scipy 1.16.2__cp311-cp311-win_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1530) hide show
  1. scipy/__config__.py +161 -0
  2. scipy/__init__.py +150 -0
  3. scipy/_cyutility.cp311-win_arm64.lib +0 -0
  4. scipy/_cyutility.cp311-win_arm64.pyd +0 -0
  5. scipy/_distributor_init.py +18 -0
  6. scipy/_lib/__init__.py +14 -0
  7. scipy/_lib/_array_api.py +931 -0
  8. scipy/_lib/_array_api_compat_vendor.py +9 -0
  9. scipy/_lib/_array_api_no_0d.py +103 -0
  10. scipy/_lib/_bunch.py +229 -0
  11. scipy/_lib/_ccallback.py +251 -0
  12. scipy/_lib/_ccallback_c.cp311-win_arm64.lib +0 -0
  13. scipy/_lib/_ccallback_c.cp311-win_arm64.pyd +0 -0
  14. scipy/_lib/_disjoint_set.py +254 -0
  15. scipy/_lib/_docscrape.py +761 -0
  16. scipy/_lib/_elementwise_iterative_method.py +346 -0
  17. scipy/_lib/_fpumode.cp311-win_arm64.lib +0 -0
  18. scipy/_lib/_fpumode.cp311-win_arm64.pyd +0 -0
  19. scipy/_lib/_gcutils.py +105 -0
  20. scipy/_lib/_pep440.py +487 -0
  21. scipy/_lib/_sparse.py +41 -0
  22. scipy/_lib/_test_ccallback.cp311-win_arm64.lib +0 -0
  23. scipy/_lib/_test_ccallback.cp311-win_arm64.pyd +0 -0
  24. scipy/_lib/_test_deprecation_call.cp311-win_arm64.lib +0 -0
  25. scipy/_lib/_test_deprecation_call.cp311-win_arm64.pyd +0 -0
  26. scipy/_lib/_test_deprecation_def.cp311-win_arm64.lib +0 -0
  27. scipy/_lib/_test_deprecation_def.cp311-win_arm64.pyd +0 -0
  28. scipy/_lib/_testutils.py +373 -0
  29. scipy/_lib/_threadsafety.py +58 -0
  30. scipy/_lib/_tmpdirs.py +86 -0
  31. scipy/_lib/_uarray/LICENSE +29 -0
  32. scipy/_lib/_uarray/__init__.py +116 -0
  33. scipy/_lib/_uarray/_backend.py +707 -0
  34. scipy/_lib/_uarray/_uarray.cp311-win_arm64.lib +0 -0
  35. scipy/_lib/_uarray/_uarray.cp311-win_arm64.pyd +0 -0
  36. scipy/_lib/_util.py +1283 -0
  37. scipy/_lib/array_api_compat/__init__.py +22 -0
  38. scipy/_lib/array_api_compat/_internal.py +59 -0
  39. scipy/_lib/array_api_compat/common/__init__.py +1 -0
  40. scipy/_lib/array_api_compat/common/_aliases.py +727 -0
  41. scipy/_lib/array_api_compat/common/_fft.py +213 -0
  42. scipy/_lib/array_api_compat/common/_helpers.py +1058 -0
  43. scipy/_lib/array_api_compat/common/_linalg.py +232 -0
  44. scipy/_lib/array_api_compat/common/_typing.py +192 -0
  45. scipy/_lib/array_api_compat/cupy/__init__.py +13 -0
  46. scipy/_lib/array_api_compat/cupy/_aliases.py +156 -0
  47. scipy/_lib/array_api_compat/cupy/_info.py +336 -0
  48. scipy/_lib/array_api_compat/cupy/_typing.py +31 -0
  49. scipy/_lib/array_api_compat/cupy/fft.py +36 -0
  50. scipy/_lib/array_api_compat/cupy/linalg.py +49 -0
  51. scipy/_lib/array_api_compat/dask/__init__.py +0 -0
  52. scipy/_lib/array_api_compat/dask/array/__init__.py +12 -0
  53. scipy/_lib/array_api_compat/dask/array/_aliases.py +376 -0
  54. scipy/_lib/array_api_compat/dask/array/_info.py +416 -0
  55. scipy/_lib/array_api_compat/dask/array/fft.py +21 -0
  56. scipy/_lib/array_api_compat/dask/array/linalg.py +72 -0
  57. scipy/_lib/array_api_compat/numpy/__init__.py +28 -0
  58. scipy/_lib/array_api_compat/numpy/_aliases.py +190 -0
  59. scipy/_lib/array_api_compat/numpy/_info.py +366 -0
  60. scipy/_lib/array_api_compat/numpy/_typing.py +30 -0
  61. scipy/_lib/array_api_compat/numpy/fft.py +35 -0
  62. scipy/_lib/array_api_compat/numpy/linalg.py +143 -0
  63. scipy/_lib/array_api_compat/torch/__init__.py +22 -0
  64. scipy/_lib/array_api_compat/torch/_aliases.py +855 -0
  65. scipy/_lib/array_api_compat/torch/_info.py +369 -0
  66. scipy/_lib/array_api_compat/torch/_typing.py +3 -0
  67. scipy/_lib/array_api_compat/torch/fft.py +85 -0
  68. scipy/_lib/array_api_compat/torch/linalg.py +121 -0
  69. scipy/_lib/array_api_extra/__init__.py +38 -0
  70. scipy/_lib/array_api_extra/_delegation.py +171 -0
  71. scipy/_lib/array_api_extra/_lib/__init__.py +1 -0
  72. scipy/_lib/array_api_extra/_lib/_at.py +463 -0
  73. scipy/_lib/array_api_extra/_lib/_backends.py +46 -0
  74. scipy/_lib/array_api_extra/_lib/_funcs.py +937 -0
  75. scipy/_lib/array_api_extra/_lib/_lazy.py +357 -0
  76. scipy/_lib/array_api_extra/_lib/_testing.py +278 -0
  77. scipy/_lib/array_api_extra/_lib/_utils/__init__.py +1 -0
  78. scipy/_lib/array_api_extra/_lib/_utils/_compat.py +74 -0
  79. scipy/_lib/array_api_extra/_lib/_utils/_compat.pyi +45 -0
  80. scipy/_lib/array_api_extra/_lib/_utils/_helpers.py +559 -0
  81. scipy/_lib/array_api_extra/_lib/_utils/_typing.py +10 -0
  82. scipy/_lib/array_api_extra/_lib/_utils/_typing.pyi +105 -0
  83. scipy/_lib/array_api_extra/testing.py +359 -0
  84. scipy/_lib/cobyqa/__init__.py +20 -0
  85. scipy/_lib/cobyqa/framework.py +1240 -0
  86. scipy/_lib/cobyqa/main.py +1506 -0
  87. scipy/_lib/cobyqa/models.py +1529 -0
  88. scipy/_lib/cobyqa/problem.py +1296 -0
  89. scipy/_lib/cobyqa/settings.py +132 -0
  90. scipy/_lib/cobyqa/subsolvers/__init__.py +14 -0
  91. scipy/_lib/cobyqa/subsolvers/geometry.py +387 -0
  92. scipy/_lib/cobyqa/subsolvers/optim.py +1203 -0
  93. scipy/_lib/cobyqa/utils/__init__.py +18 -0
  94. scipy/_lib/cobyqa/utils/exceptions.py +22 -0
  95. scipy/_lib/cobyqa/utils/math.py +77 -0
  96. scipy/_lib/cobyqa/utils/versions.py +67 -0
  97. scipy/_lib/decorator.py +399 -0
  98. scipy/_lib/deprecation.py +274 -0
  99. scipy/_lib/doccer.py +366 -0
  100. scipy/_lib/messagestream.cp311-win_arm64.lib +0 -0
  101. scipy/_lib/messagestream.cp311-win_arm64.pyd +0 -0
  102. scipy/_lib/pyprima/__init__.py +212 -0
  103. scipy/_lib/pyprima/cobyla/__init__.py +0 -0
  104. scipy/_lib/pyprima/cobyla/cobyla.py +559 -0
  105. scipy/_lib/pyprima/cobyla/cobylb.py +714 -0
  106. scipy/_lib/pyprima/cobyla/geometry.py +226 -0
  107. scipy/_lib/pyprima/cobyla/initialize.py +215 -0
  108. scipy/_lib/pyprima/cobyla/trustregion.py +492 -0
  109. scipy/_lib/pyprima/cobyla/update.py +289 -0
  110. scipy/_lib/pyprima/common/__init__.py +0 -0
  111. scipy/_lib/pyprima/common/_bounds.py +34 -0
  112. scipy/_lib/pyprima/common/_linear_constraints.py +46 -0
  113. scipy/_lib/pyprima/common/_nonlinear_constraints.py +54 -0
  114. scipy/_lib/pyprima/common/_project.py +173 -0
  115. scipy/_lib/pyprima/common/checkbreak.py +93 -0
  116. scipy/_lib/pyprima/common/consts.py +47 -0
  117. scipy/_lib/pyprima/common/evaluate.py +99 -0
  118. scipy/_lib/pyprima/common/history.py +38 -0
  119. scipy/_lib/pyprima/common/infos.py +30 -0
  120. scipy/_lib/pyprima/common/linalg.py +435 -0
  121. scipy/_lib/pyprima/common/message.py +290 -0
  122. scipy/_lib/pyprima/common/powalg.py +131 -0
  123. scipy/_lib/pyprima/common/preproc.py +277 -0
  124. scipy/_lib/pyprima/common/present.py +5 -0
  125. scipy/_lib/pyprima/common/ratio.py +54 -0
  126. scipy/_lib/pyprima/common/redrho.py +47 -0
  127. scipy/_lib/pyprima/common/selectx.py +296 -0
  128. scipy/_lib/tests/__init__.py +0 -0
  129. scipy/_lib/tests/test__gcutils.py +110 -0
  130. scipy/_lib/tests/test__pep440.py +67 -0
  131. scipy/_lib/tests/test__testutils.py +32 -0
  132. scipy/_lib/tests/test__threadsafety.py +51 -0
  133. scipy/_lib/tests/test__util.py +641 -0
  134. scipy/_lib/tests/test_array_api.py +322 -0
  135. scipy/_lib/tests/test_bunch.py +169 -0
  136. scipy/_lib/tests/test_ccallback.py +196 -0
  137. scipy/_lib/tests/test_config.py +45 -0
  138. scipy/_lib/tests/test_deprecation.py +10 -0
  139. scipy/_lib/tests/test_doccer.py +143 -0
  140. scipy/_lib/tests/test_import_cycles.py +18 -0
  141. scipy/_lib/tests/test_public_api.py +482 -0
  142. scipy/_lib/tests/test_scipy_version.py +28 -0
  143. scipy/_lib/tests/test_tmpdirs.py +48 -0
  144. scipy/_lib/tests/test_warnings.py +137 -0
  145. scipy/_lib/uarray.py +31 -0
  146. scipy/cluster/__init__.py +31 -0
  147. scipy/cluster/_hierarchy.cp311-win_arm64.lib +0 -0
  148. scipy/cluster/_hierarchy.cp311-win_arm64.pyd +0 -0
  149. scipy/cluster/_optimal_leaf_ordering.cp311-win_arm64.lib +0 -0
  150. scipy/cluster/_optimal_leaf_ordering.cp311-win_arm64.pyd +0 -0
  151. scipy/cluster/_vq.cp311-win_arm64.lib +0 -0
  152. scipy/cluster/_vq.cp311-win_arm64.pyd +0 -0
  153. scipy/cluster/hierarchy.py +4348 -0
  154. scipy/cluster/tests/__init__.py +0 -0
  155. scipy/cluster/tests/hierarchy_test_data.py +145 -0
  156. scipy/cluster/tests/test_disjoint_set.py +202 -0
  157. scipy/cluster/tests/test_hierarchy.py +1238 -0
  158. scipy/cluster/tests/test_vq.py +434 -0
  159. scipy/cluster/vq.py +832 -0
  160. scipy/conftest.py +683 -0
  161. scipy/constants/__init__.py +358 -0
  162. scipy/constants/_codata.py +2266 -0
  163. scipy/constants/_constants.py +369 -0
  164. scipy/constants/codata.py +21 -0
  165. scipy/constants/constants.py +53 -0
  166. scipy/constants/tests/__init__.py +0 -0
  167. scipy/constants/tests/test_codata.py +78 -0
  168. scipy/constants/tests/test_constants.py +83 -0
  169. scipy/datasets/__init__.py +90 -0
  170. scipy/datasets/_download_all.py +71 -0
  171. scipy/datasets/_fetchers.py +225 -0
  172. scipy/datasets/_registry.py +26 -0
  173. scipy/datasets/_utils.py +81 -0
  174. scipy/datasets/tests/__init__.py +0 -0
  175. scipy/datasets/tests/test_data.py +128 -0
  176. scipy/differentiate/__init__.py +27 -0
  177. scipy/differentiate/_differentiate.py +1129 -0
  178. scipy/differentiate/tests/__init__.py +0 -0
  179. scipy/differentiate/tests/test_differentiate.py +694 -0
  180. scipy/fft/__init__.py +114 -0
  181. scipy/fft/_backend.py +196 -0
  182. scipy/fft/_basic.py +1650 -0
  183. scipy/fft/_basic_backend.py +197 -0
  184. scipy/fft/_debug_backends.py +22 -0
  185. scipy/fft/_fftlog.py +223 -0
  186. scipy/fft/_fftlog_backend.py +200 -0
  187. scipy/fft/_helper.py +348 -0
  188. scipy/fft/_pocketfft/LICENSE.md +25 -0
  189. scipy/fft/_pocketfft/__init__.py +9 -0
  190. scipy/fft/_pocketfft/basic.py +251 -0
  191. scipy/fft/_pocketfft/helper.py +249 -0
  192. scipy/fft/_pocketfft/pypocketfft.cp311-win_arm64.lib +0 -0
  193. scipy/fft/_pocketfft/pypocketfft.cp311-win_arm64.pyd +0 -0
  194. scipy/fft/_pocketfft/realtransforms.py +109 -0
  195. scipy/fft/_pocketfft/tests/__init__.py +0 -0
  196. scipy/fft/_pocketfft/tests/test_basic.py +1011 -0
  197. scipy/fft/_pocketfft/tests/test_real_transforms.py +505 -0
  198. scipy/fft/_realtransforms.py +706 -0
  199. scipy/fft/_realtransforms_backend.py +63 -0
  200. scipy/fft/tests/__init__.py +0 -0
  201. scipy/fft/tests/mock_backend.py +96 -0
  202. scipy/fft/tests/test_backend.py +98 -0
  203. scipy/fft/tests/test_basic.py +504 -0
  204. scipy/fft/tests/test_fftlog.py +215 -0
  205. scipy/fft/tests/test_helper.py +558 -0
  206. scipy/fft/tests/test_multithreading.py +84 -0
  207. scipy/fft/tests/test_real_transforms.py +247 -0
  208. scipy/fftpack/__init__.py +103 -0
  209. scipy/fftpack/_basic.py +428 -0
  210. scipy/fftpack/_helper.py +115 -0
  211. scipy/fftpack/_pseudo_diffs.py +554 -0
  212. scipy/fftpack/_realtransforms.py +598 -0
  213. scipy/fftpack/basic.py +20 -0
  214. scipy/fftpack/convolve.cp311-win_arm64.lib +0 -0
  215. scipy/fftpack/convolve.cp311-win_arm64.pyd +0 -0
  216. scipy/fftpack/helper.py +19 -0
  217. scipy/fftpack/pseudo_diffs.py +22 -0
  218. scipy/fftpack/realtransforms.py +19 -0
  219. scipy/fftpack/tests/__init__.py +0 -0
  220. scipy/fftpack/tests/fftw_double_ref.npz +0 -0
  221. scipy/fftpack/tests/fftw_longdouble_ref.npz +0 -0
  222. scipy/fftpack/tests/fftw_single_ref.npz +0 -0
  223. scipy/fftpack/tests/test.npz +0 -0
  224. scipy/fftpack/tests/test_basic.py +877 -0
  225. scipy/fftpack/tests/test_helper.py +54 -0
  226. scipy/fftpack/tests/test_import.py +33 -0
  227. scipy/fftpack/tests/test_pseudo_diffs.py +388 -0
  228. scipy/fftpack/tests/test_real_transforms.py +836 -0
  229. scipy/integrate/__init__.py +122 -0
  230. scipy/integrate/_bvp.py +1160 -0
  231. scipy/integrate/_cubature.py +729 -0
  232. scipy/integrate/_dop.cp311-win_arm64.lib +0 -0
  233. scipy/integrate/_dop.cp311-win_arm64.pyd +0 -0
  234. scipy/integrate/_ivp/__init__.py +8 -0
  235. scipy/integrate/_ivp/base.py +290 -0
  236. scipy/integrate/_ivp/bdf.py +478 -0
  237. scipy/integrate/_ivp/common.py +451 -0
  238. scipy/integrate/_ivp/dop853_coefficients.py +193 -0
  239. scipy/integrate/_ivp/ivp.py +755 -0
  240. scipy/integrate/_ivp/lsoda.py +224 -0
  241. scipy/integrate/_ivp/radau.py +572 -0
  242. scipy/integrate/_ivp/rk.py +601 -0
  243. scipy/integrate/_ivp/tests/__init__.py +0 -0
  244. scipy/integrate/_ivp/tests/test_ivp.py +1287 -0
  245. scipy/integrate/_ivp/tests/test_rk.py +37 -0
  246. scipy/integrate/_lebedev.py +5450 -0
  247. scipy/integrate/_lsoda.cp311-win_arm64.lib +0 -0
  248. scipy/integrate/_lsoda.cp311-win_arm64.pyd +0 -0
  249. scipy/integrate/_ode.py +1395 -0
  250. scipy/integrate/_odepack.cp311-win_arm64.lib +0 -0
  251. scipy/integrate/_odepack.cp311-win_arm64.pyd +0 -0
  252. scipy/integrate/_odepack_py.py +273 -0
  253. scipy/integrate/_quad_vec.py +674 -0
  254. scipy/integrate/_quadpack.cp311-win_arm64.lib +0 -0
  255. scipy/integrate/_quadpack.cp311-win_arm64.pyd +0 -0
  256. scipy/integrate/_quadpack_py.py +1283 -0
  257. scipy/integrate/_quadrature.py +1336 -0
  258. scipy/integrate/_rules/__init__.py +12 -0
  259. scipy/integrate/_rules/_base.py +518 -0
  260. scipy/integrate/_rules/_gauss_kronrod.py +202 -0
  261. scipy/integrate/_rules/_gauss_legendre.py +62 -0
  262. scipy/integrate/_rules/_genz_malik.py +210 -0
  263. scipy/integrate/_tanhsinh.py +1385 -0
  264. scipy/integrate/_test_multivariate.cp311-win_arm64.lib +0 -0
  265. scipy/integrate/_test_multivariate.cp311-win_arm64.pyd +0 -0
  266. scipy/integrate/_test_odeint_banded.cp311-win_arm64.lib +0 -0
  267. scipy/integrate/_test_odeint_banded.cp311-win_arm64.pyd +0 -0
  268. scipy/integrate/_vode.cp311-win_arm64.lib +0 -0
  269. scipy/integrate/_vode.cp311-win_arm64.pyd +0 -0
  270. scipy/integrate/dop.py +15 -0
  271. scipy/integrate/lsoda.py +15 -0
  272. scipy/integrate/odepack.py +17 -0
  273. scipy/integrate/quadpack.py +23 -0
  274. scipy/integrate/tests/__init__.py +0 -0
  275. scipy/integrate/tests/test__quad_vec.py +211 -0
  276. scipy/integrate/tests/test_banded_ode_solvers.py +305 -0
  277. scipy/integrate/tests/test_bvp.py +714 -0
  278. scipy/integrate/tests/test_cubature.py +1375 -0
  279. scipy/integrate/tests/test_integrate.py +840 -0
  280. scipy/integrate/tests/test_odeint_jac.py +74 -0
  281. scipy/integrate/tests/test_quadpack.py +680 -0
  282. scipy/integrate/tests/test_quadrature.py +730 -0
  283. scipy/integrate/tests/test_tanhsinh.py +1171 -0
  284. scipy/integrate/vode.py +15 -0
  285. scipy/interpolate/__init__.py +228 -0
  286. scipy/interpolate/_bary_rational.py +715 -0
  287. scipy/interpolate/_bsplines.py +2469 -0
  288. scipy/interpolate/_cubic.py +973 -0
  289. scipy/interpolate/_dfitpack.cp311-win_arm64.lib +0 -0
  290. scipy/interpolate/_dfitpack.cp311-win_arm64.pyd +0 -0
  291. scipy/interpolate/_dierckx.cp311-win_arm64.lib +0 -0
  292. scipy/interpolate/_dierckx.cp311-win_arm64.pyd +0 -0
  293. scipy/interpolate/_fitpack.cp311-win_arm64.lib +0 -0
  294. scipy/interpolate/_fitpack.cp311-win_arm64.pyd +0 -0
  295. scipy/interpolate/_fitpack2.py +2397 -0
  296. scipy/interpolate/_fitpack_impl.py +811 -0
  297. scipy/interpolate/_fitpack_py.py +898 -0
  298. scipy/interpolate/_fitpack_repro.py +996 -0
  299. scipy/interpolate/_interpnd.cp311-win_arm64.lib +0 -0
  300. scipy/interpolate/_interpnd.cp311-win_arm64.pyd +0 -0
  301. scipy/interpolate/_interpolate.py +2266 -0
  302. scipy/interpolate/_ndbspline.py +415 -0
  303. scipy/interpolate/_ndgriddata.py +329 -0
  304. scipy/interpolate/_pade.py +67 -0
  305. scipy/interpolate/_polyint.py +1025 -0
  306. scipy/interpolate/_ppoly.cp311-win_arm64.lib +0 -0
  307. scipy/interpolate/_ppoly.cp311-win_arm64.pyd +0 -0
  308. scipy/interpolate/_rbf.py +290 -0
  309. scipy/interpolate/_rbfinterp.py +550 -0
  310. scipy/interpolate/_rbfinterp_pythran.cp311-win_arm64.lib +0 -0
  311. scipy/interpolate/_rbfinterp_pythran.cp311-win_arm64.pyd +0 -0
  312. scipy/interpolate/_rgi.py +764 -0
  313. scipy/interpolate/_rgi_cython.cp311-win_arm64.lib +0 -0
  314. scipy/interpolate/_rgi_cython.cp311-win_arm64.pyd +0 -0
  315. scipy/interpolate/dfitpack.py +24 -0
  316. scipy/interpolate/fitpack.py +31 -0
  317. scipy/interpolate/fitpack2.py +29 -0
  318. scipy/interpolate/interpnd.py +24 -0
  319. scipy/interpolate/interpolate.py +30 -0
  320. scipy/interpolate/ndgriddata.py +23 -0
  321. scipy/interpolate/polyint.py +24 -0
  322. scipy/interpolate/rbf.py +18 -0
  323. scipy/interpolate/tests/__init__.py +0 -0
  324. scipy/interpolate/tests/data/bug-1310.npz +0 -0
  325. scipy/interpolate/tests/data/estimate_gradients_hang.npy +0 -0
  326. scipy/interpolate/tests/data/gcvspl.npz +0 -0
  327. scipy/interpolate/tests/test_bary_rational.py +368 -0
  328. scipy/interpolate/tests/test_bsplines.py +3754 -0
  329. scipy/interpolate/tests/test_fitpack.py +519 -0
  330. scipy/interpolate/tests/test_fitpack2.py +1431 -0
  331. scipy/interpolate/tests/test_gil.py +64 -0
  332. scipy/interpolate/tests/test_interpnd.py +452 -0
  333. scipy/interpolate/tests/test_interpolate.py +2630 -0
  334. scipy/interpolate/tests/test_ndgriddata.py +308 -0
  335. scipy/interpolate/tests/test_pade.py +107 -0
  336. scipy/interpolate/tests/test_polyint.py +972 -0
  337. scipy/interpolate/tests/test_rbf.py +246 -0
  338. scipy/interpolate/tests/test_rbfinterp.py +534 -0
  339. scipy/interpolate/tests/test_rgi.py +1151 -0
  340. scipy/io/__init__.py +116 -0
  341. scipy/io/_fast_matrix_market/__init__.py +600 -0
  342. scipy/io/_fast_matrix_market/_fmm_core.cp311-win_arm64.lib +0 -0
  343. scipy/io/_fast_matrix_market/_fmm_core.cp311-win_arm64.pyd +0 -0
  344. scipy/io/_fortran.py +354 -0
  345. scipy/io/_harwell_boeing/__init__.py +7 -0
  346. scipy/io/_harwell_boeing/_fortran_format_parser.py +316 -0
  347. scipy/io/_harwell_boeing/hb.py +571 -0
  348. scipy/io/_harwell_boeing/tests/__init__.py +0 -0
  349. scipy/io/_harwell_boeing/tests/test_fortran_format.py +74 -0
  350. scipy/io/_harwell_boeing/tests/test_hb.py +70 -0
  351. scipy/io/_idl.py +917 -0
  352. scipy/io/_mmio.py +968 -0
  353. scipy/io/_netcdf.py +1104 -0
  354. scipy/io/_test_fortran.cp311-win_arm64.lib +0 -0
  355. scipy/io/_test_fortran.cp311-win_arm64.pyd +0 -0
  356. scipy/io/arff/__init__.py +28 -0
  357. scipy/io/arff/_arffread.py +873 -0
  358. scipy/io/arff/arffread.py +19 -0
  359. scipy/io/arff/tests/__init__.py +0 -0
  360. scipy/io/arff/tests/data/iris.arff +225 -0
  361. scipy/io/arff/tests/data/missing.arff +8 -0
  362. scipy/io/arff/tests/data/nodata.arff +11 -0
  363. scipy/io/arff/tests/data/quoted_nominal.arff +13 -0
  364. scipy/io/arff/tests/data/quoted_nominal_spaces.arff +13 -0
  365. scipy/io/arff/tests/data/test1.arff +10 -0
  366. scipy/io/arff/tests/data/test10.arff +8 -0
  367. scipy/io/arff/tests/data/test11.arff +11 -0
  368. scipy/io/arff/tests/data/test2.arff +15 -0
  369. scipy/io/arff/tests/data/test3.arff +6 -0
  370. scipy/io/arff/tests/data/test4.arff +11 -0
  371. scipy/io/arff/tests/data/test5.arff +26 -0
  372. scipy/io/arff/tests/data/test6.arff +12 -0
  373. scipy/io/arff/tests/data/test7.arff +15 -0
  374. scipy/io/arff/tests/data/test8.arff +12 -0
  375. scipy/io/arff/tests/data/test9.arff +14 -0
  376. scipy/io/arff/tests/test_arffread.py +421 -0
  377. scipy/io/harwell_boeing.py +17 -0
  378. scipy/io/idl.py +17 -0
  379. scipy/io/matlab/__init__.py +66 -0
  380. scipy/io/matlab/_byteordercodes.py +75 -0
  381. scipy/io/matlab/_mio.py +375 -0
  382. scipy/io/matlab/_mio4.py +632 -0
  383. scipy/io/matlab/_mio5.py +901 -0
  384. scipy/io/matlab/_mio5_params.py +281 -0
  385. scipy/io/matlab/_mio5_utils.cp311-win_arm64.lib +0 -0
  386. scipy/io/matlab/_mio5_utils.cp311-win_arm64.pyd +0 -0
  387. scipy/io/matlab/_mio_utils.cp311-win_arm64.lib +0 -0
  388. scipy/io/matlab/_mio_utils.cp311-win_arm64.pyd +0 -0
  389. scipy/io/matlab/_miobase.py +435 -0
  390. scipy/io/matlab/_streams.cp311-win_arm64.lib +0 -0
  391. scipy/io/matlab/_streams.cp311-win_arm64.pyd +0 -0
  392. scipy/io/matlab/byteordercodes.py +17 -0
  393. scipy/io/matlab/mio.py +16 -0
  394. scipy/io/matlab/mio4.py +17 -0
  395. scipy/io/matlab/mio5.py +19 -0
  396. scipy/io/matlab/mio5_params.py +18 -0
  397. scipy/io/matlab/mio5_utils.py +17 -0
  398. scipy/io/matlab/mio_utils.py +17 -0
  399. scipy/io/matlab/miobase.py +16 -0
  400. scipy/io/matlab/streams.py +16 -0
  401. scipy/io/matlab/tests/__init__.py +0 -0
  402. scipy/io/matlab/tests/data/bad_miuint32.mat +0 -0
  403. scipy/io/matlab/tests/data/bad_miutf8_array_name.mat +0 -0
  404. scipy/io/matlab/tests/data/big_endian.mat +0 -0
  405. scipy/io/matlab/tests/data/broken_utf8.mat +0 -0
  406. scipy/io/matlab/tests/data/corrupted_zlib_checksum.mat +0 -0
  407. scipy/io/matlab/tests/data/corrupted_zlib_data.mat +0 -0
  408. scipy/io/matlab/tests/data/debigged_m4.mat +0 -0
  409. scipy/io/matlab/tests/data/japanese_utf8.txt +5 -0
  410. scipy/io/matlab/tests/data/little_endian.mat +0 -0
  411. scipy/io/matlab/tests/data/logical_sparse.mat +0 -0
  412. scipy/io/matlab/tests/data/malformed1.mat +0 -0
  413. scipy/io/matlab/tests/data/miuint32_for_miint32.mat +0 -0
  414. scipy/io/matlab/tests/data/miutf8_array_name.mat +0 -0
  415. scipy/io/matlab/tests/data/nasty_duplicate_fieldnames.mat +0 -0
  416. scipy/io/matlab/tests/data/one_by_zero_char.mat +0 -0
  417. scipy/io/matlab/tests/data/parabola.mat +0 -0
  418. scipy/io/matlab/tests/data/single_empty_string.mat +0 -0
  419. scipy/io/matlab/tests/data/some_functions.mat +0 -0
  420. scipy/io/matlab/tests/data/sqr.mat +0 -0
  421. scipy/io/matlab/tests/data/test3dmatrix_6.1_SOL2.mat +0 -0
  422. scipy/io/matlab/tests/data/test3dmatrix_6.5.1_GLNX86.mat +0 -0
  423. scipy/io/matlab/tests/data/test3dmatrix_7.1_GLNX86.mat +0 -0
  424. scipy/io/matlab/tests/data/test3dmatrix_7.4_GLNX86.mat +0 -0
  425. scipy/io/matlab/tests/data/test_empty_struct.mat +0 -0
  426. scipy/io/matlab/tests/data/test_mat4_le_floats.mat +0 -0
  427. scipy/io/matlab/tests/data/test_skip_variable.mat +0 -0
  428. scipy/io/matlab/tests/data/testbool_8_WIN64.mat +0 -0
  429. scipy/io/matlab/tests/data/testcell_6.1_SOL2.mat +0 -0
  430. scipy/io/matlab/tests/data/testcell_6.5.1_GLNX86.mat +0 -0
  431. scipy/io/matlab/tests/data/testcell_7.1_GLNX86.mat +0 -0
  432. scipy/io/matlab/tests/data/testcell_7.4_GLNX86.mat +0 -0
  433. scipy/io/matlab/tests/data/testcellnest_6.1_SOL2.mat +0 -0
  434. scipy/io/matlab/tests/data/testcellnest_6.5.1_GLNX86.mat +0 -0
  435. scipy/io/matlab/tests/data/testcellnest_7.1_GLNX86.mat +0 -0
  436. scipy/io/matlab/tests/data/testcellnest_7.4_GLNX86.mat +0 -0
  437. scipy/io/matlab/tests/data/testcomplex_4.2c_SOL2.mat +0 -0
  438. scipy/io/matlab/tests/data/testcomplex_6.1_SOL2.mat +0 -0
  439. scipy/io/matlab/tests/data/testcomplex_6.5.1_GLNX86.mat +0 -0
  440. scipy/io/matlab/tests/data/testcomplex_7.1_GLNX86.mat +0 -0
  441. scipy/io/matlab/tests/data/testcomplex_7.4_GLNX86.mat +0 -0
  442. scipy/io/matlab/tests/data/testdouble_4.2c_SOL2.mat +0 -0
  443. scipy/io/matlab/tests/data/testdouble_6.1_SOL2.mat +0 -0
  444. scipy/io/matlab/tests/data/testdouble_6.5.1_GLNX86.mat +0 -0
  445. scipy/io/matlab/tests/data/testdouble_7.1_GLNX86.mat +0 -0
  446. scipy/io/matlab/tests/data/testdouble_7.4_GLNX86.mat +0 -0
  447. scipy/io/matlab/tests/data/testemptycell_5.3_SOL2.mat +0 -0
  448. scipy/io/matlab/tests/data/testemptycell_6.5.1_GLNX86.mat +0 -0
  449. scipy/io/matlab/tests/data/testemptycell_7.1_GLNX86.mat +0 -0
  450. scipy/io/matlab/tests/data/testemptycell_7.4_GLNX86.mat +0 -0
  451. scipy/io/matlab/tests/data/testfunc_7.4_GLNX86.mat +0 -0
  452. scipy/io/matlab/tests/data/testhdf5_7.4_GLNX86.mat +0 -0
  453. scipy/io/matlab/tests/data/testmatrix_4.2c_SOL2.mat +0 -0
  454. scipy/io/matlab/tests/data/testmatrix_6.1_SOL2.mat +0 -0
  455. scipy/io/matlab/tests/data/testmatrix_6.5.1_GLNX86.mat +0 -0
  456. scipy/io/matlab/tests/data/testmatrix_7.1_GLNX86.mat +0 -0
  457. scipy/io/matlab/tests/data/testmatrix_7.4_GLNX86.mat +0 -0
  458. scipy/io/matlab/tests/data/testminus_4.2c_SOL2.mat +0 -0
  459. scipy/io/matlab/tests/data/testminus_6.1_SOL2.mat +0 -0
  460. scipy/io/matlab/tests/data/testminus_6.5.1_GLNX86.mat +0 -0
  461. scipy/io/matlab/tests/data/testminus_7.1_GLNX86.mat +0 -0
  462. scipy/io/matlab/tests/data/testminus_7.4_GLNX86.mat +0 -0
  463. scipy/io/matlab/tests/data/testmulti_4.2c_SOL2.mat +0 -0
  464. scipy/io/matlab/tests/data/testmulti_7.1_GLNX86.mat +0 -0
  465. scipy/io/matlab/tests/data/testmulti_7.4_GLNX86.mat +0 -0
  466. scipy/io/matlab/tests/data/testobject_6.1_SOL2.mat +0 -0
  467. scipy/io/matlab/tests/data/testobject_6.5.1_GLNX86.mat +0 -0
  468. scipy/io/matlab/tests/data/testobject_7.1_GLNX86.mat +0 -0
  469. scipy/io/matlab/tests/data/testobject_7.4_GLNX86.mat +0 -0
  470. scipy/io/matlab/tests/data/testonechar_4.2c_SOL2.mat +0 -0
  471. scipy/io/matlab/tests/data/testonechar_6.1_SOL2.mat +0 -0
  472. scipy/io/matlab/tests/data/testonechar_6.5.1_GLNX86.mat +0 -0
  473. scipy/io/matlab/tests/data/testonechar_7.1_GLNX86.mat +0 -0
  474. scipy/io/matlab/tests/data/testonechar_7.4_GLNX86.mat +0 -0
  475. scipy/io/matlab/tests/data/testscalarcell_7.4_GLNX86.mat +0 -0
  476. scipy/io/matlab/tests/data/testsimplecell.mat +0 -0
  477. scipy/io/matlab/tests/data/testsparse_4.2c_SOL2.mat +0 -0
  478. scipy/io/matlab/tests/data/testsparse_6.1_SOL2.mat +0 -0
  479. scipy/io/matlab/tests/data/testsparse_6.5.1_GLNX86.mat +0 -0
  480. scipy/io/matlab/tests/data/testsparse_7.1_GLNX86.mat +0 -0
  481. scipy/io/matlab/tests/data/testsparse_7.4_GLNX86.mat +0 -0
  482. scipy/io/matlab/tests/data/testsparsecomplex_4.2c_SOL2.mat +0 -0
  483. scipy/io/matlab/tests/data/testsparsecomplex_6.1_SOL2.mat +0 -0
  484. scipy/io/matlab/tests/data/testsparsecomplex_6.5.1_GLNX86.mat +0 -0
  485. scipy/io/matlab/tests/data/testsparsecomplex_7.1_GLNX86.mat +0 -0
  486. scipy/io/matlab/tests/data/testsparsecomplex_7.4_GLNX86.mat +0 -0
  487. scipy/io/matlab/tests/data/testsparsefloat_7.4_GLNX86.mat +0 -0
  488. scipy/io/matlab/tests/data/teststring_4.2c_SOL2.mat +0 -0
  489. scipy/io/matlab/tests/data/teststring_6.1_SOL2.mat +0 -0
  490. scipy/io/matlab/tests/data/teststring_6.5.1_GLNX86.mat +0 -0
  491. scipy/io/matlab/tests/data/teststring_7.1_GLNX86.mat +0 -0
  492. scipy/io/matlab/tests/data/teststring_7.4_GLNX86.mat +0 -0
  493. scipy/io/matlab/tests/data/teststringarray_4.2c_SOL2.mat +0 -0
  494. scipy/io/matlab/tests/data/teststringarray_6.1_SOL2.mat +0 -0
  495. scipy/io/matlab/tests/data/teststringarray_6.5.1_GLNX86.mat +0 -0
  496. scipy/io/matlab/tests/data/teststringarray_7.1_GLNX86.mat +0 -0
  497. scipy/io/matlab/tests/data/teststringarray_7.4_GLNX86.mat +0 -0
  498. scipy/io/matlab/tests/data/teststruct_6.1_SOL2.mat +0 -0
  499. scipy/io/matlab/tests/data/teststruct_6.5.1_GLNX86.mat +0 -0
  500. scipy/io/matlab/tests/data/teststruct_7.1_GLNX86.mat +0 -0
  501. scipy/io/matlab/tests/data/teststruct_7.4_GLNX86.mat +0 -0
  502. scipy/io/matlab/tests/data/teststructarr_6.1_SOL2.mat +0 -0
  503. scipy/io/matlab/tests/data/teststructarr_6.5.1_GLNX86.mat +0 -0
  504. scipy/io/matlab/tests/data/teststructarr_7.1_GLNX86.mat +0 -0
  505. scipy/io/matlab/tests/data/teststructarr_7.4_GLNX86.mat +0 -0
  506. scipy/io/matlab/tests/data/teststructnest_6.1_SOL2.mat +0 -0
  507. scipy/io/matlab/tests/data/teststructnest_6.5.1_GLNX86.mat +0 -0
  508. scipy/io/matlab/tests/data/teststructnest_7.1_GLNX86.mat +0 -0
  509. scipy/io/matlab/tests/data/teststructnest_7.4_GLNX86.mat +0 -0
  510. scipy/io/matlab/tests/data/testunicode_7.1_GLNX86.mat +0 -0
  511. scipy/io/matlab/tests/data/testunicode_7.4_GLNX86.mat +0 -0
  512. scipy/io/matlab/tests/data/testvec_4_GLNX86.mat +0 -0
  513. scipy/io/matlab/tests/test_byteordercodes.py +29 -0
  514. scipy/io/matlab/tests/test_mio.py +1399 -0
  515. scipy/io/matlab/tests/test_mio5_utils.py +179 -0
  516. scipy/io/matlab/tests/test_mio_funcs.py +51 -0
  517. scipy/io/matlab/tests/test_mio_utils.py +45 -0
  518. scipy/io/matlab/tests/test_miobase.py +32 -0
  519. scipy/io/matlab/tests/test_pathological.py +33 -0
  520. scipy/io/matlab/tests/test_streams.py +241 -0
  521. scipy/io/mmio.py +17 -0
  522. scipy/io/netcdf.py +17 -0
  523. scipy/io/tests/__init__.py +0 -0
  524. scipy/io/tests/data/Transparent Busy.ani +0 -0
  525. scipy/io/tests/data/array_float32_1d.sav +0 -0
  526. scipy/io/tests/data/array_float32_2d.sav +0 -0
  527. scipy/io/tests/data/array_float32_3d.sav +0 -0
  528. scipy/io/tests/data/array_float32_4d.sav +0 -0
  529. scipy/io/tests/data/array_float32_5d.sav +0 -0
  530. scipy/io/tests/data/array_float32_6d.sav +0 -0
  531. scipy/io/tests/data/array_float32_7d.sav +0 -0
  532. scipy/io/tests/data/array_float32_8d.sav +0 -0
  533. scipy/io/tests/data/array_float32_pointer_1d.sav +0 -0
  534. scipy/io/tests/data/array_float32_pointer_2d.sav +0 -0
  535. scipy/io/tests/data/array_float32_pointer_3d.sav +0 -0
  536. scipy/io/tests/data/array_float32_pointer_4d.sav +0 -0
  537. scipy/io/tests/data/array_float32_pointer_5d.sav +0 -0
  538. scipy/io/tests/data/array_float32_pointer_6d.sav +0 -0
  539. scipy/io/tests/data/array_float32_pointer_7d.sav +0 -0
  540. scipy/io/tests/data/array_float32_pointer_8d.sav +0 -0
  541. scipy/io/tests/data/example_1.nc +0 -0
  542. scipy/io/tests/data/example_2.nc +0 -0
  543. scipy/io/tests/data/example_3_maskedvals.nc +0 -0
  544. scipy/io/tests/data/fortran-3x3d-2i.dat +0 -0
  545. scipy/io/tests/data/fortran-mixed.dat +0 -0
  546. scipy/io/tests/data/fortran-sf8-11x1x10.dat +0 -0
  547. scipy/io/tests/data/fortran-sf8-15x10x22.dat +0 -0
  548. scipy/io/tests/data/fortran-sf8-1x1x1.dat +0 -0
  549. scipy/io/tests/data/fortran-sf8-1x1x5.dat +0 -0
  550. scipy/io/tests/data/fortran-sf8-1x1x7.dat +0 -0
  551. scipy/io/tests/data/fortran-sf8-1x3x5.dat +0 -0
  552. scipy/io/tests/data/fortran-si4-11x1x10.dat +0 -0
  553. scipy/io/tests/data/fortran-si4-15x10x22.dat +0 -0
  554. scipy/io/tests/data/fortran-si4-1x1x1.dat +0 -0
  555. scipy/io/tests/data/fortran-si4-1x1x5.dat +0 -0
  556. scipy/io/tests/data/fortran-si4-1x1x7.dat +0 -0
  557. scipy/io/tests/data/fortran-si4-1x3x5.dat +0 -0
  558. scipy/io/tests/data/invalid_pointer.sav +0 -0
  559. scipy/io/tests/data/null_pointer.sav +0 -0
  560. scipy/io/tests/data/scalar_byte.sav +0 -0
  561. scipy/io/tests/data/scalar_byte_descr.sav +0 -0
  562. scipy/io/tests/data/scalar_complex32.sav +0 -0
  563. scipy/io/tests/data/scalar_complex64.sav +0 -0
  564. scipy/io/tests/data/scalar_float32.sav +0 -0
  565. scipy/io/tests/data/scalar_float64.sav +0 -0
  566. scipy/io/tests/data/scalar_heap_pointer.sav +0 -0
  567. scipy/io/tests/data/scalar_int16.sav +0 -0
  568. scipy/io/tests/data/scalar_int32.sav +0 -0
  569. scipy/io/tests/data/scalar_int64.sav +0 -0
  570. scipy/io/tests/data/scalar_string.sav +0 -0
  571. scipy/io/tests/data/scalar_uint16.sav +0 -0
  572. scipy/io/tests/data/scalar_uint32.sav +0 -0
  573. scipy/io/tests/data/scalar_uint64.sav +0 -0
  574. scipy/io/tests/data/struct_arrays.sav +0 -0
  575. scipy/io/tests/data/struct_arrays_byte_idl80.sav +0 -0
  576. scipy/io/tests/data/struct_arrays_replicated.sav +0 -0
  577. scipy/io/tests/data/struct_arrays_replicated_3d.sav +0 -0
  578. scipy/io/tests/data/struct_inherit.sav +0 -0
  579. scipy/io/tests/data/struct_pointer_arrays.sav +0 -0
  580. scipy/io/tests/data/struct_pointer_arrays_replicated.sav +0 -0
  581. scipy/io/tests/data/struct_pointer_arrays_replicated_3d.sav +0 -0
  582. scipy/io/tests/data/struct_pointers.sav +0 -0
  583. scipy/io/tests/data/struct_pointers_replicated.sav +0 -0
  584. scipy/io/tests/data/struct_pointers_replicated_3d.sav +0 -0
  585. scipy/io/tests/data/struct_scalars.sav +0 -0
  586. scipy/io/tests/data/struct_scalars_replicated.sav +0 -0
  587. scipy/io/tests/data/struct_scalars_replicated_3d.sav +0 -0
  588. scipy/io/tests/data/test-1234Hz-le-1ch-10S-20bit-extra.wav +0 -0
  589. scipy/io/tests/data/test-44100Hz-2ch-32bit-float-be.wav +0 -0
  590. scipy/io/tests/data/test-44100Hz-2ch-32bit-float-le.wav +0 -0
  591. scipy/io/tests/data/test-44100Hz-be-1ch-4bytes.wav +0 -0
  592. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof-no-data.wav +0 -0
  593. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof.wav +0 -0
  594. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-incomplete-chunk.wav +0 -0
  595. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-rf64.wav +0 -0
  596. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes.wav +0 -0
  597. scipy/io/tests/data/test-48000Hz-2ch-64bit-float-le-wavex.wav +0 -0
  598. scipy/io/tests/data/test-8000Hz-be-3ch-5S-24bit.wav +0 -0
  599. scipy/io/tests/data/test-8000Hz-le-1ch-1byte-ulaw.wav +0 -0
  600. scipy/io/tests/data/test-8000Hz-le-2ch-1byteu.wav +0 -0
  601. scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-inconsistent.wav +0 -0
  602. scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-rf64.wav +0 -0
  603. scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit.wav +0 -0
  604. scipy/io/tests/data/test-8000Hz-le-3ch-5S-36bit.wav +0 -0
  605. scipy/io/tests/data/test-8000Hz-le-3ch-5S-45bit.wav +0 -0
  606. scipy/io/tests/data/test-8000Hz-le-3ch-5S-53bit.wav +0 -0
  607. scipy/io/tests/data/test-8000Hz-le-3ch-5S-64bit.wav +0 -0
  608. scipy/io/tests/data/test-8000Hz-le-4ch-9S-12bit.wav +0 -0
  609. scipy/io/tests/data/test-8000Hz-le-5ch-9S-5bit.wav +0 -0
  610. scipy/io/tests/data/various_compressed.sav +0 -0
  611. scipy/io/tests/test_fortran.py +264 -0
  612. scipy/io/tests/test_idl.py +483 -0
  613. scipy/io/tests/test_mmio.py +831 -0
  614. scipy/io/tests/test_netcdf.py +550 -0
  615. scipy/io/tests/test_paths.py +93 -0
  616. scipy/io/tests/test_wavfile.py +501 -0
  617. scipy/io/wavfile.py +938 -0
  618. scipy/linalg/__init__.pxd +1 -0
  619. scipy/linalg/__init__.py +236 -0
  620. scipy/linalg/_basic.py +2146 -0
  621. scipy/linalg/_blas_subroutines.h +164 -0
  622. scipy/linalg/_cythonized_array_utils.cp311-win_arm64.lib +0 -0
  623. scipy/linalg/_cythonized_array_utils.cp311-win_arm64.pyd +0 -0
  624. scipy/linalg/_cythonized_array_utils.pxd +40 -0
  625. scipy/linalg/_cythonized_array_utils.pyi +16 -0
  626. scipy/linalg/_decomp.py +1645 -0
  627. scipy/linalg/_decomp_cholesky.py +413 -0
  628. scipy/linalg/_decomp_cossin.py +236 -0
  629. scipy/linalg/_decomp_interpolative.cp311-win_arm64.lib +0 -0
  630. scipy/linalg/_decomp_interpolative.cp311-win_arm64.pyd +0 -0
  631. scipy/linalg/_decomp_ldl.py +356 -0
  632. scipy/linalg/_decomp_lu.py +401 -0
  633. scipy/linalg/_decomp_lu_cython.cp311-win_arm64.lib +0 -0
  634. scipy/linalg/_decomp_lu_cython.cp311-win_arm64.pyd +0 -0
  635. scipy/linalg/_decomp_lu_cython.pyi +6 -0
  636. scipy/linalg/_decomp_polar.py +113 -0
  637. scipy/linalg/_decomp_qr.py +494 -0
  638. scipy/linalg/_decomp_qz.py +452 -0
  639. scipy/linalg/_decomp_schur.py +336 -0
  640. scipy/linalg/_decomp_svd.py +545 -0
  641. scipy/linalg/_decomp_update.cp311-win_arm64.lib +0 -0
  642. scipy/linalg/_decomp_update.cp311-win_arm64.pyd +0 -0
  643. scipy/linalg/_expm_frechet.py +417 -0
  644. scipy/linalg/_fblas.cp311-win_arm64.lib +0 -0
  645. scipy/linalg/_fblas.cp311-win_arm64.pyd +0 -0
  646. scipy/linalg/_flapack.cp311-win_arm64.lib +0 -0
  647. scipy/linalg/_flapack.cp311-win_arm64.pyd +0 -0
  648. scipy/linalg/_lapack_subroutines.h +1521 -0
  649. scipy/linalg/_linalg_pythran.cp311-win_arm64.lib +0 -0
  650. scipy/linalg/_linalg_pythran.cp311-win_arm64.pyd +0 -0
  651. scipy/linalg/_matfuncs.py +1050 -0
  652. scipy/linalg/_matfuncs_expm.cp311-win_arm64.lib +0 -0
  653. scipy/linalg/_matfuncs_expm.cp311-win_arm64.pyd +0 -0
  654. scipy/linalg/_matfuncs_expm.pyi +6 -0
  655. scipy/linalg/_matfuncs_inv_ssq.py +886 -0
  656. scipy/linalg/_matfuncs_schur_sqrtm.cp311-win_arm64.lib +0 -0
  657. scipy/linalg/_matfuncs_schur_sqrtm.cp311-win_arm64.pyd +0 -0
  658. scipy/linalg/_matfuncs_sqrtm.py +107 -0
  659. scipy/linalg/_matfuncs_sqrtm_triu.cp311-win_arm64.lib +0 -0
  660. scipy/linalg/_matfuncs_sqrtm_triu.cp311-win_arm64.pyd +0 -0
  661. scipy/linalg/_misc.py +191 -0
  662. scipy/linalg/_procrustes.py +113 -0
  663. scipy/linalg/_sketches.py +189 -0
  664. scipy/linalg/_solve_toeplitz.cp311-win_arm64.lib +0 -0
  665. scipy/linalg/_solve_toeplitz.cp311-win_arm64.pyd +0 -0
  666. scipy/linalg/_solvers.py +862 -0
  667. scipy/linalg/_special_matrices.py +1322 -0
  668. scipy/linalg/_testutils.py +65 -0
  669. scipy/linalg/basic.py +23 -0
  670. scipy/linalg/blas.py +495 -0
  671. scipy/linalg/cython_blas.cp311-win_arm64.lib +0 -0
  672. scipy/linalg/cython_blas.cp311-win_arm64.pyd +0 -0
  673. scipy/linalg/cython_blas.pxd +169 -0
  674. scipy/linalg/cython_blas.pyx +1432 -0
  675. scipy/linalg/cython_lapack.cp311-win_arm64.lib +0 -0
  676. scipy/linalg/cython_lapack.cp311-win_arm64.pyd +0 -0
  677. scipy/linalg/cython_lapack.pxd +1528 -0
  678. scipy/linalg/cython_lapack.pyx +12045 -0
  679. scipy/linalg/decomp.py +23 -0
  680. scipy/linalg/decomp_cholesky.py +21 -0
  681. scipy/linalg/decomp_lu.py +21 -0
  682. scipy/linalg/decomp_qr.py +20 -0
  683. scipy/linalg/decomp_schur.py +21 -0
  684. scipy/linalg/decomp_svd.py +21 -0
  685. scipy/linalg/interpolative.py +989 -0
  686. scipy/linalg/lapack.py +1081 -0
  687. scipy/linalg/matfuncs.py +23 -0
  688. scipy/linalg/misc.py +21 -0
  689. scipy/linalg/special_matrices.py +22 -0
  690. scipy/linalg/tests/__init__.py +0 -0
  691. scipy/linalg/tests/_cython_examples/extending.pyx +23 -0
  692. scipy/linalg/tests/_cython_examples/meson.build +34 -0
  693. scipy/linalg/tests/data/carex_15_data.npz +0 -0
  694. scipy/linalg/tests/data/carex_18_data.npz +0 -0
  695. scipy/linalg/tests/data/carex_19_data.npz +0 -0
  696. scipy/linalg/tests/data/carex_20_data.npz +0 -0
  697. scipy/linalg/tests/data/carex_6_data.npz +0 -0
  698. scipy/linalg/tests/data/gendare_20170120_data.npz +0 -0
  699. scipy/linalg/tests/test_basic.py +2074 -0
  700. scipy/linalg/tests/test_batch.py +588 -0
  701. scipy/linalg/tests/test_blas.py +1127 -0
  702. scipy/linalg/tests/test_cython_blas.py +118 -0
  703. scipy/linalg/tests/test_cython_lapack.py +22 -0
  704. scipy/linalg/tests/test_cythonized_array_utils.py +130 -0
  705. scipy/linalg/tests/test_decomp.py +3189 -0
  706. scipy/linalg/tests/test_decomp_cholesky.py +268 -0
  707. scipy/linalg/tests/test_decomp_cossin.py +314 -0
  708. scipy/linalg/tests/test_decomp_ldl.py +137 -0
  709. scipy/linalg/tests/test_decomp_lu.py +308 -0
  710. scipy/linalg/tests/test_decomp_polar.py +110 -0
  711. scipy/linalg/tests/test_decomp_update.py +1701 -0
  712. scipy/linalg/tests/test_extending.py +46 -0
  713. scipy/linalg/tests/test_fblas.py +607 -0
  714. scipy/linalg/tests/test_interpolative.py +232 -0
  715. scipy/linalg/tests/test_lapack.py +3620 -0
  716. scipy/linalg/tests/test_matfuncs.py +1125 -0
  717. scipy/linalg/tests/test_matmul_toeplitz.py +136 -0
  718. scipy/linalg/tests/test_procrustes.py +214 -0
  719. scipy/linalg/tests/test_sketches.py +118 -0
  720. scipy/linalg/tests/test_solve_toeplitz.py +150 -0
  721. scipy/linalg/tests/test_solvers.py +844 -0
  722. scipy/linalg/tests/test_special_matrices.py +636 -0
  723. scipy/misc/__init__.py +6 -0
  724. scipy/misc/common.py +6 -0
  725. scipy/misc/doccer.py +6 -0
  726. scipy/ndimage/__init__.py +174 -0
  727. scipy/ndimage/_ctest.cp311-win_arm64.lib +0 -0
  728. scipy/ndimage/_ctest.cp311-win_arm64.pyd +0 -0
  729. scipy/ndimage/_cytest.cp311-win_arm64.lib +0 -0
  730. scipy/ndimage/_cytest.cp311-win_arm64.pyd +0 -0
  731. scipy/ndimage/_delegators.py +303 -0
  732. scipy/ndimage/_filters.py +2422 -0
  733. scipy/ndimage/_fourier.py +306 -0
  734. scipy/ndimage/_interpolation.py +1033 -0
  735. scipy/ndimage/_measurements.py +1689 -0
  736. scipy/ndimage/_morphology.py +2634 -0
  737. scipy/ndimage/_nd_image.cp311-win_arm64.lib +0 -0
  738. scipy/ndimage/_nd_image.cp311-win_arm64.pyd +0 -0
  739. scipy/ndimage/_ndimage_api.py +16 -0
  740. scipy/ndimage/_ni_docstrings.py +214 -0
  741. scipy/ndimage/_ni_label.cp311-win_arm64.lib +0 -0
  742. scipy/ndimage/_ni_label.cp311-win_arm64.pyd +0 -0
  743. scipy/ndimage/_ni_support.py +139 -0
  744. scipy/ndimage/_rank_filter_1d.cp311-win_arm64.lib +0 -0
  745. scipy/ndimage/_rank_filter_1d.cp311-win_arm64.pyd +0 -0
  746. scipy/ndimage/_support_alternative_backends.py +84 -0
  747. scipy/ndimage/filters.py +27 -0
  748. scipy/ndimage/fourier.py +21 -0
  749. scipy/ndimage/interpolation.py +22 -0
  750. scipy/ndimage/measurements.py +24 -0
  751. scipy/ndimage/morphology.py +27 -0
  752. scipy/ndimage/tests/__init__.py +12 -0
  753. scipy/ndimage/tests/data/label_inputs.txt +21 -0
  754. scipy/ndimage/tests/data/label_results.txt +294 -0
  755. scipy/ndimage/tests/data/label_strels.txt +42 -0
  756. scipy/ndimage/tests/dots.png +0 -0
  757. scipy/ndimage/tests/test_c_api.py +102 -0
  758. scipy/ndimage/tests/test_datatypes.py +67 -0
  759. scipy/ndimage/tests/test_filters.py +3083 -0
  760. scipy/ndimage/tests/test_fourier.py +187 -0
  761. scipy/ndimage/tests/test_interpolation.py +1491 -0
  762. scipy/ndimage/tests/test_measurements.py +1592 -0
  763. scipy/ndimage/tests/test_morphology.py +2950 -0
  764. scipy/ndimage/tests/test_ni_support.py +78 -0
  765. scipy/ndimage/tests/test_splines.py +70 -0
  766. scipy/odr/__init__.py +131 -0
  767. scipy/odr/__odrpack.cp311-win_arm64.lib +0 -0
  768. scipy/odr/__odrpack.cp311-win_arm64.pyd +0 -0
  769. scipy/odr/_add_newdocs.py +34 -0
  770. scipy/odr/_models.py +315 -0
  771. scipy/odr/_odrpack.py +1154 -0
  772. scipy/odr/models.py +20 -0
  773. scipy/odr/odrpack.py +21 -0
  774. scipy/odr/tests/__init__.py +0 -0
  775. scipy/odr/tests/test_odr.py +607 -0
  776. scipy/optimize/__init__.pxd +1 -0
  777. scipy/optimize/__init__.py +460 -0
  778. scipy/optimize/_basinhopping.py +741 -0
  779. scipy/optimize/_bglu_dense.cp311-win_arm64.lib +0 -0
  780. scipy/optimize/_bglu_dense.cp311-win_arm64.pyd +0 -0
  781. scipy/optimize/_bracket.py +706 -0
  782. scipy/optimize/_chandrupatla.py +551 -0
  783. scipy/optimize/_cobyla_py.py +297 -0
  784. scipy/optimize/_cobyqa_py.py +72 -0
  785. scipy/optimize/_constraints.py +598 -0
  786. scipy/optimize/_dcsrch.py +728 -0
  787. scipy/optimize/_differentiable_functions.py +835 -0
  788. scipy/optimize/_differentialevolution.py +1970 -0
  789. scipy/optimize/_direct.cp311-win_arm64.lib +0 -0
  790. scipy/optimize/_direct.cp311-win_arm64.pyd +0 -0
  791. scipy/optimize/_direct_py.py +280 -0
  792. scipy/optimize/_dual_annealing.py +732 -0
  793. scipy/optimize/_elementwise.py +798 -0
  794. scipy/optimize/_group_columns.cp311-win_arm64.lib +0 -0
  795. scipy/optimize/_group_columns.cp311-win_arm64.pyd +0 -0
  796. scipy/optimize/_hessian_update_strategy.py +479 -0
  797. scipy/optimize/_highspy/__init__.py +0 -0
  798. scipy/optimize/_highspy/_core.cp311-win_arm64.lib +0 -0
  799. scipy/optimize/_highspy/_core.cp311-win_arm64.pyd +0 -0
  800. scipy/optimize/_highspy/_highs_options.cp311-win_arm64.lib +0 -0
  801. scipy/optimize/_highspy/_highs_options.cp311-win_arm64.pyd +0 -0
  802. scipy/optimize/_highspy/_highs_wrapper.py +338 -0
  803. scipy/optimize/_isotonic.py +157 -0
  804. scipy/optimize/_lbfgsb.cp311-win_arm64.lib +0 -0
  805. scipy/optimize/_lbfgsb.cp311-win_arm64.pyd +0 -0
  806. scipy/optimize/_lbfgsb_py.py +634 -0
  807. scipy/optimize/_linesearch.py +896 -0
  808. scipy/optimize/_linprog.py +733 -0
  809. scipy/optimize/_linprog_doc.py +1434 -0
  810. scipy/optimize/_linprog_highs.py +422 -0
  811. scipy/optimize/_linprog_ip.py +1141 -0
  812. scipy/optimize/_linprog_rs.py +572 -0
  813. scipy/optimize/_linprog_simplex.py +663 -0
  814. scipy/optimize/_linprog_util.py +1521 -0
  815. scipy/optimize/_lsap.cp311-win_arm64.lib +0 -0
  816. scipy/optimize/_lsap.cp311-win_arm64.pyd +0 -0
  817. scipy/optimize/_lsq/__init__.py +5 -0
  818. scipy/optimize/_lsq/bvls.py +183 -0
  819. scipy/optimize/_lsq/common.py +731 -0
  820. scipy/optimize/_lsq/dogbox.py +345 -0
  821. scipy/optimize/_lsq/givens_elimination.cp311-win_arm64.lib +0 -0
  822. scipy/optimize/_lsq/givens_elimination.cp311-win_arm64.pyd +0 -0
  823. scipy/optimize/_lsq/least_squares.py +1044 -0
  824. scipy/optimize/_lsq/lsq_linear.py +361 -0
  825. scipy/optimize/_lsq/trf.py +587 -0
  826. scipy/optimize/_lsq/trf_linear.py +249 -0
  827. scipy/optimize/_milp.py +394 -0
  828. scipy/optimize/_minimize.py +1199 -0
  829. scipy/optimize/_minpack.cp311-win_arm64.lib +0 -0
  830. scipy/optimize/_minpack.cp311-win_arm64.pyd +0 -0
  831. scipy/optimize/_minpack_py.py +1178 -0
  832. scipy/optimize/_moduleTNC.cp311-win_arm64.lib +0 -0
  833. scipy/optimize/_moduleTNC.cp311-win_arm64.pyd +0 -0
  834. scipy/optimize/_nnls.py +96 -0
  835. scipy/optimize/_nonlin.py +1634 -0
  836. scipy/optimize/_numdiff.py +963 -0
  837. scipy/optimize/_optimize.py +4169 -0
  838. scipy/optimize/_pava_pybind.cp311-win_arm64.lib +0 -0
  839. scipy/optimize/_pava_pybind.cp311-win_arm64.pyd +0 -0
  840. scipy/optimize/_qap.py +760 -0
  841. scipy/optimize/_remove_redundancy.py +522 -0
  842. scipy/optimize/_root.py +732 -0
  843. scipy/optimize/_root_scalar.py +538 -0
  844. scipy/optimize/_shgo.py +1606 -0
  845. scipy/optimize/_shgo_lib/__init__.py +0 -0
  846. scipy/optimize/_shgo_lib/_complex.py +1225 -0
  847. scipy/optimize/_shgo_lib/_vertex.py +460 -0
  848. scipy/optimize/_slsqp_py.py +603 -0
  849. scipy/optimize/_slsqplib.cp311-win_arm64.lib +0 -0
  850. scipy/optimize/_slsqplib.cp311-win_arm64.pyd +0 -0
  851. scipy/optimize/_spectral.py +260 -0
  852. scipy/optimize/_tnc.py +438 -0
  853. scipy/optimize/_trlib/__init__.py +12 -0
  854. scipy/optimize/_trlib/_trlib.cp311-win_arm64.lib +0 -0
  855. scipy/optimize/_trlib/_trlib.cp311-win_arm64.pyd +0 -0
  856. scipy/optimize/_trustregion.py +318 -0
  857. scipy/optimize/_trustregion_constr/__init__.py +6 -0
  858. scipy/optimize/_trustregion_constr/canonical_constraint.py +390 -0
  859. scipy/optimize/_trustregion_constr/equality_constrained_sqp.py +231 -0
  860. scipy/optimize/_trustregion_constr/minimize_trustregion_constr.py +584 -0
  861. scipy/optimize/_trustregion_constr/projections.py +411 -0
  862. scipy/optimize/_trustregion_constr/qp_subproblem.py +637 -0
  863. scipy/optimize/_trustregion_constr/report.py +49 -0
  864. scipy/optimize/_trustregion_constr/tests/__init__.py +0 -0
  865. scipy/optimize/_trustregion_constr/tests/test_canonical_constraint.py +296 -0
  866. scipy/optimize/_trustregion_constr/tests/test_nested_minimize.py +39 -0
  867. scipy/optimize/_trustregion_constr/tests/test_projections.py +214 -0
  868. scipy/optimize/_trustregion_constr/tests/test_qp_subproblem.py +645 -0
  869. scipy/optimize/_trustregion_constr/tests/test_report.py +34 -0
  870. scipy/optimize/_trustregion_constr/tr_interior_point.py +361 -0
  871. scipy/optimize/_trustregion_dogleg.py +122 -0
  872. scipy/optimize/_trustregion_exact.py +437 -0
  873. scipy/optimize/_trustregion_krylov.py +65 -0
  874. scipy/optimize/_trustregion_ncg.py +126 -0
  875. scipy/optimize/_tstutils.py +972 -0
  876. scipy/optimize/_zeros.cp311-win_arm64.lib +0 -0
  877. scipy/optimize/_zeros.cp311-win_arm64.pyd +0 -0
  878. scipy/optimize/_zeros_py.py +1475 -0
  879. scipy/optimize/cobyla.py +19 -0
  880. scipy/optimize/cython_optimize/__init__.py +133 -0
  881. scipy/optimize/cython_optimize/_zeros.cp311-win_arm64.lib +0 -0
  882. scipy/optimize/cython_optimize/_zeros.cp311-win_arm64.pyd +0 -0
  883. scipy/optimize/cython_optimize/_zeros.pxd +33 -0
  884. scipy/optimize/cython_optimize/c_zeros.pxd +26 -0
  885. scipy/optimize/cython_optimize.pxd +11 -0
  886. scipy/optimize/elementwise.py +38 -0
  887. scipy/optimize/lbfgsb.py +23 -0
  888. scipy/optimize/linesearch.py +18 -0
  889. scipy/optimize/minpack.py +27 -0
  890. scipy/optimize/minpack2.py +17 -0
  891. scipy/optimize/moduleTNC.py +19 -0
  892. scipy/optimize/nonlin.py +29 -0
  893. scipy/optimize/optimize.py +40 -0
  894. scipy/optimize/slsqp.py +22 -0
  895. scipy/optimize/tests/__init__.py +0 -0
  896. scipy/optimize/tests/_cython_examples/extending.pyx +43 -0
  897. scipy/optimize/tests/_cython_examples/meson.build +32 -0
  898. scipy/optimize/tests/test__basinhopping.py +535 -0
  899. scipy/optimize/tests/test__differential_evolution.py +1703 -0
  900. scipy/optimize/tests/test__dual_annealing.py +416 -0
  901. scipy/optimize/tests/test__linprog_clean_inputs.py +312 -0
  902. scipy/optimize/tests/test__numdiff.py +885 -0
  903. scipy/optimize/tests/test__remove_redundancy.py +228 -0
  904. scipy/optimize/tests/test__root.py +124 -0
  905. scipy/optimize/tests/test__shgo.py +1164 -0
  906. scipy/optimize/tests/test__spectral.py +226 -0
  907. scipy/optimize/tests/test_bracket.py +896 -0
  908. scipy/optimize/tests/test_chandrupatla.py +982 -0
  909. scipy/optimize/tests/test_cobyla.py +195 -0
  910. scipy/optimize/tests/test_cobyqa.py +252 -0
  911. scipy/optimize/tests/test_constraint_conversion.py +286 -0
  912. scipy/optimize/tests/test_constraints.py +255 -0
  913. scipy/optimize/tests/test_cython_optimize.py +92 -0
  914. scipy/optimize/tests/test_differentiable_functions.py +1025 -0
  915. scipy/optimize/tests/test_direct.py +321 -0
  916. scipy/optimize/tests/test_extending.py +28 -0
  917. scipy/optimize/tests/test_hessian_update_strategy.py +300 -0
  918. scipy/optimize/tests/test_isotonic_regression.py +167 -0
  919. scipy/optimize/tests/test_lbfgsb_hessinv.py +65 -0
  920. scipy/optimize/tests/test_lbfgsb_setulb.py +122 -0
  921. scipy/optimize/tests/test_least_squares.py +986 -0
  922. scipy/optimize/tests/test_linear_assignment.py +116 -0
  923. scipy/optimize/tests/test_linesearch.py +328 -0
  924. scipy/optimize/tests/test_linprog.py +2577 -0
  925. scipy/optimize/tests/test_lsq_common.py +297 -0
  926. scipy/optimize/tests/test_lsq_linear.py +287 -0
  927. scipy/optimize/tests/test_milp.py +459 -0
  928. scipy/optimize/tests/test_minimize_constrained.py +845 -0
  929. scipy/optimize/tests/test_minpack.py +1194 -0
  930. scipy/optimize/tests/test_nnls.py +469 -0
  931. scipy/optimize/tests/test_nonlin.py +572 -0
  932. scipy/optimize/tests/test_optimize.py +3344 -0
  933. scipy/optimize/tests/test_quadratic_assignment.py +455 -0
  934. scipy/optimize/tests/test_regression.py +40 -0
  935. scipy/optimize/tests/test_slsqp.py +645 -0
  936. scipy/optimize/tests/test_tnc.py +345 -0
  937. scipy/optimize/tests/test_trustregion.py +110 -0
  938. scipy/optimize/tests/test_trustregion_exact.py +351 -0
  939. scipy/optimize/tests/test_trustregion_krylov.py +170 -0
  940. scipy/optimize/tests/test_zeros.py +998 -0
  941. scipy/optimize/tnc.py +22 -0
  942. scipy/optimize/zeros.py +26 -0
  943. scipy/signal/__init__.py +316 -0
  944. scipy/signal/_arraytools.py +264 -0
  945. scipy/signal/_czt.py +575 -0
  946. scipy/signal/_delegators.py +568 -0
  947. scipy/signal/_filter_design.py +5893 -0
  948. scipy/signal/_fir_filter_design.py +1458 -0
  949. scipy/signal/_lti_conversion.py +534 -0
  950. scipy/signal/_ltisys.py +3546 -0
  951. scipy/signal/_max_len_seq.py +139 -0
  952. scipy/signal/_max_len_seq_inner.cp311-win_arm64.lib +0 -0
  953. scipy/signal/_max_len_seq_inner.cp311-win_arm64.pyd +0 -0
  954. scipy/signal/_peak_finding.py +1310 -0
  955. scipy/signal/_peak_finding_utils.cp311-win_arm64.lib +0 -0
  956. scipy/signal/_peak_finding_utils.cp311-win_arm64.pyd +0 -0
  957. scipy/signal/_polyutils.py +172 -0
  958. scipy/signal/_savitzky_golay.py +357 -0
  959. scipy/signal/_short_time_fft.py +2228 -0
  960. scipy/signal/_signal_api.py +30 -0
  961. scipy/signal/_signaltools.py +5309 -0
  962. scipy/signal/_sigtools.cp311-win_arm64.lib +0 -0
  963. scipy/signal/_sigtools.cp311-win_arm64.pyd +0 -0
  964. scipy/signal/_sosfilt.cp311-win_arm64.lib +0 -0
  965. scipy/signal/_sosfilt.cp311-win_arm64.pyd +0 -0
  966. scipy/signal/_spectral_py.py +2471 -0
  967. scipy/signal/_spline.cp311-win_arm64.lib +0 -0
  968. scipy/signal/_spline.cp311-win_arm64.pyd +0 -0
  969. scipy/signal/_spline.pyi +34 -0
  970. scipy/signal/_spline_filters.py +848 -0
  971. scipy/signal/_support_alternative_backends.py +73 -0
  972. scipy/signal/_upfirdn.py +219 -0
  973. scipy/signal/_upfirdn_apply.cp311-win_arm64.lib +0 -0
  974. scipy/signal/_upfirdn_apply.cp311-win_arm64.pyd +0 -0
  975. scipy/signal/_waveforms.py +687 -0
  976. scipy/signal/_wavelets.py +29 -0
  977. scipy/signal/bsplines.py +21 -0
  978. scipy/signal/filter_design.py +28 -0
  979. scipy/signal/fir_filter_design.py +21 -0
  980. scipy/signal/lti_conversion.py +20 -0
  981. scipy/signal/ltisys.py +25 -0
  982. scipy/signal/signaltools.py +27 -0
  983. scipy/signal/spectral.py +21 -0
  984. scipy/signal/spline.py +18 -0
  985. scipy/signal/tests/__init__.py +0 -0
  986. scipy/signal/tests/_scipy_spectral_test_shim.py +311 -0
  987. scipy/signal/tests/mpsig.py +122 -0
  988. scipy/signal/tests/test_array_tools.py +111 -0
  989. scipy/signal/tests/test_bsplines.py +365 -0
  990. scipy/signal/tests/test_cont2discrete.py +424 -0
  991. scipy/signal/tests/test_czt.py +221 -0
  992. scipy/signal/tests/test_dltisys.py +599 -0
  993. scipy/signal/tests/test_filter_design.py +4744 -0
  994. scipy/signal/tests/test_fir_filter_design.py +851 -0
  995. scipy/signal/tests/test_ltisys.py +1225 -0
  996. scipy/signal/tests/test_max_len_seq.py +71 -0
  997. scipy/signal/tests/test_peak_finding.py +915 -0
  998. scipy/signal/tests/test_result_type.py +51 -0
  999. scipy/signal/tests/test_savitzky_golay.py +363 -0
  1000. scipy/signal/tests/test_short_time_fft.py +1107 -0
  1001. scipy/signal/tests/test_signaltools.py +4735 -0
  1002. scipy/signal/tests/test_spectral.py +2141 -0
  1003. scipy/signal/tests/test_splines.py +427 -0
  1004. scipy/signal/tests/test_upfirdn.py +322 -0
  1005. scipy/signal/tests/test_waveforms.py +400 -0
  1006. scipy/signal/tests/test_wavelets.py +59 -0
  1007. scipy/signal/tests/test_windows.py +987 -0
  1008. scipy/signal/waveforms.py +20 -0
  1009. scipy/signal/wavelets.py +17 -0
  1010. scipy/signal/windows/__init__.py +52 -0
  1011. scipy/signal/windows/_windows.py +2513 -0
  1012. scipy/signal/windows/windows.py +23 -0
  1013. scipy/sparse/__init__.py +350 -0
  1014. scipy/sparse/_base.py +1613 -0
  1015. scipy/sparse/_bsr.py +880 -0
  1016. scipy/sparse/_compressed.py +1328 -0
  1017. scipy/sparse/_construct.py +1454 -0
  1018. scipy/sparse/_coo.py +1581 -0
  1019. scipy/sparse/_csc.py +367 -0
  1020. scipy/sparse/_csparsetools.cp311-win_arm64.lib +0 -0
  1021. scipy/sparse/_csparsetools.cp311-win_arm64.pyd +0 -0
  1022. scipy/sparse/_csr.py +558 -0
  1023. scipy/sparse/_data.py +569 -0
  1024. scipy/sparse/_dia.py +677 -0
  1025. scipy/sparse/_dok.py +669 -0
  1026. scipy/sparse/_extract.py +178 -0
  1027. scipy/sparse/_index.py +444 -0
  1028. scipy/sparse/_lil.py +632 -0
  1029. scipy/sparse/_matrix.py +169 -0
  1030. scipy/sparse/_matrix_io.py +167 -0
  1031. scipy/sparse/_sparsetools.cp311-win_arm64.lib +0 -0
  1032. scipy/sparse/_sparsetools.cp311-win_arm64.pyd +0 -0
  1033. scipy/sparse/_spfuncs.py +76 -0
  1034. scipy/sparse/_sputils.py +632 -0
  1035. scipy/sparse/base.py +24 -0
  1036. scipy/sparse/bsr.py +22 -0
  1037. scipy/sparse/compressed.py +20 -0
  1038. scipy/sparse/construct.py +38 -0
  1039. scipy/sparse/coo.py +23 -0
  1040. scipy/sparse/csc.py +22 -0
  1041. scipy/sparse/csgraph/__init__.py +210 -0
  1042. scipy/sparse/csgraph/_flow.cp311-win_arm64.lib +0 -0
  1043. scipy/sparse/csgraph/_flow.cp311-win_arm64.pyd +0 -0
  1044. scipy/sparse/csgraph/_laplacian.py +563 -0
  1045. scipy/sparse/csgraph/_matching.cp311-win_arm64.lib +0 -0
  1046. scipy/sparse/csgraph/_matching.cp311-win_arm64.pyd +0 -0
  1047. scipy/sparse/csgraph/_min_spanning_tree.cp311-win_arm64.lib +0 -0
  1048. scipy/sparse/csgraph/_min_spanning_tree.cp311-win_arm64.pyd +0 -0
  1049. scipy/sparse/csgraph/_reordering.cp311-win_arm64.lib +0 -0
  1050. scipy/sparse/csgraph/_reordering.cp311-win_arm64.pyd +0 -0
  1051. scipy/sparse/csgraph/_shortest_path.cp311-win_arm64.lib +0 -0
  1052. scipy/sparse/csgraph/_shortest_path.cp311-win_arm64.pyd +0 -0
  1053. scipy/sparse/csgraph/_tools.cp311-win_arm64.lib +0 -0
  1054. scipy/sparse/csgraph/_tools.cp311-win_arm64.pyd +0 -0
  1055. scipy/sparse/csgraph/_traversal.cp311-win_arm64.lib +0 -0
  1056. scipy/sparse/csgraph/_traversal.cp311-win_arm64.pyd +0 -0
  1057. scipy/sparse/csgraph/_validation.py +66 -0
  1058. scipy/sparse/csgraph/tests/__init__.py +0 -0
  1059. scipy/sparse/csgraph/tests/test_connected_components.py +119 -0
  1060. scipy/sparse/csgraph/tests/test_conversions.py +61 -0
  1061. scipy/sparse/csgraph/tests/test_flow.py +209 -0
  1062. scipy/sparse/csgraph/tests/test_graph_laplacian.py +368 -0
  1063. scipy/sparse/csgraph/tests/test_matching.py +307 -0
  1064. scipy/sparse/csgraph/tests/test_pydata_sparse.py +197 -0
  1065. scipy/sparse/csgraph/tests/test_reordering.py +70 -0
  1066. scipy/sparse/csgraph/tests/test_shortest_path.py +540 -0
  1067. scipy/sparse/csgraph/tests/test_spanning_tree.py +66 -0
  1068. scipy/sparse/csgraph/tests/test_traversal.py +148 -0
  1069. scipy/sparse/csr.py +22 -0
  1070. scipy/sparse/data.py +18 -0
  1071. scipy/sparse/dia.py +22 -0
  1072. scipy/sparse/dok.py +22 -0
  1073. scipy/sparse/extract.py +23 -0
  1074. scipy/sparse/lil.py +22 -0
  1075. scipy/sparse/linalg/__init__.py +148 -0
  1076. scipy/sparse/linalg/_dsolve/__init__.py +71 -0
  1077. scipy/sparse/linalg/_dsolve/_add_newdocs.py +147 -0
  1078. scipy/sparse/linalg/_dsolve/_superlu.cp311-win_arm64.lib +0 -0
  1079. scipy/sparse/linalg/_dsolve/_superlu.cp311-win_arm64.pyd +0 -0
  1080. scipy/sparse/linalg/_dsolve/linsolve.py +882 -0
  1081. scipy/sparse/linalg/_dsolve/tests/__init__.py +0 -0
  1082. scipy/sparse/linalg/_dsolve/tests/test_linsolve.py +928 -0
  1083. scipy/sparse/linalg/_eigen/__init__.py +22 -0
  1084. scipy/sparse/linalg/_eigen/_svds.py +540 -0
  1085. scipy/sparse/linalg/_eigen/_svds_doc.py +382 -0
  1086. scipy/sparse/linalg/_eigen/arpack/COPYING +45 -0
  1087. scipy/sparse/linalg/_eigen/arpack/__init__.py +20 -0
  1088. scipy/sparse/linalg/_eigen/arpack/_arpack.cp311-win_arm64.lib +0 -0
  1089. scipy/sparse/linalg/_eigen/arpack/_arpack.cp311-win_arm64.pyd +0 -0
  1090. scipy/sparse/linalg/_eigen/arpack/arpack.py +1706 -0
  1091. scipy/sparse/linalg/_eigen/arpack/tests/__init__.py +0 -0
  1092. scipy/sparse/linalg/_eigen/arpack/tests/test_arpack.py +717 -0
  1093. scipy/sparse/linalg/_eigen/lobpcg/__init__.py +16 -0
  1094. scipy/sparse/linalg/_eigen/lobpcg/lobpcg.py +1110 -0
  1095. scipy/sparse/linalg/_eigen/lobpcg/tests/__init__.py +0 -0
  1096. scipy/sparse/linalg/_eigen/lobpcg/tests/test_lobpcg.py +725 -0
  1097. scipy/sparse/linalg/_eigen/tests/__init__.py +0 -0
  1098. scipy/sparse/linalg/_eigen/tests/test_svds.py +886 -0
  1099. scipy/sparse/linalg/_expm_multiply.py +816 -0
  1100. scipy/sparse/linalg/_interface.py +920 -0
  1101. scipy/sparse/linalg/_isolve/__init__.py +20 -0
  1102. scipy/sparse/linalg/_isolve/_gcrotmk.py +503 -0
  1103. scipy/sparse/linalg/_isolve/iterative.py +1051 -0
  1104. scipy/sparse/linalg/_isolve/lgmres.py +230 -0
  1105. scipy/sparse/linalg/_isolve/lsmr.py +486 -0
  1106. scipy/sparse/linalg/_isolve/lsqr.py +589 -0
  1107. scipy/sparse/linalg/_isolve/minres.py +372 -0
  1108. scipy/sparse/linalg/_isolve/tests/__init__.py +0 -0
  1109. scipy/sparse/linalg/_isolve/tests/test_gcrotmk.py +183 -0
  1110. scipy/sparse/linalg/_isolve/tests/test_iterative.py +809 -0
  1111. scipy/sparse/linalg/_isolve/tests/test_lgmres.py +225 -0
  1112. scipy/sparse/linalg/_isolve/tests/test_lsmr.py +185 -0
  1113. scipy/sparse/linalg/_isolve/tests/test_lsqr.py +120 -0
  1114. scipy/sparse/linalg/_isolve/tests/test_minres.py +97 -0
  1115. scipy/sparse/linalg/_isolve/tests/test_utils.py +9 -0
  1116. scipy/sparse/linalg/_isolve/tfqmr.py +179 -0
  1117. scipy/sparse/linalg/_isolve/utils.py +121 -0
  1118. scipy/sparse/linalg/_matfuncs.py +940 -0
  1119. scipy/sparse/linalg/_norm.py +195 -0
  1120. scipy/sparse/linalg/_onenormest.py +467 -0
  1121. scipy/sparse/linalg/_propack/_cpropack.cp311-win_arm64.lib +0 -0
  1122. scipy/sparse/linalg/_propack/_cpropack.cp311-win_arm64.pyd +0 -0
  1123. scipy/sparse/linalg/_propack/_dpropack.cp311-win_arm64.lib +0 -0
  1124. scipy/sparse/linalg/_propack/_dpropack.cp311-win_arm64.pyd +0 -0
  1125. scipy/sparse/linalg/_propack/_spropack.cp311-win_arm64.lib +0 -0
  1126. scipy/sparse/linalg/_propack/_spropack.cp311-win_arm64.pyd +0 -0
  1127. scipy/sparse/linalg/_propack/_zpropack.cp311-win_arm64.lib +0 -0
  1128. scipy/sparse/linalg/_propack/_zpropack.cp311-win_arm64.pyd +0 -0
  1129. scipy/sparse/linalg/_special_sparse_arrays.py +949 -0
  1130. scipy/sparse/linalg/_svdp.py +309 -0
  1131. scipy/sparse/linalg/dsolve.py +22 -0
  1132. scipy/sparse/linalg/eigen.py +21 -0
  1133. scipy/sparse/linalg/interface.py +20 -0
  1134. scipy/sparse/linalg/isolve.py +22 -0
  1135. scipy/sparse/linalg/matfuncs.py +18 -0
  1136. scipy/sparse/linalg/tests/__init__.py +0 -0
  1137. scipy/sparse/linalg/tests/propack_test_data.npz +0 -0
  1138. scipy/sparse/linalg/tests/test_expm_multiply.py +367 -0
  1139. scipy/sparse/linalg/tests/test_interface.py +561 -0
  1140. scipy/sparse/linalg/tests/test_matfuncs.py +592 -0
  1141. scipy/sparse/linalg/tests/test_norm.py +154 -0
  1142. scipy/sparse/linalg/tests/test_onenormest.py +252 -0
  1143. scipy/sparse/linalg/tests/test_propack.py +165 -0
  1144. scipy/sparse/linalg/tests/test_pydata_sparse.py +272 -0
  1145. scipy/sparse/linalg/tests/test_special_sparse_arrays.py +337 -0
  1146. scipy/sparse/sparsetools.py +17 -0
  1147. scipy/sparse/spfuncs.py +17 -0
  1148. scipy/sparse/sputils.py +17 -0
  1149. scipy/sparse/tests/__init__.py +0 -0
  1150. scipy/sparse/tests/data/csc_py2.npz +0 -0
  1151. scipy/sparse/tests/data/csc_py3.npz +0 -0
  1152. scipy/sparse/tests/test_arithmetic1d.py +341 -0
  1153. scipy/sparse/tests/test_array_api.py +561 -0
  1154. scipy/sparse/tests/test_base.py +5870 -0
  1155. scipy/sparse/tests/test_common1d.py +447 -0
  1156. scipy/sparse/tests/test_construct.py +872 -0
  1157. scipy/sparse/tests/test_coo.py +1119 -0
  1158. scipy/sparse/tests/test_csc.py +98 -0
  1159. scipy/sparse/tests/test_csr.py +214 -0
  1160. scipy/sparse/tests/test_dok.py +209 -0
  1161. scipy/sparse/tests/test_extract.py +51 -0
  1162. scipy/sparse/tests/test_indexing1d.py +603 -0
  1163. scipy/sparse/tests/test_matrix_io.py +109 -0
  1164. scipy/sparse/tests/test_minmax1d.py +128 -0
  1165. scipy/sparse/tests/test_sparsetools.py +344 -0
  1166. scipy/sparse/tests/test_spfuncs.py +97 -0
  1167. scipy/sparse/tests/test_sputils.py +424 -0
  1168. scipy/spatial/__init__.py +129 -0
  1169. scipy/spatial/_ckdtree.cp311-win_arm64.lib +0 -0
  1170. scipy/spatial/_ckdtree.cp311-win_arm64.pyd +0 -0
  1171. scipy/spatial/_distance_pybind.cp311-win_arm64.lib +0 -0
  1172. scipy/spatial/_distance_pybind.cp311-win_arm64.pyd +0 -0
  1173. scipy/spatial/_distance_wrap.cp311-win_arm64.lib +0 -0
  1174. scipy/spatial/_distance_wrap.cp311-win_arm64.pyd +0 -0
  1175. scipy/spatial/_geometric_slerp.py +238 -0
  1176. scipy/spatial/_hausdorff.cp311-win_arm64.lib +0 -0
  1177. scipy/spatial/_hausdorff.cp311-win_arm64.pyd +0 -0
  1178. scipy/spatial/_kdtree.py +920 -0
  1179. scipy/spatial/_plotutils.py +274 -0
  1180. scipy/spatial/_procrustes.py +132 -0
  1181. scipy/spatial/_qhull.cp311-win_arm64.lib +0 -0
  1182. scipy/spatial/_qhull.cp311-win_arm64.pyd +0 -0
  1183. scipy/spatial/_qhull.pyi +213 -0
  1184. scipy/spatial/_spherical_voronoi.py +341 -0
  1185. scipy/spatial/_voronoi.cp311-win_arm64.lib +0 -0
  1186. scipy/spatial/_voronoi.cp311-win_arm64.pyd +0 -0
  1187. scipy/spatial/_voronoi.pyi +4 -0
  1188. scipy/spatial/ckdtree.py +18 -0
  1189. scipy/spatial/distance.py +3147 -0
  1190. scipy/spatial/distance.pyi +210 -0
  1191. scipy/spatial/kdtree.py +25 -0
  1192. scipy/spatial/qhull.py +25 -0
  1193. scipy/spatial/qhull_src/COPYING_QHULL.txt +39 -0
  1194. scipy/spatial/tests/__init__.py +0 -0
  1195. scipy/spatial/tests/data/cdist-X1.txt +10 -0
  1196. scipy/spatial/tests/data/cdist-X2.txt +20 -0
  1197. scipy/spatial/tests/data/degenerate_pointset.npz +0 -0
  1198. scipy/spatial/tests/data/iris.txt +150 -0
  1199. scipy/spatial/tests/data/pdist-boolean-inp.txt +20 -0
  1200. scipy/spatial/tests/data/pdist-chebyshev-ml-iris.txt +1 -0
  1201. scipy/spatial/tests/data/pdist-chebyshev-ml.txt +1 -0
  1202. scipy/spatial/tests/data/pdist-cityblock-ml-iris.txt +1 -0
  1203. scipy/spatial/tests/data/pdist-cityblock-ml.txt +1 -0
  1204. scipy/spatial/tests/data/pdist-correlation-ml-iris.txt +1 -0
  1205. scipy/spatial/tests/data/pdist-correlation-ml.txt +1 -0
  1206. scipy/spatial/tests/data/pdist-cosine-ml-iris.txt +1 -0
  1207. scipy/spatial/tests/data/pdist-cosine-ml.txt +1 -0
  1208. scipy/spatial/tests/data/pdist-double-inp.txt +20 -0
  1209. scipy/spatial/tests/data/pdist-euclidean-ml-iris.txt +1 -0
  1210. scipy/spatial/tests/data/pdist-euclidean-ml.txt +1 -0
  1211. scipy/spatial/tests/data/pdist-hamming-ml.txt +1 -0
  1212. scipy/spatial/tests/data/pdist-jaccard-ml.txt +1 -0
  1213. scipy/spatial/tests/data/pdist-jensenshannon-ml-iris.txt +1 -0
  1214. scipy/spatial/tests/data/pdist-jensenshannon-ml.txt +1 -0
  1215. scipy/spatial/tests/data/pdist-minkowski-3.2-ml-iris.txt +1 -0
  1216. scipy/spatial/tests/data/pdist-minkowski-3.2-ml.txt +1 -0
  1217. scipy/spatial/tests/data/pdist-minkowski-5.8-ml-iris.txt +1 -0
  1218. scipy/spatial/tests/data/pdist-seuclidean-ml-iris.txt +1 -0
  1219. scipy/spatial/tests/data/pdist-seuclidean-ml.txt +1 -0
  1220. scipy/spatial/tests/data/pdist-spearman-ml.txt +1 -0
  1221. scipy/spatial/tests/data/random-bool-data.txt +100 -0
  1222. scipy/spatial/tests/data/random-double-data.txt +100 -0
  1223. scipy/spatial/tests/data/random-int-data.txt +100 -0
  1224. scipy/spatial/tests/data/random-uint-data.txt +100 -0
  1225. scipy/spatial/tests/data/selfdual-4d-polytope.txt +27 -0
  1226. scipy/spatial/tests/test__plotutils.py +91 -0
  1227. scipy/spatial/tests/test__procrustes.py +116 -0
  1228. scipy/spatial/tests/test_distance.py +2389 -0
  1229. scipy/spatial/tests/test_hausdorff.py +199 -0
  1230. scipy/spatial/tests/test_kdtree.py +1536 -0
  1231. scipy/spatial/tests/test_qhull.py +1313 -0
  1232. scipy/spatial/tests/test_slerp.py +417 -0
  1233. scipy/spatial/tests/test_spherical_voronoi.py +358 -0
  1234. scipy/spatial/transform/__init__.py +31 -0
  1235. scipy/spatial/transform/_rigid_transform.cp311-win_arm64.lib +0 -0
  1236. scipy/spatial/transform/_rigid_transform.cp311-win_arm64.pyd +0 -0
  1237. scipy/spatial/transform/_rotation.cp311-win_arm64.lib +0 -0
  1238. scipy/spatial/transform/_rotation.cp311-win_arm64.pyd +0 -0
  1239. scipy/spatial/transform/_rotation_groups.py +140 -0
  1240. scipy/spatial/transform/_rotation_spline.py +460 -0
  1241. scipy/spatial/transform/rotation.py +21 -0
  1242. scipy/spatial/transform/tests/__init__.py +0 -0
  1243. scipy/spatial/transform/tests/test_rigid_transform.py +1221 -0
  1244. scipy/spatial/transform/tests/test_rotation.py +2569 -0
  1245. scipy/spatial/transform/tests/test_rotation_groups.py +169 -0
  1246. scipy/spatial/transform/tests/test_rotation_spline.py +183 -0
  1247. scipy/special/__init__.pxd +1 -0
  1248. scipy/special/__init__.py +841 -0
  1249. scipy/special/_add_newdocs.py +9961 -0
  1250. scipy/special/_basic.py +3576 -0
  1251. scipy/special/_comb.cp311-win_arm64.lib +0 -0
  1252. scipy/special/_comb.cp311-win_arm64.pyd +0 -0
  1253. scipy/special/_ellip_harm.py +214 -0
  1254. scipy/special/_ellip_harm_2.cp311-win_arm64.lib +0 -0
  1255. scipy/special/_ellip_harm_2.cp311-win_arm64.pyd +0 -0
  1256. scipy/special/_gufuncs.cp311-win_arm64.lib +0 -0
  1257. scipy/special/_gufuncs.cp311-win_arm64.pyd +0 -0
  1258. scipy/special/_input_validation.py +17 -0
  1259. scipy/special/_lambertw.py +149 -0
  1260. scipy/special/_logsumexp.py +426 -0
  1261. scipy/special/_mptestutils.py +453 -0
  1262. scipy/special/_multiufuncs.py +610 -0
  1263. scipy/special/_orthogonal.py +2592 -0
  1264. scipy/special/_orthogonal.pyi +330 -0
  1265. scipy/special/_precompute/__init__.py +0 -0
  1266. scipy/special/_precompute/cosine_cdf.py +17 -0
  1267. scipy/special/_precompute/expn_asy.py +54 -0
  1268. scipy/special/_precompute/gammainc_asy.py +116 -0
  1269. scipy/special/_precompute/gammainc_data.py +124 -0
  1270. scipy/special/_precompute/hyp2f1_data.py +484 -0
  1271. scipy/special/_precompute/lambertw.py +68 -0
  1272. scipy/special/_precompute/loggamma.py +43 -0
  1273. scipy/special/_precompute/struve_convergence.py +131 -0
  1274. scipy/special/_precompute/utils.py +38 -0
  1275. scipy/special/_precompute/wright_bessel.py +342 -0
  1276. scipy/special/_precompute/wright_bessel_data.py +152 -0
  1277. scipy/special/_precompute/wrightomega.py +41 -0
  1278. scipy/special/_precompute/zetac.py +27 -0
  1279. scipy/special/_sf_error.py +15 -0
  1280. scipy/special/_specfun.cp311-win_arm64.lib +0 -0
  1281. scipy/special/_specfun.cp311-win_arm64.pyd +0 -0
  1282. scipy/special/_special_ufuncs.cp311-win_arm64.lib +0 -0
  1283. scipy/special/_special_ufuncs.cp311-win_arm64.pyd +0 -0
  1284. scipy/special/_spfun_stats.py +106 -0
  1285. scipy/special/_spherical_bessel.py +397 -0
  1286. scipy/special/_support_alternative_backends.py +295 -0
  1287. scipy/special/_test_internal.cp311-win_arm64.lib +0 -0
  1288. scipy/special/_test_internal.cp311-win_arm64.pyd +0 -0
  1289. scipy/special/_test_internal.pyi +9 -0
  1290. scipy/special/_testutils.py +321 -0
  1291. scipy/special/_ufuncs.cp311-win_arm64.lib +0 -0
  1292. scipy/special/_ufuncs.cp311-win_arm64.pyd +0 -0
  1293. scipy/special/_ufuncs.pyi +522 -0
  1294. scipy/special/_ufuncs.pyx +13173 -0
  1295. scipy/special/_ufuncs_cxx.cp311-win_arm64.lib +0 -0
  1296. scipy/special/_ufuncs_cxx.cp311-win_arm64.pyd +0 -0
  1297. scipy/special/_ufuncs_cxx.pxd +142 -0
  1298. scipy/special/_ufuncs_cxx.pyx +427 -0
  1299. scipy/special/_ufuncs_cxx_defs.h +147 -0
  1300. scipy/special/_ufuncs_defs.h +57 -0
  1301. scipy/special/add_newdocs.py +15 -0
  1302. scipy/special/basic.py +87 -0
  1303. scipy/special/cython_special.cp311-win_arm64.lib +0 -0
  1304. scipy/special/cython_special.cp311-win_arm64.pyd +0 -0
  1305. scipy/special/cython_special.pxd +259 -0
  1306. scipy/special/cython_special.pyi +3 -0
  1307. scipy/special/orthogonal.py +45 -0
  1308. scipy/special/sf_error.py +20 -0
  1309. scipy/special/specfun.py +24 -0
  1310. scipy/special/spfun_stats.py +17 -0
  1311. scipy/special/tests/__init__.py +0 -0
  1312. scipy/special/tests/_cython_examples/extending.pyx +12 -0
  1313. scipy/special/tests/_cython_examples/meson.build +34 -0
  1314. scipy/special/tests/data/__init__.py +0 -0
  1315. scipy/special/tests/data/boost.npz +0 -0
  1316. scipy/special/tests/data/gsl.npz +0 -0
  1317. scipy/special/tests/data/local.npz +0 -0
  1318. scipy/special/tests/test_basic.py +4815 -0
  1319. scipy/special/tests/test_bdtr.py +112 -0
  1320. scipy/special/tests/test_boost_ufuncs.py +64 -0
  1321. scipy/special/tests/test_boxcox.py +125 -0
  1322. scipy/special/tests/test_cdflib.py +712 -0
  1323. scipy/special/tests/test_cdft_asymptotic.py +49 -0
  1324. scipy/special/tests/test_cephes_intp_cast.py +29 -0
  1325. scipy/special/tests/test_cosine_distr.py +83 -0
  1326. scipy/special/tests/test_cython_special.py +363 -0
  1327. scipy/special/tests/test_data.py +719 -0
  1328. scipy/special/tests/test_dd.py +42 -0
  1329. scipy/special/tests/test_digamma.py +45 -0
  1330. scipy/special/tests/test_ellip_harm.py +278 -0
  1331. scipy/special/tests/test_erfinv.py +89 -0
  1332. scipy/special/tests/test_exponential_integrals.py +118 -0
  1333. scipy/special/tests/test_extending.py +28 -0
  1334. scipy/special/tests/test_faddeeva.py +85 -0
  1335. scipy/special/tests/test_gamma.py +12 -0
  1336. scipy/special/tests/test_gammainc.py +152 -0
  1337. scipy/special/tests/test_hyp2f1.py +2566 -0
  1338. scipy/special/tests/test_hypergeometric.py +234 -0
  1339. scipy/special/tests/test_iv_ratio.py +249 -0
  1340. scipy/special/tests/test_kolmogorov.py +491 -0
  1341. scipy/special/tests/test_lambertw.py +109 -0
  1342. scipy/special/tests/test_legendre.py +1518 -0
  1343. scipy/special/tests/test_log1mexp.py +85 -0
  1344. scipy/special/tests/test_loggamma.py +70 -0
  1345. scipy/special/tests/test_logit.py +162 -0
  1346. scipy/special/tests/test_logsumexp.py +469 -0
  1347. scipy/special/tests/test_mpmath.py +2293 -0
  1348. scipy/special/tests/test_nan_inputs.py +65 -0
  1349. scipy/special/tests/test_ndtr.py +77 -0
  1350. scipy/special/tests/test_ndtri_exp.py +94 -0
  1351. scipy/special/tests/test_orthogonal.py +821 -0
  1352. scipy/special/tests/test_orthogonal_eval.py +275 -0
  1353. scipy/special/tests/test_owens_t.py +53 -0
  1354. scipy/special/tests/test_pcf.py +24 -0
  1355. scipy/special/tests/test_pdtr.py +48 -0
  1356. scipy/special/tests/test_powm1.py +65 -0
  1357. scipy/special/tests/test_precompute_expn_asy.py +24 -0
  1358. scipy/special/tests/test_precompute_gammainc.py +108 -0
  1359. scipy/special/tests/test_precompute_utils.py +36 -0
  1360. scipy/special/tests/test_round.py +18 -0
  1361. scipy/special/tests/test_sf_error.py +146 -0
  1362. scipy/special/tests/test_sici.py +36 -0
  1363. scipy/special/tests/test_specfun.py +48 -0
  1364. scipy/special/tests/test_spence.py +32 -0
  1365. scipy/special/tests/test_spfun_stats.py +61 -0
  1366. scipy/special/tests/test_sph_harm.py +85 -0
  1367. scipy/special/tests/test_spherical_bessel.py +400 -0
  1368. scipy/special/tests/test_support_alternative_backends.py +248 -0
  1369. scipy/special/tests/test_trig.py +72 -0
  1370. scipy/special/tests/test_ufunc_signatures.py +46 -0
  1371. scipy/special/tests/test_wright_bessel.py +205 -0
  1372. scipy/special/tests/test_wrightomega.py +117 -0
  1373. scipy/special/tests/test_zeta.py +301 -0
  1374. scipy/stats/__init__.py +670 -0
  1375. scipy/stats/_ansari_swilk_statistics.cp311-win_arm64.lib +0 -0
  1376. scipy/stats/_ansari_swilk_statistics.cp311-win_arm64.pyd +0 -0
  1377. scipy/stats/_axis_nan_policy.py +692 -0
  1378. scipy/stats/_biasedurn.cp311-win_arm64.lib +0 -0
  1379. scipy/stats/_biasedurn.cp311-win_arm64.pyd +0 -0
  1380. scipy/stats/_biasedurn.pxd +27 -0
  1381. scipy/stats/_binned_statistic.py +795 -0
  1382. scipy/stats/_binomtest.py +375 -0
  1383. scipy/stats/_bws_test.py +177 -0
  1384. scipy/stats/_censored_data.py +459 -0
  1385. scipy/stats/_common.py +5 -0
  1386. scipy/stats/_constants.py +42 -0
  1387. scipy/stats/_continued_fraction.py +387 -0
  1388. scipy/stats/_continuous_distns.py +12486 -0
  1389. scipy/stats/_correlation.py +210 -0
  1390. scipy/stats/_covariance.py +636 -0
  1391. scipy/stats/_crosstab.py +204 -0
  1392. scipy/stats/_discrete_distns.py +2098 -0
  1393. scipy/stats/_distn_infrastructure.py +4201 -0
  1394. scipy/stats/_distr_params.py +299 -0
  1395. scipy/stats/_distribution_infrastructure.py +5750 -0
  1396. scipy/stats/_entropy.py +428 -0
  1397. scipy/stats/_finite_differences.py +145 -0
  1398. scipy/stats/_fit.py +1351 -0
  1399. scipy/stats/_hypotests.py +2060 -0
  1400. scipy/stats/_kde.py +732 -0
  1401. scipy/stats/_ksstats.py +600 -0
  1402. scipy/stats/_levy_stable/__init__.py +1231 -0
  1403. scipy/stats/_levy_stable/levyst.cp311-win_arm64.lib +0 -0
  1404. scipy/stats/_levy_stable/levyst.cp311-win_arm64.pyd +0 -0
  1405. scipy/stats/_mannwhitneyu.py +492 -0
  1406. scipy/stats/_mgc.py +550 -0
  1407. scipy/stats/_morestats.py +4626 -0
  1408. scipy/stats/_mstats_basic.py +3658 -0
  1409. scipy/stats/_mstats_extras.py +521 -0
  1410. scipy/stats/_multicomp.py +449 -0
  1411. scipy/stats/_multivariate.py +7281 -0
  1412. scipy/stats/_new_distributions.py +452 -0
  1413. scipy/stats/_odds_ratio.py +466 -0
  1414. scipy/stats/_page_trend_test.py +486 -0
  1415. scipy/stats/_probability_distribution.py +1964 -0
  1416. scipy/stats/_qmc.py +2956 -0
  1417. scipy/stats/_qmc_cy.cp311-win_arm64.lib +0 -0
  1418. scipy/stats/_qmc_cy.cp311-win_arm64.pyd +0 -0
  1419. scipy/stats/_qmc_cy.pyi +54 -0
  1420. scipy/stats/_qmvnt.py +454 -0
  1421. scipy/stats/_qmvnt_cy.cp311-win_arm64.lib +0 -0
  1422. scipy/stats/_qmvnt_cy.cp311-win_arm64.pyd +0 -0
  1423. scipy/stats/_quantile.py +335 -0
  1424. scipy/stats/_rcont/__init__.py +4 -0
  1425. scipy/stats/_rcont/rcont.cp311-win_arm64.lib +0 -0
  1426. scipy/stats/_rcont/rcont.cp311-win_arm64.pyd +0 -0
  1427. scipy/stats/_relative_risk.py +263 -0
  1428. scipy/stats/_resampling.py +2352 -0
  1429. scipy/stats/_result_classes.py +40 -0
  1430. scipy/stats/_sampling.py +1314 -0
  1431. scipy/stats/_sensitivity_analysis.py +713 -0
  1432. scipy/stats/_sobol.cp311-win_arm64.lib +0 -0
  1433. scipy/stats/_sobol.cp311-win_arm64.pyd +0 -0
  1434. scipy/stats/_sobol.pyi +54 -0
  1435. scipy/stats/_sobol_direction_numbers.npz +0 -0
  1436. scipy/stats/_stats.cp311-win_arm64.lib +0 -0
  1437. scipy/stats/_stats.cp311-win_arm64.pyd +0 -0
  1438. scipy/stats/_stats.pxd +10 -0
  1439. scipy/stats/_stats_mstats_common.py +322 -0
  1440. scipy/stats/_stats_py.py +11089 -0
  1441. scipy/stats/_stats_pythran.cp311-win_arm64.lib +0 -0
  1442. scipy/stats/_stats_pythran.cp311-win_arm64.pyd +0 -0
  1443. scipy/stats/_survival.py +683 -0
  1444. scipy/stats/_tukeylambda_stats.py +199 -0
  1445. scipy/stats/_unuran/__init__.py +0 -0
  1446. scipy/stats/_unuran/unuran_wrapper.cp311-win_arm64.lib +0 -0
  1447. scipy/stats/_unuran/unuran_wrapper.cp311-win_arm64.pyd +0 -0
  1448. scipy/stats/_unuran/unuran_wrapper.pyi +179 -0
  1449. scipy/stats/_variation.py +126 -0
  1450. scipy/stats/_warnings_errors.py +38 -0
  1451. scipy/stats/_wilcoxon.py +265 -0
  1452. scipy/stats/biasedurn.py +16 -0
  1453. scipy/stats/contingency.py +521 -0
  1454. scipy/stats/distributions.py +24 -0
  1455. scipy/stats/kde.py +18 -0
  1456. scipy/stats/morestats.py +27 -0
  1457. scipy/stats/mstats.py +140 -0
  1458. scipy/stats/mstats_basic.py +42 -0
  1459. scipy/stats/mstats_extras.py +25 -0
  1460. scipy/stats/mvn.py +17 -0
  1461. scipy/stats/qmc.py +236 -0
  1462. scipy/stats/sampling.py +73 -0
  1463. scipy/stats/stats.py +41 -0
  1464. scipy/stats/tests/__init__.py +0 -0
  1465. scipy/stats/tests/common_tests.py +356 -0
  1466. scipy/stats/tests/data/_mvt.py +171 -0
  1467. scipy/stats/tests/data/fisher_exact_results_from_r.py +607 -0
  1468. scipy/stats/tests/data/jf_skew_t_gamlss_pdf_data.npy +0 -0
  1469. scipy/stats/tests/data/levy_stable/stable-Z1-cdf-sample-data.npy +0 -0
  1470. scipy/stats/tests/data/levy_stable/stable-Z1-pdf-sample-data.npy +0 -0
  1471. scipy/stats/tests/data/levy_stable/stable-loc-scale-sample-data.npy +0 -0
  1472. scipy/stats/tests/data/nist_anova/AtmWtAg.dat +108 -0
  1473. scipy/stats/tests/data/nist_anova/SiRstv.dat +85 -0
  1474. scipy/stats/tests/data/nist_anova/SmLs01.dat +249 -0
  1475. scipy/stats/tests/data/nist_anova/SmLs02.dat +1869 -0
  1476. scipy/stats/tests/data/nist_anova/SmLs03.dat +18069 -0
  1477. scipy/stats/tests/data/nist_anova/SmLs04.dat +249 -0
  1478. scipy/stats/tests/data/nist_anova/SmLs05.dat +1869 -0
  1479. scipy/stats/tests/data/nist_anova/SmLs06.dat +18069 -0
  1480. scipy/stats/tests/data/nist_anova/SmLs07.dat +249 -0
  1481. scipy/stats/tests/data/nist_anova/SmLs08.dat +1869 -0
  1482. scipy/stats/tests/data/nist_anova/SmLs09.dat +18069 -0
  1483. scipy/stats/tests/data/nist_linregress/Norris.dat +97 -0
  1484. scipy/stats/tests/data/rel_breitwigner_pdf_sample_data_ROOT.npy +0 -0
  1485. scipy/stats/tests/data/studentized_range_mpmath_ref.json +1499 -0
  1486. scipy/stats/tests/test_axis_nan_policy.py +1388 -0
  1487. scipy/stats/tests/test_binned_statistic.py +568 -0
  1488. scipy/stats/tests/test_censored_data.py +152 -0
  1489. scipy/stats/tests/test_contingency.py +294 -0
  1490. scipy/stats/tests/test_continued_fraction.py +173 -0
  1491. scipy/stats/tests/test_continuous.py +2198 -0
  1492. scipy/stats/tests/test_continuous_basic.py +1053 -0
  1493. scipy/stats/tests/test_continuous_fit_censored.py +683 -0
  1494. scipy/stats/tests/test_correlation.py +80 -0
  1495. scipy/stats/tests/test_crosstab.py +115 -0
  1496. scipy/stats/tests/test_discrete_basic.py +580 -0
  1497. scipy/stats/tests/test_discrete_distns.py +700 -0
  1498. scipy/stats/tests/test_distributions.py +10413 -0
  1499. scipy/stats/tests/test_entropy.py +322 -0
  1500. scipy/stats/tests/test_fast_gen_inversion.py +435 -0
  1501. scipy/stats/tests/test_fit.py +1090 -0
  1502. scipy/stats/tests/test_hypotests.py +1991 -0
  1503. scipy/stats/tests/test_kdeoth.py +676 -0
  1504. scipy/stats/tests/test_marray.py +289 -0
  1505. scipy/stats/tests/test_mgc.py +217 -0
  1506. scipy/stats/tests/test_morestats.py +3259 -0
  1507. scipy/stats/tests/test_mstats_basic.py +2071 -0
  1508. scipy/stats/tests/test_mstats_extras.py +172 -0
  1509. scipy/stats/tests/test_multicomp.py +405 -0
  1510. scipy/stats/tests/test_multivariate.py +4381 -0
  1511. scipy/stats/tests/test_odds_ratio.py +148 -0
  1512. scipy/stats/tests/test_qmc.py +1492 -0
  1513. scipy/stats/tests/test_quantile.py +199 -0
  1514. scipy/stats/tests/test_rank.py +345 -0
  1515. scipy/stats/tests/test_relative_risk.py +95 -0
  1516. scipy/stats/tests/test_resampling.py +2000 -0
  1517. scipy/stats/tests/test_sampling.py +1450 -0
  1518. scipy/stats/tests/test_sensitivity_analysis.py +310 -0
  1519. scipy/stats/tests/test_stats.py +9707 -0
  1520. scipy/stats/tests/test_survival.py +466 -0
  1521. scipy/stats/tests/test_tukeylambda_stats.py +85 -0
  1522. scipy/stats/tests/test_variation.py +216 -0
  1523. scipy/version.py +12 -0
  1524. scipy-1.16.2.dist-info/DELVEWHEEL +2 -0
  1525. scipy-1.16.2.dist-info/LICENSE.txt +912 -0
  1526. scipy-1.16.2.dist-info/METADATA +1061 -0
  1527. scipy-1.16.2.dist-info/RECORD +1530 -0
  1528. scipy-1.16.2.dist-info/WHEEL +4 -0
  1529. scipy.libs/msvcp140-5f1c5dd31916990d94181e07bc3afb32.dll +0 -0
  1530. scipy.libs/scipy_openblas-f3ac85b1f412f7e86514c923dc4058d1.dll +0 -0
@@ -0,0 +1,2397 @@
1
+ """
2
+ fitpack --- curve and surface fitting with splines
3
+
4
+ fitpack is based on a collection of Fortran routines DIERCKX
5
+ by P. Dierckx (see http://www.netlib.org/dierckx/) transformed
6
+ to double routines by Pearu Peterson.
7
+ """
8
+ # Created by Pearu Peterson, June,August 2003
9
+ __all__ = [
10
+ 'UnivariateSpline',
11
+ 'InterpolatedUnivariateSpline',
12
+ 'LSQUnivariateSpline',
13
+ 'BivariateSpline',
14
+ 'LSQBivariateSpline',
15
+ 'SmoothBivariateSpline',
16
+ 'LSQSphereBivariateSpline',
17
+ 'SmoothSphereBivariateSpline',
18
+ 'RectBivariateSpline',
19
+ 'RectSphereBivariateSpline']
20
+
21
+
22
+ import warnings
23
+ from threading import Lock
24
+
25
+ from numpy import zeros, concatenate, ravel, diff, array
26
+ import numpy as np
27
+
28
+ from . import _fitpack_impl
29
+ from . import _dfitpack as dfitpack
30
+
31
+
32
+ dfitpack_int = dfitpack.types.intvar.dtype
33
+ FITPACK_LOCK = Lock()
34
+
35
+
36
+ # ############### Univariate spline ####################
37
+
38
+ _curfit_messages = {1: """
39
+ The required storage space exceeds the available storage space, as
40
+ specified by the parameter nest: nest too small. If nest is already
41
+ large (say nest > m/2), it may also indicate that s is too small.
42
+ The approximation returned is the weighted least-squares spline
43
+ according to the knots t[0],t[1],...,t[n-1]. (n=nest) the parameter fp
44
+ gives the corresponding weighted sum of squared residuals (fp>s).
45
+ """,
46
+ 2: """
47
+ A theoretically impossible result was found during the iteration
48
+ process for finding a smoothing spline with fp = s: s too small.
49
+ There is an approximation returned but the corresponding weighted sum
50
+ of squared residuals does not satisfy the condition abs(fp-s)/s < tol.""",
51
+ 3: """
52
+ The maximal number of iterations maxit (set to 20 by the program)
53
+ allowed for finding a smoothing spline with fp=s has been reached: s
54
+ too small.
55
+ There is an approximation returned but the corresponding weighted sum
56
+ of squared residuals does not satisfy the condition abs(fp-s)/s < tol.""",
57
+ 10: """
58
+ Error on entry, no approximation returned. The following conditions
59
+ must hold:
60
+ xb<=x[0]<x[1]<...<x[m-1]<=xe, w[i]>0, i=0..m-1
61
+ if iopt=-1:
62
+ xb<t[k+1]<t[k+2]<...<t[n-k-2]<xe"""
63
+ }
64
+
65
+
66
+ # UnivariateSpline, ext parameter can be an int or a string
67
+ _extrap_modes = {0: 0, 'extrapolate': 0,
68
+ 1: 1, 'zeros': 1,
69
+ 2: 2, 'raise': 2,
70
+ 3: 3, 'const': 3}
71
+
72
+
73
+ class UnivariateSpline:
74
+ """
75
+ 1-D smoothing spline fit to a given set of data points.
76
+
77
+ .. legacy:: class
78
+
79
+ Specifically, we recommend using `make_splrep` instead.
80
+
81
+ Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data. `s`
82
+ specifies the number of knots by specifying a smoothing condition.
83
+
84
+ Parameters
85
+ ----------
86
+ x : (N,) array_like
87
+ 1-D array of independent input data. Must be increasing;
88
+ must be strictly increasing if `s` is 0.
89
+ y : (N,) array_like
90
+ 1-D array of dependent input data, of the same length as `x`.
91
+ w : (N,) array_like, optional
92
+ Weights for spline fitting. Must be positive. If `w` is None,
93
+ weights are all 1. Default is None.
94
+ bbox : (2,) array_like, optional
95
+ 2-sequence specifying the boundary of the approximation interval. If
96
+ `bbox` is None, ``bbox=[x[0], x[-1]]``. Default is None.
97
+ k : int, optional
98
+ Degree of the smoothing spline. Must be 1 <= `k` <= 5.
99
+ ``k = 3`` is a cubic spline. Default is 3.
100
+ s : float or None, optional
101
+ Positive smoothing factor used to choose the number of knots. Number
102
+ of knots will be increased until the smoothing condition is satisfied::
103
+
104
+ sum((w[i] * (y[i]-spl(x[i])))**2, axis=0) <= s
105
+
106
+ However, because of numerical issues, the actual condition is::
107
+
108
+ abs(sum((w[i] * (y[i]-spl(x[i])))**2, axis=0) - s) < 0.001 * s
109
+
110
+ If `s` is None, `s` will be set as `len(w)` for a smoothing spline
111
+ that uses all data points.
112
+ If 0, spline will interpolate through all data points. This is
113
+ equivalent to `InterpolatedUnivariateSpline`.
114
+ Default is None.
115
+ The user can use the `s` to control the tradeoff between closeness
116
+ and smoothness of fit. Larger `s` means more smoothing while smaller
117
+ values of `s` indicate less smoothing.
118
+ Recommended values of `s` depend on the weights, `w`. If the weights
119
+ represent the inverse of the standard-deviation of `y`, then a good
120
+ `s` value should be found in the range (m-sqrt(2*m),m+sqrt(2*m))
121
+ where m is the number of datapoints in `x`, `y`, and `w`. This means
122
+ ``s = len(w)`` should be a good value if ``1/w[i]`` is an
123
+ estimate of the standard deviation of ``y[i]``.
124
+ ext : int or str, optional
125
+ Controls the extrapolation mode for elements
126
+ not in the interval defined by the knot sequence.
127
+
128
+ * if ext=0 or 'extrapolate', return the extrapolated value.
129
+ * if ext=1 or 'zeros', return 0
130
+ * if ext=2 or 'raise', raise a ValueError
131
+ * if ext=3 or 'const', return the boundary value.
132
+
133
+ Default is 0.
134
+
135
+ check_finite : bool, optional
136
+ Whether to check that the input arrays contain only finite numbers.
137
+ Disabling may give a performance gain, but may result in problems
138
+ (crashes, non-termination or non-sensical results) if the inputs
139
+ do contain infinities or NaNs.
140
+ Default is False.
141
+
142
+ See Also
143
+ --------
144
+ BivariateSpline :
145
+ a base class for bivariate splines.
146
+ SmoothBivariateSpline :
147
+ a smoothing bivariate spline through the given points
148
+ LSQBivariateSpline :
149
+ a bivariate spline using weighted least-squares fitting
150
+ RectSphereBivariateSpline :
151
+ a bivariate spline over a rectangular mesh on a sphere
152
+ SmoothSphereBivariateSpline :
153
+ a smoothing bivariate spline in spherical coordinates
154
+ LSQSphereBivariateSpline :
155
+ a bivariate spline in spherical coordinates using weighted
156
+ least-squares fitting
157
+ RectBivariateSpline :
158
+ a bivariate spline over a rectangular mesh
159
+ InterpolatedUnivariateSpline :
160
+ a interpolating univariate spline for a given set of data points.
161
+ bisplrep :
162
+ a function to find a bivariate B-spline representation of a surface
163
+ bisplev :
164
+ a function to evaluate a bivariate B-spline and its derivatives
165
+ splrep :
166
+ a function to find the B-spline representation of a 1-D curve
167
+ splev :
168
+ a function to evaluate a B-spline or its derivatives
169
+ sproot :
170
+ a function to find the roots of a cubic B-spline
171
+ splint :
172
+ a function to evaluate the definite integral of a B-spline between two
173
+ given points
174
+ spalde :
175
+ a function to evaluate all derivatives of a B-spline
176
+
177
+ Notes
178
+ -----
179
+ The number of data points must be larger than the spline degree `k`.
180
+
181
+ **NaN handling**: If the input arrays contain ``nan`` values, the result
182
+ is not useful, since the underlying spline fitting routines cannot deal
183
+ with ``nan``. A workaround is to use zero weights for not-a-number
184
+ data points:
185
+
186
+ >>> import numpy as np
187
+ >>> from scipy.interpolate import UnivariateSpline
188
+ >>> x, y = np.array([1, 2, 3, 4]), np.array([1, np.nan, 3, 4])
189
+ >>> w = np.isnan(y)
190
+ >>> y[w] = 0.
191
+ >>> spl = UnivariateSpline(x, y, w=~w)
192
+
193
+ Notice the need to replace a ``nan`` by a numerical value (precise value
194
+ does not matter as long as the corresponding weight is zero.)
195
+
196
+ References
197
+ ----------
198
+ Based on algorithms described in [1]_, [2]_, [3]_, and [4]_:
199
+
200
+ .. [1] P. Dierckx, "An algorithm for smoothing, differentiation and
201
+ integration of experimental data using spline functions",
202
+ J.Comp.Appl.Maths 1 (1975) 165-184.
203
+ .. [2] P. Dierckx, "A fast algorithm for smoothing data on a rectangular
204
+ grid while using spline functions", SIAM J.Numer.Anal. 19 (1982)
205
+ 1286-1304.
206
+ .. [3] P. Dierckx, "An improved algorithm for curve fitting with spline
207
+ functions", report tw54, Dept. Computer Science,K.U. Leuven, 1981.
208
+ .. [4] P. Dierckx, "Curve and surface fitting with splines", Monographs on
209
+ Numerical Analysis, Oxford University Press, 1993.
210
+
211
+ Examples
212
+ --------
213
+ >>> import numpy as np
214
+ >>> import matplotlib.pyplot as plt
215
+ >>> from scipy.interpolate import UnivariateSpline
216
+ >>> rng = np.random.default_rng()
217
+ >>> x = np.linspace(-3, 3, 50)
218
+ >>> y = np.exp(-x**2) + 0.1 * rng.standard_normal(50)
219
+ >>> plt.plot(x, y, 'ro', ms=5)
220
+
221
+ Use the default value for the smoothing parameter:
222
+
223
+ >>> spl = UnivariateSpline(x, y)
224
+ >>> xs = np.linspace(-3, 3, 1000)
225
+ >>> plt.plot(xs, spl(xs), 'g', lw=3)
226
+
227
+ Manually change the amount of smoothing:
228
+
229
+ >>> spl.set_smoothing_factor(0.5)
230
+ >>> plt.plot(xs, spl(xs), 'b', lw=3)
231
+ >>> plt.show()
232
+
233
+ """
234
+
235
+ def __init__(self, x, y, w=None, bbox=[None]*2, k=3, s=None,
236
+ ext=0, check_finite=False):
237
+
238
+ x, y, w, bbox, self.ext = self.validate_input(x, y, w, bbox, k, s, ext,
239
+ check_finite)
240
+
241
+ # _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier
242
+ with FITPACK_LOCK:
243
+ data = dfitpack.fpcurf0(x, y, k, w=w, xb=bbox[0],
244
+ xe=bbox[1], s=s)
245
+ if data[-1] == 1:
246
+ # nest too small, setting to maximum bound
247
+ data = self._reset_nest(data)
248
+ self._data = data
249
+ self._reset_class()
250
+
251
+ @staticmethod
252
+ def validate_input(x, y, w, bbox, k, s, ext, check_finite):
253
+ x, y, bbox = np.asarray(x), np.asarray(y), np.asarray(bbox)
254
+ if w is not None:
255
+ w = np.asarray(w)
256
+ if check_finite:
257
+ w_finite = np.isfinite(w).all() if w is not None else True
258
+ if (not np.isfinite(x).all() or not np.isfinite(y).all() or
259
+ not w_finite):
260
+ raise ValueError("x and y array must not contain "
261
+ "NaNs or infs.")
262
+ if s is None or s > 0:
263
+ if not np.all(diff(x) >= 0.0):
264
+ raise ValueError("x must be increasing if s > 0")
265
+ else:
266
+ if not np.all(diff(x) > 0.0):
267
+ raise ValueError("x must be strictly increasing if s = 0")
268
+ if x.size != y.size:
269
+ raise ValueError("x and y should have a same length")
270
+ elif w is not None and not x.size == y.size == w.size:
271
+ raise ValueError("x, y, and w should have a same length")
272
+ elif bbox.shape != (2,):
273
+ raise ValueError("bbox shape should be (2,)")
274
+ elif not (1 <= k <= 5):
275
+ raise ValueError("k should be 1 <= k <= 5")
276
+ elif s is not None and not s >= 0.0:
277
+ raise ValueError("s should be s >= 0.0")
278
+
279
+ try:
280
+ ext = _extrap_modes[ext]
281
+ except KeyError as e:
282
+ raise ValueError(f"Unknown extrapolation mode {ext}.") from e
283
+
284
+ return x, y, w, bbox, ext
285
+
286
+ @classmethod
287
+ def _from_tck(cls, tck, ext=0):
288
+ """Construct a spline object from given tck"""
289
+ self = cls.__new__(cls)
290
+ t, c, k = tck
291
+ self._eval_args = tck
292
+ # _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier
293
+ self._data = (None, None, None, None, None, k, None, len(t), t,
294
+ c, None, None, None, None)
295
+ self.ext = ext
296
+ return self
297
+
298
+ def _reset_class(self):
299
+ data = self._data
300
+ n, t, c, k, ier = data[7], data[8], data[9], data[5], data[-1]
301
+ self._eval_args = t[:n], c[:n], k
302
+ if ier == 0:
303
+ # the spline returned has a residual sum of squares fp
304
+ # such that abs(fp-s)/s <= tol with tol a relative
305
+ # tolerance set to 0.001 by the program
306
+ pass
307
+ elif ier == -1:
308
+ # the spline returned is an interpolating spline
309
+ self._set_class(InterpolatedUnivariateSpline)
310
+ elif ier == -2:
311
+ # the spline returned is the weighted least-squares
312
+ # polynomial of degree k. In this extreme case fp gives
313
+ # the upper bound fp0 for the smoothing factor s.
314
+ self._set_class(LSQUnivariateSpline)
315
+ else:
316
+ # error
317
+ if ier == 1:
318
+ self._set_class(LSQUnivariateSpline)
319
+ message = _curfit_messages.get(ier, f'ier={ier}')
320
+ warnings.warn(message, stacklevel=3)
321
+
322
+ def _set_class(self, cls):
323
+ self._spline_class = cls
324
+ if self.__class__ in (UnivariateSpline, InterpolatedUnivariateSpline,
325
+ LSQUnivariateSpline):
326
+ self.__class__ = cls
327
+ else:
328
+ # It's an unknown subclass -- don't change class. cf. #731
329
+ pass
330
+
331
+ def _reset_nest(self, data, nest=None):
332
+ n = data[10]
333
+ if nest is None:
334
+ k, m = data[5], len(data[0])
335
+ nest = m+k+1 # this is the maximum bound for nest
336
+ else:
337
+ if not n <= nest:
338
+ raise ValueError("`nest` can only be increased")
339
+ t, c, fpint, nrdata = (np.resize(data[j], nest) for j in
340
+ [8, 9, 11, 12])
341
+
342
+ args = data[:8] + (t, c, n, fpint, nrdata, data[13])
343
+ with FITPACK_LOCK:
344
+ data = dfitpack.fpcurf1(*args)
345
+ return data
346
+
347
+ def set_smoothing_factor(self, s):
348
+ """ Continue spline computation with the given smoothing
349
+ factor s and with the knots found at the last call.
350
+
351
+ This routine modifies the spline in place.
352
+
353
+ """
354
+ data = self._data
355
+ if data[6] == -1:
356
+ warnings.warn('smoothing factor unchanged for'
357
+ 'LSQ spline with fixed knots',
358
+ stacklevel=2)
359
+ return
360
+ args = data[:6] + (s,) + data[7:]
361
+ with FITPACK_LOCK:
362
+ data = dfitpack.fpcurf1(*args)
363
+ if data[-1] == 1:
364
+ # nest too small, setting to maximum bound
365
+ data = self._reset_nest(data)
366
+ self._data = data
367
+ self._reset_class()
368
+
369
+ def __call__(self, x, nu=0, ext=None):
370
+ """
371
+ Evaluate spline (or its nu-th derivative) at positions x.
372
+
373
+ Parameters
374
+ ----------
375
+ x : array_like
376
+ A 1-D array of points at which to return the value of the smoothed
377
+ spline or its derivatives. Note: `x` can be unordered but the
378
+ evaluation is more efficient if `x` is (partially) ordered.
379
+ nu : int
380
+ The order of derivative of the spline to compute.
381
+ ext : int
382
+ Controls the value returned for elements of `x` not in the
383
+ interval defined by the knot sequence.
384
+
385
+ * if ext=0 or 'extrapolate', return the extrapolated value.
386
+ * if ext=1 or 'zeros', return 0
387
+ * if ext=2 or 'raise', raise a ValueError
388
+ * if ext=3 or 'const', return the boundary value.
389
+
390
+ The default value is 0, passed from the initialization of
391
+ UnivariateSpline.
392
+
393
+ """
394
+ x = np.asarray(x)
395
+ # empty input yields empty output
396
+ if x.size == 0:
397
+ return array([])
398
+ if ext is None:
399
+ ext = self.ext
400
+ else:
401
+ try:
402
+ ext = _extrap_modes[ext]
403
+ except KeyError as e:
404
+ raise ValueError(f"Unknown extrapolation mode {ext}.") from e
405
+ with FITPACK_LOCK:
406
+ return _fitpack_impl.splev(x, self._eval_args, der=nu, ext=ext)
407
+
408
+ def get_knots(self):
409
+ """ Return positions of interior knots of the spline.
410
+
411
+ Internally, the knot vector contains ``2*k`` additional boundary knots.
412
+ """
413
+ data = self._data
414
+ k, n = data[5], data[7]
415
+ return data[8][k:n-k]
416
+
417
+ def get_coeffs(self):
418
+ """Return spline coefficients."""
419
+ data = self._data
420
+ k, n = data[5], data[7]
421
+ return data[9][:n-k-1]
422
+
423
+ def get_residual(self):
424
+ """Return weighted sum of squared residuals of the spline approximation.
425
+
426
+ This is equivalent to::
427
+
428
+ sum((w[i] * (y[i]-spl(x[i])))**2, axis=0)
429
+
430
+ """
431
+ return self._data[10]
432
+
433
+ def integral(self, a, b):
434
+ """ Return definite integral of the spline between two given points.
435
+
436
+ Parameters
437
+ ----------
438
+ a : float
439
+ Lower limit of integration.
440
+ b : float
441
+ Upper limit of integration.
442
+
443
+ Returns
444
+ -------
445
+ integral : float
446
+ The value of the definite integral of the spline between limits.
447
+
448
+ Examples
449
+ --------
450
+ >>> import numpy as np
451
+ >>> from scipy.interpolate import UnivariateSpline
452
+ >>> x = np.linspace(0, 3, 11)
453
+ >>> y = x**2
454
+ >>> spl = UnivariateSpline(x, y)
455
+ >>> spl.integral(0, 3)
456
+ 9.0
457
+
458
+ which agrees with :math:`\\int x^2 dx = x^3 / 3` between the limits
459
+ of 0 and 3.
460
+
461
+ A caveat is that this routine assumes the spline to be zero outside of
462
+ the data limits:
463
+
464
+ >>> spl.integral(-1, 4)
465
+ 9.0
466
+ >>> spl.integral(-1, 0)
467
+ 0.0
468
+
469
+ """
470
+ with FITPACK_LOCK:
471
+ return _fitpack_impl.splint(a, b, self._eval_args)
472
+
473
+ def derivatives(self, x):
474
+ """ Return all derivatives of the spline at the point x.
475
+
476
+ Parameters
477
+ ----------
478
+ x : float
479
+ The point to evaluate the derivatives at.
480
+
481
+ Returns
482
+ -------
483
+ der : ndarray, shape(k+1,)
484
+ Derivatives of the orders 0 to k.
485
+
486
+ Examples
487
+ --------
488
+ >>> import numpy as np
489
+ >>> from scipy.interpolate import UnivariateSpline
490
+ >>> x = np.linspace(0, 3, 11)
491
+ >>> y = x**2
492
+ >>> spl = UnivariateSpline(x, y)
493
+ >>> spl.derivatives(1.5)
494
+ array([2.25, 3.0, 2.0, 0])
495
+
496
+ """
497
+ with FITPACK_LOCK:
498
+ return _fitpack_impl.spalde(x, self._eval_args)
499
+
500
+ def roots(self):
501
+ """ Return the zeros of the spline.
502
+
503
+ Notes
504
+ -----
505
+ Restriction: only cubic splines are supported by FITPACK. For non-cubic
506
+ splines, use `PPoly.root` (see below for an example).
507
+
508
+ Examples
509
+ --------
510
+
511
+ For some data, this method may miss a root. This happens when one of
512
+ the spline knots (which FITPACK places automatically) happens to
513
+ coincide with the true root. A workaround is to convert to `PPoly`,
514
+ which uses a different root-finding algorithm.
515
+
516
+ For example,
517
+
518
+ >>> x = [1.96, 1.97, 1.98, 1.99, 2.00, 2.01, 2.02, 2.03, 2.04, 2.05]
519
+ >>> y = [-6.365470e-03, -4.790580e-03, -3.204320e-03, -1.607270e-03,
520
+ ... 4.440892e-16, 1.616930e-03, 3.243000e-03, 4.877670e-03,
521
+ ... 6.520430e-03, 8.170770e-03]
522
+ >>> from scipy.interpolate import UnivariateSpline
523
+ >>> spl = UnivariateSpline(x, y, s=0)
524
+ >>> spl.roots()
525
+ array([], dtype=float64)
526
+
527
+ Converting to a PPoly object does find the roots at `x=2`:
528
+
529
+ >>> from scipy.interpolate import splrep, PPoly
530
+ >>> tck = splrep(x, y, s=0)
531
+ >>> ppoly = PPoly.from_spline(tck)
532
+ >>> ppoly.roots(extrapolate=False)
533
+ array([2.])
534
+
535
+ See Also
536
+ --------
537
+ sproot
538
+ PPoly.roots
539
+
540
+ """
541
+ k = self._data[5]
542
+ if k == 3:
543
+ t = self._eval_args[0]
544
+ mest = 3 * (len(t) - 7)
545
+ with FITPACK_LOCK:
546
+ return _fitpack_impl.sproot(self._eval_args, mest=mest)
547
+ raise NotImplementedError('finding roots unsupported for '
548
+ 'non-cubic splines')
549
+
550
+ def derivative(self, n=1):
551
+ """
552
+ Construct a new spline representing the derivative of this spline.
553
+
554
+ Parameters
555
+ ----------
556
+ n : int, optional
557
+ Order of derivative to evaluate. Default: 1
558
+
559
+ Returns
560
+ -------
561
+ spline : UnivariateSpline
562
+ Spline of order k2=k-n representing the derivative of this
563
+ spline.
564
+
565
+ See Also
566
+ --------
567
+ splder, antiderivative
568
+
569
+ Notes
570
+ -----
571
+
572
+ .. versionadded:: 0.13.0
573
+
574
+ Examples
575
+ --------
576
+ This can be used for finding maxima of a curve:
577
+
578
+ >>> import numpy as np
579
+ >>> from scipy.interpolate import UnivariateSpline
580
+ >>> x = np.linspace(0, 10, 70)
581
+ >>> y = np.sin(x)
582
+ >>> spl = UnivariateSpline(x, y, k=4, s=0)
583
+
584
+ Now, differentiate the spline and find the zeros of the
585
+ derivative. (NB: `sproot` only works for order 3 splines, so we
586
+ fit an order 4 spline):
587
+
588
+ >>> spl.derivative().roots() / np.pi
589
+ array([ 0.50000001, 1.5 , 2.49999998])
590
+
591
+ This agrees well with roots :math:`\\pi/2 + n\\pi` of
592
+ :math:`\\cos(x) = \\sin'(x)`.
593
+
594
+ """
595
+ with FITPACK_LOCK:
596
+ tck = _fitpack_impl.splder(self._eval_args, n)
597
+ # if self.ext is 'const', derivative.ext will be 'zeros'
598
+ ext = 1 if self.ext == 3 else self.ext
599
+ return UnivariateSpline._from_tck(tck, ext=ext)
600
+
601
+ def antiderivative(self, n=1):
602
+ """
603
+ Construct a new spline representing the antiderivative of this spline.
604
+
605
+ Parameters
606
+ ----------
607
+ n : int, optional
608
+ Order of antiderivative to evaluate. Default: 1
609
+
610
+ Returns
611
+ -------
612
+ spline : UnivariateSpline
613
+ Spline of order k2=k+n representing the antiderivative of this
614
+ spline.
615
+
616
+ Notes
617
+ -----
618
+
619
+ .. versionadded:: 0.13.0
620
+
621
+ See Also
622
+ --------
623
+ splantider, derivative
624
+
625
+ Examples
626
+ --------
627
+ >>> import numpy as np
628
+ >>> from scipy.interpolate import UnivariateSpline
629
+ >>> x = np.linspace(0, np.pi/2, 70)
630
+ >>> y = 1 / np.sqrt(1 - 0.8*np.sin(x)**2)
631
+ >>> spl = UnivariateSpline(x, y, s=0)
632
+
633
+ The derivative is the inverse operation of the antiderivative,
634
+ although some floating point error accumulates:
635
+
636
+ >>> spl(1.7), spl.antiderivative().derivative()(1.7)
637
+ (array(2.1565429877197317), array(2.1565429877201865))
638
+
639
+ Antiderivative can be used to evaluate definite integrals:
640
+
641
+ >>> ispl = spl.antiderivative()
642
+ >>> ispl(np.pi/2) - ispl(0)
643
+ 2.2572053588768486
644
+
645
+ This is indeed an approximation to the complete elliptic integral
646
+ :math:`K(m) = \\int_0^{\\pi/2} [1 - m\\sin^2 x]^{-1/2} dx`:
647
+
648
+ >>> from scipy.special import ellipk
649
+ >>> ellipk(0.8)
650
+ 2.2572053268208538
651
+
652
+ """
653
+ with FITPACK_LOCK:
654
+ tck = _fitpack_impl.splantider(self._eval_args, n)
655
+ return UnivariateSpline._from_tck(tck, self.ext)
656
+
657
+
658
+ class InterpolatedUnivariateSpline(UnivariateSpline):
659
+ """
660
+ 1-D interpolating spline for a given set of data points.
661
+
662
+ .. legacy:: class
663
+
664
+ Specifically, we recommend using `make_interp_spline` instead.
665
+
666
+ Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data.
667
+ Spline function passes through all provided points. Equivalent to
668
+ `UnivariateSpline` with `s` = 0.
669
+
670
+ Parameters
671
+ ----------
672
+ x : (N,) array_like
673
+ Input dimension of data points -- must be strictly increasing
674
+ y : (N,) array_like
675
+ input dimension of data points
676
+ w : (N,) array_like, optional
677
+ Weights for spline fitting. Must be positive. If None (default),
678
+ weights are all 1.
679
+ bbox : (2,) array_like, optional
680
+ 2-sequence specifying the boundary of the approximation interval. If
681
+ None (default), ``bbox=[x[0], x[-1]]``.
682
+ k : int, optional
683
+ Degree of the smoothing spline. Must be ``1 <= k <= 5``. Default is
684
+ ``k = 3``, a cubic spline.
685
+ ext : int or str, optional
686
+ Controls the extrapolation mode for elements
687
+ not in the interval defined by the knot sequence.
688
+
689
+ * if ext=0 or 'extrapolate', return the extrapolated value.
690
+ * if ext=1 or 'zeros', return 0
691
+ * if ext=2 or 'raise', raise a ValueError
692
+ * if ext=3 of 'const', return the boundary value.
693
+
694
+ The default value is 0.
695
+
696
+ check_finite : bool, optional
697
+ Whether to check that the input arrays contain only finite numbers.
698
+ Disabling may give a performance gain, but may result in problems
699
+ (crashes, non-termination or non-sensical results) if the inputs
700
+ do contain infinities or NaNs.
701
+ Default is False.
702
+
703
+ See Also
704
+ --------
705
+ UnivariateSpline :
706
+ a smooth univariate spline to fit a given set of data points.
707
+ LSQUnivariateSpline :
708
+ a spline for which knots are user-selected
709
+ SmoothBivariateSpline :
710
+ a smoothing bivariate spline through the given points
711
+ LSQBivariateSpline :
712
+ a bivariate spline using weighted least-squares fitting
713
+ splrep :
714
+ a function to find the B-spline representation of a 1-D curve
715
+ splev :
716
+ a function to evaluate a B-spline or its derivatives
717
+ sproot :
718
+ a function to find the roots of a cubic B-spline
719
+ splint :
720
+ a function to evaluate the definite integral of a B-spline between two
721
+ given points
722
+ spalde :
723
+ a function to evaluate all derivatives of a B-spline
724
+
725
+ Notes
726
+ -----
727
+ The number of data points must be larger than the spline degree `k`.
728
+
729
+ Examples
730
+ --------
731
+ >>> import numpy as np
732
+ >>> import matplotlib.pyplot as plt
733
+ >>> from scipy.interpolate import InterpolatedUnivariateSpline
734
+ >>> rng = np.random.default_rng()
735
+ >>> x = np.linspace(-3, 3, 50)
736
+ >>> y = np.exp(-x**2) + 0.1 * rng.standard_normal(50)
737
+ >>> spl = InterpolatedUnivariateSpline(x, y)
738
+ >>> plt.plot(x, y, 'ro', ms=5)
739
+ >>> xs = np.linspace(-3, 3, 1000)
740
+ >>> plt.plot(xs, spl(xs), 'g', lw=3, alpha=0.7)
741
+ >>> plt.show()
742
+
743
+ Notice that the ``spl(x)`` interpolates `y`:
744
+
745
+ >>> spl.get_residual()
746
+ 0.0
747
+
748
+ """
749
+
750
+ def __init__(self, x, y, w=None, bbox=[None]*2, k=3,
751
+ ext=0, check_finite=False):
752
+
753
+ x, y, w, bbox, self.ext = self.validate_input(x, y, w, bbox, k, None,
754
+ ext, check_finite)
755
+ if not np.all(diff(x) > 0.0):
756
+ raise ValueError('x must be strictly increasing')
757
+
758
+ # _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier
759
+ with FITPACK_LOCK:
760
+ self._data = dfitpack.fpcurf0(x, y, k, w=w, xb=bbox[0],
761
+ xe=bbox[1], s=0)
762
+ self._reset_class()
763
+
764
+
765
+ _fpchec_error_string = """The input parameters have been rejected by fpchec. \
766
+ This means that at least one of the following conditions is violated:
767
+
768
+ 1) k+1 <= n-k-1 <= m
769
+ 2) t(1) <= t(2) <= ... <= t(k+1)
770
+ t(n-k) <= t(n-k+1) <= ... <= t(n)
771
+ 3) t(k+1) < t(k+2) < ... < t(n-k)
772
+ 4) t(k+1) <= x(i) <= t(n-k)
773
+ 5) The conditions specified by Schoenberg and Whitney must hold
774
+ for at least one subset of data points, i.e., there must be a
775
+ subset of data points y(j) such that
776
+ t(j) < y(j) < t(j+k+1), j=1,2,...,n-k-1
777
+ """
778
+
779
+
780
+ class LSQUnivariateSpline(UnivariateSpline):
781
+ """
782
+ 1-D spline with explicit internal knots.
783
+
784
+ .. legacy:: class
785
+
786
+ Specifically, we recommend using `make_lsq_spline` instead.
787
+
788
+
789
+ Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data. `t`
790
+ specifies the internal knots of the spline
791
+
792
+ Parameters
793
+ ----------
794
+ x : (N,) array_like
795
+ Input dimension of data points -- must be increasing
796
+ y : (N,) array_like
797
+ Input dimension of data points
798
+ t : (M,) array_like
799
+ interior knots of the spline. Must be in ascending order and::
800
+
801
+ bbox[0] < t[0] < ... < t[-1] < bbox[-1]
802
+
803
+ w : (N,) array_like, optional
804
+ weights for spline fitting. Must be positive. If None (default),
805
+ weights are all 1.
806
+ bbox : (2,) array_like, optional
807
+ 2-sequence specifying the boundary of the approximation interval. If
808
+ None (default), ``bbox = [x[0], x[-1]]``.
809
+ k : int, optional
810
+ Degree of the smoothing spline. Must be 1 <= `k` <= 5.
811
+ Default is `k` = 3, a cubic spline.
812
+ ext : int or str, optional
813
+ Controls the extrapolation mode for elements
814
+ not in the interval defined by the knot sequence.
815
+
816
+ * if ext=0 or 'extrapolate', return the extrapolated value.
817
+ * if ext=1 or 'zeros', return 0
818
+ * if ext=2 or 'raise', raise a ValueError
819
+ * if ext=3 of 'const', return the boundary value.
820
+
821
+ The default value is 0.
822
+
823
+ check_finite : bool, optional
824
+ Whether to check that the input arrays contain only finite numbers.
825
+ Disabling may give a performance gain, but may result in problems
826
+ (crashes, non-termination or non-sensical results) if the inputs
827
+ do contain infinities or NaNs.
828
+ Default is False.
829
+
830
+ Raises
831
+ ------
832
+ ValueError
833
+ If the interior knots do not satisfy the Schoenberg-Whitney conditions
834
+
835
+ See Also
836
+ --------
837
+ UnivariateSpline :
838
+ a smooth univariate spline to fit a given set of data points.
839
+ InterpolatedUnivariateSpline :
840
+ a interpolating univariate spline for a given set of data points.
841
+ splrep :
842
+ a function to find the B-spline representation of a 1-D curve
843
+ splev :
844
+ a function to evaluate a B-spline or its derivatives
845
+ sproot :
846
+ a function to find the roots of a cubic B-spline
847
+ splint :
848
+ a function to evaluate the definite integral of a B-spline between two
849
+ given points
850
+ spalde :
851
+ a function to evaluate all derivatives of a B-spline
852
+
853
+ Notes
854
+ -----
855
+ The number of data points must be larger than the spline degree `k`.
856
+
857
+ Knots `t` must satisfy the Schoenberg-Whitney conditions,
858
+ i.e., there must be a subset of data points ``x[j]`` such that
859
+ ``t[j] < x[j] < t[j+k+1]``, for ``j=0, 1,...,n-k-2``.
860
+
861
+ Examples
862
+ --------
863
+ >>> import numpy as np
864
+ >>> from scipy.interpolate import LSQUnivariateSpline, UnivariateSpline
865
+ >>> import matplotlib.pyplot as plt
866
+ >>> rng = np.random.default_rng()
867
+ >>> x = np.linspace(-3, 3, 50)
868
+ >>> y = np.exp(-x**2) + 0.1 * rng.standard_normal(50)
869
+
870
+ Fit a smoothing spline with a pre-defined internal knots:
871
+
872
+ >>> t = [-1, 0, 1]
873
+ >>> spl = LSQUnivariateSpline(x, y, t)
874
+
875
+ >>> xs = np.linspace(-3, 3, 1000)
876
+ >>> plt.plot(x, y, 'ro', ms=5)
877
+ >>> plt.plot(xs, spl(xs), 'g-', lw=3)
878
+ >>> plt.show()
879
+
880
+ Check the knot vector:
881
+
882
+ >>> spl.get_knots()
883
+ array([-3., -1., 0., 1., 3.])
884
+
885
+ Constructing lsq spline using the knots from another spline:
886
+
887
+ >>> x = np.arange(10)
888
+ >>> s = UnivariateSpline(x, x, s=0)
889
+ >>> s.get_knots()
890
+ array([ 0., 2., 3., 4., 5., 6., 7., 9.])
891
+ >>> knt = s.get_knots()
892
+ >>> s1 = LSQUnivariateSpline(x, x, knt[1:-1]) # Chop 1st and last knot
893
+ >>> s1.get_knots()
894
+ array([ 0., 2., 3., 4., 5., 6., 7., 9.])
895
+
896
+ """
897
+
898
+ def __init__(self, x, y, t, w=None, bbox=[None]*2, k=3,
899
+ ext=0, check_finite=False):
900
+
901
+ x, y, w, bbox, self.ext = self.validate_input(x, y, w, bbox, k, None,
902
+ ext, check_finite)
903
+ if not np.all(diff(x) >= 0.0):
904
+ raise ValueError('x must be increasing')
905
+
906
+ # _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier
907
+ xb = bbox[0]
908
+ xe = bbox[1]
909
+ if xb is None:
910
+ xb = x[0]
911
+ if xe is None:
912
+ xe = x[-1]
913
+ t = concatenate(([xb]*(k+1), t, [xe]*(k+1)))
914
+ n = len(t)
915
+ if not np.all(t[k+1:n-k]-t[k:n-k-1] > 0, axis=0):
916
+ raise ValueError('Interior knots t must satisfy '
917
+ 'Schoenberg-Whitney conditions')
918
+ with FITPACK_LOCK:
919
+ if not dfitpack.fpchec(x, t, k) == 0:
920
+ raise ValueError(_fpchec_error_string)
921
+ data = dfitpack.fpcurfm1(x, y, k, t, w=w, xb=xb, xe=xe)
922
+ self._data = data[:-3] + (None, None, data[-1])
923
+ self._reset_class()
924
+
925
+
926
+ # ############### Bivariate spline ####################
927
+
928
+ class _BivariateSplineBase:
929
+ """ Base class for Bivariate spline s(x,y) interpolation on the rectangle
930
+ [xb,xe] x [yb, ye] calculated from a given set of data points
931
+ (x,y,z).
932
+
933
+ See Also
934
+ --------
935
+ bisplrep :
936
+ a function to find a bivariate B-spline representation of a surface
937
+ bisplev :
938
+ a function to evaluate a bivariate B-spline and its derivatives
939
+ BivariateSpline :
940
+ a base class for bivariate splines.
941
+ SphereBivariateSpline :
942
+ a bivariate spline on a spherical grid
943
+ """
944
+
945
+ @classmethod
946
+ def _from_tck(cls, tck):
947
+ """Construct a spline object from given tck and degree"""
948
+ self = cls.__new__(cls)
949
+ if len(tck) != 5:
950
+ raise ValueError("tck should be a 5 element tuple of tx,"
951
+ " ty, c, kx, ky")
952
+ self.tck = tck[:3]
953
+ self.degrees = tck[3:]
954
+ return self
955
+
956
+ def get_residual(self):
957
+ """ Return weighted sum of squared residuals of the spline
958
+ approximation: sum ((w[i]*(z[i]-s(x[i],y[i])))**2,axis=0)
959
+ """
960
+ return self.fp
961
+
962
+ def get_knots(self):
963
+ """ Return a tuple (tx,ty) where tx,ty contain knots positions
964
+ of the spline with respect to x-, y-variable, respectively.
965
+ The position of interior and additional knots are given as
966
+ t[k+1:-k-1] and t[:k+1]=b, t[-k-1:]=e, respectively.
967
+ """
968
+ return self.tck[:2]
969
+
970
+ def get_coeffs(self):
971
+ """ Return spline coefficients."""
972
+ return self.tck[2]
973
+
974
+ def __call__(self, x, y, dx=0, dy=0, grid=True):
975
+ """
976
+ Evaluate the spline or its derivatives at given positions.
977
+
978
+ Parameters
979
+ ----------
980
+ x, y : array_like
981
+ Input coordinates.
982
+
983
+ If `grid` is False, evaluate the spline at points ``(x[i],
984
+ y[i]), i=0, ..., len(x)-1``. Standard Numpy broadcasting
985
+ is obeyed.
986
+
987
+ If `grid` is True: evaluate spline at the grid points
988
+ defined by the coordinate arrays x, y. The arrays must be
989
+ sorted to increasing order.
990
+
991
+ The ordering of axes is consistent with
992
+ ``np.meshgrid(..., indexing="ij")`` and inconsistent with the
993
+ default ordering ``np.meshgrid(..., indexing="xy")``.
994
+ dx : int
995
+ Order of x-derivative
996
+
997
+ .. versionadded:: 0.14.0
998
+ dy : int
999
+ Order of y-derivative
1000
+
1001
+ .. versionadded:: 0.14.0
1002
+ grid : bool
1003
+ Whether to evaluate the results on a grid spanned by the
1004
+ input arrays, or at points specified by the input arrays.
1005
+
1006
+ .. versionadded:: 0.14.0
1007
+
1008
+ Examples
1009
+ --------
1010
+ Suppose that we want to bilinearly interpolate an exponentially decaying
1011
+ function in 2 dimensions.
1012
+
1013
+ >>> import numpy as np
1014
+ >>> from scipy.interpolate import RectBivariateSpline
1015
+
1016
+ We sample the function on a coarse grid. Note that the default indexing="xy"
1017
+ of meshgrid would result in an unexpected (transposed) result after
1018
+ interpolation.
1019
+
1020
+ >>> xarr = np.linspace(-3, 3, 100)
1021
+ >>> yarr = np.linspace(-3, 3, 100)
1022
+ >>> xgrid, ygrid = np.meshgrid(xarr, yarr, indexing="ij")
1023
+
1024
+ The function to interpolate decays faster along one axis than the other.
1025
+
1026
+ >>> zdata = np.exp(-np.sqrt((xgrid / 2) ** 2 + ygrid**2))
1027
+
1028
+ Next we sample on a finer grid using interpolation (kx=ky=1 for bilinear).
1029
+
1030
+ >>> rbs = RectBivariateSpline(xarr, yarr, zdata, kx=1, ky=1)
1031
+ >>> xarr_fine = np.linspace(-3, 3, 200)
1032
+ >>> yarr_fine = np.linspace(-3, 3, 200)
1033
+ >>> xgrid_fine, ygrid_fine = np.meshgrid(xarr_fine, yarr_fine, indexing="ij")
1034
+ >>> zdata_interp = rbs(xgrid_fine, ygrid_fine, grid=False)
1035
+
1036
+ And check that the result agrees with the input by plotting both.
1037
+
1038
+ >>> import matplotlib.pyplot as plt
1039
+ >>> fig = plt.figure()
1040
+ >>> ax1 = fig.add_subplot(1, 2, 1, aspect="equal")
1041
+ >>> ax2 = fig.add_subplot(1, 2, 2, aspect="equal")
1042
+ >>> ax1.imshow(zdata)
1043
+ >>> ax2.imshow(zdata_interp)
1044
+ >>> plt.show()
1045
+ """
1046
+ x = np.asarray(x)
1047
+ y = np.asarray(y)
1048
+
1049
+ tx, ty, c = self.tck[:3]
1050
+ kx, ky = self.degrees
1051
+ if grid:
1052
+ if x.size == 0 or y.size == 0:
1053
+ return np.zeros((x.size, y.size), dtype=self.tck[2].dtype)
1054
+
1055
+ if (x.size >= 2) and (not np.all(np.diff(x) >= 0.0)):
1056
+ raise ValueError("x must be strictly increasing when `grid` is True")
1057
+ if (y.size >= 2) and (not np.all(np.diff(y) >= 0.0)):
1058
+ raise ValueError("y must be strictly increasing when `grid` is True")
1059
+
1060
+ if dx or dy:
1061
+ with FITPACK_LOCK:
1062
+ z, ier = dfitpack.parder(tx, ty, c, kx, ky, dx, dy, x, y)
1063
+ if not ier == 0:
1064
+ raise ValueError(f"Error code returned by parder: {ier}")
1065
+ else:
1066
+ with FITPACK_LOCK:
1067
+ z, ier = dfitpack.bispev(tx, ty, c, kx, ky, x, y)
1068
+ if not ier == 0:
1069
+ raise ValueError(f"Error code returned by bispev: {ier}")
1070
+ else:
1071
+ # standard Numpy broadcasting
1072
+ if x.shape != y.shape:
1073
+ x, y = np.broadcast_arrays(x, y)
1074
+
1075
+ shape = x.shape
1076
+ x = x.ravel()
1077
+ y = y.ravel()
1078
+
1079
+ if x.size == 0 or y.size == 0:
1080
+ return np.zeros(shape, dtype=self.tck[2].dtype)
1081
+
1082
+ if dx or dy:
1083
+ with FITPACK_LOCK:
1084
+ z, ier = dfitpack.pardeu(tx, ty, c, kx, ky, dx, dy, x, y)
1085
+ if not ier == 0:
1086
+ raise ValueError(f"Error code returned by pardeu: {ier}")
1087
+ else:
1088
+ with FITPACK_LOCK:
1089
+ z, ier = dfitpack.bispeu(tx, ty, c, kx, ky, x, y)
1090
+ if not ier == 0:
1091
+ raise ValueError(f"Error code returned by bispeu: {ier}")
1092
+
1093
+ z = z.reshape(shape)
1094
+ return z
1095
+
1096
+ def partial_derivative(self, dx, dy):
1097
+ """Construct a new spline representing a partial derivative of this
1098
+ spline.
1099
+
1100
+ Parameters
1101
+ ----------
1102
+ dx, dy : int
1103
+ Orders of the derivative in x and y respectively. They must be
1104
+ non-negative integers and less than the respective degree of the
1105
+ original spline (self) in that direction (``kx``, ``ky``).
1106
+
1107
+ Returns
1108
+ -------
1109
+ spline :
1110
+ A new spline of degrees (``kx - dx``, ``ky - dy``) representing the
1111
+ derivative of this spline.
1112
+
1113
+ Notes
1114
+ -----
1115
+
1116
+ .. versionadded:: 1.9.0
1117
+
1118
+ """
1119
+ if dx == 0 and dy == 0:
1120
+ return self
1121
+ else:
1122
+ kx, ky = self.degrees
1123
+ if not (dx >= 0 and dy >= 0):
1124
+ raise ValueError("order of derivative must be positive or"
1125
+ " zero")
1126
+ if not (dx < kx and dy < ky):
1127
+ raise ValueError("order of derivative must be less than"
1128
+ " degree of spline")
1129
+ tx, ty, c = self.tck[:3]
1130
+ with FITPACK_LOCK:
1131
+ newc, ier = dfitpack.pardtc(tx, ty, c, kx, ky, dx, dy)
1132
+ if ier != 0:
1133
+ # This should not happen under normal conditions.
1134
+ raise ValueError(f"Unexpected error code returned by pardtc: {ier}")
1135
+ nx = len(tx)
1136
+ ny = len(ty)
1137
+ newtx = tx[dx:nx - dx]
1138
+ newty = ty[dy:ny - dy]
1139
+ newkx, newky = kx - dx, ky - dy
1140
+ newclen = (nx - dx - kx - 1) * (ny - dy - ky - 1)
1141
+ return _DerivedBivariateSpline._from_tck((newtx, newty,
1142
+ newc[:newclen],
1143
+ newkx, newky))
1144
+
1145
+
1146
+ _surfit_messages = {1: """
1147
+ The required storage space exceeds the available storage space: nxest
1148
+ or nyest too small, or s too small.
1149
+ The weighted least-squares spline corresponds to the current set of
1150
+ knots.""",
1151
+ 2: """
1152
+ A theoretically impossible result was found during the iteration
1153
+ process for finding a smoothing spline with fp = s: s too small or
1154
+ badly chosen eps.
1155
+ Weighted sum of squared residuals does not satisfy abs(fp-s)/s < tol.""",
1156
+ 3: """
1157
+ the maximal number of iterations maxit (set to 20 by the program)
1158
+ allowed for finding a smoothing spline with fp=s has been reached:
1159
+ s too small.
1160
+ Weighted sum of squared residuals does not satisfy abs(fp-s)/s < tol.
1161
+ Try increasing maxit by passing it as a keyword argument.""",
1162
+ 4: """
1163
+ No more knots can be added because the number of b-spline coefficients
1164
+ (nx-kx-1)*(ny-ky-1) already exceeds the number of data points m:
1165
+ either s or m too small.
1166
+ The weighted least-squares spline corresponds to the current set of
1167
+ knots.""",
1168
+ 5: """
1169
+ No more knots can be added because the additional knot would (quasi)
1170
+ coincide with an old one: s too small or too large a weight to an
1171
+ inaccurate data point.
1172
+ The weighted least-squares spline corresponds to the current set of
1173
+ knots.""",
1174
+ 10: """
1175
+ Error on entry, no approximation returned. The following conditions
1176
+ must hold:
1177
+ xb<=x[i]<=xe, yb<=y[i]<=ye, w[i]>0, i=0..m-1
1178
+ If iopt==-1, then
1179
+ xb<tx[kx+1]<tx[kx+2]<...<tx[nx-kx-2]<xe
1180
+ yb<ty[ky+1]<ty[ky+2]<...<ty[ny-ky-2]<ye""",
1181
+ -3: """
1182
+ The coefficients of the spline returned have been computed as the
1183
+ minimal norm least-squares solution of a (numerically) rank deficient
1184
+ system (deficiency=%i). If deficiency is large, the results may be
1185
+ inaccurate. Deficiency may strongly depend on the value of eps."""
1186
+ }
1187
+
1188
+
1189
+ class BivariateSpline(_BivariateSplineBase):
1190
+ """
1191
+ Base class for bivariate splines.
1192
+
1193
+ This describes a spline ``s(x, y)`` of degrees ``kx`` and ``ky`` on
1194
+ the rectangle ``[xb, xe] * [yb, ye]`` calculated from a given set
1195
+ of data points ``(x, y, z)``.
1196
+
1197
+ This class is meant to be subclassed, not instantiated directly.
1198
+ To construct these splines, call either `SmoothBivariateSpline` or
1199
+ `LSQBivariateSpline` or `RectBivariateSpline`.
1200
+
1201
+ See Also
1202
+ --------
1203
+ UnivariateSpline :
1204
+ a smooth univariate spline to fit a given set of data points.
1205
+ SmoothBivariateSpline :
1206
+ a smoothing bivariate spline through the given points
1207
+ LSQBivariateSpline :
1208
+ a bivariate spline using weighted least-squares fitting
1209
+ RectSphereBivariateSpline :
1210
+ a bivariate spline over a rectangular mesh on a sphere
1211
+ SmoothSphereBivariateSpline :
1212
+ a smoothing bivariate spline in spherical coordinates
1213
+ LSQSphereBivariateSpline :
1214
+ a bivariate spline in spherical coordinates using weighted
1215
+ least-squares fitting
1216
+ RectBivariateSpline :
1217
+ a bivariate spline over a rectangular mesh.
1218
+ bisplrep :
1219
+ a function to find a bivariate B-spline representation of a surface
1220
+ bisplev :
1221
+ a function to evaluate a bivariate B-spline and its derivatives
1222
+ """
1223
+
1224
+ def ev(self, xi, yi, dx=0, dy=0):
1225
+ """
1226
+ Evaluate the spline at points
1227
+
1228
+ Returns the interpolated value at ``(xi[i], yi[i]),
1229
+ i=0,...,len(xi)-1``.
1230
+
1231
+ Parameters
1232
+ ----------
1233
+ xi, yi : array_like
1234
+ Input coordinates. Standard Numpy broadcasting is obeyed.
1235
+ The ordering of axes is consistent with
1236
+ ``np.meshgrid(..., indexing="ij")`` and inconsistent with the
1237
+ default ordering ``np.meshgrid(..., indexing="xy")``.
1238
+ dx : int, optional
1239
+ Order of x-derivative
1240
+
1241
+ .. versionadded:: 0.14.0
1242
+ dy : int, optional
1243
+ Order of y-derivative
1244
+
1245
+ .. versionadded:: 0.14.0
1246
+
1247
+ Examples
1248
+ --------
1249
+ Suppose that we want to bilinearly interpolate an exponentially decaying
1250
+ function in 2 dimensions.
1251
+
1252
+ >>> import numpy as np
1253
+ >>> from scipy.interpolate import RectBivariateSpline
1254
+ >>> def f(x, y):
1255
+ ... return np.exp(-np.sqrt((x / 2) ** 2 + y**2))
1256
+
1257
+ We sample the function on a coarse grid and set up the interpolator. Note that
1258
+ the default ``indexing="xy"`` of meshgrid would result in an unexpected
1259
+ (transposed) result after interpolation.
1260
+
1261
+ >>> xarr = np.linspace(-3, 3, 21)
1262
+ >>> yarr = np.linspace(-3, 3, 21)
1263
+ >>> xgrid, ygrid = np.meshgrid(xarr, yarr, indexing="ij")
1264
+ >>> zdata = f(xgrid, ygrid)
1265
+ >>> rbs = RectBivariateSpline(xarr, yarr, zdata, kx=1, ky=1)
1266
+
1267
+ Next we sample the function along a diagonal slice through the coordinate space
1268
+ on a finer grid using interpolation.
1269
+
1270
+ >>> xinterp = np.linspace(-3, 3, 201)
1271
+ >>> yinterp = np.linspace(3, -3, 201)
1272
+ >>> zinterp = rbs.ev(xinterp, yinterp)
1273
+
1274
+ And check that the interpolation passes through the function evaluations as a
1275
+ function of the distance from the origin along the slice.
1276
+
1277
+ >>> import matplotlib.pyplot as plt
1278
+ >>> fig = plt.figure()
1279
+ >>> ax1 = fig.add_subplot(1, 1, 1)
1280
+ >>> ax1.plot(np.sqrt(xarr**2 + yarr**2), np.diag(zdata), "or")
1281
+ >>> ax1.plot(np.sqrt(xinterp**2 + yinterp**2), zinterp, "-b")
1282
+ >>> plt.show()
1283
+ """
1284
+ return self.__call__(xi, yi, dx=dx, dy=dy, grid=False)
1285
+
1286
+ def integral(self, xa, xb, ya, yb):
1287
+ """
1288
+ Evaluate the integral of the spline over area [xa,xb] x [ya,yb].
1289
+
1290
+ Parameters
1291
+ ----------
1292
+ xa, xb : float
1293
+ The end-points of the x integration interval.
1294
+ ya, yb : float
1295
+ The end-points of the y integration interval.
1296
+
1297
+ Returns
1298
+ -------
1299
+ integ : float
1300
+ The value of the resulting integral.
1301
+
1302
+ """
1303
+ tx, ty, c = self.tck[:3]
1304
+ kx, ky = self.degrees
1305
+ with FITPACK_LOCK:
1306
+ return dfitpack.dblint(tx, ty, c, kx, ky, xa, xb, ya, yb)
1307
+
1308
+ @staticmethod
1309
+ def _validate_input(x, y, z, w, kx, ky, eps):
1310
+ x, y, z = np.asarray(x), np.asarray(y), np.asarray(z)
1311
+ if not x.size == y.size == z.size:
1312
+ raise ValueError('x, y, and z should have a same length')
1313
+
1314
+ if w is not None:
1315
+ w = np.asarray(w)
1316
+ if x.size != w.size:
1317
+ raise ValueError('x, y, z, and w should have a same length')
1318
+ elif not np.all(w >= 0.0):
1319
+ raise ValueError('w should be positive')
1320
+ if (eps is not None) and (not 0.0 < eps < 1.0):
1321
+ raise ValueError('eps should be between (0, 1)')
1322
+ if not x.size >= (kx + 1) * (ky + 1):
1323
+ raise ValueError('The length of x, y and z should be at least'
1324
+ ' (kx+1) * (ky+1)')
1325
+ return x, y, z, w
1326
+
1327
+
1328
+ class _DerivedBivariateSpline(_BivariateSplineBase):
1329
+ """Bivariate spline constructed from the coefficients and knots of another
1330
+ spline.
1331
+
1332
+ Notes
1333
+ -----
1334
+ The class is not meant to be instantiated directly from the data to be
1335
+ interpolated or smoothed. As a result, its ``fp`` attribute and
1336
+ ``get_residual`` method are inherited but overridden; ``AttributeError`` is
1337
+ raised when they are accessed.
1338
+
1339
+ The other inherited attributes can be used as usual.
1340
+ """
1341
+ _invalid_why = ("is unavailable, because _DerivedBivariateSpline"
1342
+ " instance is not constructed from data that are to be"
1343
+ " interpolated or smoothed, but derived from the"
1344
+ " underlying knots and coefficients of another spline"
1345
+ " object")
1346
+
1347
+ @property
1348
+ def fp(self):
1349
+ raise AttributeError(f"attribute \"fp\" {self._invalid_why}")
1350
+
1351
+ def get_residual(self):
1352
+ raise AttributeError(f"method \"get_residual\" {self._invalid_why}")
1353
+
1354
+
1355
+ class SmoothBivariateSpline(BivariateSpline):
1356
+ """
1357
+ Smooth bivariate spline approximation.
1358
+
1359
+ Parameters
1360
+ ----------
1361
+ x, y, z : array_like
1362
+ 1-D sequences of data points (order is not important).
1363
+ w : array_like, optional
1364
+ Positive 1-D sequence of weights, of same length as `x`, `y` and `z`.
1365
+ bbox : array_like, optional
1366
+ Sequence of length 4 specifying the boundary of the rectangular
1367
+ approximation domain. By default,
1368
+ ``bbox=[min(x), max(x), min(y), max(y)]``.
1369
+ kx, ky : ints, optional
1370
+ Degrees of the bivariate spline. Default is 3.
1371
+ s : float, optional
1372
+ Positive smoothing factor defined for estimation condition:
1373
+ ``sum((w[i]*(z[i]-s(x[i], y[i])))**2, axis=0) <= s``
1374
+ Default ``s=len(w)`` which should be a good value if ``1/w[i]`` is an
1375
+ estimate of the standard deviation of ``z[i]``.
1376
+ eps : float, optional
1377
+ A threshold for determining the effective rank of an over-determined
1378
+ linear system of equations. `eps` should have a value within the open
1379
+ interval ``(0, 1)``, the default is 1e-16.
1380
+
1381
+ See Also
1382
+ --------
1383
+ BivariateSpline :
1384
+ a base class for bivariate splines.
1385
+ UnivariateSpline :
1386
+ a smooth univariate spline to fit a given set of data points.
1387
+ LSQBivariateSpline :
1388
+ a bivariate spline using weighted least-squares fitting
1389
+ RectSphereBivariateSpline :
1390
+ a bivariate spline over a rectangular mesh on a sphere
1391
+ SmoothSphereBivariateSpline :
1392
+ a smoothing bivariate spline in spherical coordinates
1393
+ LSQSphereBivariateSpline :
1394
+ a bivariate spline in spherical coordinates using weighted
1395
+ least-squares fitting
1396
+ RectBivariateSpline :
1397
+ a bivariate spline over a rectangular mesh
1398
+ bisplrep :
1399
+ a function to find a bivariate B-spline representation of a surface
1400
+ bisplev :
1401
+ a function to evaluate a bivariate B-spline and its derivatives
1402
+
1403
+ Notes
1404
+ -----
1405
+ The length of `x`, `y` and `z` should be at least ``(kx+1) * (ky+1)``.
1406
+
1407
+ If the input data is such that input dimensions have incommensurate
1408
+ units and differ by many orders of magnitude, the interpolant may have
1409
+ numerical artifacts. Consider rescaling the data before interpolating.
1410
+
1411
+ This routine constructs spline knot vectors automatically via the FITPACK
1412
+ algorithm. The spline knots may be placed away from the data points. For
1413
+ some data sets, this routine may fail to construct an interpolating spline,
1414
+ even if one is requested via ``s=0`` parameter. In such situations, it is
1415
+ recommended to use `bisplrep` / `bisplev` directly instead of this routine
1416
+ and, if needed, increase the values of ``nxest`` and ``nyest`` parameters
1417
+ of `bisplrep`.
1418
+
1419
+ For linear interpolation, prefer `LinearNDInterpolator`.
1420
+ See ``https://gist.github.com/ev-br/8544371b40f414b7eaf3fe6217209bff``
1421
+ for discussion.
1422
+
1423
+ """
1424
+
1425
+ def __init__(self, x, y, z, w=None, bbox=[None] * 4, kx=3, ky=3, s=None,
1426
+ eps=1e-16):
1427
+
1428
+ x, y, z, w = self._validate_input(x, y, z, w, kx, ky, eps)
1429
+ bbox = ravel(bbox)
1430
+ if not bbox.shape == (4,):
1431
+ raise ValueError('bbox shape should be (4,)')
1432
+ if s is not None and not s >= 0.0:
1433
+ raise ValueError("s should be s >= 0.0")
1434
+
1435
+ xb, xe, yb, ye = bbox
1436
+ with FITPACK_LOCK:
1437
+ nx, tx, ny, ty, c, fp, wrk1, ier = dfitpack.surfit_smth(
1438
+ x, y, z, w, xb, xe, yb, ye, kx, ky, s=s, eps=eps, lwrk2=1)
1439
+ if ier > 10: # lwrk2 was to small, re-run
1440
+ nx, tx, ny, ty, c, fp, wrk1, ier = dfitpack.surfit_smth(
1441
+ x, y, z, w, xb, xe, yb, ye, kx, ky, s=s, eps=eps,
1442
+ lwrk2=ier)
1443
+ if ier in [0, -1, -2]: # normal return
1444
+ pass
1445
+ else:
1446
+ message = _surfit_messages.get(ier, f'ier={ier}')
1447
+ warnings.warn(message, stacklevel=2)
1448
+
1449
+ self.fp = fp
1450
+ self.tck = tx[:nx], ty[:ny], c[:(nx-kx-1)*(ny-ky-1)]
1451
+ self.degrees = kx, ky
1452
+
1453
+
1454
+ class LSQBivariateSpline(BivariateSpline):
1455
+ """
1456
+ Weighted least-squares bivariate spline approximation.
1457
+
1458
+ Parameters
1459
+ ----------
1460
+ x, y, z : array_like
1461
+ 1-D sequences of data points (order is not important).
1462
+ tx, ty : array_like
1463
+ Strictly ordered 1-D sequences of knots coordinates.
1464
+ w : array_like, optional
1465
+ Positive 1-D array of weights, of the same length as `x`, `y` and `z`.
1466
+ bbox : (4,) array_like, optional
1467
+ Sequence of length 4 specifying the boundary of the rectangular
1468
+ approximation domain. By default,
1469
+ ``bbox=[min(x,tx),max(x,tx), min(y,ty),max(y,ty)]``.
1470
+ kx, ky : ints, optional
1471
+ Degrees of the bivariate spline. Default is 3.
1472
+ eps : float, optional
1473
+ A threshold for determining the effective rank of an over-determined
1474
+ linear system of equations. `eps` should have a value within the open
1475
+ interval ``(0, 1)``, the default is 1e-16.
1476
+
1477
+ See Also
1478
+ --------
1479
+ BivariateSpline :
1480
+ a base class for bivariate splines.
1481
+ UnivariateSpline :
1482
+ a smooth univariate spline to fit a given set of data points.
1483
+ SmoothBivariateSpline :
1484
+ a smoothing bivariate spline through the given points
1485
+ RectSphereBivariateSpline :
1486
+ a bivariate spline over a rectangular mesh on a sphere
1487
+ SmoothSphereBivariateSpline :
1488
+ a smoothing bivariate spline in spherical coordinates
1489
+ LSQSphereBivariateSpline :
1490
+ a bivariate spline in spherical coordinates using weighted
1491
+ least-squares fitting
1492
+ RectBivariateSpline :
1493
+ a bivariate spline over a rectangular mesh.
1494
+ bisplrep :
1495
+ a function to find a bivariate B-spline representation of a surface
1496
+ bisplev :
1497
+ a function to evaluate a bivariate B-spline and its derivatives
1498
+
1499
+ Notes
1500
+ -----
1501
+ The length of `x`, `y` and `z` should be at least ``(kx+1) * (ky+1)``.
1502
+
1503
+ If the input data is such that input dimensions have incommensurate
1504
+ units and differ by many orders of magnitude, the interpolant may have
1505
+ numerical artifacts. Consider rescaling the data before interpolating.
1506
+
1507
+ """
1508
+
1509
+ def __init__(self, x, y, z, tx, ty, w=None, bbox=[None]*4, kx=3, ky=3,
1510
+ eps=None):
1511
+
1512
+ x, y, z, w = self._validate_input(x, y, z, w, kx, ky, eps)
1513
+ bbox = ravel(bbox)
1514
+ if not bbox.shape == (4,):
1515
+ raise ValueError('bbox shape should be (4,)')
1516
+
1517
+ nx = 2*kx+2+len(tx)
1518
+ ny = 2*ky+2+len(ty)
1519
+ # The Fortran subroutine "surfit" (called as dfitpack.surfit_lsq)
1520
+ # requires that the knot arrays passed as input should be "real
1521
+ # array(s) of dimension nmax" where "nmax" refers to the greater of nx
1522
+ # and ny. We pad the tx1/ty1 arrays here so that this is satisfied, and
1523
+ # slice them to the desired sizes upon return.
1524
+ nmax = max(nx, ny)
1525
+ tx1 = zeros((nmax,), float)
1526
+ ty1 = zeros((nmax,), float)
1527
+ tx1[kx+1:nx-kx-1] = tx
1528
+ ty1[ky+1:ny-ky-1] = ty
1529
+
1530
+ xb, xe, yb, ye = bbox
1531
+ with FITPACK_LOCK:
1532
+ tx1, ty1, c, fp, ier = dfitpack.surfit_lsq(x, y, z, nx, tx1, ny, ty1,
1533
+ w, xb, xe, yb, ye,
1534
+ kx, ky, eps, lwrk2=1)
1535
+ if ier > 10:
1536
+ tx1, ty1, c, fp, ier = dfitpack.surfit_lsq(x, y, z,
1537
+ nx, tx1, ny, ty1, w,
1538
+ xb, xe, yb, ye,
1539
+ kx, ky, eps, lwrk2=ier)
1540
+ if ier in [0, -1, -2]: # normal return
1541
+ pass
1542
+ else:
1543
+ if ier < -2:
1544
+ deficiency = (nx-kx-1)*(ny-ky-1)+ier
1545
+ message = _surfit_messages.get(-3) % (deficiency)
1546
+ else:
1547
+ message = _surfit_messages.get(ier, f'ier={ier}')
1548
+ warnings.warn(message, stacklevel=2)
1549
+ self.fp = fp
1550
+ self.tck = tx1[:nx], ty1[:ny], c
1551
+ self.degrees = kx, ky
1552
+
1553
+
1554
+ class RectBivariateSpline(BivariateSpline):
1555
+ """
1556
+ Bivariate spline approximation over a rectangular mesh.
1557
+
1558
+ Can be used for both smoothing and interpolating data.
1559
+
1560
+ Parameters
1561
+ ----------
1562
+ x,y : array_like
1563
+ 1-D arrays of coordinates in strictly ascending order.
1564
+ Evaluated points outside the data range will be extrapolated.
1565
+ z : array_like
1566
+ 2-D array of data with shape (x.size,y.size).
1567
+ bbox : array_like, optional
1568
+ Sequence of length 4 specifying the boundary of the rectangular
1569
+ approximation domain, which means the start and end spline knots of
1570
+ each dimension are set by these values. By default,
1571
+ ``bbox=[min(x), max(x), min(y), max(y)]``.
1572
+ kx, ky : ints, optional
1573
+ Degrees of the bivariate spline. Default is 3.
1574
+ s : float, optional
1575
+ Positive smoothing factor defined for estimation condition:
1576
+ ``sum((z[i]-f(x[i], y[i]))**2, axis=0) <= s`` where f is a spline
1577
+ function. Default is ``s=0``, which is for interpolation.
1578
+ maxit : int, optional
1579
+ The maximal number of iterations maxit allowed for finding a
1580
+ smoothing spline with fp=s. Default is ``maxit=20``.
1581
+
1582
+ See Also
1583
+ --------
1584
+ BivariateSpline :
1585
+ a base class for bivariate splines.
1586
+ UnivariateSpline :
1587
+ a smooth univariate spline to fit a given set of data points.
1588
+ SmoothBivariateSpline :
1589
+ a smoothing bivariate spline through the given points
1590
+ LSQBivariateSpline :
1591
+ a bivariate spline using weighted least-squares fitting
1592
+ RectSphereBivariateSpline :
1593
+ a bivariate spline over a rectangular mesh on a sphere
1594
+ SmoothSphereBivariateSpline :
1595
+ a smoothing bivariate spline in spherical coordinates
1596
+ LSQSphereBivariateSpline :
1597
+ a bivariate spline in spherical coordinates using weighted
1598
+ least-squares fitting
1599
+ bisplrep :
1600
+ a function to find a bivariate B-spline representation of a surface
1601
+ bisplev :
1602
+ a function to evaluate a bivariate B-spline and its derivatives
1603
+
1604
+ Notes
1605
+ -----
1606
+
1607
+ If the input data is such that input dimensions have incommensurate
1608
+ units and differ by many orders of magnitude, the interpolant may have
1609
+ numerical artifacts. Consider rescaling the data before interpolating.
1610
+
1611
+ """
1612
+
1613
+ def __init__(self, x, y, z, bbox=[None] * 4, kx=3, ky=3, s=0, maxit=20):
1614
+ x, y, bbox = ravel(x), ravel(y), ravel(bbox)
1615
+ z = np.asarray(z)
1616
+ if not np.all(diff(x) > 0.0):
1617
+ raise ValueError('x must be strictly increasing')
1618
+ if not np.all(diff(y) > 0.0):
1619
+ raise ValueError('y must be strictly increasing')
1620
+ if not x.size == z.shape[0]:
1621
+ raise ValueError('x dimension of z must have same number of '
1622
+ 'elements as x')
1623
+ if not y.size == z.shape[1]:
1624
+ raise ValueError('y dimension of z must have same number of '
1625
+ 'elements as y')
1626
+ if not bbox.shape == (4,):
1627
+ raise ValueError('bbox shape should be (4,)')
1628
+ if s is not None and not s >= 0.0:
1629
+ raise ValueError("s should be s >= 0.0")
1630
+
1631
+ z = ravel(z)
1632
+ xb, xe, yb, ye = bbox
1633
+ with FITPACK_LOCK:
1634
+ nx, tx, ny, ty, c, fp, ier = dfitpack.regrid_smth(x, y, z, xb, xe, yb,
1635
+ ye, kx, ky, s, maxit)
1636
+
1637
+ if ier not in [0, -1, -2]:
1638
+ msg = _surfit_messages.get(ier, f'ier={ier}')
1639
+ raise ValueError(msg)
1640
+
1641
+ self.fp = fp
1642
+ self.tck = tx[:nx], ty[:ny], c[:(nx - kx - 1) * (ny - ky - 1)]
1643
+ self.degrees = kx, ky
1644
+
1645
+
1646
+ _spherefit_messages = _surfit_messages.copy()
1647
+ _spherefit_messages[10] = """
1648
+ ERROR. On entry, the input data are controlled on validity. The following
1649
+ restrictions must be satisfied:
1650
+ -1<=iopt<=1, m>=2, ntest>=8 ,npest >=8, 0<eps<1,
1651
+ 0<=teta(i)<=pi, 0<=phi(i)<=2*pi, w(i)>0, i=1,...,m
1652
+ lwrk1 >= 185+52*v+10*u+14*u*v+8*(u-1)*v**2+8*m
1653
+ kwrk >= m+(ntest-7)*(npest-7)
1654
+ if iopt=-1: 8<=nt<=ntest , 9<=np<=npest
1655
+ 0<tt(5)<tt(6)<...<tt(nt-4)<pi
1656
+ 0<tp(5)<tp(6)<...<tp(np-4)<2*pi
1657
+ if iopt>=0: s>=0
1658
+ if one of these conditions is found to be violated,control
1659
+ is immediately repassed to the calling program. in that
1660
+ case there is no approximation returned."""
1661
+ _spherefit_messages[-3] = """
1662
+ WARNING. The coefficients of the spline returned have been computed as the
1663
+ minimal norm least-squares solution of a (numerically) rank
1664
+ deficient system (deficiency=%i, rank=%i). Especially if the rank
1665
+ deficiency, which is computed by 6+(nt-8)*(np-7)+ier, is large,
1666
+ the results may be inaccurate. They could also seriously depend on
1667
+ the value of eps."""
1668
+
1669
+
1670
+ class SphereBivariateSpline(_BivariateSplineBase):
1671
+ """
1672
+ Bivariate spline s(x,y) of degrees 3 on a sphere, calculated from a
1673
+ given set of data points (theta,phi,r).
1674
+
1675
+ .. versionadded:: 0.11.0
1676
+
1677
+ See Also
1678
+ --------
1679
+ bisplrep :
1680
+ a function to find a bivariate B-spline representation of a surface
1681
+ bisplev :
1682
+ a function to evaluate a bivariate B-spline and its derivatives
1683
+ UnivariateSpline :
1684
+ a smooth univariate spline to fit a given set of data points.
1685
+ SmoothBivariateSpline :
1686
+ a smoothing bivariate spline through the given points
1687
+ LSQUnivariateSpline :
1688
+ a univariate spline using weighted least-squares fitting
1689
+ """
1690
+
1691
+ def __call__(self, theta, phi, dtheta=0, dphi=0, grid=True):
1692
+ """
1693
+ Evaluate the spline or its derivatives at given positions.
1694
+
1695
+ Parameters
1696
+ ----------
1697
+ theta, phi : array_like
1698
+ Input coordinates.
1699
+
1700
+ If `grid` is False, evaluate the spline at points
1701
+ ``(theta[i], phi[i]), i=0, ..., len(x)-1``. Standard
1702
+ Numpy broadcasting is obeyed.
1703
+
1704
+ If `grid` is True: evaluate spline at the grid points
1705
+ defined by the coordinate arrays theta, phi. The arrays
1706
+ must be sorted to increasing order.
1707
+ The ordering of axes is consistent with
1708
+ ``np.meshgrid(..., indexing="ij")`` and inconsistent with the
1709
+ default ordering ``np.meshgrid(..., indexing="xy")``.
1710
+ dtheta : int, optional
1711
+ Order of theta-derivative
1712
+
1713
+ .. versionadded:: 0.14.0
1714
+ dphi : int
1715
+ Order of phi-derivative
1716
+
1717
+ .. versionadded:: 0.14.0
1718
+ grid : bool
1719
+ Whether to evaluate the results on a grid spanned by the
1720
+ input arrays, or at points specified by the input arrays.
1721
+
1722
+ .. versionadded:: 0.14.0
1723
+
1724
+ Examples
1725
+ --------
1726
+
1727
+ Suppose that we want to use splines to interpolate a bivariate function on a
1728
+ sphere. The value of the function is known on a grid of longitudes and
1729
+ colatitudes.
1730
+
1731
+ >>> import numpy as np
1732
+ >>> from scipy.interpolate import RectSphereBivariateSpline
1733
+ >>> def f(theta, phi):
1734
+ ... return np.sin(theta) * np.cos(phi)
1735
+
1736
+ We evaluate the function on the grid. Note that the default indexing="xy"
1737
+ of meshgrid would result in an unexpected (transposed) result after
1738
+ interpolation.
1739
+
1740
+ >>> thetaarr = np.linspace(0, np.pi, 22)[1:-1]
1741
+ >>> phiarr = np.linspace(0, 2 * np.pi, 21)[:-1]
1742
+ >>> thetagrid, phigrid = np.meshgrid(thetaarr, phiarr, indexing="ij")
1743
+ >>> zdata = f(thetagrid, phigrid)
1744
+
1745
+ We next set up the interpolator and use it to evaluate the function
1746
+ on a finer grid.
1747
+
1748
+ >>> rsbs = RectSphereBivariateSpline(thetaarr, phiarr, zdata)
1749
+ >>> thetaarr_fine = np.linspace(0, np.pi, 200)
1750
+ >>> phiarr_fine = np.linspace(0, 2 * np.pi, 200)
1751
+ >>> zdata_fine = rsbs(thetaarr_fine, phiarr_fine)
1752
+
1753
+ Finally we plot the coarsly-sampled input data alongside the
1754
+ finely-sampled interpolated data to check that they agree.
1755
+
1756
+ >>> import matplotlib.pyplot as plt
1757
+ >>> fig = plt.figure()
1758
+ >>> ax1 = fig.add_subplot(1, 2, 1)
1759
+ >>> ax2 = fig.add_subplot(1, 2, 2)
1760
+ >>> ax1.imshow(zdata)
1761
+ >>> ax2.imshow(zdata_fine)
1762
+ >>> plt.show()
1763
+ """
1764
+ theta = np.asarray(theta)
1765
+ phi = np.asarray(phi)
1766
+
1767
+ if theta.size > 0 and (theta.min() < 0. or theta.max() > np.pi):
1768
+ raise ValueError("requested theta out of bounds.")
1769
+
1770
+ return _BivariateSplineBase.__call__(self, theta, phi,
1771
+ dx=dtheta, dy=dphi, grid=grid)
1772
+
1773
+ def ev(self, theta, phi, dtheta=0, dphi=0):
1774
+ """
1775
+ Evaluate the spline at points
1776
+
1777
+ Returns the interpolated value at ``(theta[i], phi[i]),
1778
+ i=0,...,len(theta)-1``.
1779
+
1780
+ Parameters
1781
+ ----------
1782
+ theta, phi : array_like
1783
+ Input coordinates. Standard Numpy broadcasting is obeyed.
1784
+ The ordering of axes is consistent with
1785
+ np.meshgrid(..., indexing="ij") and inconsistent with the
1786
+ default ordering np.meshgrid(..., indexing="xy").
1787
+ dtheta : int, optional
1788
+ Order of theta-derivative
1789
+
1790
+ .. versionadded:: 0.14.0
1791
+ dphi : int, optional
1792
+ Order of phi-derivative
1793
+
1794
+ .. versionadded:: 0.14.0
1795
+
1796
+ Examples
1797
+ --------
1798
+ Suppose that we want to use splines to interpolate a bivariate function on a
1799
+ sphere. The value of the function is known on a grid of longitudes and
1800
+ colatitudes.
1801
+
1802
+ >>> import numpy as np
1803
+ >>> from scipy.interpolate import RectSphereBivariateSpline
1804
+ >>> def f(theta, phi):
1805
+ ... return np.sin(theta) * np.cos(phi)
1806
+
1807
+ We evaluate the function on the grid. Note that the default indexing="xy"
1808
+ of meshgrid would result in an unexpected (transposed) result after
1809
+ interpolation.
1810
+
1811
+ >>> thetaarr = np.linspace(0, np.pi, 22)[1:-1]
1812
+ >>> phiarr = np.linspace(0, 2 * np.pi, 21)[:-1]
1813
+ >>> thetagrid, phigrid = np.meshgrid(thetaarr, phiarr, indexing="ij")
1814
+ >>> zdata = f(thetagrid, phigrid)
1815
+
1816
+ We next set up the interpolator and use it to evaluate the function
1817
+ at points not on the original grid.
1818
+
1819
+ >>> rsbs = RectSphereBivariateSpline(thetaarr, phiarr, zdata)
1820
+ >>> thetainterp = np.linspace(thetaarr[0], thetaarr[-1], 200)
1821
+ >>> phiinterp = np.linspace(phiarr[0], phiarr[-1], 200)
1822
+ >>> zinterp = rsbs.ev(thetainterp, phiinterp)
1823
+
1824
+ Finally we plot the original data for a diagonal slice through the
1825
+ initial grid, and the spline approximation along the same slice.
1826
+
1827
+ >>> import matplotlib.pyplot as plt
1828
+ >>> fig = plt.figure()
1829
+ >>> ax1 = fig.add_subplot(1, 1, 1)
1830
+ >>> ax1.plot(np.sin(thetaarr) * np.sin(phiarr), np.diag(zdata), "or")
1831
+ >>> ax1.plot(np.sin(thetainterp) * np.sin(phiinterp), zinterp, "-b")
1832
+ >>> plt.show()
1833
+ """
1834
+ return self.__call__(theta, phi, dtheta=dtheta, dphi=dphi, grid=False)
1835
+
1836
+
1837
+ class SmoothSphereBivariateSpline(SphereBivariateSpline):
1838
+ """
1839
+ Smooth bivariate spline approximation in spherical coordinates.
1840
+
1841
+ .. versionadded:: 0.11.0
1842
+
1843
+ Parameters
1844
+ ----------
1845
+ theta, phi, r : array_like
1846
+ 1-D sequences of data points (order is not important). Coordinates
1847
+ must be given in radians. Theta must lie within the interval
1848
+ ``[0, pi]``, and phi must lie within the interval ``[0, 2pi]``.
1849
+ w : array_like, optional
1850
+ Positive 1-D sequence of weights.
1851
+ s : float, optional
1852
+ Positive smoothing factor defined for estimation condition:
1853
+ ``sum((w(i)*(r(i) - s(theta(i), phi(i))))**2, axis=0) <= s``
1854
+ Default ``s=len(w)`` which should be a good value if ``1/w[i]`` is an
1855
+ estimate of the standard deviation of ``r[i]``.
1856
+ eps : float, optional
1857
+ A threshold for determining the effective rank of an over-determined
1858
+ linear system of equations. `eps` should have a value within the open
1859
+ interval ``(0, 1)``, the default is 1e-16.
1860
+
1861
+ See Also
1862
+ --------
1863
+ BivariateSpline :
1864
+ a base class for bivariate splines.
1865
+ UnivariateSpline :
1866
+ a smooth univariate spline to fit a given set of data points.
1867
+ SmoothBivariateSpline :
1868
+ a smoothing bivariate spline through the given points
1869
+ LSQBivariateSpline :
1870
+ a bivariate spline using weighted least-squares fitting
1871
+ RectSphereBivariateSpline :
1872
+ a bivariate spline over a rectangular mesh on a sphere
1873
+ LSQSphereBivariateSpline :
1874
+ a bivariate spline in spherical coordinates using weighted
1875
+ least-squares fitting
1876
+ RectBivariateSpline :
1877
+ a bivariate spline over a rectangular mesh.
1878
+ bisplrep :
1879
+ a function to find a bivariate B-spline representation of a surface
1880
+ bisplev :
1881
+ a function to evaluate a bivariate B-spline and its derivatives
1882
+
1883
+ Notes
1884
+ -----
1885
+ For more information, see the FITPACK_ site about this function.
1886
+
1887
+ .. _FITPACK: http://www.netlib.org/dierckx/sphere.f
1888
+
1889
+ Examples
1890
+ --------
1891
+ Suppose we have global data on a coarse grid (the input data does not
1892
+ have to be on a grid):
1893
+
1894
+ >>> import numpy as np
1895
+ >>> theta = np.linspace(0., np.pi, 7)
1896
+ >>> phi = np.linspace(0., 2*np.pi, 9)
1897
+ >>> data = np.empty((theta.shape[0], phi.shape[0]))
1898
+ >>> data[:,0], data[0,:], data[-1,:] = 0., 0., 0.
1899
+ >>> data[1:-1,1], data[1:-1,-1] = 1., 1.
1900
+ >>> data[1,1:-1], data[-2,1:-1] = 1., 1.
1901
+ >>> data[2:-2,2], data[2:-2,-2] = 2., 2.
1902
+ >>> data[2,2:-2], data[-3,2:-2] = 2., 2.
1903
+ >>> data[3,3:-2] = 3.
1904
+ >>> data = np.roll(data, 4, 1)
1905
+
1906
+ We need to set up the interpolator object
1907
+
1908
+ >>> lats, lons = np.meshgrid(theta, phi)
1909
+ >>> from scipy.interpolate import SmoothSphereBivariateSpline
1910
+ >>> lut = SmoothSphereBivariateSpline(lats.ravel(), lons.ravel(),
1911
+ ... data.T.ravel(), s=3.5)
1912
+
1913
+ As a first test, we'll see what the algorithm returns when run on the
1914
+ input coordinates
1915
+
1916
+ >>> data_orig = lut(theta, phi)
1917
+
1918
+ Finally we interpolate the data to a finer grid
1919
+
1920
+ >>> fine_lats = np.linspace(0., np.pi, 70)
1921
+ >>> fine_lons = np.linspace(0., 2 * np.pi, 90)
1922
+
1923
+ >>> data_smth = lut(fine_lats, fine_lons)
1924
+
1925
+ >>> import matplotlib.pyplot as plt
1926
+ >>> fig = plt.figure()
1927
+ >>> ax1 = fig.add_subplot(131)
1928
+ >>> ax1.imshow(data, interpolation='nearest')
1929
+ >>> ax2 = fig.add_subplot(132)
1930
+ >>> ax2.imshow(data_orig, interpolation='nearest')
1931
+ >>> ax3 = fig.add_subplot(133)
1932
+ >>> ax3.imshow(data_smth, interpolation='nearest')
1933
+ >>> plt.show()
1934
+
1935
+ """
1936
+
1937
+ def __init__(self, theta, phi, r, w=None, s=0., eps=1E-16):
1938
+
1939
+ theta, phi, r = np.asarray(theta), np.asarray(phi), np.asarray(r)
1940
+
1941
+ # input validation
1942
+ if not ((0.0 <= theta).all() and (theta <= np.pi).all()):
1943
+ raise ValueError('theta should be between [0, pi]')
1944
+ if not ((0.0 <= phi).all() and (phi <= 2.0 * np.pi).all()):
1945
+ raise ValueError('phi should be between [0, 2pi]')
1946
+ if w is not None:
1947
+ w = np.asarray(w)
1948
+ if not (w >= 0.0).all():
1949
+ raise ValueError('w should be positive')
1950
+ if not s >= 0.0:
1951
+ raise ValueError('s should be positive')
1952
+ if not 0.0 < eps < 1.0:
1953
+ raise ValueError('eps should be between (0, 1)')
1954
+
1955
+ with FITPACK_LOCK:
1956
+ nt_, tt_, np_, tp_, c, fp, ier = dfitpack.spherfit_smth(theta, phi,
1957
+ r, w=w, s=s,
1958
+ eps=eps)
1959
+ if ier not in [0, -1, -2]:
1960
+ message = _spherefit_messages.get(ier, f'ier={ier}')
1961
+ raise ValueError(message)
1962
+
1963
+ self.fp = fp
1964
+ self.tck = tt_[:nt_], tp_[:np_], c[:(nt_ - 4) * (np_ - 4)]
1965
+ self.degrees = (3, 3)
1966
+
1967
+ def __call__(self, theta, phi, dtheta=0, dphi=0, grid=True):
1968
+
1969
+ theta = np.asarray(theta)
1970
+ phi = np.asarray(phi)
1971
+
1972
+ if phi.size > 0 and (phi.min() < 0. or phi.max() > 2. * np.pi):
1973
+ raise ValueError("requested phi out of bounds.")
1974
+
1975
+ return SphereBivariateSpline.__call__(self, theta, phi, dtheta=dtheta,
1976
+ dphi=dphi, grid=grid)
1977
+
1978
+
1979
+ class LSQSphereBivariateSpline(SphereBivariateSpline):
1980
+ """
1981
+ Weighted least-squares bivariate spline approximation in spherical
1982
+ coordinates.
1983
+
1984
+ Determines a smoothing bicubic spline according to a given
1985
+ set of knots in the `theta` and `phi` directions.
1986
+
1987
+ .. versionadded:: 0.11.0
1988
+
1989
+ Parameters
1990
+ ----------
1991
+ theta, phi, r : array_like
1992
+ 1-D sequences of data points (order is not important). Coordinates
1993
+ must be given in radians. Theta must lie within the interval
1994
+ ``[0, pi]``, and phi must lie within the interval ``[0, 2pi]``.
1995
+ tt, tp : array_like
1996
+ Strictly ordered 1-D sequences of knots coordinates.
1997
+ Coordinates must satisfy ``0 < tt[i] < pi``, ``0 < tp[i] < 2*pi``.
1998
+ w : array_like, optional
1999
+ Positive 1-D sequence of weights, of the same length as `theta`, `phi`
2000
+ and `r`.
2001
+ eps : float, optional
2002
+ A threshold for determining the effective rank of an over-determined
2003
+ linear system of equations. `eps` should have a value within the
2004
+ open interval ``(0, 1)``, the default is 1e-16.
2005
+
2006
+ See Also
2007
+ --------
2008
+ BivariateSpline :
2009
+ a base class for bivariate splines.
2010
+ UnivariateSpline :
2011
+ a smooth univariate spline to fit a given set of data points.
2012
+ SmoothBivariateSpline :
2013
+ a smoothing bivariate spline through the given points
2014
+ LSQBivariateSpline :
2015
+ a bivariate spline using weighted least-squares fitting
2016
+ RectSphereBivariateSpline :
2017
+ a bivariate spline over a rectangular mesh on a sphere
2018
+ SmoothSphereBivariateSpline :
2019
+ a smoothing bivariate spline in spherical coordinates
2020
+ RectBivariateSpline :
2021
+ a bivariate spline over a rectangular mesh.
2022
+ bisplrep :
2023
+ a function to find a bivariate B-spline representation of a surface
2024
+ bisplev :
2025
+ a function to evaluate a bivariate B-spline and its derivatives
2026
+
2027
+ Notes
2028
+ -----
2029
+ For more information, see the FITPACK_ site about this function.
2030
+
2031
+ .. _FITPACK: http://www.netlib.org/dierckx/sphere.f
2032
+
2033
+ Examples
2034
+ --------
2035
+ Suppose we have global data on a coarse grid (the input data does not
2036
+ have to be on a grid):
2037
+
2038
+ >>> from scipy.interpolate import LSQSphereBivariateSpline
2039
+ >>> import numpy as np
2040
+ >>> import matplotlib.pyplot as plt
2041
+
2042
+ >>> theta = np.linspace(0, np.pi, num=7)
2043
+ >>> phi = np.linspace(0, 2*np.pi, num=9)
2044
+ >>> data = np.empty((theta.shape[0], phi.shape[0]))
2045
+ >>> data[:,0], data[0,:], data[-1,:] = 0., 0., 0.
2046
+ >>> data[1:-1,1], data[1:-1,-1] = 1., 1.
2047
+ >>> data[1,1:-1], data[-2,1:-1] = 1., 1.
2048
+ >>> data[2:-2,2], data[2:-2,-2] = 2., 2.
2049
+ >>> data[2,2:-2], data[-3,2:-2] = 2., 2.
2050
+ >>> data[3,3:-2] = 3.
2051
+ >>> data = np.roll(data, 4, 1)
2052
+
2053
+ We need to set up the interpolator object. Here, we must also specify the
2054
+ coordinates of the knots to use.
2055
+
2056
+ >>> lats, lons = np.meshgrid(theta, phi)
2057
+ >>> knotst, knotsp = theta.copy(), phi.copy()
2058
+ >>> knotst[0] += .0001
2059
+ >>> knotst[-1] -= .0001
2060
+ >>> knotsp[0] += .0001
2061
+ >>> knotsp[-1] -= .0001
2062
+ >>> lut = LSQSphereBivariateSpline(lats.ravel(), lons.ravel(),
2063
+ ... data.T.ravel(), knotst, knotsp)
2064
+
2065
+ As a first test, we'll see what the algorithm returns when run on the
2066
+ input coordinates
2067
+
2068
+ >>> data_orig = lut(theta, phi)
2069
+
2070
+ Finally we interpolate the data to a finer grid
2071
+
2072
+ >>> fine_lats = np.linspace(0., np.pi, 70)
2073
+ >>> fine_lons = np.linspace(0., 2*np.pi, 90)
2074
+ >>> data_lsq = lut(fine_lats, fine_lons)
2075
+
2076
+ >>> fig = plt.figure()
2077
+ >>> ax1 = fig.add_subplot(131)
2078
+ >>> ax1.imshow(data, interpolation='nearest')
2079
+ >>> ax2 = fig.add_subplot(132)
2080
+ >>> ax2.imshow(data_orig, interpolation='nearest')
2081
+ >>> ax3 = fig.add_subplot(133)
2082
+ >>> ax3.imshow(data_lsq, interpolation='nearest')
2083
+ >>> plt.show()
2084
+
2085
+ """
2086
+
2087
+ def __init__(self, theta, phi, r, tt, tp, w=None, eps=1E-16):
2088
+
2089
+ theta, phi, r = np.asarray(theta), np.asarray(phi), np.asarray(r)
2090
+ tt, tp = np.asarray(tt), np.asarray(tp)
2091
+
2092
+ if not ((0.0 <= theta).all() and (theta <= np.pi).all()):
2093
+ raise ValueError('theta should be between [0, pi]')
2094
+ if not ((0.0 <= phi).all() and (phi <= 2*np.pi).all()):
2095
+ raise ValueError('phi should be between [0, 2pi]')
2096
+ if not ((0.0 < tt).all() and (tt < np.pi).all()):
2097
+ raise ValueError('tt should be between (0, pi)')
2098
+ if not ((0.0 < tp).all() and (tp < 2*np.pi).all()):
2099
+ raise ValueError('tp should be between (0, 2pi)')
2100
+ if w is not None:
2101
+ w = np.asarray(w)
2102
+ if not (w >= 0.0).all():
2103
+ raise ValueError('w should be positive')
2104
+ if not 0.0 < eps < 1.0:
2105
+ raise ValueError('eps should be between (0, 1)')
2106
+
2107
+ nt_, np_ = 8 + len(tt), 8 + len(tp)
2108
+ tt_, tp_ = zeros((nt_,), float), zeros((np_,), float)
2109
+ tt_[4:-4], tp_[4:-4] = tt, tp
2110
+ tt_[-4:], tp_[-4:] = np.pi, 2. * np.pi
2111
+ with FITPACK_LOCK:
2112
+ tt_, tp_, c, fp, ier = dfitpack.spherfit_lsq(theta, phi, r, tt_, tp_,
2113
+ w=w, eps=eps)
2114
+ if ier > 0:
2115
+ message = _spherefit_messages.get(ier, f'ier={ier}')
2116
+ raise ValueError(message)
2117
+
2118
+ self.fp = fp
2119
+ self.tck = tt_, tp_, c
2120
+ self.degrees = (3, 3)
2121
+
2122
+ def __call__(self, theta, phi, dtheta=0, dphi=0, grid=True):
2123
+
2124
+ theta = np.asarray(theta)
2125
+ phi = np.asarray(phi)
2126
+
2127
+ if phi.size > 0 and (phi.min() < 0. or phi.max() > 2. * np.pi):
2128
+ raise ValueError("requested phi out of bounds.")
2129
+
2130
+ return SphereBivariateSpline.__call__(self, theta, phi, dtheta=dtheta,
2131
+ dphi=dphi, grid=grid)
2132
+
2133
+
2134
+ _spfit_messages = _surfit_messages.copy()
2135
+ _spfit_messages[10] = """
2136
+ ERROR: on entry, the input data are controlled on validity
2137
+ the following restrictions must be satisfied.
2138
+ -1<=iopt(1)<=1, 0<=iopt(2)<=1, 0<=iopt(3)<=1,
2139
+ -1<=ider(1)<=1, 0<=ider(2)<=1, ider(2)=0 if iopt(2)=0.
2140
+ -1<=ider(3)<=1, 0<=ider(4)<=1, ider(4)=0 if iopt(3)=0.
2141
+ mu >= mumin (see above), mv >= 4, nuest >=8, nvest >= 8,
2142
+ kwrk>=5+mu+mv+nuest+nvest,
2143
+ lwrk >= 12+nuest*(mv+nvest+3)+nvest*24+4*mu+8*mv+max(nuest,mv+nvest)
2144
+ 0< u(i-1)<u(i)< pi,i=2,..,mu,
2145
+ -pi<=v(1)< pi, v(1)<v(i-1)<v(i)<v(1)+2*pi, i=3,...,mv
2146
+ if iopt(1)=-1: 8<=nu<=min(nuest,mu+6+iopt(2)+iopt(3))
2147
+ 0<tu(5)<tu(6)<...<tu(nu-4)< pi
2148
+ 8<=nv<=min(nvest,mv+7)
2149
+ v(1)<tv(5)<tv(6)<...<tv(nv-4)<v(1)+2*pi
2150
+ the schoenberg-whitney conditions, i.e. there must be
2151
+ subset of grid coordinates uu(p) and vv(q) such that
2152
+ tu(p) < uu(p) < tu(p+4) ,p=1,...,nu-4
2153
+ (iopt(2)=1 and iopt(3)=1 also count for a uu-value
2154
+ tv(q) < vv(q) < tv(q+4) ,q=1,...,nv-4
2155
+ (vv(q) is either a value v(j) or v(j)+2*pi)
2156
+ if iopt(1)>=0: s>=0
2157
+ if s=0: nuest>=mu+6+iopt(2)+iopt(3), nvest>=mv+7
2158
+ if one of these conditions is found to be violated,control is
2159
+ immediately repassed to the calling program. in that case there is no
2160
+ approximation returned."""
2161
+
2162
+
2163
+ class RectSphereBivariateSpline(SphereBivariateSpline):
2164
+ """
2165
+ Bivariate spline approximation over a rectangular mesh on a sphere.
2166
+
2167
+ Can be used for smoothing data.
2168
+
2169
+ .. versionadded:: 0.11.0
2170
+
2171
+ Parameters
2172
+ ----------
2173
+ u : array_like
2174
+ 1-D array of colatitude coordinates in strictly ascending order.
2175
+ Coordinates must be given in radians and lie within the open interval
2176
+ ``(0, pi)``.
2177
+ v : array_like
2178
+ 1-D array of longitude coordinates in strictly ascending order.
2179
+ Coordinates must be given in radians. First element (``v[0]``) must lie
2180
+ within the interval ``[-pi, pi)``. Last element (``v[-1]``) must satisfy
2181
+ ``v[-1] <= v[0] + 2*pi``.
2182
+ r : array_like
2183
+ 2-D array of data with shape ``(u.size, v.size)``.
2184
+ s : float, optional
2185
+ Positive smoothing factor defined for estimation condition
2186
+ (``s=0`` is for interpolation).
2187
+ pole_continuity : bool or (bool, bool), optional
2188
+ Order of continuity at the poles ``u=0`` (``pole_continuity[0]``) and
2189
+ ``u=pi`` (``pole_continuity[1]``). The order of continuity at the pole
2190
+ will be 1 or 0 when this is True or False, respectively.
2191
+ Defaults to False.
2192
+ pole_values : float or (float, float), optional
2193
+ Data values at the poles ``u=0`` and ``u=pi``. Either the whole
2194
+ parameter or each individual element can be None. Defaults to None.
2195
+ pole_exact : bool or (bool, bool), optional
2196
+ Data value exactness at the poles ``u=0`` and ``u=pi``. If True, the
2197
+ value is considered to be the right function value, and it will be
2198
+ fitted exactly. If False, the value will be considered to be a data
2199
+ value just like the other data values. Defaults to False.
2200
+ pole_flat : bool or (bool, bool), optional
2201
+ For the poles at ``u=0`` and ``u=pi``, specify whether or not the
2202
+ approximation has vanishing derivatives. Defaults to False.
2203
+
2204
+ See Also
2205
+ --------
2206
+ BivariateSpline :
2207
+ a base class for bivariate splines.
2208
+ UnivariateSpline :
2209
+ a smooth univariate spline to fit a given set of data points.
2210
+ SmoothBivariateSpline :
2211
+ a smoothing bivariate spline through the given points
2212
+ LSQBivariateSpline :
2213
+ a bivariate spline using weighted least-squares fitting
2214
+ SmoothSphereBivariateSpline :
2215
+ a smoothing bivariate spline in spherical coordinates
2216
+ LSQSphereBivariateSpline :
2217
+ a bivariate spline in spherical coordinates using weighted
2218
+ least-squares fitting
2219
+ RectBivariateSpline :
2220
+ a bivariate spline over a rectangular mesh.
2221
+ bisplrep :
2222
+ a function to find a bivariate B-spline representation of a surface
2223
+ bisplev :
2224
+ a function to evaluate a bivariate B-spline and its derivatives
2225
+
2226
+ Notes
2227
+ -----
2228
+ Currently, only the smoothing spline approximation (``iopt[0] = 0`` and
2229
+ ``iopt[0] = 1`` in the FITPACK routine) is supported. The exact
2230
+ least-squares spline approximation is not implemented yet.
2231
+
2232
+ When actually performing the interpolation, the requested `v` values must
2233
+ lie within the same length 2pi interval that the original `v` values were
2234
+ chosen from.
2235
+
2236
+ For more information, see the FITPACK_ site about this function.
2237
+
2238
+ .. _FITPACK: http://www.netlib.org/dierckx/spgrid.f
2239
+
2240
+ Examples
2241
+ --------
2242
+ Suppose we have global data on a coarse grid
2243
+
2244
+ >>> import numpy as np
2245
+ >>> lats = np.linspace(10, 170, 9) * np.pi / 180.
2246
+ >>> lons = np.linspace(0, 350, 18) * np.pi / 180.
2247
+ >>> data = np.dot(np.atleast_2d(90. - np.linspace(-80., 80., 18)).T,
2248
+ ... np.atleast_2d(180. - np.abs(np.linspace(0., 350., 9)))).T
2249
+
2250
+ We want to interpolate it to a global one-degree grid
2251
+
2252
+ >>> new_lats = np.linspace(1, 180, 180) * np.pi / 180
2253
+ >>> new_lons = np.linspace(1, 360, 360) * np.pi / 180
2254
+ >>> new_lats, new_lons = np.meshgrid(new_lats, new_lons)
2255
+
2256
+ We need to set up the interpolator object
2257
+
2258
+ >>> from scipy.interpolate import RectSphereBivariateSpline
2259
+ >>> lut = RectSphereBivariateSpline(lats, lons, data)
2260
+
2261
+ Finally we interpolate the data. The `RectSphereBivariateSpline` object
2262
+ only takes 1-D arrays as input, therefore we need to do some reshaping.
2263
+
2264
+ >>> data_interp = lut.ev(new_lats.ravel(),
2265
+ ... new_lons.ravel()).reshape((360, 180)).T
2266
+
2267
+ Looking at the original and the interpolated data, one can see that the
2268
+ interpolant reproduces the original data very well:
2269
+
2270
+ >>> import matplotlib.pyplot as plt
2271
+ >>> fig = plt.figure()
2272
+ >>> ax1 = fig.add_subplot(211)
2273
+ >>> ax1.imshow(data, interpolation='nearest')
2274
+ >>> ax2 = fig.add_subplot(212)
2275
+ >>> ax2.imshow(data_interp, interpolation='nearest')
2276
+ >>> plt.show()
2277
+
2278
+ Choosing the optimal value of ``s`` can be a delicate task. Recommended
2279
+ values for ``s`` depend on the accuracy of the data values. If the user
2280
+ has an idea of the statistical errors on the data, she can also find a
2281
+ proper estimate for ``s``. By assuming that, if she specifies the
2282
+ right ``s``, the interpolator will use a spline ``f(u,v)`` which exactly
2283
+ reproduces the function underlying the data, she can evaluate
2284
+ ``sum((r(i,j)-s(u(i),v(j)))**2)`` to find a good estimate for this ``s``.
2285
+ For example, if she knows that the statistical errors on her
2286
+ ``r(i,j)``-values are not greater than 0.1, she may expect that a good
2287
+ ``s`` should have a value not larger than ``u.size * v.size * (0.1)**2``.
2288
+
2289
+ If nothing is known about the statistical error in ``r(i,j)``, ``s`` must
2290
+ be determined by trial and error. The best is then to start with a very
2291
+ large value of ``s`` (to determine the least-squares polynomial and the
2292
+ corresponding upper bound ``fp0`` for ``s``) and then to progressively
2293
+ decrease the value of ``s`` (say by a factor 10 in the beginning, i.e.
2294
+ ``s = fp0 / 10, fp0 / 100, ...`` and more carefully as the approximation
2295
+ shows more detail) to obtain closer fits.
2296
+
2297
+ The interpolation results for different values of ``s`` give some insight
2298
+ into this process:
2299
+
2300
+ >>> fig2 = plt.figure()
2301
+ >>> s = [3e9, 2e9, 1e9, 1e8]
2302
+ >>> for idx, sval in enumerate(s, 1):
2303
+ ... lut = RectSphereBivariateSpline(lats, lons, data, s=sval)
2304
+ ... data_interp = lut.ev(new_lats.ravel(),
2305
+ ... new_lons.ravel()).reshape((360, 180)).T
2306
+ ... ax = fig2.add_subplot(2, 2, idx)
2307
+ ... ax.imshow(data_interp, interpolation='nearest')
2308
+ ... ax.set_title(f"s = {sval:g}")
2309
+ >>> plt.show()
2310
+
2311
+ """
2312
+
2313
+ def __init__(self, u, v, r, s=0., pole_continuity=False, pole_values=None,
2314
+ pole_exact=False, pole_flat=False):
2315
+ iopt = np.array([0, 0, 0], dtype=dfitpack_int)
2316
+ ider = np.array([-1, 0, -1, 0], dtype=dfitpack_int)
2317
+ if pole_values is None:
2318
+ pole_values = (None, None)
2319
+ elif isinstance(pole_values, float | np.float32 | np.float64):
2320
+ pole_values = (pole_values, pole_values)
2321
+ if isinstance(pole_continuity, bool):
2322
+ pole_continuity = (pole_continuity, pole_continuity)
2323
+ if isinstance(pole_exact, bool):
2324
+ pole_exact = (pole_exact, pole_exact)
2325
+ if isinstance(pole_flat, bool):
2326
+ pole_flat = (pole_flat, pole_flat)
2327
+
2328
+ r0, r1 = pole_values
2329
+ iopt[1:] = pole_continuity
2330
+ if r0 is None:
2331
+ ider[0] = -1
2332
+ else:
2333
+ ider[0] = pole_exact[0]
2334
+
2335
+ if r1 is None:
2336
+ ider[2] = -1
2337
+ else:
2338
+ ider[2] = pole_exact[1]
2339
+
2340
+ ider[1], ider[3] = pole_flat
2341
+
2342
+ u, v = np.ravel(u), np.ravel(v)
2343
+ r = np.asarray(r)
2344
+
2345
+ if not (0.0 < u[0] and u[-1] < np.pi):
2346
+ raise ValueError('u should be between (0, pi)')
2347
+ if not -np.pi <= v[0] < np.pi:
2348
+ raise ValueError('v[0] should be between [-pi, pi)')
2349
+ if not v[-1] <= v[0] + 2*np.pi:
2350
+ raise ValueError('v[-1] should be v[0] + 2pi or less ')
2351
+
2352
+ if not np.all(np.diff(u) > 0.0):
2353
+ raise ValueError('u must be strictly increasing')
2354
+ if not np.all(np.diff(v) > 0.0):
2355
+ raise ValueError('v must be strictly increasing')
2356
+
2357
+ if not u.size == r.shape[0]:
2358
+ raise ValueError('u dimension of r must have same number of '
2359
+ 'elements as u')
2360
+ if not v.size == r.shape[1]:
2361
+ raise ValueError('v dimension of r must have same number of '
2362
+ 'elements as v')
2363
+
2364
+ if pole_continuity[1] is False and pole_flat[1] is True:
2365
+ raise ValueError('if pole_continuity is False, so must be '
2366
+ 'pole_flat')
2367
+ if pole_continuity[0] is False and pole_flat[0] is True:
2368
+ raise ValueError('if pole_continuity is False, so must be '
2369
+ 'pole_flat')
2370
+
2371
+ if not s >= 0.0:
2372
+ raise ValueError('s should be positive')
2373
+
2374
+ r = np.ravel(r)
2375
+ with FITPACK_LOCK:
2376
+ nu, tu, nv, tv, c, fp, ier = dfitpack.regrid_smth_spher(iopt, ider,
2377
+ u.copy(),
2378
+ v.copy(),
2379
+ r.copy(),
2380
+ r0, r1, s)
2381
+
2382
+ if ier not in [0, -1, -2]:
2383
+ msg = _spfit_messages.get(ier, f'ier={ier}')
2384
+ raise ValueError(msg)
2385
+
2386
+ self.fp = fp
2387
+ self.tck = tu[:nu], tv[:nv], c[:(nu - 4) * (nv-4)]
2388
+ self.degrees = (3, 3)
2389
+ self.v0 = v[0]
2390
+
2391
+ def __call__(self, theta, phi, dtheta=0, dphi=0, grid=True):
2392
+
2393
+ theta = np.asarray(theta)
2394
+ phi = np.asarray(phi)
2395
+
2396
+ return SphereBivariateSpline.__call__(self, theta, phi, dtheta=dtheta,
2397
+ dphi=dphi, grid=grid)