson-Darling statistic [1]_ tends to be more
1043
+ sensitive, and critical values of the this statistic have been tabulated
1044
+ for various significance levels and sample sizes using Monte Carlo methods.
1045
+
1046
+ >>> res = stats.anderson(x, 'norm')
1047
+ >>> print(res.statistic)
1048
+ 1.2139573337497467
1049
+ >>> print(res.critical_values)
1050
+ [0.549 0.625 0.75 0.875 1.041]
1051
+ >>> print(res.significance_level)
1052
+ [15. 10. 5. 2.5 1. ]
1053
+
1054
+ Here, the observed value of the statistic exceeds the critical value
1055
+ corresponding with a 1% significance level. This tells us that the p-value
1056
+ of the observed data is less than 1%, but what is it? We could interpolate
1057
+ from these (already-interpolated) values, but `goodness_of_fit` can
1058
+ estimate it directly.
1059
+
1060
+ >>> res = stats.goodness_of_fit(stats.norm, x, statistic='ad',
1061
+ ... rng=rng)
1062
+ >>> res.statistic, res.pvalue
1063
+ (1.2139573337497467, 0.0034)
1064
+
1065
+ A further advantage is that use of `goodness_of_fit` is not limited to
1066
+ a particular set of distributions or conditions on which parameters
1067
+ are known versus which must be estimated from data. Instead,
1068
+ `goodness_of_fit` can estimate p-values relatively quickly for any
1069
+ distribution with a sufficiently fast and reliable ``fit`` method. For
1070
+ instance, here we perform a goodness of fit test using the Cramer-von Mises
1071
+ statistic against the Rayleigh distribution with known location and unknown
1072
+ scale.
1073
+
1074
+ >>> rng = np.random.default_rng()
1075
+ >>> x = stats.chi(df=2.2, loc=0, scale=2).rvs(size=1000, random_state=rng)
1076
+ >>> res = stats.goodness_of_fit(stats.rayleigh, x, statistic='cvm',
1077
+ ... known_params={'loc': 0}, rng=rng)
1078
+
1079
+ This executes fairly quickly, but to check the reliability of the ``fit``
1080
+ method, we should inspect the fit result.
1081
+
1082
+ >>> res.fit_result # location is as specified, and scale is reasonable
1083
+ params: FitParams(loc=0.0, scale=2.1026719844231243)
1084
+ success: True
1085
+ message: 'The fit was performed successfully.'
1086
+ >>> import matplotlib.pyplot as plt # matplotlib must be installed to plot
1087
+ >>> res.fit_result.plot()
1088
+ >>> plt.show()
1089
+
1090
+ If the distribution is not fit to the observed data as well as possible,
1091
+ the test may not control the type I error rate, that is, the chance of
1092
+ rejecting the null hypothesis even when it is true.
1093
+
1094
+ We should also look for extreme outliers in the null distribution that
1095
+ may be caused by unreliable fitting. These do not necessarily invalidate
1096
+ the result, but they tend to reduce the test's power.
1097
+
1098
+ >>> _, ax = plt.subplots()
1099
+ >>> ax.hist(np.log10(res.null_distribution))
1100
+ >>> ax.set_xlabel("log10 of CVM statistic under the null hypothesis")
1101
+ >>> ax.set_ylabel("Frequency")
1102
+ >>> ax.set_title("Histogram of the Monte Carlo null distribution")
1103
+ >>> plt.show()
1104
+
1105
+ This plot seems reassuring.
1106
+
1107
+ If ``fit`` method is working reliably, and if the distribution of the test
1108
+ statistic is not particularly sensitive to the values of the fitted
1109
+ parameters, then the p-value provided by `goodness_of_fit` is expected to
1110
+ be a good approximation.
1111
+
1112
+ >>> res.statistic, res.pvalue
1113
+ (0.2231991510248692, 0.0525)
1114
+
1115
+ """
1116
+ args = _gof_iv(dist, data, known_params, fit_params, guessed_params,
1117
+ statistic, n_mc_samples, rng)
1118
+ (dist, data, fixed_nhd_params, fixed_rfd_params, guessed_nhd_params,
1119
+ guessed_rfd_params, statistic, n_mc_samples_int, rng) = args
1120
+
1121
+ # Fit null hypothesis distribution to data
1122
+ nhd_fit_fun = _get_fit_fun(dist, data, guessed_nhd_params,
1123
+ fixed_nhd_params)
1124
+ nhd_vals = nhd_fit_fun(data)
1125
+ nhd_dist = dist(*nhd_vals)
1126
+
1127
+ def rvs(size):
1128
+ return nhd_dist.rvs(size=size, random_state=rng)
1129
+
1130
+ # Define statistic
1131
+ fit_fun = _get_fit_fun(dist, data, guessed_rfd_params, fixed_rfd_params)
1132
+ if callable(statistic):
1133
+ compare_fun = statistic
1134
+ else:
1135
+ compare_fun = _compare_dict[statistic]
1136
+ alternative = getattr(compare_fun, 'alternative', 'greater')
1137
+
1138
+ def statistic_fun(data, axis):
1139
+ # Make things simple by always working along the last axis.
1140
+ data = np.moveaxis(data, axis, -1)
1141
+ rfd_vals = fit_fun(data)
1142
+ rfd_dist = dist(*rfd_vals)
1143
+ return compare_fun(rfd_dist, data, axis=-1)
1144
+
1145
+ res = stats.monte_carlo_test(data, rvs, statistic_fun, vectorized=True,
1146
+ n_resamples=n_mc_samples, axis=-1,
1147
+ alternative=alternative)
1148
+ opt_res = optimize.OptimizeResult()
1149
+ opt_res.success = True
1150
+ opt_res.message = "The fit was performed successfully."
1151
+ opt_res.x = nhd_vals
1152
+ # Only continuous distributions for now, hence discrete=False
1153
+ # There's no fundamental limitation; it's just that we're not using
1154
+ # stats.fit, discrete distributions don't have `fit` method, and
1155
+ # we haven't written any vectorized fit functions for a discrete
1156
+ # distribution yet.
1157
+ return GoodnessOfFitResult(FitResult(dist, data, False, opt_res),
1158
+ res.statistic, res.pvalue,
1159
+ res.null_distribution)
1160
+
1161
+
1162
+ def _get_fit_fun(dist, data, guessed_params, fixed_params):
1163
+
1164
+ shape_names = [] if dist.shapes is None else dist.shapes.split(", ")
1165
+ param_names = shape_names + ['loc', 'scale']
1166
+ fparam_names = ['f'+name for name in param_names]
1167
+ all_fixed = not set(fparam_names).difference(fixed_params)
1168
+ guessed_shapes = [guessed_params.pop(x, None)
1169
+ for x in shape_names if x in guessed_params]
1170
+
1171
+ if all_fixed:
1172
+ def fit_fun(data):
1173
+ return [fixed_params[name] for name in fparam_names]
1174
+ # Define statistic, including fitting distribution to data
1175
+ elif dist in _fit_funs:
1176
+ def fit_fun(data):
1177
+ params = _fit_funs[dist](data, **fixed_params)
1178
+ params = np.asarray(np.broadcast_arrays(*params))
1179
+ if params.ndim > 1:
1180
+ params = params[..., np.newaxis]
1181
+ return params
1182
+ else:
1183
+ def fit_fun_1d(data):
1184
+ return dist.fit(data, *guessed_shapes, **guessed_params,
1185
+ **fixed_params)
1186
+
1187
+ def fit_fun(data):
1188
+ params = np.apply_along_axis(fit_fun_1d, axis=-1, arr=data)
1189
+ if params.ndim > 1:
1190
+ params = params.T[..., np.newaxis]
1191
+ return params
1192
+
1193
+ return fit_fun
1194
+
1195
+
1196
+ # Vectorized fitting functions. These are to accept ND `data` in which each
1197
+ # row (slice along last axis) is a sample to fit and scalar fixed parameters.
1198
+ # They return a tuple of shape parameter arrays, each of shape data.shape[:-1].
1199
+ def _fit_norm(data, floc=None, fscale=None):
1200
+ loc = floc
1201
+ scale = fscale
1202
+ if loc is None and scale is None:
1203
+ loc = np.mean(data, axis=-1)
1204
+ scale = np.std(data, ddof=1, axis=-1)
1205
+ elif loc is None:
1206
+ loc = np.mean(data, axis=-1)
1207
+ elif scale is None:
1208
+ scale = np.sqrt(((data - loc)**2).mean(axis=-1))
1209
+ return loc, scale
1210
+
1211
+
1212
+ _fit_funs = {stats.norm: _fit_norm} # type: ignore[attr-defined]
1213
+
1214
+
1215
+ # Vectorized goodness of fit statistic functions. These accept a frozen
1216
+ # distribution object and `data` in which each row (slice along last axis) is
1217
+ # a sample.
1218
+
1219
+
1220
+ def _anderson_darling(dist, data, axis):
1221
+ x = np.sort(data, axis=-1)
1222
+ n = data.shape[-1]
1223
+ i = np.arange(1, n+1)
1224
+ Si = (2*i - 1)/n * (dist.logcdf(x) + dist.logsf(x[..., ::-1]))
1225
+ S = np.sum(Si, axis=-1)
1226
+ return -n - S
1227
+
1228
+
1229
+ def _compute_dplus(cdfvals): # adapted from _stats_py before gh-17062
1230
+ n = cdfvals.shape[-1]
1231
+ return (np.arange(1.0, n + 1) / n - cdfvals).max(axis=-1)
1232
+
1233
+
1234
+ def _compute_dminus(cdfvals):
1235
+ n = cdfvals.shape[-1]
1236
+ return (cdfvals - np.arange(0.0, n)/n).max(axis=-1)
1237
+
1238
+
1239
+ def _kolmogorov_smirnov(dist, data, axis=-1):
1240
+ x = np.sort(data, axis=axis)
1241
+ cdfvals = dist.cdf(x)
1242
+ cdfvals = np.moveaxis(cdfvals, axis, -1)
1243
+ Dplus = _compute_dplus(cdfvals) # always works along last axis
1244
+ Dminus = _compute_dminus(cdfvals)
1245
+ return np.maximum(Dplus, Dminus)
1246
+
1247
+
1248
+ def _corr(X, M):
1249
+ # Correlation coefficient r, simplified and vectorized as we need it.
1250
+ # See [7] Equation (2). Lemma 1/2 are only for distributions symmetric
1251
+ # about 0.
1252
+ Xm = X.mean(axis=-1, keepdims=True)
1253
+ Mm = M.mean(axis=-1, keepdims=True)
1254
+ num = np.sum((X - Xm) * (M - Mm), axis=-1)
1255
+ den = np.sqrt(np.sum((X - Xm)**2, axis=-1) * np.sum((M - Mm)**2, axis=-1))
1256
+ return num/den
1257
+
1258
+
1259
+ def _filliben(dist, data, axis):
1260
+ # [7] Section 8 # 1
1261
+ X = np.sort(data, axis=-1)
1262
+
1263
+ # [7] Section 8 # 2
1264
+ n = data.shape[-1]
1265
+ k = np.arange(1, n+1)
1266
+ # Filliben used an approximation for the uniform distribution order
1267
+ # statistic medians.
1268
+ # m = (k - .3175)/(n + 0.365)
1269
+ # m[-1] = 0.5**(1/n)
1270
+ # m[0] = 1 - m[-1]
1271
+ # We can just as easily use the (theoretically) exact values. See e.g.
1272
+ # https://en.wikipedia.org/wiki/Order_statistic
1273
+ # "Order statistics sampled from a uniform distribution"
1274
+ m = stats.beta(k, n + 1 - k).median()
1275
+
1276
+ # [7] Section 8 # 3
1277
+ M = dist.ppf(m)
1278
+
1279
+ # [7] Section 8 # 4
1280
+ return _corr(X, M)
1281
+ _filliben.alternative = 'less' # type: ignore[attr-defined]
1282
+
1283
+
1284
+ def _cramer_von_mises(dist, data, axis):
1285
+ x = np.sort(data, axis=-1)
1286
+ n = data.shape[-1]
1287
+ cdfvals = dist.cdf(x)
1288
+ u = (2*np.arange(1, n+1) - 1)/(2*n)
1289
+ w = 1 / (12*n) + np.sum((u - cdfvals)**2, axis=-1)
1290
+ return w
1291
+
1292
+
1293
+ _compare_dict = {"ad": _anderson_darling, "ks": _kolmogorov_smirnov,
1294
+ "cvm": _cramer_von_mises, "filliben": _filliben}
1295
+
1296
+
1297
+ def _gof_iv(dist, data, known_params, fit_params, guessed_params, statistic,
1298
+ n_mc_samples, rng):
1299
+
1300
+ if not isinstance(dist, stats.rv_continuous):
1301
+ message = ("`dist` must be a (non-frozen) instance of "
1302
+ "`stats.rv_continuous`.")
1303
+ raise TypeError(message)
1304
+
1305
+ data = np.asarray(data, dtype=float)
1306
+ if not data.ndim == 1:
1307
+ message = "`data` must be a one-dimensional array of numbers."
1308
+ raise ValueError(message)
1309
+
1310
+ # Leave validation of these key/value pairs to the `fit` method,
1311
+ # but collect these into dictionaries that will be used
1312
+ known_params = known_params or dict()
1313
+ fit_params = fit_params or dict()
1314
+ guessed_params = guessed_params or dict()
1315
+
1316
+ known_params_f = {("f"+key): val for key, val in known_params.items()}
1317
+ fit_params_f = {("f"+key): val for key, val in fit_params.items()}
1318
+
1319
+ # These are the values of parameters of the null distribution family
1320
+ # with which resamples are drawn
1321
+ fixed_nhd_params = known_params_f.copy()
1322
+ fixed_nhd_params.update(fit_params_f)
1323
+
1324
+ # These are fixed when fitting the distribution family to resamples
1325
+ fixed_rfd_params = known_params_f.copy()
1326
+
1327
+ # These are used as guesses when fitting the distribution family to
1328
+ # the original data
1329
+ guessed_nhd_params = guessed_params.copy()
1330
+
1331
+ # These are used as guesses when fitting the distribution family to
1332
+ # resamples
1333
+ guessed_rfd_params = fit_params.copy()
1334
+ guessed_rfd_params.update(guessed_params)
1335
+
1336
+ if not callable(statistic):
1337
+ statistic = statistic.lower()
1338
+ statistics = {'ad', 'ks', 'cvm', 'filliben'}
1339
+ if statistic not in statistics:
1340
+ message = f"`statistic` must be one of {statistics}."
1341
+ raise ValueError(message)
1342
+
1343
+ n_mc_samples_int = int(n_mc_samples)
1344
+ if n_mc_samples_int != n_mc_samples:
1345
+ message = "`n_mc_samples` must be an integer."
1346
+ raise TypeError(message)
1347
+
1348
+ rng = check_random_state(rng)
1349
+
1350
+ return (dist, data, fixed_nhd_params, fixed_rfd_params, guessed_nhd_params,
1351
+ guessed_rfd_params, statistic, n_mc_samples_int, rng)