scipy 1.16.2__cp311-cp311-win_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- scipy/__config__.py +161 -0
- scipy/__init__.py +150 -0
- scipy/_cyutility.cp311-win_arm64.lib +0 -0
- scipy/_cyutility.cp311-win_arm64.pyd +0 -0
- scipy/_distributor_init.py +18 -0
- scipy/_lib/__init__.py +14 -0
- scipy/_lib/_array_api.py +931 -0
- scipy/_lib/_array_api_compat_vendor.py +9 -0
- scipy/_lib/_array_api_no_0d.py +103 -0
- scipy/_lib/_bunch.py +229 -0
- scipy/_lib/_ccallback.py +251 -0
- scipy/_lib/_ccallback_c.cp311-win_arm64.lib +0 -0
- scipy/_lib/_ccallback_c.cp311-win_arm64.pyd +0 -0
- scipy/_lib/_disjoint_set.py +254 -0
- scipy/_lib/_docscrape.py +761 -0
- scipy/_lib/_elementwise_iterative_method.py +346 -0
- scipy/_lib/_fpumode.cp311-win_arm64.lib +0 -0
- scipy/_lib/_fpumode.cp311-win_arm64.pyd +0 -0
- scipy/_lib/_gcutils.py +105 -0
- scipy/_lib/_pep440.py +487 -0
- scipy/_lib/_sparse.py +41 -0
- scipy/_lib/_test_ccallback.cp311-win_arm64.lib +0 -0
- scipy/_lib/_test_ccallback.cp311-win_arm64.pyd +0 -0
- scipy/_lib/_test_deprecation_call.cp311-win_arm64.lib +0 -0
- scipy/_lib/_test_deprecation_call.cp311-win_arm64.pyd +0 -0
- scipy/_lib/_test_deprecation_def.cp311-win_arm64.lib +0 -0
- scipy/_lib/_test_deprecation_def.cp311-win_arm64.pyd +0 -0
- scipy/_lib/_testutils.py +373 -0
- scipy/_lib/_threadsafety.py +58 -0
- scipy/_lib/_tmpdirs.py +86 -0
- scipy/_lib/_uarray/LICENSE +29 -0
- scipy/_lib/_uarray/__init__.py +116 -0
- scipy/_lib/_uarray/_backend.py +707 -0
- scipy/_lib/_uarray/_uarray.cp311-win_arm64.lib +0 -0
- scipy/_lib/_uarray/_uarray.cp311-win_arm64.pyd +0 -0
- scipy/_lib/_util.py +1283 -0
- scipy/_lib/array_api_compat/__init__.py +22 -0
- scipy/_lib/array_api_compat/_internal.py +59 -0
- scipy/_lib/array_api_compat/common/__init__.py +1 -0
- scipy/_lib/array_api_compat/common/_aliases.py +727 -0
- scipy/_lib/array_api_compat/common/_fft.py +213 -0
- scipy/_lib/array_api_compat/common/_helpers.py +1058 -0
- scipy/_lib/array_api_compat/common/_linalg.py +232 -0
- scipy/_lib/array_api_compat/common/_typing.py +192 -0
- scipy/_lib/array_api_compat/cupy/__init__.py +13 -0
- scipy/_lib/array_api_compat/cupy/_aliases.py +156 -0
- scipy/_lib/array_api_compat/cupy/_info.py +336 -0
- scipy/_lib/array_api_compat/cupy/_typing.py +31 -0
- scipy/_lib/array_api_compat/cupy/fft.py +36 -0
- scipy/_lib/array_api_compat/cupy/linalg.py +49 -0
- scipy/_lib/array_api_compat/dask/__init__.py +0 -0
- scipy/_lib/array_api_compat/dask/array/__init__.py +12 -0
- scipy/_lib/array_api_compat/dask/array/_aliases.py +376 -0
- scipy/_lib/array_api_compat/dask/array/_info.py +416 -0
- scipy/_lib/array_api_compat/dask/array/fft.py +21 -0
- scipy/_lib/array_api_compat/dask/array/linalg.py +72 -0
- scipy/_lib/array_api_compat/numpy/__init__.py +28 -0
- scipy/_lib/array_api_compat/numpy/_aliases.py +190 -0
- scipy/_lib/array_api_compat/numpy/_info.py +366 -0
- scipy/_lib/array_api_compat/numpy/_typing.py +30 -0
- scipy/_lib/array_api_compat/numpy/fft.py +35 -0
- scipy/_lib/array_api_compat/numpy/linalg.py +143 -0
- scipy/_lib/array_api_compat/torch/__init__.py +22 -0
- scipy/_lib/array_api_compat/torch/_aliases.py +855 -0
- scipy/_lib/array_api_compat/torch/_info.py +369 -0
- scipy/_lib/array_api_compat/torch/_typing.py +3 -0
- scipy/_lib/array_api_compat/torch/fft.py +85 -0
- scipy/_lib/array_api_compat/torch/linalg.py +121 -0
- scipy/_lib/array_api_extra/__init__.py +38 -0
- scipy/_lib/array_api_extra/_delegation.py +171 -0
- scipy/_lib/array_api_extra/_lib/__init__.py +1 -0
- scipy/_lib/array_api_extra/_lib/_at.py +463 -0
- scipy/_lib/array_api_extra/_lib/_backends.py +46 -0
- scipy/_lib/array_api_extra/_lib/_funcs.py +937 -0
- scipy/_lib/array_api_extra/_lib/_lazy.py +357 -0
- scipy/_lib/array_api_extra/_lib/_testing.py +278 -0
- scipy/_lib/array_api_extra/_lib/_utils/__init__.py +1 -0
- scipy/_lib/array_api_extra/_lib/_utils/_compat.py +74 -0
- scipy/_lib/array_api_extra/_lib/_utils/_compat.pyi +45 -0
- scipy/_lib/array_api_extra/_lib/_utils/_helpers.py +559 -0
- scipy/_lib/array_api_extra/_lib/_utils/_typing.py +10 -0
- scipy/_lib/array_api_extra/_lib/_utils/_typing.pyi +105 -0
- scipy/_lib/array_api_extra/testing.py +359 -0
- scipy/_lib/cobyqa/__init__.py +20 -0
- scipy/_lib/cobyqa/framework.py +1240 -0
- scipy/_lib/cobyqa/main.py +1506 -0
- scipy/_lib/cobyqa/models.py +1529 -0
- scipy/_lib/cobyqa/problem.py +1296 -0
- scipy/_lib/cobyqa/settings.py +132 -0
- scipy/_lib/cobyqa/subsolvers/__init__.py +14 -0
- scipy/_lib/cobyqa/subsolvers/geometry.py +387 -0
- scipy/_lib/cobyqa/subsolvers/optim.py +1203 -0
- scipy/_lib/cobyqa/utils/__init__.py +18 -0
- scipy/_lib/cobyqa/utils/exceptions.py +22 -0
- scipy/_lib/cobyqa/utils/math.py +77 -0
- scipy/_lib/cobyqa/utils/versions.py +67 -0
- scipy/_lib/decorator.py +399 -0
- scipy/_lib/deprecation.py +274 -0
- scipy/_lib/doccer.py +366 -0
- scipy/_lib/messagestream.cp311-win_arm64.lib +0 -0
- scipy/_lib/messagestream.cp311-win_arm64.pyd +0 -0
- scipy/_lib/pyprima/__init__.py +212 -0
- scipy/_lib/pyprima/cobyla/__init__.py +0 -0
- scipy/_lib/pyprima/cobyla/cobyla.py +559 -0
- scipy/_lib/pyprima/cobyla/cobylb.py +714 -0
- scipy/_lib/pyprima/cobyla/geometry.py +226 -0
- scipy/_lib/pyprima/cobyla/initialize.py +215 -0
- scipy/_lib/pyprima/cobyla/trustregion.py +492 -0
- scipy/_lib/pyprima/cobyla/update.py +289 -0
- scipy/_lib/pyprima/common/__init__.py +0 -0
- scipy/_lib/pyprima/common/_bounds.py +34 -0
- scipy/_lib/pyprima/common/_linear_constraints.py +46 -0
- scipy/_lib/pyprima/common/_nonlinear_constraints.py +54 -0
- scipy/_lib/pyprima/common/_project.py +173 -0
- scipy/_lib/pyprima/common/checkbreak.py +93 -0
- scipy/_lib/pyprima/common/consts.py +47 -0
- scipy/_lib/pyprima/common/evaluate.py +99 -0
- scipy/_lib/pyprima/common/history.py +38 -0
- scipy/_lib/pyprima/common/infos.py +30 -0
- scipy/_lib/pyprima/common/linalg.py +435 -0
- scipy/_lib/pyprima/common/message.py +290 -0
- scipy/_lib/pyprima/common/powalg.py +131 -0
- scipy/_lib/pyprima/common/preproc.py +277 -0
- scipy/_lib/pyprima/common/present.py +5 -0
- scipy/_lib/pyprima/common/ratio.py +54 -0
- scipy/_lib/pyprima/common/redrho.py +47 -0
- scipy/_lib/pyprima/common/selectx.py +296 -0
- scipy/_lib/tests/__init__.py +0 -0
- scipy/_lib/tests/test__gcutils.py +110 -0
- scipy/_lib/tests/test__pep440.py +67 -0
- scipy/_lib/tests/test__testutils.py +32 -0
- scipy/_lib/tests/test__threadsafety.py +51 -0
- scipy/_lib/tests/test__util.py +641 -0
- scipy/_lib/tests/test_array_api.py +322 -0
- scipy/_lib/tests/test_bunch.py +169 -0
- scipy/_lib/tests/test_ccallback.py +196 -0
- scipy/_lib/tests/test_config.py +45 -0
- scipy/_lib/tests/test_deprecation.py +10 -0
- scipy/_lib/tests/test_doccer.py +143 -0
- scipy/_lib/tests/test_import_cycles.py +18 -0
- scipy/_lib/tests/test_public_api.py +482 -0
- scipy/_lib/tests/test_scipy_version.py +28 -0
- scipy/_lib/tests/test_tmpdirs.py +48 -0
- scipy/_lib/tests/test_warnings.py +137 -0
- scipy/_lib/uarray.py +31 -0
- scipy/cluster/__init__.py +31 -0
- scipy/cluster/_hierarchy.cp311-win_arm64.lib +0 -0
- scipy/cluster/_hierarchy.cp311-win_arm64.pyd +0 -0
- scipy/cluster/_optimal_leaf_ordering.cp311-win_arm64.lib +0 -0
- scipy/cluster/_optimal_leaf_ordering.cp311-win_arm64.pyd +0 -0
- scipy/cluster/_vq.cp311-win_arm64.lib +0 -0
- scipy/cluster/_vq.cp311-win_arm64.pyd +0 -0
- scipy/cluster/hierarchy.py +4348 -0
- scipy/cluster/tests/__init__.py +0 -0
- scipy/cluster/tests/hierarchy_test_data.py +145 -0
- scipy/cluster/tests/test_disjoint_set.py +202 -0
- scipy/cluster/tests/test_hierarchy.py +1238 -0
- scipy/cluster/tests/test_vq.py +434 -0
- scipy/cluster/vq.py +832 -0
- scipy/conftest.py +683 -0
- scipy/constants/__init__.py +358 -0
- scipy/constants/_codata.py +2266 -0
- scipy/constants/_constants.py +369 -0
- scipy/constants/codata.py +21 -0
- scipy/constants/constants.py +53 -0
- scipy/constants/tests/__init__.py +0 -0
- scipy/constants/tests/test_codata.py +78 -0
- scipy/constants/tests/test_constants.py +83 -0
- scipy/datasets/__init__.py +90 -0
- scipy/datasets/_download_all.py +71 -0
- scipy/datasets/_fetchers.py +225 -0
- scipy/datasets/_registry.py +26 -0
- scipy/datasets/_utils.py +81 -0
- scipy/datasets/tests/__init__.py +0 -0
- scipy/datasets/tests/test_data.py +128 -0
- scipy/differentiate/__init__.py +27 -0
- scipy/differentiate/_differentiate.py +1129 -0
- scipy/differentiate/tests/__init__.py +0 -0
- scipy/differentiate/tests/test_differentiate.py +694 -0
- scipy/fft/__init__.py +114 -0
- scipy/fft/_backend.py +196 -0
- scipy/fft/_basic.py +1650 -0
- scipy/fft/_basic_backend.py +197 -0
- scipy/fft/_debug_backends.py +22 -0
- scipy/fft/_fftlog.py +223 -0
- scipy/fft/_fftlog_backend.py +200 -0
- scipy/fft/_helper.py +348 -0
- scipy/fft/_pocketfft/LICENSE.md +25 -0
- scipy/fft/_pocketfft/__init__.py +9 -0
- scipy/fft/_pocketfft/basic.py +251 -0
- scipy/fft/_pocketfft/helper.py +249 -0
- scipy/fft/_pocketfft/pypocketfft.cp311-win_arm64.lib +0 -0
- scipy/fft/_pocketfft/pypocketfft.cp311-win_arm64.pyd +0 -0
- scipy/fft/_pocketfft/realtransforms.py +109 -0
- scipy/fft/_pocketfft/tests/__init__.py +0 -0
- scipy/fft/_pocketfft/tests/test_basic.py +1011 -0
- scipy/fft/_pocketfft/tests/test_real_transforms.py +505 -0
- scipy/fft/_realtransforms.py +706 -0
- scipy/fft/_realtransforms_backend.py +63 -0
- scipy/fft/tests/__init__.py +0 -0
- scipy/fft/tests/mock_backend.py +96 -0
- scipy/fft/tests/test_backend.py +98 -0
- scipy/fft/tests/test_basic.py +504 -0
- scipy/fft/tests/test_fftlog.py +215 -0
- scipy/fft/tests/test_helper.py +558 -0
- scipy/fft/tests/test_multithreading.py +84 -0
- scipy/fft/tests/test_real_transforms.py +247 -0
- scipy/fftpack/__init__.py +103 -0
- scipy/fftpack/_basic.py +428 -0
- scipy/fftpack/_helper.py +115 -0
- scipy/fftpack/_pseudo_diffs.py +554 -0
- scipy/fftpack/_realtransforms.py +598 -0
- scipy/fftpack/basic.py +20 -0
- scipy/fftpack/convolve.cp311-win_arm64.lib +0 -0
- scipy/fftpack/convolve.cp311-win_arm64.pyd +0 -0
- scipy/fftpack/helper.py +19 -0
- scipy/fftpack/pseudo_diffs.py +22 -0
- scipy/fftpack/realtransforms.py +19 -0
- scipy/fftpack/tests/__init__.py +0 -0
- scipy/fftpack/tests/fftw_double_ref.npz +0 -0
- scipy/fftpack/tests/fftw_longdouble_ref.npz +0 -0
- scipy/fftpack/tests/fftw_single_ref.npz +0 -0
- scipy/fftpack/tests/test.npz +0 -0
- scipy/fftpack/tests/test_basic.py +877 -0
- scipy/fftpack/tests/test_helper.py +54 -0
- scipy/fftpack/tests/test_import.py +33 -0
- scipy/fftpack/tests/test_pseudo_diffs.py +388 -0
- scipy/fftpack/tests/test_real_transforms.py +836 -0
- scipy/integrate/__init__.py +122 -0
- scipy/integrate/_bvp.py +1160 -0
- scipy/integrate/_cubature.py +729 -0
- scipy/integrate/_dop.cp311-win_arm64.lib +0 -0
- scipy/integrate/_dop.cp311-win_arm64.pyd +0 -0
- scipy/integrate/_ivp/__init__.py +8 -0
- scipy/integrate/_ivp/base.py +290 -0
- scipy/integrate/_ivp/bdf.py +478 -0
- scipy/integrate/_ivp/common.py +451 -0
- scipy/integrate/_ivp/dop853_coefficients.py +193 -0
- scipy/integrate/_ivp/ivp.py +755 -0
- scipy/integrate/_ivp/lsoda.py +224 -0
- scipy/integrate/_ivp/radau.py +572 -0
- scipy/integrate/_ivp/rk.py +601 -0
- scipy/integrate/_ivp/tests/__init__.py +0 -0
- scipy/integrate/_ivp/tests/test_ivp.py +1287 -0
- scipy/integrate/_ivp/tests/test_rk.py +37 -0
- scipy/integrate/_lebedev.py +5450 -0
- scipy/integrate/_lsoda.cp311-win_arm64.lib +0 -0
- scipy/integrate/_lsoda.cp311-win_arm64.pyd +0 -0
- scipy/integrate/_ode.py +1395 -0
- scipy/integrate/_odepack.cp311-win_arm64.lib +0 -0
- scipy/integrate/_odepack.cp311-win_arm64.pyd +0 -0
- scipy/integrate/_odepack_py.py +273 -0
- scipy/integrate/_quad_vec.py +674 -0
- scipy/integrate/_quadpack.cp311-win_arm64.lib +0 -0
- scipy/integrate/_quadpack.cp311-win_arm64.pyd +0 -0
- scipy/integrate/_quadpack_py.py +1283 -0
- scipy/integrate/_quadrature.py +1336 -0
- scipy/integrate/_rules/__init__.py +12 -0
- scipy/integrate/_rules/_base.py +518 -0
- scipy/integrate/_rules/_gauss_kronrod.py +202 -0
- scipy/integrate/_rules/_gauss_legendre.py +62 -0
- scipy/integrate/_rules/_genz_malik.py +210 -0
- scipy/integrate/_tanhsinh.py +1385 -0
- scipy/integrate/_test_multivariate.cp311-win_arm64.lib +0 -0
- scipy/integrate/_test_multivariate.cp311-win_arm64.pyd +0 -0
- scipy/integrate/_test_odeint_banded.cp311-win_arm64.lib +0 -0
- scipy/integrate/_test_odeint_banded.cp311-win_arm64.pyd +0 -0
- scipy/integrate/_vode.cp311-win_arm64.lib +0 -0
- scipy/integrate/_vode.cp311-win_arm64.pyd +0 -0
- scipy/integrate/dop.py +15 -0
- scipy/integrate/lsoda.py +15 -0
- scipy/integrate/odepack.py +17 -0
- scipy/integrate/quadpack.py +23 -0
- scipy/integrate/tests/__init__.py +0 -0
- scipy/integrate/tests/test__quad_vec.py +211 -0
- scipy/integrate/tests/test_banded_ode_solvers.py +305 -0
- scipy/integrate/tests/test_bvp.py +714 -0
- scipy/integrate/tests/test_cubature.py +1375 -0
- scipy/integrate/tests/test_integrate.py +840 -0
- scipy/integrate/tests/test_odeint_jac.py +74 -0
- scipy/integrate/tests/test_quadpack.py +680 -0
- scipy/integrate/tests/test_quadrature.py +730 -0
- scipy/integrate/tests/test_tanhsinh.py +1171 -0
- scipy/integrate/vode.py +15 -0
- scipy/interpolate/__init__.py +228 -0
- scipy/interpolate/_bary_rational.py +715 -0
- scipy/interpolate/_bsplines.py +2469 -0
- scipy/interpolate/_cubic.py +973 -0
- scipy/interpolate/_dfitpack.cp311-win_arm64.lib +0 -0
- scipy/interpolate/_dfitpack.cp311-win_arm64.pyd +0 -0
- scipy/interpolate/_dierckx.cp311-win_arm64.lib +0 -0
- scipy/interpolate/_dierckx.cp311-win_arm64.pyd +0 -0
- scipy/interpolate/_fitpack.cp311-win_arm64.lib +0 -0
- scipy/interpolate/_fitpack.cp311-win_arm64.pyd +0 -0
- scipy/interpolate/_fitpack2.py +2397 -0
- scipy/interpolate/_fitpack_impl.py +811 -0
- scipy/interpolate/_fitpack_py.py +898 -0
- scipy/interpolate/_fitpack_repro.py +996 -0
- scipy/interpolate/_interpnd.cp311-win_arm64.lib +0 -0
- scipy/interpolate/_interpnd.cp311-win_arm64.pyd +0 -0
- scipy/interpolate/_interpolate.py +2266 -0
- scipy/interpolate/_ndbspline.py +415 -0
- scipy/interpolate/_ndgriddata.py +329 -0
- scipy/interpolate/_pade.py +67 -0
- scipy/interpolate/_polyint.py +1025 -0
- scipy/interpolate/_ppoly.cp311-win_arm64.lib +0 -0
- scipy/interpolate/_ppoly.cp311-win_arm64.pyd +0 -0
- scipy/interpolate/_rbf.py +290 -0
- scipy/interpolate/_rbfinterp.py +550 -0
- scipy/interpolate/_rbfinterp_pythran.cp311-win_arm64.lib +0 -0
- scipy/interpolate/_rbfinterp_pythran.cp311-win_arm64.pyd +0 -0
- scipy/interpolate/_rgi.py +764 -0
- scipy/interpolate/_rgi_cython.cp311-win_arm64.lib +0 -0
- scipy/interpolate/_rgi_cython.cp311-win_arm64.pyd +0 -0
- scipy/interpolate/dfitpack.py +24 -0
- scipy/interpolate/fitpack.py +31 -0
- scipy/interpolate/fitpack2.py +29 -0
- scipy/interpolate/interpnd.py +24 -0
- scipy/interpolate/interpolate.py +30 -0
- scipy/interpolate/ndgriddata.py +23 -0
- scipy/interpolate/polyint.py +24 -0
- scipy/interpolate/rbf.py +18 -0
- scipy/interpolate/tests/__init__.py +0 -0
- scipy/interpolate/tests/data/bug-1310.npz +0 -0
- scipy/interpolate/tests/data/estimate_gradients_hang.npy +0 -0
- scipy/interpolate/tests/data/gcvspl.npz +0 -0
- scipy/interpolate/tests/test_bary_rational.py +368 -0
- scipy/interpolate/tests/test_bsplines.py +3754 -0
- scipy/interpolate/tests/test_fitpack.py +519 -0
- scipy/interpolate/tests/test_fitpack2.py +1431 -0
- scipy/interpolate/tests/test_gil.py +64 -0
- scipy/interpolate/tests/test_interpnd.py +452 -0
- scipy/interpolate/tests/test_interpolate.py +2630 -0
- scipy/interpolate/tests/test_ndgriddata.py +308 -0
- scipy/interpolate/tests/test_pade.py +107 -0
- scipy/interpolate/tests/test_polyint.py +972 -0
- scipy/interpolate/tests/test_rbf.py +246 -0
- scipy/interpolate/tests/test_rbfinterp.py +534 -0
- scipy/interpolate/tests/test_rgi.py +1151 -0
- scipy/io/__init__.py +116 -0
- scipy/io/_fast_matrix_market/__init__.py +600 -0
- scipy/io/_fast_matrix_market/_fmm_core.cp311-win_arm64.lib +0 -0
- scipy/io/_fast_matrix_market/_fmm_core.cp311-win_arm64.pyd +0 -0
- scipy/io/_fortran.py +354 -0
- scipy/io/_harwell_boeing/__init__.py +7 -0
- scipy/io/_harwell_boeing/_fortran_format_parser.py +316 -0
- scipy/io/_harwell_boeing/hb.py +571 -0
- scipy/io/_harwell_boeing/tests/__init__.py +0 -0
- scipy/io/_harwell_boeing/tests/test_fortran_format.py +74 -0
- scipy/io/_harwell_boeing/tests/test_hb.py +70 -0
- scipy/io/_idl.py +917 -0
- scipy/io/_mmio.py +968 -0
- scipy/io/_netcdf.py +1104 -0
- scipy/io/_test_fortran.cp311-win_arm64.lib +0 -0
- scipy/io/_test_fortran.cp311-win_arm64.pyd +0 -0
- scipy/io/arff/__init__.py +28 -0
- scipy/io/arff/_arffread.py +873 -0
- scipy/io/arff/arffread.py +19 -0
- scipy/io/arff/tests/__init__.py +0 -0
- scipy/io/arff/tests/data/iris.arff +225 -0
- scipy/io/arff/tests/data/missing.arff +8 -0
- scipy/io/arff/tests/data/nodata.arff +11 -0
- scipy/io/arff/tests/data/quoted_nominal.arff +13 -0
- scipy/io/arff/tests/data/quoted_nominal_spaces.arff +13 -0
- scipy/io/arff/tests/data/test1.arff +10 -0
- scipy/io/arff/tests/data/test10.arff +8 -0
- scipy/io/arff/tests/data/test11.arff +11 -0
- scipy/io/arff/tests/data/test2.arff +15 -0
- scipy/io/arff/tests/data/test3.arff +6 -0
- scipy/io/arff/tests/data/test4.arff +11 -0
- scipy/io/arff/tests/data/test5.arff +26 -0
- scipy/io/arff/tests/data/test6.arff +12 -0
- scipy/io/arff/tests/data/test7.arff +15 -0
- scipy/io/arff/tests/data/test8.arff +12 -0
- scipy/io/arff/tests/data/test9.arff +14 -0
- scipy/io/arff/tests/test_arffread.py +421 -0
- scipy/io/harwell_boeing.py +17 -0
- scipy/io/idl.py +17 -0
- scipy/io/matlab/__init__.py +66 -0
- scipy/io/matlab/_byteordercodes.py +75 -0
- scipy/io/matlab/_mio.py +375 -0
- scipy/io/matlab/_mio4.py +632 -0
- scipy/io/matlab/_mio5.py +901 -0
- scipy/io/matlab/_mio5_params.py +281 -0
- scipy/io/matlab/_mio5_utils.cp311-win_arm64.lib +0 -0
- scipy/io/matlab/_mio5_utils.cp311-win_arm64.pyd +0 -0
- scipy/io/matlab/_mio_utils.cp311-win_arm64.lib +0 -0
- scipy/io/matlab/_mio_utils.cp311-win_arm64.pyd +0 -0
- scipy/io/matlab/_miobase.py +435 -0
- scipy/io/matlab/_streams.cp311-win_arm64.lib +0 -0
- scipy/io/matlab/_streams.cp311-win_arm64.pyd +0 -0
- scipy/io/matlab/byteordercodes.py +17 -0
- scipy/io/matlab/mio.py +16 -0
- scipy/io/matlab/mio4.py +17 -0
- scipy/io/matlab/mio5.py +19 -0
- scipy/io/matlab/mio5_params.py +18 -0
- scipy/io/matlab/mio5_utils.py +17 -0
- scipy/io/matlab/mio_utils.py +17 -0
- scipy/io/matlab/miobase.py +16 -0
- scipy/io/matlab/streams.py +16 -0
- scipy/io/matlab/tests/__init__.py +0 -0
- scipy/io/matlab/tests/data/bad_miuint32.mat +0 -0
- scipy/io/matlab/tests/data/bad_miutf8_array_name.mat +0 -0
- scipy/io/matlab/tests/data/big_endian.mat +0 -0
- scipy/io/matlab/tests/data/broken_utf8.mat +0 -0
- scipy/io/matlab/tests/data/corrupted_zlib_checksum.mat +0 -0
- scipy/io/matlab/tests/data/corrupted_zlib_data.mat +0 -0
- scipy/io/matlab/tests/data/debigged_m4.mat +0 -0
- scipy/io/matlab/tests/data/japanese_utf8.txt +5 -0
- scipy/io/matlab/tests/data/little_endian.mat +0 -0
- scipy/io/matlab/tests/data/logical_sparse.mat +0 -0
- scipy/io/matlab/tests/data/malformed1.mat +0 -0
- scipy/io/matlab/tests/data/miuint32_for_miint32.mat +0 -0
- scipy/io/matlab/tests/data/miutf8_array_name.mat +0 -0
- scipy/io/matlab/tests/data/nasty_duplicate_fieldnames.mat +0 -0
- scipy/io/matlab/tests/data/one_by_zero_char.mat +0 -0
- scipy/io/matlab/tests/data/parabola.mat +0 -0
- scipy/io/matlab/tests/data/single_empty_string.mat +0 -0
- scipy/io/matlab/tests/data/some_functions.mat +0 -0
- scipy/io/matlab/tests/data/sqr.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/test_empty_struct.mat +0 -0
- scipy/io/matlab/tests/data/test_mat4_le_floats.mat +0 -0
- scipy/io/matlab/tests/data/test_skip_variable.mat +0 -0
- scipy/io/matlab/tests/data/testbool_8_WIN64.mat +0 -0
- scipy/io/matlab/tests/data/testcell_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcell_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcell_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcell_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_5.3_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testfunc_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testhdf5_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testminus_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testminus_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testminus_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testminus_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testminus_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmulti_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testmulti_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmulti_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testobject_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testobject_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testobject_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testobject_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testscalarcell_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsimplecell.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsefloat_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststring_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststring_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststring_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststring_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststring_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testunicode_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testunicode_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testvec_4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/test_byteordercodes.py +29 -0
- scipy/io/matlab/tests/test_mio.py +1399 -0
- scipy/io/matlab/tests/test_mio5_utils.py +179 -0
- scipy/io/matlab/tests/test_mio_funcs.py +51 -0
- scipy/io/matlab/tests/test_mio_utils.py +45 -0
- scipy/io/matlab/tests/test_miobase.py +32 -0
- scipy/io/matlab/tests/test_pathological.py +33 -0
- scipy/io/matlab/tests/test_streams.py +241 -0
- scipy/io/mmio.py +17 -0
- scipy/io/netcdf.py +17 -0
- scipy/io/tests/__init__.py +0 -0
- scipy/io/tests/data/Transparent Busy.ani +0 -0
- scipy/io/tests/data/array_float32_1d.sav +0 -0
- scipy/io/tests/data/array_float32_2d.sav +0 -0
- scipy/io/tests/data/array_float32_3d.sav +0 -0
- scipy/io/tests/data/array_float32_4d.sav +0 -0
- scipy/io/tests/data/array_float32_5d.sav +0 -0
- scipy/io/tests/data/array_float32_6d.sav +0 -0
- scipy/io/tests/data/array_float32_7d.sav +0 -0
- scipy/io/tests/data/array_float32_8d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_1d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_2d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_3d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_4d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_5d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_6d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_7d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_8d.sav +0 -0
- scipy/io/tests/data/example_1.nc +0 -0
- scipy/io/tests/data/example_2.nc +0 -0
- scipy/io/tests/data/example_3_maskedvals.nc +0 -0
- scipy/io/tests/data/fortran-3x3d-2i.dat +0 -0
- scipy/io/tests/data/fortran-mixed.dat +0 -0
- scipy/io/tests/data/fortran-sf8-11x1x10.dat +0 -0
- scipy/io/tests/data/fortran-sf8-15x10x22.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x1x1.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x1x5.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x1x7.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x3x5.dat +0 -0
- scipy/io/tests/data/fortran-si4-11x1x10.dat +0 -0
- scipy/io/tests/data/fortran-si4-15x10x22.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x1x1.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x1x5.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x1x7.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x3x5.dat +0 -0
- scipy/io/tests/data/invalid_pointer.sav +0 -0
- scipy/io/tests/data/null_pointer.sav +0 -0
- scipy/io/tests/data/scalar_byte.sav +0 -0
- scipy/io/tests/data/scalar_byte_descr.sav +0 -0
- scipy/io/tests/data/scalar_complex32.sav +0 -0
- scipy/io/tests/data/scalar_complex64.sav +0 -0
- scipy/io/tests/data/scalar_float32.sav +0 -0
- scipy/io/tests/data/scalar_float64.sav +0 -0
- scipy/io/tests/data/scalar_heap_pointer.sav +0 -0
- scipy/io/tests/data/scalar_int16.sav +0 -0
- scipy/io/tests/data/scalar_int32.sav +0 -0
- scipy/io/tests/data/scalar_int64.sav +0 -0
- scipy/io/tests/data/scalar_string.sav +0 -0
- scipy/io/tests/data/scalar_uint16.sav +0 -0
- scipy/io/tests/data/scalar_uint32.sav +0 -0
- scipy/io/tests/data/scalar_uint64.sav +0 -0
- scipy/io/tests/data/struct_arrays.sav +0 -0
- scipy/io/tests/data/struct_arrays_byte_idl80.sav +0 -0
- scipy/io/tests/data/struct_arrays_replicated.sav +0 -0
- scipy/io/tests/data/struct_arrays_replicated_3d.sav +0 -0
- scipy/io/tests/data/struct_inherit.sav +0 -0
- scipy/io/tests/data/struct_pointer_arrays.sav +0 -0
- scipy/io/tests/data/struct_pointer_arrays_replicated.sav +0 -0
- scipy/io/tests/data/struct_pointer_arrays_replicated_3d.sav +0 -0
- scipy/io/tests/data/struct_pointers.sav +0 -0
- scipy/io/tests/data/struct_pointers_replicated.sav +0 -0
- scipy/io/tests/data/struct_pointers_replicated_3d.sav +0 -0
- scipy/io/tests/data/struct_scalars.sav +0 -0
- scipy/io/tests/data/struct_scalars_replicated.sav +0 -0
- scipy/io/tests/data/struct_scalars_replicated_3d.sav +0 -0
- scipy/io/tests/data/test-1234Hz-le-1ch-10S-20bit-extra.wav +0 -0
- scipy/io/tests/data/test-44100Hz-2ch-32bit-float-be.wav +0 -0
- scipy/io/tests/data/test-44100Hz-2ch-32bit-float-le.wav +0 -0
- scipy/io/tests/data/test-44100Hz-be-1ch-4bytes.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof-no-data.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-incomplete-chunk.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-rf64.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes.wav +0 -0
- scipy/io/tests/data/test-48000Hz-2ch-64bit-float-le-wavex.wav +0 -0
- scipy/io/tests/data/test-8000Hz-be-3ch-5S-24bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-1ch-1byte-ulaw.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-2ch-1byteu.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-inconsistent.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-rf64.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-36bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-45bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-53bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-64bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-4ch-9S-12bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-5ch-9S-5bit.wav +0 -0
- scipy/io/tests/data/various_compressed.sav +0 -0
- scipy/io/tests/test_fortran.py +264 -0
- scipy/io/tests/test_idl.py +483 -0
- scipy/io/tests/test_mmio.py +831 -0
- scipy/io/tests/test_netcdf.py +550 -0
- scipy/io/tests/test_paths.py +93 -0
- scipy/io/tests/test_wavfile.py +501 -0
- scipy/io/wavfile.py +938 -0
- scipy/linalg/__init__.pxd +1 -0
- scipy/linalg/__init__.py +236 -0
- scipy/linalg/_basic.py +2146 -0
- scipy/linalg/_blas_subroutines.h +164 -0
- scipy/linalg/_cythonized_array_utils.cp311-win_arm64.lib +0 -0
- scipy/linalg/_cythonized_array_utils.cp311-win_arm64.pyd +0 -0
- scipy/linalg/_cythonized_array_utils.pxd +40 -0
- scipy/linalg/_cythonized_array_utils.pyi +16 -0
- scipy/linalg/_decomp.py +1645 -0
- scipy/linalg/_decomp_cholesky.py +413 -0
- scipy/linalg/_decomp_cossin.py +236 -0
- scipy/linalg/_decomp_interpolative.cp311-win_arm64.lib +0 -0
- scipy/linalg/_decomp_interpolative.cp311-win_arm64.pyd +0 -0
- scipy/linalg/_decomp_ldl.py +356 -0
- scipy/linalg/_decomp_lu.py +401 -0
- scipy/linalg/_decomp_lu_cython.cp311-win_arm64.lib +0 -0
- scipy/linalg/_decomp_lu_cython.cp311-win_arm64.pyd +0 -0
- scipy/linalg/_decomp_lu_cython.pyi +6 -0
- scipy/linalg/_decomp_polar.py +113 -0
- scipy/linalg/_decomp_qr.py +494 -0
- scipy/linalg/_decomp_qz.py +452 -0
- scipy/linalg/_decomp_schur.py +336 -0
- scipy/linalg/_decomp_svd.py +545 -0
- scipy/linalg/_decomp_update.cp311-win_arm64.lib +0 -0
- scipy/linalg/_decomp_update.cp311-win_arm64.pyd +0 -0
- scipy/linalg/_expm_frechet.py +417 -0
- scipy/linalg/_fblas.cp311-win_arm64.lib +0 -0
- scipy/linalg/_fblas.cp311-win_arm64.pyd +0 -0
- scipy/linalg/_flapack.cp311-win_arm64.lib +0 -0
- scipy/linalg/_flapack.cp311-win_arm64.pyd +0 -0
- scipy/linalg/_lapack_subroutines.h +1521 -0
- scipy/linalg/_linalg_pythran.cp311-win_arm64.lib +0 -0
- scipy/linalg/_linalg_pythran.cp311-win_arm64.pyd +0 -0
- scipy/linalg/_matfuncs.py +1050 -0
- scipy/linalg/_matfuncs_expm.cp311-win_arm64.lib +0 -0
- scipy/linalg/_matfuncs_expm.cp311-win_arm64.pyd +0 -0
- scipy/linalg/_matfuncs_expm.pyi +6 -0
- scipy/linalg/_matfuncs_inv_ssq.py +886 -0
- scipy/linalg/_matfuncs_schur_sqrtm.cp311-win_arm64.lib +0 -0
- scipy/linalg/_matfuncs_schur_sqrtm.cp311-win_arm64.pyd +0 -0
- scipy/linalg/_matfuncs_sqrtm.py +107 -0
- scipy/linalg/_matfuncs_sqrtm_triu.cp311-win_arm64.lib +0 -0
- scipy/linalg/_matfuncs_sqrtm_triu.cp311-win_arm64.pyd +0 -0
- scipy/linalg/_misc.py +191 -0
- scipy/linalg/_procrustes.py +113 -0
- scipy/linalg/_sketches.py +189 -0
- scipy/linalg/_solve_toeplitz.cp311-win_arm64.lib +0 -0
- scipy/linalg/_solve_toeplitz.cp311-win_arm64.pyd +0 -0
- scipy/linalg/_solvers.py +862 -0
- scipy/linalg/_special_matrices.py +1322 -0
- scipy/linalg/_testutils.py +65 -0
- scipy/linalg/basic.py +23 -0
- scipy/linalg/blas.py +495 -0
- scipy/linalg/cython_blas.cp311-win_arm64.lib +0 -0
- scipy/linalg/cython_blas.cp311-win_arm64.pyd +0 -0
- scipy/linalg/cython_blas.pxd +169 -0
- scipy/linalg/cython_blas.pyx +1432 -0
- scipy/linalg/cython_lapack.cp311-win_arm64.lib +0 -0
- scipy/linalg/cython_lapack.cp311-win_arm64.pyd +0 -0
- scipy/linalg/cython_lapack.pxd +1528 -0
- scipy/linalg/cython_lapack.pyx +12045 -0
- scipy/linalg/decomp.py +23 -0
- scipy/linalg/decomp_cholesky.py +21 -0
- scipy/linalg/decomp_lu.py +21 -0
- scipy/linalg/decomp_qr.py +20 -0
- scipy/linalg/decomp_schur.py +21 -0
- scipy/linalg/decomp_svd.py +21 -0
- scipy/linalg/interpolative.py +989 -0
- scipy/linalg/lapack.py +1081 -0
- scipy/linalg/matfuncs.py +23 -0
- scipy/linalg/misc.py +21 -0
- scipy/linalg/special_matrices.py +22 -0
- scipy/linalg/tests/__init__.py +0 -0
- scipy/linalg/tests/_cython_examples/extending.pyx +23 -0
- scipy/linalg/tests/_cython_examples/meson.build +34 -0
- scipy/linalg/tests/data/carex_15_data.npz +0 -0
- scipy/linalg/tests/data/carex_18_data.npz +0 -0
- scipy/linalg/tests/data/carex_19_data.npz +0 -0
- scipy/linalg/tests/data/carex_20_data.npz +0 -0
- scipy/linalg/tests/data/carex_6_data.npz +0 -0
- scipy/linalg/tests/data/gendare_20170120_data.npz +0 -0
- scipy/linalg/tests/test_basic.py +2074 -0
- scipy/linalg/tests/test_batch.py +588 -0
- scipy/linalg/tests/test_blas.py +1127 -0
- scipy/linalg/tests/test_cython_blas.py +118 -0
- scipy/linalg/tests/test_cython_lapack.py +22 -0
- scipy/linalg/tests/test_cythonized_array_utils.py +130 -0
- scipy/linalg/tests/test_decomp.py +3189 -0
- scipy/linalg/tests/test_decomp_cholesky.py +268 -0
- scipy/linalg/tests/test_decomp_cossin.py +314 -0
- scipy/linalg/tests/test_decomp_ldl.py +137 -0
- scipy/linalg/tests/test_decomp_lu.py +308 -0
- scipy/linalg/tests/test_decomp_polar.py +110 -0
- scipy/linalg/tests/test_decomp_update.py +1701 -0
- scipy/linalg/tests/test_extending.py +46 -0
- scipy/linalg/tests/test_fblas.py +607 -0
- scipy/linalg/tests/test_interpolative.py +232 -0
- scipy/linalg/tests/test_lapack.py +3620 -0
- scipy/linalg/tests/test_matfuncs.py +1125 -0
- scipy/linalg/tests/test_matmul_toeplitz.py +136 -0
- scipy/linalg/tests/test_procrustes.py +214 -0
- scipy/linalg/tests/test_sketches.py +118 -0
- scipy/linalg/tests/test_solve_toeplitz.py +150 -0
- scipy/linalg/tests/test_solvers.py +844 -0
- scipy/linalg/tests/test_special_matrices.py +636 -0
- scipy/misc/__init__.py +6 -0
- scipy/misc/common.py +6 -0
- scipy/misc/doccer.py +6 -0
- scipy/ndimage/__init__.py +174 -0
- scipy/ndimage/_ctest.cp311-win_arm64.lib +0 -0
- scipy/ndimage/_ctest.cp311-win_arm64.pyd +0 -0
- scipy/ndimage/_cytest.cp311-win_arm64.lib +0 -0
- scipy/ndimage/_cytest.cp311-win_arm64.pyd +0 -0
- scipy/ndimage/_delegators.py +303 -0
- scipy/ndimage/_filters.py +2422 -0
- scipy/ndimage/_fourier.py +306 -0
- scipy/ndimage/_interpolation.py +1033 -0
- scipy/ndimage/_measurements.py +1689 -0
- scipy/ndimage/_morphology.py +2634 -0
- scipy/ndimage/_nd_image.cp311-win_arm64.lib +0 -0
- scipy/ndimage/_nd_image.cp311-win_arm64.pyd +0 -0
- scipy/ndimage/_ndimage_api.py +16 -0
- scipy/ndimage/_ni_docstrings.py +214 -0
- scipy/ndimage/_ni_label.cp311-win_arm64.lib +0 -0
- scipy/ndimage/_ni_label.cp311-win_arm64.pyd +0 -0
- scipy/ndimage/_ni_support.py +139 -0
- scipy/ndimage/_rank_filter_1d.cp311-win_arm64.lib +0 -0
- scipy/ndimage/_rank_filter_1d.cp311-win_arm64.pyd +0 -0
- scipy/ndimage/_support_alternative_backends.py +84 -0
- scipy/ndimage/filters.py +27 -0
- scipy/ndimage/fourier.py +21 -0
- scipy/ndimage/interpolation.py +22 -0
- scipy/ndimage/measurements.py +24 -0
- scipy/ndimage/morphology.py +27 -0
- scipy/ndimage/tests/__init__.py +12 -0
- scipy/ndimage/tests/data/label_inputs.txt +21 -0
- scipy/ndimage/tests/data/label_results.txt +294 -0
- scipy/ndimage/tests/data/label_strels.txt +42 -0
- scipy/ndimage/tests/dots.png +0 -0
- scipy/ndimage/tests/test_c_api.py +102 -0
- scipy/ndimage/tests/test_datatypes.py +67 -0
- scipy/ndimage/tests/test_filters.py +3083 -0
- scipy/ndimage/tests/test_fourier.py +187 -0
- scipy/ndimage/tests/test_interpolation.py +1491 -0
- scipy/ndimage/tests/test_measurements.py +1592 -0
- scipy/ndimage/tests/test_morphology.py +2950 -0
- scipy/ndimage/tests/test_ni_support.py +78 -0
- scipy/ndimage/tests/test_splines.py +70 -0
- scipy/odr/__init__.py +131 -0
- scipy/odr/__odrpack.cp311-win_arm64.lib +0 -0
- scipy/odr/__odrpack.cp311-win_arm64.pyd +0 -0
- scipy/odr/_add_newdocs.py +34 -0
- scipy/odr/_models.py +315 -0
- scipy/odr/_odrpack.py +1154 -0
- scipy/odr/models.py +20 -0
- scipy/odr/odrpack.py +21 -0
- scipy/odr/tests/__init__.py +0 -0
- scipy/odr/tests/test_odr.py +607 -0
- scipy/optimize/__init__.pxd +1 -0
- scipy/optimize/__init__.py +460 -0
- scipy/optimize/_basinhopping.py +741 -0
- scipy/optimize/_bglu_dense.cp311-win_arm64.lib +0 -0
- scipy/optimize/_bglu_dense.cp311-win_arm64.pyd +0 -0
- scipy/optimize/_bracket.py +706 -0
- scipy/optimize/_chandrupatla.py +551 -0
- scipy/optimize/_cobyla_py.py +297 -0
- scipy/optimize/_cobyqa_py.py +72 -0
- scipy/optimize/_constraints.py +598 -0
- scipy/optimize/_dcsrch.py +728 -0
- scipy/optimize/_differentiable_functions.py +835 -0
- scipy/optimize/_differentialevolution.py +1970 -0
- scipy/optimize/_direct.cp311-win_arm64.lib +0 -0
- scipy/optimize/_direct.cp311-win_arm64.pyd +0 -0
- scipy/optimize/_direct_py.py +280 -0
- scipy/optimize/_dual_annealing.py +732 -0
- scipy/optimize/_elementwise.py +798 -0
- scipy/optimize/_group_columns.cp311-win_arm64.lib +0 -0
- scipy/optimize/_group_columns.cp311-win_arm64.pyd +0 -0
- scipy/optimize/_hessian_update_strategy.py +479 -0
- scipy/optimize/_highspy/__init__.py +0 -0
- scipy/optimize/_highspy/_core.cp311-win_arm64.lib +0 -0
- scipy/optimize/_highspy/_core.cp311-win_arm64.pyd +0 -0
- scipy/optimize/_highspy/_highs_options.cp311-win_arm64.lib +0 -0
- scipy/optimize/_highspy/_highs_options.cp311-win_arm64.pyd +0 -0
- scipy/optimize/_highspy/_highs_wrapper.py +338 -0
- scipy/optimize/_isotonic.py +157 -0
- scipy/optimize/_lbfgsb.cp311-win_arm64.lib +0 -0
- scipy/optimize/_lbfgsb.cp311-win_arm64.pyd +0 -0
- scipy/optimize/_lbfgsb_py.py +634 -0
- scipy/optimize/_linesearch.py +896 -0
- scipy/optimize/_linprog.py +733 -0
- scipy/optimize/_linprog_doc.py +1434 -0
- scipy/optimize/_linprog_highs.py +422 -0
- scipy/optimize/_linprog_ip.py +1141 -0
- scipy/optimize/_linprog_rs.py +572 -0
- scipy/optimize/_linprog_simplex.py +663 -0
- scipy/optimize/_linprog_util.py +1521 -0
- scipy/optimize/_lsap.cp311-win_arm64.lib +0 -0
- scipy/optimize/_lsap.cp311-win_arm64.pyd +0 -0
- scipy/optimize/_lsq/__init__.py +5 -0
- scipy/optimize/_lsq/bvls.py +183 -0
- scipy/optimize/_lsq/common.py +731 -0
- scipy/optimize/_lsq/dogbox.py +345 -0
- scipy/optimize/_lsq/givens_elimination.cp311-win_arm64.lib +0 -0
- scipy/optimize/_lsq/givens_elimination.cp311-win_arm64.pyd +0 -0
- scipy/optimize/_lsq/least_squares.py +1044 -0
- scipy/optimize/_lsq/lsq_linear.py +361 -0
- scipy/optimize/_lsq/trf.py +587 -0
- scipy/optimize/_lsq/trf_linear.py +249 -0
- scipy/optimize/_milp.py +394 -0
- scipy/optimize/_minimize.py +1199 -0
- scipy/optimize/_minpack.cp311-win_arm64.lib +0 -0
- scipy/optimize/_minpack.cp311-win_arm64.pyd +0 -0
- scipy/optimize/_minpack_py.py +1178 -0
- scipy/optimize/_moduleTNC.cp311-win_arm64.lib +0 -0
- scipy/optimize/_moduleTNC.cp311-win_arm64.pyd +0 -0
- scipy/optimize/_nnls.py +96 -0
- scipy/optimize/_nonlin.py +1634 -0
- scipy/optimize/_numdiff.py +963 -0
- scipy/optimize/_optimize.py +4169 -0
- scipy/optimize/_pava_pybind.cp311-win_arm64.lib +0 -0
- scipy/optimize/_pava_pybind.cp311-win_arm64.pyd +0 -0
- scipy/optimize/_qap.py +760 -0
- scipy/optimize/_remove_redundancy.py +522 -0
- scipy/optimize/_root.py +732 -0
- scipy/optimize/_root_scalar.py +538 -0
- scipy/optimize/_shgo.py +1606 -0
- scipy/optimize/_shgo_lib/__init__.py +0 -0
- scipy/optimize/_shgo_lib/_complex.py +1225 -0
- scipy/optimize/_shgo_lib/_vertex.py +460 -0
- scipy/optimize/_slsqp_py.py +603 -0
- scipy/optimize/_slsqplib.cp311-win_arm64.lib +0 -0
- scipy/optimize/_slsqplib.cp311-win_arm64.pyd +0 -0
- scipy/optimize/_spectral.py +260 -0
- scipy/optimize/_tnc.py +438 -0
- scipy/optimize/_trlib/__init__.py +12 -0
- scipy/optimize/_trlib/_trlib.cp311-win_arm64.lib +0 -0
- scipy/optimize/_trlib/_trlib.cp311-win_arm64.pyd +0 -0
- scipy/optimize/_trustregion.py +318 -0
- scipy/optimize/_trustregion_constr/__init__.py +6 -0
- scipy/optimize/_trustregion_constr/canonical_constraint.py +390 -0
- scipy/optimize/_trustregion_constr/equality_constrained_sqp.py +231 -0
- scipy/optimize/_trustregion_constr/minimize_trustregion_constr.py +584 -0
- scipy/optimize/_trustregion_constr/projections.py +411 -0
- scipy/optimize/_trustregion_constr/qp_subproblem.py +637 -0
- scipy/optimize/_trustregion_constr/report.py +49 -0
- scipy/optimize/_trustregion_constr/tests/__init__.py +0 -0
- scipy/optimize/_trustregion_constr/tests/test_canonical_constraint.py +296 -0
- scipy/optimize/_trustregion_constr/tests/test_nested_minimize.py +39 -0
- scipy/optimize/_trustregion_constr/tests/test_projections.py +214 -0
- scipy/optimize/_trustregion_constr/tests/test_qp_subproblem.py +645 -0
- scipy/optimize/_trustregion_constr/tests/test_report.py +34 -0
- scipy/optimize/_trustregion_constr/tr_interior_point.py +361 -0
- scipy/optimize/_trustregion_dogleg.py +122 -0
- scipy/optimize/_trustregion_exact.py +437 -0
- scipy/optimize/_trustregion_krylov.py +65 -0
- scipy/optimize/_trustregion_ncg.py +126 -0
- scipy/optimize/_tstutils.py +972 -0
- scipy/optimize/_zeros.cp311-win_arm64.lib +0 -0
- scipy/optimize/_zeros.cp311-win_arm64.pyd +0 -0
- scipy/optimize/_zeros_py.py +1475 -0
- scipy/optimize/cobyla.py +19 -0
- scipy/optimize/cython_optimize/__init__.py +133 -0
- scipy/optimize/cython_optimize/_zeros.cp311-win_arm64.lib +0 -0
- scipy/optimize/cython_optimize/_zeros.cp311-win_arm64.pyd +0 -0
- scipy/optimize/cython_optimize/_zeros.pxd +33 -0
- scipy/optimize/cython_optimize/c_zeros.pxd +26 -0
- scipy/optimize/cython_optimize.pxd +11 -0
- scipy/optimize/elementwise.py +38 -0
- scipy/optimize/lbfgsb.py +23 -0
- scipy/optimize/linesearch.py +18 -0
- scipy/optimize/minpack.py +27 -0
- scipy/optimize/minpack2.py +17 -0
- scipy/optimize/moduleTNC.py +19 -0
- scipy/optimize/nonlin.py +29 -0
- scipy/optimize/optimize.py +40 -0
- scipy/optimize/slsqp.py +22 -0
- scipy/optimize/tests/__init__.py +0 -0
- scipy/optimize/tests/_cython_examples/extending.pyx +43 -0
- scipy/optimize/tests/_cython_examples/meson.build +32 -0
- scipy/optimize/tests/test__basinhopping.py +535 -0
- scipy/optimize/tests/test__differential_evolution.py +1703 -0
- scipy/optimize/tests/test__dual_annealing.py +416 -0
- scipy/optimize/tests/test__linprog_clean_inputs.py +312 -0
- scipy/optimize/tests/test__numdiff.py +885 -0
- scipy/optimize/tests/test__remove_redundancy.py +228 -0
- scipy/optimize/tests/test__root.py +124 -0
- scipy/optimize/tests/test__shgo.py +1164 -0
- scipy/optimize/tests/test__spectral.py +226 -0
- scipy/optimize/tests/test_bracket.py +896 -0
- scipy/optimize/tests/test_chandrupatla.py +982 -0
- scipy/optimize/tests/test_cobyla.py +195 -0
- scipy/optimize/tests/test_cobyqa.py +252 -0
- scipy/optimize/tests/test_constraint_conversion.py +286 -0
- scipy/optimize/tests/test_constraints.py +255 -0
- scipy/optimize/tests/test_cython_optimize.py +92 -0
- scipy/optimize/tests/test_differentiable_functions.py +1025 -0
- scipy/optimize/tests/test_direct.py +321 -0
- scipy/optimize/tests/test_extending.py +28 -0
- scipy/optimize/tests/test_hessian_update_strategy.py +300 -0
- scipy/optimize/tests/test_isotonic_regression.py +167 -0
- scipy/optimize/tests/test_lbfgsb_hessinv.py +65 -0
- scipy/optimize/tests/test_lbfgsb_setulb.py +122 -0
- scipy/optimize/tests/test_least_squares.py +986 -0
- scipy/optimize/tests/test_linear_assignment.py +116 -0
- scipy/optimize/tests/test_linesearch.py +328 -0
- scipy/optimize/tests/test_linprog.py +2577 -0
- scipy/optimize/tests/test_lsq_common.py +297 -0
- scipy/optimize/tests/test_lsq_linear.py +287 -0
- scipy/optimize/tests/test_milp.py +459 -0
- scipy/optimize/tests/test_minimize_constrained.py +845 -0
- scipy/optimize/tests/test_minpack.py +1194 -0
- scipy/optimize/tests/test_nnls.py +469 -0
- scipy/optimize/tests/test_nonlin.py +572 -0
- scipy/optimize/tests/test_optimize.py +3344 -0
- scipy/optimize/tests/test_quadratic_assignment.py +455 -0
- scipy/optimize/tests/test_regression.py +40 -0
- scipy/optimize/tests/test_slsqp.py +645 -0
- scipy/optimize/tests/test_tnc.py +345 -0
- scipy/optimize/tests/test_trustregion.py +110 -0
- scipy/optimize/tests/test_trustregion_exact.py +351 -0
- scipy/optimize/tests/test_trustregion_krylov.py +170 -0
- scipy/optimize/tests/test_zeros.py +998 -0
- scipy/optimize/tnc.py +22 -0
- scipy/optimize/zeros.py +26 -0
- scipy/signal/__init__.py +316 -0
- scipy/signal/_arraytools.py +264 -0
- scipy/signal/_czt.py +575 -0
- scipy/signal/_delegators.py +568 -0
- scipy/signal/_filter_design.py +5893 -0
- scipy/signal/_fir_filter_design.py +1458 -0
- scipy/signal/_lti_conversion.py +534 -0
- scipy/signal/_ltisys.py +3546 -0
- scipy/signal/_max_len_seq.py +139 -0
- scipy/signal/_max_len_seq_inner.cp311-win_arm64.lib +0 -0
- scipy/signal/_max_len_seq_inner.cp311-win_arm64.pyd +0 -0
- scipy/signal/_peak_finding.py +1310 -0
- scipy/signal/_peak_finding_utils.cp311-win_arm64.lib +0 -0
- scipy/signal/_peak_finding_utils.cp311-win_arm64.pyd +0 -0
- scipy/signal/_polyutils.py +172 -0
- scipy/signal/_savitzky_golay.py +357 -0
- scipy/signal/_short_time_fft.py +2228 -0
- scipy/signal/_signal_api.py +30 -0
- scipy/signal/_signaltools.py +5309 -0
- scipy/signal/_sigtools.cp311-win_arm64.lib +0 -0
- scipy/signal/_sigtools.cp311-win_arm64.pyd +0 -0
- scipy/signal/_sosfilt.cp311-win_arm64.lib +0 -0
- scipy/signal/_sosfilt.cp311-win_arm64.pyd +0 -0
- scipy/signal/_spectral_py.py +2471 -0
- scipy/signal/_spline.cp311-win_arm64.lib +0 -0
- scipy/signal/_spline.cp311-win_arm64.pyd +0 -0
- scipy/signal/_spline.pyi +34 -0
- scipy/signal/_spline_filters.py +848 -0
- scipy/signal/_support_alternative_backends.py +73 -0
- scipy/signal/_upfirdn.py +219 -0
- scipy/signal/_upfirdn_apply.cp311-win_arm64.lib +0 -0
- scipy/signal/_upfirdn_apply.cp311-win_arm64.pyd +0 -0
- scipy/signal/_waveforms.py +687 -0
- scipy/signal/_wavelets.py +29 -0
- scipy/signal/bsplines.py +21 -0
- scipy/signal/filter_design.py +28 -0
- scipy/signal/fir_filter_design.py +21 -0
- scipy/signal/lti_conversion.py +20 -0
- scipy/signal/ltisys.py +25 -0
- scipy/signal/signaltools.py +27 -0
- scipy/signal/spectral.py +21 -0
- scipy/signal/spline.py +18 -0
- scipy/signal/tests/__init__.py +0 -0
- scipy/signal/tests/_scipy_spectral_test_shim.py +311 -0
- scipy/signal/tests/mpsig.py +122 -0
- scipy/signal/tests/test_array_tools.py +111 -0
- scipy/signal/tests/test_bsplines.py +365 -0
- scipy/signal/tests/test_cont2discrete.py +424 -0
- scipy/signal/tests/test_czt.py +221 -0
- scipy/signal/tests/test_dltisys.py +599 -0
- scipy/signal/tests/test_filter_design.py +4744 -0
- scipy/signal/tests/test_fir_filter_design.py +851 -0
- scipy/signal/tests/test_ltisys.py +1225 -0
- scipy/signal/tests/test_max_len_seq.py +71 -0
- scipy/signal/tests/test_peak_finding.py +915 -0
- scipy/signal/tests/test_result_type.py +51 -0
- scipy/signal/tests/test_savitzky_golay.py +363 -0
- scipy/signal/tests/test_short_time_fft.py +1107 -0
- scipy/signal/tests/test_signaltools.py +4735 -0
- scipy/signal/tests/test_spectral.py +2141 -0
- scipy/signal/tests/test_splines.py +427 -0
- scipy/signal/tests/test_upfirdn.py +322 -0
- scipy/signal/tests/test_waveforms.py +400 -0
- scipy/signal/tests/test_wavelets.py +59 -0
- scipy/signal/tests/test_windows.py +987 -0
- scipy/signal/waveforms.py +20 -0
- scipy/signal/wavelets.py +17 -0
- scipy/signal/windows/__init__.py +52 -0
- scipy/signal/windows/_windows.py +2513 -0
- scipy/signal/windows/windows.py +23 -0
- scipy/sparse/__init__.py +350 -0
- scipy/sparse/_base.py +1613 -0
- scipy/sparse/_bsr.py +880 -0
- scipy/sparse/_compressed.py +1328 -0
- scipy/sparse/_construct.py +1454 -0
- scipy/sparse/_coo.py +1581 -0
- scipy/sparse/_csc.py +367 -0
- scipy/sparse/_csparsetools.cp311-win_arm64.lib +0 -0
- scipy/sparse/_csparsetools.cp311-win_arm64.pyd +0 -0
- scipy/sparse/_csr.py +558 -0
- scipy/sparse/_data.py +569 -0
- scipy/sparse/_dia.py +677 -0
- scipy/sparse/_dok.py +669 -0
- scipy/sparse/_extract.py +178 -0
- scipy/sparse/_index.py +444 -0
- scipy/sparse/_lil.py +632 -0
- scipy/sparse/_matrix.py +169 -0
- scipy/sparse/_matrix_io.py +167 -0
- scipy/sparse/_sparsetools.cp311-win_arm64.lib +0 -0
- scipy/sparse/_sparsetools.cp311-win_arm64.pyd +0 -0
- scipy/sparse/_spfuncs.py +76 -0
- scipy/sparse/_sputils.py +632 -0
- scipy/sparse/base.py +24 -0
- scipy/sparse/bsr.py +22 -0
- scipy/sparse/compressed.py +20 -0
- scipy/sparse/construct.py +38 -0
- scipy/sparse/coo.py +23 -0
- scipy/sparse/csc.py +22 -0
- scipy/sparse/csgraph/__init__.py +210 -0
- scipy/sparse/csgraph/_flow.cp311-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_flow.cp311-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_laplacian.py +563 -0
- scipy/sparse/csgraph/_matching.cp311-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_matching.cp311-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_min_spanning_tree.cp311-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_min_spanning_tree.cp311-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_reordering.cp311-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_reordering.cp311-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_shortest_path.cp311-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_shortest_path.cp311-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_tools.cp311-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_tools.cp311-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_traversal.cp311-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_traversal.cp311-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_validation.py +66 -0
- scipy/sparse/csgraph/tests/__init__.py +0 -0
- scipy/sparse/csgraph/tests/test_connected_components.py +119 -0
- scipy/sparse/csgraph/tests/test_conversions.py +61 -0
- scipy/sparse/csgraph/tests/test_flow.py +209 -0
- scipy/sparse/csgraph/tests/test_graph_laplacian.py +368 -0
- scipy/sparse/csgraph/tests/test_matching.py +307 -0
- scipy/sparse/csgraph/tests/test_pydata_sparse.py +197 -0
- scipy/sparse/csgraph/tests/test_reordering.py +70 -0
- scipy/sparse/csgraph/tests/test_shortest_path.py +540 -0
- scipy/sparse/csgraph/tests/test_spanning_tree.py +66 -0
- scipy/sparse/csgraph/tests/test_traversal.py +148 -0
- scipy/sparse/csr.py +22 -0
- scipy/sparse/data.py +18 -0
- scipy/sparse/dia.py +22 -0
- scipy/sparse/dok.py +22 -0
- scipy/sparse/extract.py +23 -0
- scipy/sparse/lil.py +22 -0
- scipy/sparse/linalg/__init__.py +148 -0
- scipy/sparse/linalg/_dsolve/__init__.py +71 -0
- scipy/sparse/linalg/_dsolve/_add_newdocs.py +147 -0
- scipy/sparse/linalg/_dsolve/_superlu.cp311-win_arm64.lib +0 -0
- scipy/sparse/linalg/_dsolve/_superlu.cp311-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_dsolve/linsolve.py +882 -0
- scipy/sparse/linalg/_dsolve/tests/__init__.py +0 -0
- scipy/sparse/linalg/_dsolve/tests/test_linsolve.py +928 -0
- scipy/sparse/linalg/_eigen/__init__.py +22 -0
- scipy/sparse/linalg/_eigen/_svds.py +540 -0
- scipy/sparse/linalg/_eigen/_svds_doc.py +382 -0
- scipy/sparse/linalg/_eigen/arpack/COPYING +45 -0
- scipy/sparse/linalg/_eigen/arpack/__init__.py +20 -0
- scipy/sparse/linalg/_eigen/arpack/_arpack.cp311-win_arm64.lib +0 -0
- scipy/sparse/linalg/_eigen/arpack/_arpack.cp311-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_eigen/arpack/arpack.py +1706 -0
- scipy/sparse/linalg/_eigen/arpack/tests/__init__.py +0 -0
- scipy/sparse/linalg/_eigen/arpack/tests/test_arpack.py +717 -0
- scipy/sparse/linalg/_eigen/lobpcg/__init__.py +16 -0
- scipy/sparse/linalg/_eigen/lobpcg/lobpcg.py +1110 -0
- scipy/sparse/linalg/_eigen/lobpcg/tests/__init__.py +0 -0
- scipy/sparse/linalg/_eigen/lobpcg/tests/test_lobpcg.py +725 -0
- scipy/sparse/linalg/_eigen/tests/__init__.py +0 -0
- scipy/sparse/linalg/_eigen/tests/test_svds.py +886 -0
- scipy/sparse/linalg/_expm_multiply.py +816 -0
- scipy/sparse/linalg/_interface.py +920 -0
- scipy/sparse/linalg/_isolve/__init__.py +20 -0
- scipy/sparse/linalg/_isolve/_gcrotmk.py +503 -0
- scipy/sparse/linalg/_isolve/iterative.py +1051 -0
- scipy/sparse/linalg/_isolve/lgmres.py +230 -0
- scipy/sparse/linalg/_isolve/lsmr.py +486 -0
- scipy/sparse/linalg/_isolve/lsqr.py +589 -0
- scipy/sparse/linalg/_isolve/minres.py +372 -0
- scipy/sparse/linalg/_isolve/tests/__init__.py +0 -0
- scipy/sparse/linalg/_isolve/tests/test_gcrotmk.py +183 -0
- scipy/sparse/linalg/_isolve/tests/test_iterative.py +809 -0
- scipy/sparse/linalg/_isolve/tests/test_lgmres.py +225 -0
- scipy/sparse/linalg/_isolve/tests/test_lsmr.py +185 -0
- scipy/sparse/linalg/_isolve/tests/test_lsqr.py +120 -0
- scipy/sparse/linalg/_isolve/tests/test_minres.py +97 -0
- scipy/sparse/linalg/_isolve/tests/test_utils.py +9 -0
- scipy/sparse/linalg/_isolve/tfqmr.py +179 -0
- scipy/sparse/linalg/_isolve/utils.py +121 -0
- scipy/sparse/linalg/_matfuncs.py +940 -0
- scipy/sparse/linalg/_norm.py +195 -0
- scipy/sparse/linalg/_onenormest.py +467 -0
- scipy/sparse/linalg/_propack/_cpropack.cp311-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_cpropack.cp311-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_propack/_dpropack.cp311-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_dpropack.cp311-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_propack/_spropack.cp311-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_spropack.cp311-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_propack/_zpropack.cp311-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_zpropack.cp311-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_special_sparse_arrays.py +949 -0
- scipy/sparse/linalg/_svdp.py +309 -0
- scipy/sparse/linalg/dsolve.py +22 -0
- scipy/sparse/linalg/eigen.py +21 -0
- scipy/sparse/linalg/interface.py +20 -0
- scipy/sparse/linalg/isolve.py +22 -0
- scipy/sparse/linalg/matfuncs.py +18 -0
- scipy/sparse/linalg/tests/__init__.py +0 -0
- scipy/sparse/linalg/tests/propack_test_data.npz +0 -0
- scipy/sparse/linalg/tests/test_expm_multiply.py +367 -0
- scipy/sparse/linalg/tests/test_interface.py +561 -0
- scipy/sparse/linalg/tests/test_matfuncs.py +592 -0
- scipy/sparse/linalg/tests/test_norm.py +154 -0
- scipy/sparse/linalg/tests/test_onenormest.py +252 -0
- scipy/sparse/linalg/tests/test_propack.py +165 -0
- scipy/sparse/linalg/tests/test_pydata_sparse.py +272 -0
- scipy/sparse/linalg/tests/test_special_sparse_arrays.py +337 -0
- scipy/sparse/sparsetools.py +17 -0
- scipy/sparse/spfuncs.py +17 -0
- scipy/sparse/sputils.py +17 -0
- scipy/sparse/tests/__init__.py +0 -0
- scipy/sparse/tests/data/csc_py2.npz +0 -0
- scipy/sparse/tests/data/csc_py3.npz +0 -0
- scipy/sparse/tests/test_arithmetic1d.py +341 -0
- scipy/sparse/tests/test_array_api.py +561 -0
- scipy/sparse/tests/test_base.py +5870 -0
- scipy/sparse/tests/test_common1d.py +447 -0
- scipy/sparse/tests/test_construct.py +872 -0
- scipy/sparse/tests/test_coo.py +1119 -0
- scipy/sparse/tests/test_csc.py +98 -0
- scipy/sparse/tests/test_csr.py +214 -0
- scipy/sparse/tests/test_dok.py +209 -0
- scipy/sparse/tests/test_extract.py +51 -0
- scipy/sparse/tests/test_indexing1d.py +603 -0
- scipy/sparse/tests/test_matrix_io.py +109 -0
- scipy/sparse/tests/test_minmax1d.py +128 -0
- scipy/sparse/tests/test_sparsetools.py +344 -0
- scipy/sparse/tests/test_spfuncs.py +97 -0
- scipy/sparse/tests/test_sputils.py +424 -0
- scipy/spatial/__init__.py +129 -0
- scipy/spatial/_ckdtree.cp311-win_arm64.lib +0 -0
- scipy/spatial/_ckdtree.cp311-win_arm64.pyd +0 -0
- scipy/spatial/_distance_pybind.cp311-win_arm64.lib +0 -0
- scipy/spatial/_distance_pybind.cp311-win_arm64.pyd +0 -0
- scipy/spatial/_distance_wrap.cp311-win_arm64.lib +0 -0
- scipy/spatial/_distance_wrap.cp311-win_arm64.pyd +0 -0
- scipy/spatial/_geometric_slerp.py +238 -0
- scipy/spatial/_hausdorff.cp311-win_arm64.lib +0 -0
- scipy/spatial/_hausdorff.cp311-win_arm64.pyd +0 -0
- scipy/spatial/_kdtree.py +920 -0
- scipy/spatial/_plotutils.py +274 -0
- scipy/spatial/_procrustes.py +132 -0
- scipy/spatial/_qhull.cp311-win_arm64.lib +0 -0
- scipy/spatial/_qhull.cp311-win_arm64.pyd +0 -0
- scipy/spatial/_qhull.pyi +213 -0
- scipy/spatial/_spherical_voronoi.py +341 -0
- scipy/spatial/_voronoi.cp311-win_arm64.lib +0 -0
- scipy/spatial/_voronoi.cp311-win_arm64.pyd +0 -0
- scipy/spatial/_voronoi.pyi +4 -0
- scipy/spatial/ckdtree.py +18 -0
- scipy/spatial/distance.py +3147 -0
- scipy/spatial/distance.pyi +210 -0
- scipy/spatial/kdtree.py +25 -0
- scipy/spatial/qhull.py +25 -0
- scipy/spatial/qhull_src/COPYING_QHULL.txt +39 -0
- scipy/spatial/tests/__init__.py +0 -0
- scipy/spatial/tests/data/cdist-X1.txt +10 -0
- scipy/spatial/tests/data/cdist-X2.txt +20 -0
- scipy/spatial/tests/data/degenerate_pointset.npz +0 -0
- scipy/spatial/tests/data/iris.txt +150 -0
- scipy/spatial/tests/data/pdist-boolean-inp.txt +20 -0
- scipy/spatial/tests/data/pdist-chebyshev-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-chebyshev-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-cityblock-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-cityblock-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-correlation-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-correlation-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-cosine-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-cosine-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-double-inp.txt +20 -0
- scipy/spatial/tests/data/pdist-euclidean-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-euclidean-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-hamming-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-jaccard-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-jensenshannon-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-jensenshannon-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-minkowski-3.2-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-minkowski-3.2-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-minkowski-5.8-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-seuclidean-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-seuclidean-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-spearman-ml.txt +1 -0
- scipy/spatial/tests/data/random-bool-data.txt +100 -0
- scipy/spatial/tests/data/random-double-data.txt +100 -0
- scipy/spatial/tests/data/random-int-data.txt +100 -0
- scipy/spatial/tests/data/random-uint-data.txt +100 -0
- scipy/spatial/tests/data/selfdual-4d-polytope.txt +27 -0
- scipy/spatial/tests/test__plotutils.py +91 -0
- scipy/spatial/tests/test__procrustes.py +116 -0
- scipy/spatial/tests/test_distance.py +2389 -0
- scipy/spatial/tests/test_hausdorff.py +199 -0
- scipy/spatial/tests/test_kdtree.py +1536 -0
- scipy/spatial/tests/test_qhull.py +1313 -0
- scipy/spatial/tests/test_slerp.py +417 -0
- scipy/spatial/tests/test_spherical_voronoi.py +358 -0
- scipy/spatial/transform/__init__.py +31 -0
- scipy/spatial/transform/_rigid_transform.cp311-win_arm64.lib +0 -0
- scipy/spatial/transform/_rigid_transform.cp311-win_arm64.pyd +0 -0
- scipy/spatial/transform/_rotation.cp311-win_arm64.lib +0 -0
- scipy/spatial/transform/_rotation.cp311-win_arm64.pyd +0 -0
- scipy/spatial/transform/_rotation_groups.py +140 -0
- scipy/spatial/transform/_rotation_spline.py +460 -0
- scipy/spatial/transform/rotation.py +21 -0
- scipy/spatial/transform/tests/__init__.py +0 -0
- scipy/spatial/transform/tests/test_rigid_transform.py +1221 -0
- scipy/spatial/transform/tests/test_rotation.py +2569 -0
- scipy/spatial/transform/tests/test_rotation_groups.py +169 -0
- scipy/spatial/transform/tests/test_rotation_spline.py +183 -0
- scipy/special/__init__.pxd +1 -0
- scipy/special/__init__.py +841 -0
- scipy/special/_add_newdocs.py +9961 -0
- scipy/special/_basic.py +3576 -0
- scipy/special/_comb.cp311-win_arm64.lib +0 -0
- scipy/special/_comb.cp311-win_arm64.pyd +0 -0
- scipy/special/_ellip_harm.py +214 -0
- scipy/special/_ellip_harm_2.cp311-win_arm64.lib +0 -0
- scipy/special/_ellip_harm_2.cp311-win_arm64.pyd +0 -0
- scipy/special/_gufuncs.cp311-win_arm64.lib +0 -0
- scipy/special/_gufuncs.cp311-win_arm64.pyd +0 -0
- scipy/special/_input_validation.py +17 -0
- scipy/special/_lambertw.py +149 -0
- scipy/special/_logsumexp.py +426 -0
- scipy/special/_mptestutils.py +453 -0
- scipy/special/_multiufuncs.py +610 -0
- scipy/special/_orthogonal.py +2592 -0
- scipy/special/_orthogonal.pyi +330 -0
- scipy/special/_precompute/__init__.py +0 -0
- scipy/special/_precompute/cosine_cdf.py +17 -0
- scipy/special/_precompute/expn_asy.py +54 -0
- scipy/special/_precompute/gammainc_asy.py +116 -0
- scipy/special/_precompute/gammainc_data.py +124 -0
- scipy/special/_precompute/hyp2f1_data.py +484 -0
- scipy/special/_precompute/lambertw.py +68 -0
- scipy/special/_precompute/loggamma.py +43 -0
- scipy/special/_precompute/struve_convergence.py +131 -0
- scipy/special/_precompute/utils.py +38 -0
- scipy/special/_precompute/wright_bessel.py +342 -0
- scipy/special/_precompute/wright_bessel_data.py +152 -0
- scipy/special/_precompute/wrightomega.py +41 -0
- scipy/special/_precompute/zetac.py +27 -0
- scipy/special/_sf_error.py +15 -0
- scipy/special/_specfun.cp311-win_arm64.lib +0 -0
- scipy/special/_specfun.cp311-win_arm64.pyd +0 -0
- scipy/special/_special_ufuncs.cp311-win_arm64.lib +0 -0
- scipy/special/_special_ufuncs.cp311-win_arm64.pyd +0 -0
- scipy/special/_spfun_stats.py +106 -0
- scipy/special/_spherical_bessel.py +397 -0
- scipy/special/_support_alternative_backends.py +295 -0
- scipy/special/_test_internal.cp311-win_arm64.lib +0 -0
- scipy/special/_test_internal.cp311-win_arm64.pyd +0 -0
- scipy/special/_test_internal.pyi +9 -0
- scipy/special/_testutils.py +321 -0
- scipy/special/_ufuncs.cp311-win_arm64.lib +0 -0
- scipy/special/_ufuncs.cp311-win_arm64.pyd +0 -0
- scipy/special/_ufuncs.pyi +522 -0
- scipy/special/_ufuncs.pyx +13173 -0
- scipy/special/_ufuncs_cxx.cp311-win_arm64.lib +0 -0
- scipy/special/_ufuncs_cxx.cp311-win_arm64.pyd +0 -0
- scipy/special/_ufuncs_cxx.pxd +142 -0
- scipy/special/_ufuncs_cxx.pyx +427 -0
- scipy/special/_ufuncs_cxx_defs.h +147 -0
- scipy/special/_ufuncs_defs.h +57 -0
- scipy/special/add_newdocs.py +15 -0
- scipy/special/basic.py +87 -0
- scipy/special/cython_special.cp311-win_arm64.lib +0 -0
- scipy/special/cython_special.cp311-win_arm64.pyd +0 -0
- scipy/special/cython_special.pxd +259 -0
- scipy/special/cython_special.pyi +3 -0
- scipy/special/orthogonal.py +45 -0
- scipy/special/sf_error.py +20 -0
- scipy/special/specfun.py +24 -0
- scipy/special/spfun_stats.py +17 -0
- scipy/special/tests/__init__.py +0 -0
- scipy/special/tests/_cython_examples/extending.pyx +12 -0
- scipy/special/tests/_cython_examples/meson.build +34 -0
- scipy/special/tests/data/__init__.py +0 -0
- scipy/special/tests/data/boost.npz +0 -0
- scipy/special/tests/data/gsl.npz +0 -0
- scipy/special/tests/data/local.npz +0 -0
- scipy/special/tests/test_basic.py +4815 -0
- scipy/special/tests/test_bdtr.py +112 -0
- scipy/special/tests/test_boost_ufuncs.py +64 -0
- scipy/special/tests/test_boxcox.py +125 -0
- scipy/special/tests/test_cdflib.py +712 -0
- scipy/special/tests/test_cdft_asymptotic.py +49 -0
- scipy/special/tests/test_cephes_intp_cast.py +29 -0
- scipy/special/tests/test_cosine_distr.py +83 -0
- scipy/special/tests/test_cython_special.py +363 -0
- scipy/special/tests/test_data.py +719 -0
- scipy/special/tests/test_dd.py +42 -0
- scipy/special/tests/test_digamma.py +45 -0
- scipy/special/tests/test_ellip_harm.py +278 -0
- scipy/special/tests/test_erfinv.py +89 -0
- scipy/special/tests/test_exponential_integrals.py +118 -0
- scipy/special/tests/test_extending.py +28 -0
- scipy/special/tests/test_faddeeva.py +85 -0
- scipy/special/tests/test_gamma.py +12 -0
- scipy/special/tests/test_gammainc.py +152 -0
- scipy/special/tests/test_hyp2f1.py +2566 -0
- scipy/special/tests/test_hypergeometric.py +234 -0
- scipy/special/tests/test_iv_ratio.py +249 -0
- scipy/special/tests/test_kolmogorov.py +491 -0
- scipy/special/tests/test_lambertw.py +109 -0
- scipy/special/tests/test_legendre.py +1518 -0
- scipy/special/tests/test_log1mexp.py +85 -0
- scipy/special/tests/test_loggamma.py +70 -0
- scipy/special/tests/test_logit.py +162 -0
- scipy/special/tests/test_logsumexp.py +469 -0
- scipy/special/tests/test_mpmath.py +2293 -0
- scipy/special/tests/test_nan_inputs.py +65 -0
- scipy/special/tests/test_ndtr.py +77 -0
- scipy/special/tests/test_ndtri_exp.py +94 -0
- scipy/special/tests/test_orthogonal.py +821 -0
- scipy/special/tests/test_orthogonal_eval.py +275 -0
- scipy/special/tests/test_owens_t.py +53 -0
- scipy/special/tests/test_pcf.py +24 -0
- scipy/special/tests/test_pdtr.py +48 -0
- scipy/special/tests/test_powm1.py +65 -0
- scipy/special/tests/test_precompute_expn_asy.py +24 -0
- scipy/special/tests/test_precompute_gammainc.py +108 -0
- scipy/special/tests/test_precompute_utils.py +36 -0
- scipy/special/tests/test_round.py +18 -0
- scipy/special/tests/test_sf_error.py +146 -0
- scipy/special/tests/test_sici.py +36 -0
- scipy/special/tests/test_specfun.py +48 -0
- scipy/special/tests/test_spence.py +32 -0
- scipy/special/tests/test_spfun_stats.py +61 -0
- scipy/special/tests/test_sph_harm.py +85 -0
- scipy/special/tests/test_spherical_bessel.py +400 -0
- scipy/special/tests/test_support_alternative_backends.py +248 -0
- scipy/special/tests/test_trig.py +72 -0
- scipy/special/tests/test_ufunc_signatures.py +46 -0
- scipy/special/tests/test_wright_bessel.py +205 -0
- scipy/special/tests/test_wrightomega.py +117 -0
- scipy/special/tests/test_zeta.py +301 -0
- scipy/stats/__init__.py +670 -0
- scipy/stats/_ansari_swilk_statistics.cp311-win_arm64.lib +0 -0
- scipy/stats/_ansari_swilk_statistics.cp311-win_arm64.pyd +0 -0
- scipy/stats/_axis_nan_policy.py +692 -0
- scipy/stats/_biasedurn.cp311-win_arm64.lib +0 -0
- scipy/stats/_biasedurn.cp311-win_arm64.pyd +0 -0
- scipy/stats/_biasedurn.pxd +27 -0
- scipy/stats/_binned_statistic.py +795 -0
- scipy/stats/_binomtest.py +375 -0
- scipy/stats/_bws_test.py +177 -0
- scipy/stats/_censored_data.py +459 -0
- scipy/stats/_common.py +5 -0
- scipy/stats/_constants.py +42 -0
- scipy/stats/_continued_fraction.py +387 -0
- scipy/stats/_continuous_distns.py +12486 -0
- scipy/stats/_correlation.py +210 -0
- scipy/stats/_covariance.py +636 -0
- scipy/stats/_crosstab.py +204 -0
- scipy/stats/_discrete_distns.py +2098 -0
- scipy/stats/_distn_infrastructure.py +4201 -0
- scipy/stats/_distr_params.py +299 -0
- scipy/stats/_distribution_infrastructure.py +5750 -0
- scipy/stats/_entropy.py +428 -0
- scipy/stats/_finite_differences.py +145 -0
- scipy/stats/_fit.py +1351 -0
- scipy/stats/_hypotests.py +2060 -0
- scipy/stats/_kde.py +732 -0
- scipy/stats/_ksstats.py +600 -0
- scipy/stats/_levy_stable/__init__.py +1231 -0
- scipy/stats/_levy_stable/levyst.cp311-win_arm64.lib +0 -0
- scipy/stats/_levy_stable/levyst.cp311-win_arm64.pyd +0 -0
- scipy/stats/_mannwhitneyu.py +492 -0
- scipy/stats/_mgc.py +550 -0
- scipy/stats/_morestats.py +4626 -0
- scipy/stats/_mstats_basic.py +3658 -0
- scipy/stats/_mstats_extras.py +521 -0
- scipy/stats/_multicomp.py +449 -0
- scipy/stats/_multivariate.py +7281 -0
- scipy/stats/_new_distributions.py +452 -0
- scipy/stats/_odds_ratio.py +466 -0
- scipy/stats/_page_trend_test.py +486 -0
- scipy/stats/_probability_distribution.py +1964 -0
- scipy/stats/_qmc.py +2956 -0
- scipy/stats/_qmc_cy.cp311-win_arm64.lib +0 -0
- scipy/stats/_qmc_cy.cp311-win_arm64.pyd +0 -0
- scipy/stats/_qmc_cy.pyi +54 -0
- scipy/stats/_qmvnt.py +454 -0
- scipy/stats/_qmvnt_cy.cp311-win_arm64.lib +0 -0
- scipy/stats/_qmvnt_cy.cp311-win_arm64.pyd +0 -0
- scipy/stats/_quantile.py +335 -0
- scipy/stats/_rcont/__init__.py +4 -0
- scipy/stats/_rcont/rcont.cp311-win_arm64.lib +0 -0
- scipy/stats/_rcont/rcont.cp311-win_arm64.pyd +0 -0
- scipy/stats/_relative_risk.py +263 -0
- scipy/stats/_resampling.py +2352 -0
- scipy/stats/_result_classes.py +40 -0
- scipy/stats/_sampling.py +1314 -0
- scipy/stats/_sensitivity_analysis.py +713 -0
- scipy/stats/_sobol.cp311-win_arm64.lib +0 -0
- scipy/stats/_sobol.cp311-win_arm64.pyd +0 -0
- scipy/stats/_sobol.pyi +54 -0
- scipy/stats/_sobol_direction_numbers.npz +0 -0
- scipy/stats/_stats.cp311-win_arm64.lib +0 -0
- scipy/stats/_stats.cp311-win_arm64.pyd +0 -0
- scipy/stats/_stats.pxd +10 -0
- scipy/stats/_stats_mstats_common.py +322 -0
- scipy/stats/_stats_py.py +11089 -0
- scipy/stats/_stats_pythran.cp311-win_arm64.lib +0 -0
- scipy/stats/_stats_pythran.cp311-win_arm64.pyd +0 -0
- scipy/stats/_survival.py +683 -0
- scipy/stats/_tukeylambda_stats.py +199 -0
- scipy/stats/_unuran/__init__.py +0 -0
- scipy/stats/_unuran/unuran_wrapper.cp311-win_arm64.lib +0 -0
- scipy/stats/_unuran/unuran_wrapper.cp311-win_arm64.pyd +0 -0
- scipy/stats/_unuran/unuran_wrapper.pyi +179 -0
- scipy/stats/_variation.py +126 -0
- scipy/stats/_warnings_errors.py +38 -0
- scipy/stats/_wilcoxon.py +265 -0
- scipy/stats/biasedurn.py +16 -0
- scipy/stats/contingency.py +521 -0
- scipy/stats/distributions.py +24 -0
- scipy/stats/kde.py +18 -0
- scipy/stats/morestats.py +27 -0
- scipy/stats/mstats.py +140 -0
- scipy/stats/mstats_basic.py +42 -0
- scipy/stats/mstats_extras.py +25 -0
- scipy/stats/mvn.py +17 -0
- scipy/stats/qmc.py +236 -0
- scipy/stats/sampling.py +73 -0
- scipy/stats/stats.py +41 -0
- scipy/stats/tests/__init__.py +0 -0
- scipy/stats/tests/common_tests.py +356 -0
- scipy/stats/tests/data/_mvt.py +171 -0
- scipy/stats/tests/data/fisher_exact_results_from_r.py +607 -0
- scipy/stats/tests/data/jf_skew_t_gamlss_pdf_data.npy +0 -0
- scipy/stats/tests/data/levy_stable/stable-Z1-cdf-sample-data.npy +0 -0
- scipy/stats/tests/data/levy_stable/stable-Z1-pdf-sample-data.npy +0 -0
- scipy/stats/tests/data/levy_stable/stable-loc-scale-sample-data.npy +0 -0
- scipy/stats/tests/data/nist_anova/AtmWtAg.dat +108 -0
- scipy/stats/tests/data/nist_anova/SiRstv.dat +85 -0
- scipy/stats/tests/data/nist_anova/SmLs01.dat +249 -0
- scipy/stats/tests/data/nist_anova/SmLs02.dat +1869 -0
- scipy/stats/tests/data/nist_anova/SmLs03.dat +18069 -0
- scipy/stats/tests/data/nist_anova/SmLs04.dat +249 -0
- scipy/stats/tests/data/nist_anova/SmLs05.dat +1869 -0
- scipy/stats/tests/data/nist_anova/SmLs06.dat +18069 -0
- scipy/stats/tests/data/nist_anova/SmLs07.dat +249 -0
- scipy/stats/tests/data/nist_anova/SmLs08.dat +1869 -0
- scipy/stats/tests/data/nist_anova/SmLs09.dat +18069 -0
- scipy/stats/tests/data/nist_linregress/Norris.dat +97 -0
- scipy/stats/tests/data/rel_breitwigner_pdf_sample_data_ROOT.npy +0 -0
- scipy/stats/tests/data/studentized_range_mpmath_ref.json +1499 -0
- scipy/stats/tests/test_axis_nan_policy.py +1388 -0
- scipy/stats/tests/test_binned_statistic.py +568 -0
- scipy/stats/tests/test_censored_data.py +152 -0
- scipy/stats/tests/test_contingency.py +294 -0
- scipy/stats/tests/test_continued_fraction.py +173 -0
- scipy/stats/tests/test_continuous.py +2198 -0
- scipy/stats/tests/test_continuous_basic.py +1053 -0
- scipy/stats/tests/test_continuous_fit_censored.py +683 -0
- scipy/stats/tests/test_correlation.py +80 -0
- scipy/stats/tests/test_crosstab.py +115 -0
- scipy/stats/tests/test_discrete_basic.py +580 -0
- scipy/stats/tests/test_discrete_distns.py +700 -0
- scipy/stats/tests/test_distributions.py +10413 -0
- scipy/stats/tests/test_entropy.py +322 -0
- scipy/stats/tests/test_fast_gen_inversion.py +435 -0
- scipy/stats/tests/test_fit.py +1090 -0
- scipy/stats/tests/test_hypotests.py +1991 -0
- scipy/stats/tests/test_kdeoth.py +676 -0
- scipy/stats/tests/test_marray.py +289 -0
- scipy/stats/tests/test_mgc.py +217 -0
- scipy/stats/tests/test_morestats.py +3259 -0
- scipy/stats/tests/test_mstats_basic.py +2071 -0
- scipy/stats/tests/test_mstats_extras.py +172 -0
- scipy/stats/tests/test_multicomp.py +405 -0
- scipy/stats/tests/test_multivariate.py +4381 -0
- scipy/stats/tests/test_odds_ratio.py +148 -0
- scipy/stats/tests/test_qmc.py +1492 -0
- scipy/stats/tests/test_quantile.py +199 -0
- scipy/stats/tests/test_rank.py +345 -0
- scipy/stats/tests/test_relative_risk.py +95 -0
- scipy/stats/tests/test_resampling.py +2000 -0
- scipy/stats/tests/test_sampling.py +1450 -0
- scipy/stats/tests/test_sensitivity_analysis.py +310 -0
- scipy/stats/tests/test_stats.py +9707 -0
- scipy/stats/tests/test_survival.py +466 -0
- scipy/stats/tests/test_tukeylambda_stats.py +85 -0
- scipy/stats/tests/test_variation.py +216 -0
- scipy/version.py +12 -0
- scipy-1.16.2.dist-info/DELVEWHEEL +2 -0
- scipy-1.16.2.dist-info/LICENSE.txt +912 -0
- scipy-1.16.2.dist-info/METADATA +1061 -0
- scipy-1.16.2.dist-info/RECORD +1530 -0
- scipy-1.16.2.dist-info/WHEEL +4 -0
- scipy.libs/msvcp140-5f1c5dd31916990d94181e07bc3afb32.dll +0 -0
- scipy.libs/scipy_openblas-f3ac85b1f412f7e86514c923dc4058d1.dll +0 -0
scipy/signal/_ltisys.py
ADDED
@@ -0,0 +1,3546 @@
|
|
1
|
+
"""
|
2
|
+
ltisys -- a collection of classes and functions for modeling linear
|
3
|
+
time invariant systems.
|
4
|
+
"""
|
5
|
+
#
|
6
|
+
# Author: Travis Oliphant 2001
|
7
|
+
#
|
8
|
+
# Feb 2010: Warren Weckesser
|
9
|
+
# Rewrote lsim2 and added impulse2.
|
10
|
+
# Apr 2011: Jeffrey Armstrong <jeff@approximatrix.com>
|
11
|
+
# Added dlsim, dstep, dimpulse, cont2discrete
|
12
|
+
# Aug 2013: Juan Luis Cano
|
13
|
+
# Rewrote abcd_normalize.
|
14
|
+
# Jan 2015: Irvin Probst irvin DOT probst AT ensta-bretagne DOT fr
|
15
|
+
# Added pole placement
|
16
|
+
# Mar 2015: Clancy Rowley
|
17
|
+
# Rewrote lsim
|
18
|
+
# May 2015: Felix Berkenkamp
|
19
|
+
# Split lti class into subclasses
|
20
|
+
# Merged discrete systems and added dlti
|
21
|
+
|
22
|
+
import warnings
|
23
|
+
|
24
|
+
# np.linalg.qr fails on some tests with LinAlgError: zgeqrf returns -7
|
25
|
+
# use scipy's qr until this is solved
|
26
|
+
|
27
|
+
from scipy.linalg import qr as s_qr
|
28
|
+
from scipy import linalg
|
29
|
+
from scipy.interpolate import make_interp_spline
|
30
|
+
from ._filter_design import (tf2zpk, zpk2tf, normalize, freqs, freqz, freqs_zpk,
|
31
|
+
freqz_zpk)
|
32
|
+
from ._lti_conversion import (tf2ss, abcd_normalize, ss2tf, zpk2ss, ss2zpk,
|
33
|
+
cont2discrete, _atleast_2d_or_none)
|
34
|
+
|
35
|
+
import numpy as np
|
36
|
+
from numpy import (real, atleast_1d, squeeze, asarray, zeros,
|
37
|
+
dot, transpose, ones, linspace)
|
38
|
+
import copy
|
39
|
+
|
40
|
+
__all__ = ['lti', 'dlti', 'TransferFunction', 'ZerosPolesGain', 'StateSpace',
|
41
|
+
'lsim', 'impulse', 'step', 'bode',
|
42
|
+
'freqresp', 'place_poles', 'dlsim', 'dstep', 'dimpulse',
|
43
|
+
'dfreqresp', 'dbode']
|
44
|
+
|
45
|
+
|
46
|
+
class LinearTimeInvariant:
|
47
|
+
def __new__(cls, *system, **kwargs):
|
48
|
+
"""Create a new object, don't allow direct instances."""
|
49
|
+
if cls is LinearTimeInvariant:
|
50
|
+
raise NotImplementedError('The LinearTimeInvariant class is not '
|
51
|
+
'meant to be used directly, use `lti` '
|
52
|
+
'or `dlti` instead.')
|
53
|
+
return super().__new__(cls)
|
54
|
+
|
55
|
+
def __init__(self):
|
56
|
+
"""
|
57
|
+
Initialize the `lti` baseclass.
|
58
|
+
|
59
|
+
The heavy lifting is done by the subclasses.
|
60
|
+
"""
|
61
|
+
super().__init__()
|
62
|
+
|
63
|
+
self.inputs = None
|
64
|
+
self.outputs = None
|
65
|
+
self._dt = None
|
66
|
+
|
67
|
+
@property
|
68
|
+
def dt(self):
|
69
|
+
"""Return the sampling time of the system, `None` for `lti` systems."""
|
70
|
+
return self._dt
|
71
|
+
|
72
|
+
@property
|
73
|
+
def _dt_dict(self):
|
74
|
+
if self.dt is None:
|
75
|
+
return {}
|
76
|
+
else:
|
77
|
+
return {'dt': self.dt}
|
78
|
+
|
79
|
+
@property
|
80
|
+
def zeros(self):
|
81
|
+
"""Zeros of the system."""
|
82
|
+
return self.to_zpk().zeros
|
83
|
+
|
84
|
+
@property
|
85
|
+
def poles(self):
|
86
|
+
"""Poles of the system."""
|
87
|
+
return self.to_zpk().poles
|
88
|
+
|
89
|
+
def _as_ss(self):
|
90
|
+
"""Convert to `StateSpace` system, without copying.
|
91
|
+
|
92
|
+
Returns
|
93
|
+
-------
|
94
|
+
sys: StateSpace
|
95
|
+
The `StateSpace` system. If the class is already an instance of
|
96
|
+
`StateSpace` then this instance is returned.
|
97
|
+
"""
|
98
|
+
if isinstance(self, StateSpace):
|
99
|
+
return self
|
100
|
+
else:
|
101
|
+
return self.to_ss()
|
102
|
+
|
103
|
+
def _as_zpk(self):
|
104
|
+
"""Convert to `ZerosPolesGain` system, without copying.
|
105
|
+
|
106
|
+
Returns
|
107
|
+
-------
|
108
|
+
sys: ZerosPolesGain
|
109
|
+
The `ZerosPolesGain` system. If the class is already an instance of
|
110
|
+
`ZerosPolesGain` then this instance is returned.
|
111
|
+
"""
|
112
|
+
if isinstance(self, ZerosPolesGain):
|
113
|
+
return self
|
114
|
+
else:
|
115
|
+
return self.to_zpk()
|
116
|
+
|
117
|
+
def _as_tf(self):
|
118
|
+
"""Convert to `TransferFunction` system, without copying.
|
119
|
+
|
120
|
+
Returns
|
121
|
+
-------
|
122
|
+
sys: ZerosPolesGain
|
123
|
+
The `TransferFunction` system. If the class is already an instance of
|
124
|
+
`TransferFunction` then this instance is returned.
|
125
|
+
"""
|
126
|
+
if isinstance(self, TransferFunction):
|
127
|
+
return self
|
128
|
+
else:
|
129
|
+
return self.to_tf()
|
130
|
+
|
131
|
+
|
132
|
+
class lti(LinearTimeInvariant):
|
133
|
+
r"""
|
134
|
+
Continuous-time linear time invariant system base class.
|
135
|
+
|
136
|
+
Parameters
|
137
|
+
----------
|
138
|
+
*system : arguments
|
139
|
+
The `lti` class can be instantiated with either 2, 3 or 4 arguments.
|
140
|
+
The following gives the number of arguments and the corresponding
|
141
|
+
continuous-time subclass that is created:
|
142
|
+
|
143
|
+
* 2: `TransferFunction`: (numerator, denominator)
|
144
|
+
* 3: `ZerosPolesGain`: (zeros, poles, gain)
|
145
|
+
* 4: `StateSpace`: (A, B, C, D)
|
146
|
+
|
147
|
+
Each argument can be an array or a sequence.
|
148
|
+
|
149
|
+
See Also
|
150
|
+
--------
|
151
|
+
ZerosPolesGain, StateSpace, TransferFunction, dlti
|
152
|
+
|
153
|
+
Notes
|
154
|
+
-----
|
155
|
+
`lti` instances do not exist directly. Instead, `lti` creates an instance
|
156
|
+
of one of its subclasses: `StateSpace`, `TransferFunction` or
|
157
|
+
`ZerosPolesGain`.
|
158
|
+
|
159
|
+
If (numerator, denominator) is passed in for ``*system``, coefficients for
|
160
|
+
both the numerator and denominator should be specified in descending
|
161
|
+
exponent order (e.g., ``s^2 + 3s + 5`` would be represented as ``[1, 3,
|
162
|
+
5]``).
|
163
|
+
|
164
|
+
Changing the value of properties that are not directly part of the current
|
165
|
+
system representation (such as the `zeros` of a `StateSpace` system) is
|
166
|
+
very inefficient and may lead to numerical inaccuracies. It is better to
|
167
|
+
convert to the specific system representation first. For example, call
|
168
|
+
``sys = sys.to_zpk()`` before accessing/changing the zeros, poles or gain.
|
169
|
+
|
170
|
+
Examples
|
171
|
+
--------
|
172
|
+
>>> from scipy import signal
|
173
|
+
|
174
|
+
>>> signal.lti(1, 2, 3, 4)
|
175
|
+
StateSpaceContinuous(
|
176
|
+
array([[1]]),
|
177
|
+
array([[2]]),
|
178
|
+
array([[3]]),
|
179
|
+
array([[4]]),
|
180
|
+
dt: None
|
181
|
+
)
|
182
|
+
|
183
|
+
Construct the transfer function
|
184
|
+
:math:`H(s) = \frac{5(s - 1)(s - 2)}{(s - 3)(s - 4)}`:
|
185
|
+
|
186
|
+
>>> signal.lti([1, 2], [3, 4], 5)
|
187
|
+
ZerosPolesGainContinuous(
|
188
|
+
array([1, 2]),
|
189
|
+
array([3, 4]),
|
190
|
+
5,
|
191
|
+
dt: None
|
192
|
+
)
|
193
|
+
|
194
|
+
Construct the transfer function :math:`H(s) = \frac{3s + 4}{1s + 2}`:
|
195
|
+
|
196
|
+
>>> signal.lti([3, 4], [1, 2])
|
197
|
+
TransferFunctionContinuous(
|
198
|
+
array([3., 4.]),
|
199
|
+
array([1., 2.]),
|
200
|
+
dt: None
|
201
|
+
)
|
202
|
+
|
203
|
+
"""
|
204
|
+
def __new__(cls, *system):
|
205
|
+
"""Create an instance of the appropriate subclass."""
|
206
|
+
if cls is lti:
|
207
|
+
N = len(system)
|
208
|
+
if N == 2:
|
209
|
+
return TransferFunctionContinuous.__new__(
|
210
|
+
TransferFunctionContinuous, *system)
|
211
|
+
elif N == 3:
|
212
|
+
return ZerosPolesGainContinuous.__new__(
|
213
|
+
ZerosPolesGainContinuous, *system)
|
214
|
+
elif N == 4:
|
215
|
+
return StateSpaceContinuous.__new__(StateSpaceContinuous,
|
216
|
+
*system)
|
217
|
+
else:
|
218
|
+
raise ValueError("`system` needs to be an instance of `lti` "
|
219
|
+
"or have 2, 3 or 4 arguments.")
|
220
|
+
# __new__ was called from a subclass, let it call its own functions
|
221
|
+
return super().__new__(cls)
|
222
|
+
|
223
|
+
def __init__(self, *system):
|
224
|
+
"""
|
225
|
+
Initialize the `lti` baseclass.
|
226
|
+
|
227
|
+
The heavy lifting is done by the subclasses.
|
228
|
+
"""
|
229
|
+
super().__init__(*system)
|
230
|
+
|
231
|
+
def impulse(self, X0=None, T=None, N=None):
|
232
|
+
"""
|
233
|
+
Return the impulse response of a continuous-time system.
|
234
|
+
See `impulse` for details.
|
235
|
+
"""
|
236
|
+
return impulse(self, X0=X0, T=T, N=N)
|
237
|
+
|
238
|
+
def step(self, X0=None, T=None, N=None):
|
239
|
+
"""
|
240
|
+
Return the step response of a continuous-time system.
|
241
|
+
See `step` for details.
|
242
|
+
"""
|
243
|
+
return step(self, X0=X0, T=T, N=N)
|
244
|
+
|
245
|
+
def output(self, U, T, X0=None):
|
246
|
+
"""
|
247
|
+
Return the response of a continuous-time system to input `U`.
|
248
|
+
See `lsim` for details.
|
249
|
+
"""
|
250
|
+
return lsim(self, U, T, X0=X0)
|
251
|
+
|
252
|
+
def bode(self, w=None, n=100):
|
253
|
+
"""
|
254
|
+
Calculate Bode magnitude and phase data of a continuous-time system.
|
255
|
+
|
256
|
+
Returns a 3-tuple containing arrays of frequencies [rad/s], magnitude
|
257
|
+
[dB] and phase [deg]. See `bode` for details.
|
258
|
+
|
259
|
+
Examples
|
260
|
+
--------
|
261
|
+
>>> from scipy import signal
|
262
|
+
>>> import matplotlib.pyplot as plt
|
263
|
+
|
264
|
+
>>> sys = signal.TransferFunction([1], [1, 1])
|
265
|
+
>>> w, mag, phase = sys.bode()
|
266
|
+
|
267
|
+
>>> plt.figure()
|
268
|
+
>>> plt.semilogx(w, mag) # Bode magnitude plot
|
269
|
+
>>> plt.figure()
|
270
|
+
>>> plt.semilogx(w, phase) # Bode phase plot
|
271
|
+
>>> plt.show()
|
272
|
+
|
273
|
+
"""
|
274
|
+
return bode(self, w=w, n=n)
|
275
|
+
|
276
|
+
def freqresp(self, w=None, n=10000):
|
277
|
+
"""
|
278
|
+
Calculate the frequency response of a continuous-time system.
|
279
|
+
|
280
|
+
Returns a 2-tuple containing arrays of frequencies [rad/s] and
|
281
|
+
complex magnitude.
|
282
|
+
See `freqresp` for details.
|
283
|
+
"""
|
284
|
+
return freqresp(self, w=w, n=n)
|
285
|
+
|
286
|
+
def to_discrete(self, dt, method='zoh', alpha=None):
|
287
|
+
"""Return a discretized version of the current system.
|
288
|
+
|
289
|
+
Parameters: See `cont2discrete` for details.
|
290
|
+
|
291
|
+
Returns
|
292
|
+
-------
|
293
|
+
sys: instance of `dlti`
|
294
|
+
"""
|
295
|
+
raise NotImplementedError('to_discrete is not implemented for this '
|
296
|
+
'system class.')
|
297
|
+
|
298
|
+
|
299
|
+
class dlti(LinearTimeInvariant):
|
300
|
+
r"""
|
301
|
+
Discrete-time linear time invariant system base class.
|
302
|
+
|
303
|
+
Parameters
|
304
|
+
----------
|
305
|
+
*system: arguments
|
306
|
+
The `dlti` class can be instantiated with either 2, 3 or 4 arguments.
|
307
|
+
The following gives the number of arguments and the corresponding
|
308
|
+
discrete-time subclass that is created:
|
309
|
+
|
310
|
+
* 2: `TransferFunction`: (numerator, denominator)
|
311
|
+
* 3: `ZerosPolesGain`: (zeros, poles, gain)
|
312
|
+
* 4: `StateSpace`: (A, B, C, D)
|
313
|
+
|
314
|
+
Each argument can be an array or a sequence.
|
315
|
+
dt: float, optional
|
316
|
+
Sampling time [s] of the discrete-time systems. Defaults to ``True``
|
317
|
+
(unspecified sampling time). Must be specified as a keyword argument,
|
318
|
+
for example, ``dt=0.1``.
|
319
|
+
|
320
|
+
See Also
|
321
|
+
--------
|
322
|
+
ZerosPolesGain, StateSpace, TransferFunction, lti
|
323
|
+
|
324
|
+
Notes
|
325
|
+
-----
|
326
|
+
`dlti` instances do not exist directly. Instead, `dlti` creates an instance
|
327
|
+
of one of its subclasses: `StateSpace`, `TransferFunction` or
|
328
|
+
`ZerosPolesGain`.
|
329
|
+
|
330
|
+
Changing the value of properties that are not directly part of the current
|
331
|
+
system representation (such as the `zeros` of a `StateSpace` system) is
|
332
|
+
very inefficient and may lead to numerical inaccuracies. It is better to
|
333
|
+
convert to the specific system representation first. For example, call
|
334
|
+
``sys = sys.to_zpk()`` before accessing/changing the zeros, poles or gain.
|
335
|
+
|
336
|
+
If (numerator, denominator) is passed in for ``*system``, coefficients for
|
337
|
+
both the numerator and denominator should be specified in descending
|
338
|
+
exponent order (e.g., ``z^2 + 3z + 5`` would be represented as ``[1, 3,
|
339
|
+
5]``).
|
340
|
+
|
341
|
+
.. versionadded:: 0.18.0
|
342
|
+
|
343
|
+
Examples
|
344
|
+
--------
|
345
|
+
>>> from scipy import signal
|
346
|
+
|
347
|
+
>>> signal.dlti(1, 2, 3, 4)
|
348
|
+
StateSpaceDiscrete(
|
349
|
+
array([[1]]),
|
350
|
+
array([[2]]),
|
351
|
+
array([[3]]),
|
352
|
+
array([[4]]),
|
353
|
+
dt: True
|
354
|
+
)
|
355
|
+
|
356
|
+
>>> signal.dlti(1, 2, 3, 4, dt=0.1)
|
357
|
+
StateSpaceDiscrete(
|
358
|
+
array([[1]]),
|
359
|
+
array([[2]]),
|
360
|
+
array([[3]]),
|
361
|
+
array([[4]]),
|
362
|
+
dt: 0.1
|
363
|
+
)
|
364
|
+
|
365
|
+
Construct the transfer function
|
366
|
+
:math:`H(z) = \frac{5(z - 1)(z - 2)}{(z - 3)(z - 4)}` with a sampling time
|
367
|
+
of 0.1 seconds:
|
368
|
+
|
369
|
+
>>> signal.dlti([1, 2], [3, 4], 5, dt=0.1)
|
370
|
+
ZerosPolesGainDiscrete(
|
371
|
+
array([1, 2]),
|
372
|
+
array([3, 4]),
|
373
|
+
5,
|
374
|
+
dt: 0.1
|
375
|
+
)
|
376
|
+
|
377
|
+
Construct the transfer function :math:`H(z) = \frac{3z + 4}{1z + 2}` with
|
378
|
+
a sampling time of 0.1 seconds:
|
379
|
+
|
380
|
+
>>> signal.dlti([3, 4], [1, 2], dt=0.1)
|
381
|
+
TransferFunctionDiscrete(
|
382
|
+
array([3., 4.]),
|
383
|
+
array([1., 2.]),
|
384
|
+
dt: 0.1
|
385
|
+
)
|
386
|
+
|
387
|
+
"""
|
388
|
+
def __new__(cls, *system, **kwargs):
|
389
|
+
"""Create an instance of the appropriate subclass."""
|
390
|
+
if cls is dlti:
|
391
|
+
N = len(system)
|
392
|
+
if N == 2:
|
393
|
+
return TransferFunctionDiscrete.__new__(
|
394
|
+
TransferFunctionDiscrete, *system, **kwargs)
|
395
|
+
elif N == 3:
|
396
|
+
return ZerosPolesGainDiscrete.__new__(ZerosPolesGainDiscrete,
|
397
|
+
*system, **kwargs)
|
398
|
+
elif N == 4:
|
399
|
+
return StateSpaceDiscrete.__new__(StateSpaceDiscrete, *system,
|
400
|
+
**kwargs)
|
401
|
+
else:
|
402
|
+
raise ValueError("`system` needs to be an instance of `dlti` "
|
403
|
+
"or have 2, 3 or 4 arguments.")
|
404
|
+
# __new__ was called from a subclass, let it call its own functions
|
405
|
+
return super().__new__(cls)
|
406
|
+
|
407
|
+
def __init__(self, *system, **kwargs):
|
408
|
+
"""
|
409
|
+
Initialize the `lti` baseclass.
|
410
|
+
|
411
|
+
The heavy lifting is done by the subclasses.
|
412
|
+
"""
|
413
|
+
dt = kwargs.pop('dt', True)
|
414
|
+
super().__init__(*system, **kwargs)
|
415
|
+
|
416
|
+
self.dt = dt
|
417
|
+
|
418
|
+
@property
|
419
|
+
def dt(self):
|
420
|
+
"""Return the sampling time of the system."""
|
421
|
+
return self._dt
|
422
|
+
|
423
|
+
@dt.setter
|
424
|
+
def dt(self, dt):
|
425
|
+
self._dt = dt
|
426
|
+
|
427
|
+
def impulse(self, x0=None, t=None, n=None):
|
428
|
+
"""
|
429
|
+
Return the impulse response of the discrete-time `dlti` system.
|
430
|
+
See `dimpulse` for details.
|
431
|
+
"""
|
432
|
+
return dimpulse(self, x0=x0, t=t, n=n)
|
433
|
+
|
434
|
+
def step(self, x0=None, t=None, n=None):
|
435
|
+
"""
|
436
|
+
Return the step response of the discrete-time `dlti` system.
|
437
|
+
See `dstep` for details.
|
438
|
+
"""
|
439
|
+
return dstep(self, x0=x0, t=t, n=n)
|
440
|
+
|
441
|
+
def output(self, u, t, x0=None):
|
442
|
+
"""
|
443
|
+
Return the response of the discrete-time system to input `u`.
|
444
|
+
See `dlsim` for details.
|
445
|
+
"""
|
446
|
+
return dlsim(self, u, t, x0=x0)
|
447
|
+
|
448
|
+
def bode(self, w=None, n=100):
|
449
|
+
r"""
|
450
|
+
Calculate Bode magnitude and phase data of a discrete-time system.
|
451
|
+
|
452
|
+
Returns a 3-tuple containing arrays of frequencies [rad/s], magnitude
|
453
|
+
[dB] and phase [deg]. See `dbode` for details.
|
454
|
+
|
455
|
+
Examples
|
456
|
+
--------
|
457
|
+
>>> from scipy import signal
|
458
|
+
>>> import matplotlib.pyplot as plt
|
459
|
+
|
460
|
+
Construct the transfer function :math:`H(z) = \frac{1}{z^2 + 2z + 3}`
|
461
|
+
with sampling time 0.5s:
|
462
|
+
|
463
|
+
>>> sys = signal.TransferFunction([1], [1, 2, 3], dt=0.5)
|
464
|
+
|
465
|
+
Equivalent: signal.dbode(sys)
|
466
|
+
|
467
|
+
>>> w, mag, phase = sys.bode()
|
468
|
+
|
469
|
+
>>> plt.figure()
|
470
|
+
>>> plt.semilogx(w, mag) # Bode magnitude plot
|
471
|
+
>>> plt.figure()
|
472
|
+
>>> plt.semilogx(w, phase) # Bode phase plot
|
473
|
+
>>> plt.show()
|
474
|
+
|
475
|
+
"""
|
476
|
+
return dbode(self, w=w, n=n)
|
477
|
+
|
478
|
+
def freqresp(self, w=None, n=10000, whole=False):
|
479
|
+
"""
|
480
|
+
Calculate the frequency response of a discrete-time system.
|
481
|
+
|
482
|
+
Returns a 2-tuple containing arrays of frequencies [rad/s] and
|
483
|
+
complex magnitude.
|
484
|
+
See `dfreqresp` for details.
|
485
|
+
|
486
|
+
"""
|
487
|
+
return dfreqresp(self, w=w, n=n, whole=whole)
|
488
|
+
|
489
|
+
|
490
|
+
class TransferFunction(LinearTimeInvariant):
|
491
|
+
r"""Linear Time Invariant system class in transfer function form.
|
492
|
+
|
493
|
+
Represents the system as the continuous-time transfer function
|
494
|
+
:math:`H(s)=\sum_{i=0}^N b[N-i] s^i / \sum_{j=0}^M a[M-j] s^j` or the
|
495
|
+
discrete-time transfer function
|
496
|
+
:math:`H(z)=\sum_{i=0}^N b[N-i] z^i / \sum_{j=0}^M a[M-j] z^j`, where
|
497
|
+
:math:`b` are elements of the numerator `num`, :math:`a` are elements of
|
498
|
+
the denominator `den`, and ``N == len(b) - 1``, ``M == len(a) - 1``.
|
499
|
+
`TransferFunction` systems inherit additional
|
500
|
+
functionality from the `lti`, respectively the `dlti` classes, depending on
|
501
|
+
which system representation is used.
|
502
|
+
|
503
|
+
Parameters
|
504
|
+
----------
|
505
|
+
*system: arguments
|
506
|
+
The `TransferFunction` class can be instantiated with 1 or 2
|
507
|
+
arguments. The following gives the number of input arguments and their
|
508
|
+
interpretation:
|
509
|
+
|
510
|
+
* 1: `lti` or `dlti` system: (`StateSpace`, `TransferFunction` or
|
511
|
+
`ZerosPolesGain`)
|
512
|
+
* 2: array_like: (numerator, denominator)
|
513
|
+
dt: float, optional
|
514
|
+
Sampling time [s] of the discrete-time systems. Defaults to `None`
|
515
|
+
(continuous-time). Must be specified as a keyword argument, for
|
516
|
+
example, ``dt=0.1``.
|
517
|
+
|
518
|
+
See Also
|
519
|
+
--------
|
520
|
+
ZerosPolesGain, StateSpace, lti, dlti
|
521
|
+
tf2ss, tf2zpk, tf2sos
|
522
|
+
|
523
|
+
Notes
|
524
|
+
-----
|
525
|
+
Changing the value of properties that are not part of the
|
526
|
+
`TransferFunction` system representation (such as the `A`, `B`, `C`, `D`
|
527
|
+
state-space matrices) is very inefficient and may lead to numerical
|
528
|
+
inaccuracies. It is better to convert to the specific system
|
529
|
+
representation first. For example, call ``sys = sys.to_ss()`` before
|
530
|
+
accessing/changing the A, B, C, D system matrices.
|
531
|
+
|
532
|
+
If (numerator, denominator) is passed in for ``*system``, coefficients
|
533
|
+
for both the numerator and denominator should be specified in descending
|
534
|
+
exponent order (e.g. ``s^2 + 3s + 5`` or ``z^2 + 3z + 5`` would be
|
535
|
+
represented as ``[1, 3, 5]``)
|
536
|
+
|
537
|
+
Examples
|
538
|
+
--------
|
539
|
+
Construct the transfer function
|
540
|
+
:math:`H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1}`:
|
541
|
+
|
542
|
+
>>> from scipy import signal
|
543
|
+
|
544
|
+
>>> num = [1, 3, 3]
|
545
|
+
>>> den = [1, 2, 1]
|
546
|
+
|
547
|
+
>>> signal.TransferFunction(num, den)
|
548
|
+
TransferFunctionContinuous(
|
549
|
+
array([1., 3., 3.]),
|
550
|
+
array([1., 2., 1.]),
|
551
|
+
dt: None
|
552
|
+
)
|
553
|
+
|
554
|
+
Construct the transfer function
|
555
|
+
:math:`H(z) = \frac{z^2 + 3z + 3}{z^2 + 2z + 1}` with a sampling time of
|
556
|
+
0.1 seconds:
|
557
|
+
|
558
|
+
>>> signal.TransferFunction(num, den, dt=0.1)
|
559
|
+
TransferFunctionDiscrete(
|
560
|
+
array([1., 3., 3.]),
|
561
|
+
array([1., 2., 1.]),
|
562
|
+
dt: 0.1
|
563
|
+
)
|
564
|
+
|
565
|
+
"""
|
566
|
+
def __new__(cls, *system, **kwargs):
|
567
|
+
"""Handle object conversion if input is an instance of lti."""
|
568
|
+
if len(system) == 1 and isinstance(system[0], LinearTimeInvariant):
|
569
|
+
return system[0].to_tf()
|
570
|
+
|
571
|
+
# Choose whether to inherit from `lti` or from `dlti`
|
572
|
+
if cls is TransferFunction:
|
573
|
+
if kwargs.get('dt') is None:
|
574
|
+
return TransferFunctionContinuous.__new__(
|
575
|
+
TransferFunctionContinuous,
|
576
|
+
*system,
|
577
|
+
**kwargs)
|
578
|
+
else:
|
579
|
+
return TransferFunctionDiscrete.__new__(
|
580
|
+
TransferFunctionDiscrete,
|
581
|
+
*system,
|
582
|
+
**kwargs)
|
583
|
+
|
584
|
+
# No special conversion needed
|
585
|
+
return super().__new__(cls)
|
586
|
+
|
587
|
+
def __init__(self, *system, **kwargs):
|
588
|
+
"""Initialize the state space LTI system."""
|
589
|
+
# Conversion of lti instances is handled in __new__
|
590
|
+
if isinstance(system[0], LinearTimeInvariant):
|
591
|
+
return
|
592
|
+
|
593
|
+
# Remove system arguments, not needed by parents anymore
|
594
|
+
super().__init__(**kwargs)
|
595
|
+
|
596
|
+
self._num = None
|
597
|
+
self._den = None
|
598
|
+
|
599
|
+
self.num, self.den = normalize(*system)
|
600
|
+
|
601
|
+
def __repr__(self):
|
602
|
+
"""Return representation of the system's transfer function"""
|
603
|
+
return (
|
604
|
+
f'{self.__class__.__name__}(\n'
|
605
|
+
f'{repr(self.num)},\n'
|
606
|
+
f'{repr(self.den)},\n'
|
607
|
+
f'dt: {repr(self.dt)}\n)'
|
608
|
+
)
|
609
|
+
|
610
|
+
@property
|
611
|
+
def num(self):
|
612
|
+
"""Numerator of the `TransferFunction` system."""
|
613
|
+
return self._num
|
614
|
+
|
615
|
+
@num.setter
|
616
|
+
def num(self, num):
|
617
|
+
self._num = atleast_1d(num)
|
618
|
+
|
619
|
+
# Update dimensions
|
620
|
+
if len(self.num.shape) > 1:
|
621
|
+
self.outputs, self.inputs = self.num.shape
|
622
|
+
else:
|
623
|
+
self.outputs = 1
|
624
|
+
self.inputs = 1
|
625
|
+
|
626
|
+
@property
|
627
|
+
def den(self):
|
628
|
+
"""Denominator of the `TransferFunction` system."""
|
629
|
+
return self._den
|
630
|
+
|
631
|
+
@den.setter
|
632
|
+
def den(self, den):
|
633
|
+
self._den = atleast_1d(den)
|
634
|
+
|
635
|
+
def _copy(self, system):
|
636
|
+
"""
|
637
|
+
Copy the parameters of another `TransferFunction` object
|
638
|
+
|
639
|
+
Parameters
|
640
|
+
----------
|
641
|
+
system : `TransferFunction`
|
642
|
+
The `StateSpace` system that is to be copied
|
643
|
+
|
644
|
+
"""
|
645
|
+
self.num = system.num
|
646
|
+
self.den = system.den
|
647
|
+
|
648
|
+
def to_tf(self):
|
649
|
+
"""
|
650
|
+
Return a copy of the current `TransferFunction` system.
|
651
|
+
|
652
|
+
Returns
|
653
|
+
-------
|
654
|
+
sys : instance of `TransferFunction`
|
655
|
+
The current system (copy)
|
656
|
+
|
657
|
+
"""
|
658
|
+
return copy.deepcopy(self)
|
659
|
+
|
660
|
+
def to_zpk(self):
|
661
|
+
"""
|
662
|
+
Convert system representation to `ZerosPolesGain`.
|
663
|
+
|
664
|
+
Returns
|
665
|
+
-------
|
666
|
+
sys : instance of `ZerosPolesGain`
|
667
|
+
Zeros, poles, gain representation of the current system
|
668
|
+
|
669
|
+
"""
|
670
|
+
return ZerosPolesGain(*tf2zpk(self.num, self.den),
|
671
|
+
**self._dt_dict)
|
672
|
+
|
673
|
+
def to_ss(self):
|
674
|
+
"""
|
675
|
+
Convert system representation to `StateSpace`.
|
676
|
+
|
677
|
+
Returns
|
678
|
+
-------
|
679
|
+
sys : instance of `StateSpace`
|
680
|
+
State space model of the current system
|
681
|
+
|
682
|
+
"""
|
683
|
+
return StateSpace(*tf2ss(self.num, self.den),
|
684
|
+
**self._dt_dict)
|
685
|
+
|
686
|
+
@staticmethod
|
687
|
+
def _z_to_zinv(num, den):
|
688
|
+
"""Change a transfer function from the variable `z` to `z**-1`.
|
689
|
+
|
690
|
+
Parameters
|
691
|
+
----------
|
692
|
+
num, den: 1d array_like
|
693
|
+
Sequences representing the coefficients of the numerator and
|
694
|
+
denominator polynomials, in order of descending degree of 'z'.
|
695
|
+
That is, ``5z**2 + 3z + 2`` is presented as ``[5, 3, 2]``.
|
696
|
+
|
697
|
+
Returns
|
698
|
+
-------
|
699
|
+
num, den: 1d array_like
|
700
|
+
Sequences representing the coefficients of the numerator and
|
701
|
+
denominator polynomials, in order of ascending degree of 'z**-1'.
|
702
|
+
That is, ``5 + 3 z**-1 + 2 z**-2`` is presented as ``[5, 3, 2]``.
|
703
|
+
"""
|
704
|
+
diff = len(num) - len(den)
|
705
|
+
if diff > 0:
|
706
|
+
den = np.hstack((np.zeros(diff), den))
|
707
|
+
elif diff < 0:
|
708
|
+
num = np.hstack((np.zeros(-diff), num))
|
709
|
+
return num, den
|
710
|
+
|
711
|
+
@staticmethod
|
712
|
+
def _zinv_to_z(num, den):
|
713
|
+
"""Change a transfer function from the variable `z` to `z**-1`.
|
714
|
+
|
715
|
+
Parameters
|
716
|
+
----------
|
717
|
+
num, den: 1d array_like
|
718
|
+
Sequences representing the coefficients of the numerator and
|
719
|
+
denominator polynomials, in order of ascending degree of 'z**-1'.
|
720
|
+
That is, ``5 + 3 z**-1 + 2 z**-2`` is presented as ``[5, 3, 2]``.
|
721
|
+
|
722
|
+
Returns
|
723
|
+
-------
|
724
|
+
num, den: 1d array_like
|
725
|
+
Sequences representing the coefficients of the numerator and
|
726
|
+
denominator polynomials, in order of descending degree of 'z'.
|
727
|
+
That is, ``5z**2 + 3z + 2`` is presented as ``[5, 3, 2]``.
|
728
|
+
"""
|
729
|
+
diff = len(num) - len(den)
|
730
|
+
if diff > 0:
|
731
|
+
den = np.hstack((den, np.zeros(diff)))
|
732
|
+
elif diff < 0:
|
733
|
+
num = np.hstack((num, np.zeros(-diff)))
|
734
|
+
return num, den
|
735
|
+
|
736
|
+
|
737
|
+
class TransferFunctionContinuous(TransferFunction, lti):
|
738
|
+
r"""
|
739
|
+
Continuous-time Linear Time Invariant system in transfer function form.
|
740
|
+
|
741
|
+
Represents the system as the transfer function
|
742
|
+
:math:`H(s)=\sum_{i=0}^N b[N-i] s^i / \sum_{j=0}^M a[M-j] s^j`, where
|
743
|
+
:math:`b` are elements of the numerator `num`, :math:`a` are elements of
|
744
|
+
the denominator `den`, and ``N == len(b) - 1``, ``M == len(a) - 1``.
|
745
|
+
Continuous-time `TransferFunction` systems inherit additional
|
746
|
+
functionality from the `lti` class.
|
747
|
+
|
748
|
+
Parameters
|
749
|
+
----------
|
750
|
+
*system: arguments
|
751
|
+
The `TransferFunction` class can be instantiated with 1 or 2
|
752
|
+
arguments. The following gives the number of input arguments and their
|
753
|
+
interpretation:
|
754
|
+
|
755
|
+
* 1: `lti` system: (`StateSpace`, `TransferFunction` or
|
756
|
+
`ZerosPolesGain`)
|
757
|
+
* 2: array_like: (numerator, denominator)
|
758
|
+
|
759
|
+
See Also
|
760
|
+
--------
|
761
|
+
ZerosPolesGain, StateSpace, lti
|
762
|
+
tf2ss, tf2zpk, tf2sos
|
763
|
+
|
764
|
+
Notes
|
765
|
+
-----
|
766
|
+
Changing the value of properties that are not part of the
|
767
|
+
`TransferFunction` system representation (such as the `A`, `B`, `C`, `D`
|
768
|
+
state-space matrices) is very inefficient and may lead to numerical
|
769
|
+
inaccuracies. It is better to convert to the specific system
|
770
|
+
representation first. For example, call ``sys = sys.to_ss()`` before
|
771
|
+
accessing/changing the A, B, C, D system matrices.
|
772
|
+
|
773
|
+
If (numerator, denominator) is passed in for ``*system``, coefficients
|
774
|
+
for both the numerator and denominator should be specified in descending
|
775
|
+
exponent order (e.g. ``s^2 + 3s + 5`` would be represented as
|
776
|
+
``[1, 3, 5]``)
|
777
|
+
|
778
|
+
Examples
|
779
|
+
--------
|
780
|
+
Construct the transfer function
|
781
|
+
:math:`H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1}`:
|
782
|
+
|
783
|
+
>>> from scipy import signal
|
784
|
+
|
785
|
+
>>> num = [1, 3, 3]
|
786
|
+
>>> den = [1, 2, 1]
|
787
|
+
|
788
|
+
>>> signal.TransferFunction(num, den)
|
789
|
+
TransferFunctionContinuous(
|
790
|
+
array([ 1., 3., 3.]),
|
791
|
+
array([ 1., 2., 1.]),
|
792
|
+
dt: None
|
793
|
+
)
|
794
|
+
|
795
|
+
"""
|
796
|
+
|
797
|
+
def to_discrete(self, dt, method='zoh', alpha=None):
|
798
|
+
"""
|
799
|
+
Returns the discretized `TransferFunction` system.
|
800
|
+
|
801
|
+
Parameters: See `cont2discrete` for details.
|
802
|
+
|
803
|
+
Returns
|
804
|
+
-------
|
805
|
+
sys: instance of `dlti` and `StateSpace`
|
806
|
+
"""
|
807
|
+
return TransferFunction(*cont2discrete((self.num, self.den),
|
808
|
+
dt,
|
809
|
+
method=method,
|
810
|
+
alpha=alpha)[:-1],
|
811
|
+
dt=dt)
|
812
|
+
|
813
|
+
|
814
|
+
class TransferFunctionDiscrete(TransferFunction, dlti):
|
815
|
+
r"""
|
816
|
+
Discrete-time Linear Time Invariant system in transfer function form.
|
817
|
+
|
818
|
+
Represents the system as the transfer function
|
819
|
+
:math:`H(z)=\sum_{i=0}^N b[N-i] z^i / \sum_{j=0}^M a[M-j] z^j`, where
|
820
|
+
:math:`b` are elements of the numerator `num`, :math:`a` are elements of
|
821
|
+
the denominator `den`, and ``N == len(b) - 1``, ``M == len(a) - 1``.
|
822
|
+
Discrete-time `TransferFunction` systems inherit additional functionality
|
823
|
+
from the `dlti` class.
|
824
|
+
|
825
|
+
Parameters
|
826
|
+
----------
|
827
|
+
*system: arguments
|
828
|
+
The `TransferFunction` class can be instantiated with 1 or 2
|
829
|
+
arguments. The following gives the number of input arguments and their
|
830
|
+
interpretation:
|
831
|
+
|
832
|
+
* 1: `dlti` system: (`StateSpace`, `TransferFunction` or
|
833
|
+
`ZerosPolesGain`)
|
834
|
+
* 2: array_like: (numerator, denominator)
|
835
|
+
dt: float, optional
|
836
|
+
Sampling time [s] of the discrete-time systems. Defaults to `True`
|
837
|
+
(unspecified sampling time). Must be specified as a keyword argument,
|
838
|
+
for example, ``dt=0.1``.
|
839
|
+
|
840
|
+
See Also
|
841
|
+
--------
|
842
|
+
ZerosPolesGain, StateSpace, dlti
|
843
|
+
tf2ss, tf2zpk, tf2sos
|
844
|
+
|
845
|
+
Notes
|
846
|
+
-----
|
847
|
+
Changing the value of properties that are not part of the
|
848
|
+
`TransferFunction` system representation (such as the `A`, `B`, `C`, `D`
|
849
|
+
state-space matrices) is very inefficient and may lead to numerical
|
850
|
+
inaccuracies.
|
851
|
+
|
852
|
+
If (numerator, denominator) is passed in for ``*system``, coefficients
|
853
|
+
for both the numerator and denominator should be specified in descending
|
854
|
+
exponent order (e.g., ``z^2 + 3z + 5`` would be represented as
|
855
|
+
``[1, 3, 5]``).
|
856
|
+
|
857
|
+
Examples
|
858
|
+
--------
|
859
|
+
Construct the transfer function
|
860
|
+
:math:`H(z) = \frac{z^2 + 3z + 3}{z^2 + 2z + 1}` with a sampling time of
|
861
|
+
0.5 seconds:
|
862
|
+
|
863
|
+
>>> from scipy import signal
|
864
|
+
|
865
|
+
>>> num = [1, 3, 3]
|
866
|
+
>>> den = [1, 2, 1]
|
867
|
+
|
868
|
+
>>> signal.TransferFunction(num, den, dt=0.5)
|
869
|
+
TransferFunctionDiscrete(
|
870
|
+
array([ 1., 3., 3.]),
|
871
|
+
array([ 1., 2., 1.]),
|
872
|
+
dt: 0.5
|
873
|
+
)
|
874
|
+
|
875
|
+
"""
|
876
|
+
pass
|
877
|
+
|
878
|
+
|
879
|
+
class ZerosPolesGain(LinearTimeInvariant):
|
880
|
+
r"""
|
881
|
+
Linear Time Invariant system class in zeros, poles, gain form.
|
882
|
+
|
883
|
+
Represents the system as the continuous- or discrete-time transfer function
|
884
|
+
:math:`H(s)=k \prod_i (s - z[i]) / \prod_j (s - p[j])`, where :math:`k` is
|
885
|
+
the `gain`, :math:`z` are the `zeros` and :math:`p` are the `poles`.
|
886
|
+
`ZerosPolesGain` systems inherit additional functionality from the `lti`,
|
887
|
+
respectively the `dlti` classes, depending on which system representation
|
888
|
+
is used.
|
889
|
+
|
890
|
+
Parameters
|
891
|
+
----------
|
892
|
+
*system : arguments
|
893
|
+
The `ZerosPolesGain` class can be instantiated with 1 or 3
|
894
|
+
arguments. The following gives the number of input arguments and their
|
895
|
+
interpretation:
|
896
|
+
|
897
|
+
* 1: `lti` or `dlti` system: (`StateSpace`, `TransferFunction` or
|
898
|
+
`ZerosPolesGain`)
|
899
|
+
* 3: array_like: (zeros, poles, gain)
|
900
|
+
dt: float, optional
|
901
|
+
Sampling time [s] of the discrete-time systems. Defaults to `None`
|
902
|
+
(continuous-time). Must be specified as a keyword argument, for
|
903
|
+
example, ``dt=0.1``.
|
904
|
+
|
905
|
+
|
906
|
+
See Also
|
907
|
+
--------
|
908
|
+
TransferFunction, StateSpace, lti, dlti
|
909
|
+
zpk2ss, zpk2tf, zpk2sos
|
910
|
+
|
911
|
+
Notes
|
912
|
+
-----
|
913
|
+
Changing the value of properties that are not part of the
|
914
|
+
`ZerosPolesGain` system representation (such as the `A`, `B`, `C`, `D`
|
915
|
+
state-space matrices) is very inefficient and may lead to numerical
|
916
|
+
inaccuracies. It is better to convert to the specific system
|
917
|
+
representation first. For example, call ``sys = sys.to_ss()`` before
|
918
|
+
accessing/changing the A, B, C, D system matrices.
|
919
|
+
|
920
|
+
Examples
|
921
|
+
--------
|
922
|
+
Construct the transfer function
|
923
|
+
:math:`H(s) = \frac{5(s - 1)(s - 2)}{(s - 3)(s - 4)}`:
|
924
|
+
|
925
|
+
>>> from scipy import signal
|
926
|
+
|
927
|
+
>>> signal.ZerosPolesGain([1, 2], [3, 4], 5)
|
928
|
+
ZerosPolesGainContinuous(
|
929
|
+
array([1, 2]),
|
930
|
+
array([3, 4]),
|
931
|
+
5,
|
932
|
+
dt: None
|
933
|
+
)
|
934
|
+
|
935
|
+
Construct the transfer function
|
936
|
+
:math:`H(z) = \frac{5(z - 1)(z - 2)}{(z - 3)(z - 4)}` with a sampling time
|
937
|
+
of 0.1 seconds:
|
938
|
+
|
939
|
+
>>> signal.ZerosPolesGain([1, 2], [3, 4], 5, dt=0.1)
|
940
|
+
ZerosPolesGainDiscrete(
|
941
|
+
array([1, 2]),
|
942
|
+
array([3, 4]),
|
943
|
+
5,
|
944
|
+
dt: 0.1
|
945
|
+
)
|
946
|
+
|
947
|
+
"""
|
948
|
+
def __new__(cls, *system, **kwargs):
|
949
|
+
"""Handle object conversion if input is an instance of `lti`"""
|
950
|
+
if len(system) == 1 and isinstance(system[0], LinearTimeInvariant):
|
951
|
+
return system[0].to_zpk()
|
952
|
+
|
953
|
+
# Choose whether to inherit from `lti` or from `dlti`
|
954
|
+
if cls is ZerosPolesGain:
|
955
|
+
if kwargs.get('dt') is None:
|
956
|
+
return ZerosPolesGainContinuous.__new__(
|
957
|
+
ZerosPolesGainContinuous,
|
958
|
+
*system,
|
959
|
+
**kwargs)
|
960
|
+
else:
|
961
|
+
return ZerosPolesGainDiscrete.__new__(
|
962
|
+
ZerosPolesGainDiscrete,
|
963
|
+
*system,
|
964
|
+
**kwargs
|
965
|
+
)
|
966
|
+
|
967
|
+
# No special conversion needed
|
968
|
+
return super().__new__(cls)
|
969
|
+
|
970
|
+
def __init__(self, *system, **kwargs):
|
971
|
+
"""Initialize the zeros, poles, gain system."""
|
972
|
+
# Conversion of lti instances is handled in __new__
|
973
|
+
if isinstance(system[0], LinearTimeInvariant):
|
974
|
+
return
|
975
|
+
|
976
|
+
super().__init__(**kwargs)
|
977
|
+
|
978
|
+
self._zeros = None
|
979
|
+
self._poles = None
|
980
|
+
self._gain = None
|
981
|
+
|
982
|
+
self.zeros, self.poles, self.gain = system
|
983
|
+
|
984
|
+
def __repr__(self):
|
985
|
+
"""Return representation of the `ZerosPolesGain` system."""
|
986
|
+
return (
|
987
|
+
f'{self.__class__.__name__}(\n'
|
988
|
+
f'{repr(self.zeros)},\n'
|
989
|
+
f'{repr(self.poles)},\n'
|
990
|
+
f'{repr(self.gain)},\n'
|
991
|
+
f'dt: {repr(self.dt)}\n)'
|
992
|
+
)
|
993
|
+
|
994
|
+
@property
|
995
|
+
def zeros(self):
|
996
|
+
"""Zeros of the `ZerosPolesGain` system."""
|
997
|
+
return self._zeros
|
998
|
+
|
999
|
+
@zeros.setter
|
1000
|
+
def zeros(self, zeros):
|
1001
|
+
self._zeros = atleast_1d(zeros)
|
1002
|
+
|
1003
|
+
# Update dimensions
|
1004
|
+
if len(self.zeros.shape) > 1:
|
1005
|
+
self.outputs, self.inputs = self.zeros.shape
|
1006
|
+
else:
|
1007
|
+
self.outputs = 1
|
1008
|
+
self.inputs = 1
|
1009
|
+
|
1010
|
+
@property
|
1011
|
+
def poles(self):
|
1012
|
+
"""Poles of the `ZerosPolesGain` system."""
|
1013
|
+
return self._poles
|
1014
|
+
|
1015
|
+
@poles.setter
|
1016
|
+
def poles(self, poles):
|
1017
|
+
self._poles = atleast_1d(poles)
|
1018
|
+
|
1019
|
+
@property
|
1020
|
+
def gain(self):
|
1021
|
+
"""Gain of the `ZerosPolesGain` system."""
|
1022
|
+
return self._gain
|
1023
|
+
|
1024
|
+
@gain.setter
|
1025
|
+
def gain(self, gain):
|
1026
|
+
self._gain = gain
|
1027
|
+
|
1028
|
+
def _copy(self, system):
|
1029
|
+
"""
|
1030
|
+
Copy the parameters of another `ZerosPolesGain` system.
|
1031
|
+
|
1032
|
+
Parameters
|
1033
|
+
----------
|
1034
|
+
system : instance of `ZerosPolesGain`
|
1035
|
+
The zeros, poles gain system that is to be copied
|
1036
|
+
|
1037
|
+
"""
|
1038
|
+
self.poles = system.poles
|
1039
|
+
self.zeros = system.zeros
|
1040
|
+
self.gain = system.gain
|
1041
|
+
|
1042
|
+
def to_tf(self):
|
1043
|
+
"""
|
1044
|
+
Convert system representation to `TransferFunction`.
|
1045
|
+
|
1046
|
+
Returns
|
1047
|
+
-------
|
1048
|
+
sys : instance of `TransferFunction`
|
1049
|
+
Transfer function of the current system
|
1050
|
+
|
1051
|
+
"""
|
1052
|
+
return TransferFunction(*zpk2tf(self.zeros, self.poles, self.gain),
|
1053
|
+
**self._dt_dict)
|
1054
|
+
|
1055
|
+
def to_zpk(self):
|
1056
|
+
"""
|
1057
|
+
Return a copy of the current 'ZerosPolesGain' system.
|
1058
|
+
|
1059
|
+
Returns
|
1060
|
+
-------
|
1061
|
+
sys : instance of `ZerosPolesGain`
|
1062
|
+
The current system (copy)
|
1063
|
+
|
1064
|
+
"""
|
1065
|
+
return copy.deepcopy(self)
|
1066
|
+
|
1067
|
+
def to_ss(self):
|
1068
|
+
"""
|
1069
|
+
Convert system representation to `StateSpace`.
|
1070
|
+
|
1071
|
+
Returns
|
1072
|
+
-------
|
1073
|
+
sys : instance of `StateSpace`
|
1074
|
+
State space model of the current system
|
1075
|
+
|
1076
|
+
"""
|
1077
|
+
return StateSpace(*zpk2ss(self.zeros, self.poles, self.gain),
|
1078
|
+
**self._dt_dict)
|
1079
|
+
|
1080
|
+
|
1081
|
+
class ZerosPolesGainContinuous(ZerosPolesGain, lti):
|
1082
|
+
r"""
|
1083
|
+
Continuous-time Linear Time Invariant system in zeros, poles, gain form.
|
1084
|
+
|
1085
|
+
Represents the system as the continuous time transfer function
|
1086
|
+
:math:`H(s)=k \prod_i (s - z[i]) / \prod_j (s - p[j])`, where :math:`k` is
|
1087
|
+
the `gain`, :math:`z` are the `zeros` and :math:`p` are the `poles`.
|
1088
|
+
Continuous-time `ZerosPolesGain` systems inherit additional functionality
|
1089
|
+
from the `lti` class.
|
1090
|
+
|
1091
|
+
Parameters
|
1092
|
+
----------
|
1093
|
+
*system : arguments
|
1094
|
+
The `ZerosPolesGain` class can be instantiated with 1 or 3
|
1095
|
+
arguments. The following gives the number of input arguments and their
|
1096
|
+
interpretation:
|
1097
|
+
|
1098
|
+
* 1: `lti` system: (`StateSpace`, `TransferFunction` or
|
1099
|
+
`ZerosPolesGain`)
|
1100
|
+
* 3: array_like: (zeros, poles, gain)
|
1101
|
+
|
1102
|
+
See Also
|
1103
|
+
--------
|
1104
|
+
TransferFunction, StateSpace, lti
|
1105
|
+
zpk2ss, zpk2tf, zpk2sos
|
1106
|
+
|
1107
|
+
Notes
|
1108
|
+
-----
|
1109
|
+
Changing the value of properties that are not part of the
|
1110
|
+
`ZerosPolesGain` system representation (such as the `A`, `B`, `C`, `D`
|
1111
|
+
state-space matrices) is very inefficient and may lead to numerical
|
1112
|
+
inaccuracies. It is better to convert to the specific system
|
1113
|
+
representation first. For example, call ``sys = sys.to_ss()`` before
|
1114
|
+
accessing/changing the A, B, C, D system matrices.
|
1115
|
+
|
1116
|
+
Examples
|
1117
|
+
--------
|
1118
|
+
Construct the transfer function
|
1119
|
+
:math:`H(s)=\frac{5(s - 1)(s - 2)}{(s - 3)(s - 4)}`:
|
1120
|
+
|
1121
|
+
>>> from scipy import signal
|
1122
|
+
|
1123
|
+
>>> signal.ZerosPolesGain([1, 2], [3, 4], 5)
|
1124
|
+
ZerosPolesGainContinuous(
|
1125
|
+
array([1, 2]),
|
1126
|
+
array([3, 4]),
|
1127
|
+
5,
|
1128
|
+
dt: None
|
1129
|
+
)
|
1130
|
+
|
1131
|
+
"""
|
1132
|
+
|
1133
|
+
def to_discrete(self, dt, method='zoh', alpha=None):
|
1134
|
+
"""
|
1135
|
+
Returns the discretized `ZerosPolesGain` system.
|
1136
|
+
|
1137
|
+
Parameters: See `cont2discrete` for details.
|
1138
|
+
|
1139
|
+
Returns
|
1140
|
+
-------
|
1141
|
+
sys: instance of `dlti` and `ZerosPolesGain`
|
1142
|
+
"""
|
1143
|
+
return ZerosPolesGain(
|
1144
|
+
*cont2discrete((self.zeros, self.poles, self.gain),
|
1145
|
+
dt,
|
1146
|
+
method=method,
|
1147
|
+
alpha=alpha)[:-1],
|
1148
|
+
dt=dt)
|
1149
|
+
|
1150
|
+
|
1151
|
+
class ZerosPolesGainDiscrete(ZerosPolesGain, dlti):
|
1152
|
+
r"""
|
1153
|
+
Discrete-time Linear Time Invariant system in zeros, poles, gain form.
|
1154
|
+
|
1155
|
+
Represents the system as the discrete-time transfer function
|
1156
|
+
:math:`H(z)=k \prod_i (z - q[i]) / \prod_j (z - p[j])`, where :math:`k` is
|
1157
|
+
the `gain`, :math:`q` are the `zeros` and :math:`p` are the `poles`.
|
1158
|
+
Discrete-time `ZerosPolesGain` systems inherit additional functionality
|
1159
|
+
from the `dlti` class.
|
1160
|
+
|
1161
|
+
Parameters
|
1162
|
+
----------
|
1163
|
+
*system : arguments
|
1164
|
+
The `ZerosPolesGain` class can be instantiated with 1 or 3
|
1165
|
+
arguments. The following gives the number of input arguments and their
|
1166
|
+
interpretation:
|
1167
|
+
|
1168
|
+
* 1: `dlti` system: (`StateSpace`, `TransferFunction` or
|
1169
|
+
`ZerosPolesGain`)
|
1170
|
+
* 3: array_like: (zeros, poles, gain)
|
1171
|
+
dt: float, optional
|
1172
|
+
Sampling time [s] of the discrete-time systems. Defaults to `True`
|
1173
|
+
(unspecified sampling time). Must be specified as a keyword argument,
|
1174
|
+
for example, ``dt=0.1``.
|
1175
|
+
|
1176
|
+
See Also
|
1177
|
+
--------
|
1178
|
+
TransferFunction, StateSpace, dlti
|
1179
|
+
zpk2ss, zpk2tf, zpk2sos
|
1180
|
+
|
1181
|
+
Notes
|
1182
|
+
-----
|
1183
|
+
Changing the value of properties that are not part of the
|
1184
|
+
`ZerosPolesGain` system representation (such as the `A`, `B`, `C`, `D`
|
1185
|
+
state-space matrices) is very inefficient and may lead to numerical
|
1186
|
+
inaccuracies. It is better to convert to the specific system
|
1187
|
+
representation first. For example, call ``sys = sys.to_ss()`` before
|
1188
|
+
accessing/changing the A, B, C, D system matrices.
|
1189
|
+
|
1190
|
+
Examples
|
1191
|
+
--------
|
1192
|
+
Construct the transfer function
|
1193
|
+
:math:`H(s) = \frac{5(s - 1)(s - 2)}{(s - 3)(s - 4)}`:
|
1194
|
+
|
1195
|
+
>>> from scipy import signal
|
1196
|
+
|
1197
|
+
>>> signal.ZerosPolesGain([1, 2], [3, 4], 5)
|
1198
|
+
ZerosPolesGainContinuous(
|
1199
|
+
array([1, 2]),
|
1200
|
+
array([3, 4]),
|
1201
|
+
5,
|
1202
|
+
dt: None
|
1203
|
+
)
|
1204
|
+
|
1205
|
+
Construct the transfer function
|
1206
|
+
:math:`H(z) = \frac{5(z - 1)(z - 2)}{(z - 3)(z - 4)}` with a sampling time
|
1207
|
+
of 0.1 seconds:
|
1208
|
+
|
1209
|
+
>>> signal.ZerosPolesGain([1, 2], [3, 4], 5, dt=0.1)
|
1210
|
+
ZerosPolesGainDiscrete(
|
1211
|
+
array([1, 2]),
|
1212
|
+
array([3, 4]),
|
1213
|
+
5,
|
1214
|
+
dt: 0.1
|
1215
|
+
)
|
1216
|
+
|
1217
|
+
"""
|
1218
|
+
pass
|
1219
|
+
|
1220
|
+
|
1221
|
+
class StateSpace(LinearTimeInvariant):
|
1222
|
+
r"""
|
1223
|
+
Linear Time Invariant system in state-space form.
|
1224
|
+
|
1225
|
+
Represents the system as the continuous-time, first order differential
|
1226
|
+
equation :math:`\dot{x} = A x + B u` or the discrete-time difference
|
1227
|
+
equation :math:`x[k+1] = A x[k] + B u[k]`. `StateSpace` systems
|
1228
|
+
inherit additional functionality from the `lti`, respectively the `dlti`
|
1229
|
+
classes, depending on which system representation is used.
|
1230
|
+
|
1231
|
+
Parameters
|
1232
|
+
----------
|
1233
|
+
*system: arguments
|
1234
|
+
The `StateSpace` class can be instantiated with 1 or 4 arguments.
|
1235
|
+
The following gives the number of input arguments and their
|
1236
|
+
interpretation:
|
1237
|
+
|
1238
|
+
* 1: `lti` or `dlti` system: (`StateSpace`, `TransferFunction` or
|
1239
|
+
`ZerosPolesGain`)
|
1240
|
+
* 4: array_like: (A, B, C, D)
|
1241
|
+
dt: float, optional
|
1242
|
+
Sampling time [s] of the discrete-time systems. Defaults to `None`
|
1243
|
+
(continuous-time). Must be specified as a keyword argument, for
|
1244
|
+
example, ``dt=0.1``.
|
1245
|
+
|
1246
|
+
See Also
|
1247
|
+
--------
|
1248
|
+
TransferFunction, ZerosPolesGain, lti, dlti
|
1249
|
+
ss2zpk, ss2tf, zpk2sos
|
1250
|
+
|
1251
|
+
Notes
|
1252
|
+
-----
|
1253
|
+
Changing the value of properties that are not part of the
|
1254
|
+
`StateSpace` system representation (such as `zeros` or `poles`) is very
|
1255
|
+
inefficient and may lead to numerical inaccuracies. It is better to
|
1256
|
+
convert to the specific system representation first. For example, call
|
1257
|
+
``sys = sys.to_zpk()`` before accessing/changing the zeros, poles or gain.
|
1258
|
+
|
1259
|
+
Examples
|
1260
|
+
--------
|
1261
|
+
>>> from scipy import signal
|
1262
|
+
>>> import numpy as np
|
1263
|
+
>>> a = np.array([[0, 1], [0, 0]])
|
1264
|
+
>>> b = np.array([[0], [1]])
|
1265
|
+
>>> c = np.array([[1, 0]])
|
1266
|
+
>>> d = np.array([[0]])
|
1267
|
+
|
1268
|
+
>>> sys = signal.StateSpace(a, b, c, d)
|
1269
|
+
>>> print(sys)
|
1270
|
+
StateSpaceContinuous(
|
1271
|
+
array([[0, 1],
|
1272
|
+
[0, 0]]),
|
1273
|
+
array([[0],
|
1274
|
+
[1]]),
|
1275
|
+
array([[1, 0]]),
|
1276
|
+
array([[0]]),
|
1277
|
+
dt: None
|
1278
|
+
)
|
1279
|
+
|
1280
|
+
>>> sys.to_discrete(0.1)
|
1281
|
+
StateSpaceDiscrete(
|
1282
|
+
array([[1. , 0.1],
|
1283
|
+
[0. , 1. ]]),
|
1284
|
+
array([[0.005],
|
1285
|
+
[0.1 ]]),
|
1286
|
+
array([[1, 0]]),
|
1287
|
+
array([[0]]),
|
1288
|
+
dt: 0.1
|
1289
|
+
)
|
1290
|
+
|
1291
|
+
>>> a = np.array([[1, 0.1], [0, 1]])
|
1292
|
+
>>> b = np.array([[0.005], [0.1]])
|
1293
|
+
|
1294
|
+
>>> signal.StateSpace(a, b, c, d, dt=0.1)
|
1295
|
+
StateSpaceDiscrete(
|
1296
|
+
array([[1. , 0.1],
|
1297
|
+
[0. , 1. ]]),
|
1298
|
+
array([[0.005],
|
1299
|
+
[0.1 ]]),
|
1300
|
+
array([[1, 0]]),
|
1301
|
+
array([[0]]),
|
1302
|
+
dt: 0.1
|
1303
|
+
)
|
1304
|
+
|
1305
|
+
"""
|
1306
|
+
|
1307
|
+
# Override NumPy binary operations and ufuncs
|
1308
|
+
__array_priority__ = 100.0
|
1309
|
+
__array_ufunc__ = None
|
1310
|
+
|
1311
|
+
def __new__(cls, *system, **kwargs):
|
1312
|
+
"""Create new StateSpace object and settle inheritance."""
|
1313
|
+
# Handle object conversion if input is an instance of `lti`
|
1314
|
+
if len(system) == 1 and isinstance(system[0], LinearTimeInvariant):
|
1315
|
+
return system[0].to_ss()
|
1316
|
+
|
1317
|
+
# Choose whether to inherit from `lti` or from `dlti`
|
1318
|
+
if cls is StateSpace:
|
1319
|
+
if kwargs.get('dt') is None:
|
1320
|
+
return StateSpaceContinuous.__new__(StateSpaceContinuous,
|
1321
|
+
*system, **kwargs)
|
1322
|
+
else:
|
1323
|
+
return StateSpaceDiscrete.__new__(StateSpaceDiscrete,
|
1324
|
+
*system, **kwargs)
|
1325
|
+
|
1326
|
+
# No special conversion needed
|
1327
|
+
return super().__new__(cls)
|
1328
|
+
|
1329
|
+
def __init__(self, *system, **kwargs):
|
1330
|
+
"""Initialize the state space lti/dlti system."""
|
1331
|
+
# Conversion of lti instances is handled in __new__
|
1332
|
+
if isinstance(system[0], LinearTimeInvariant):
|
1333
|
+
return
|
1334
|
+
|
1335
|
+
# Remove system arguments, not needed by parents anymore
|
1336
|
+
super().__init__(**kwargs)
|
1337
|
+
|
1338
|
+
self._A = None
|
1339
|
+
self._B = None
|
1340
|
+
self._C = None
|
1341
|
+
self._D = None
|
1342
|
+
|
1343
|
+
self.A, self.B, self.C, self.D = abcd_normalize(*system)
|
1344
|
+
|
1345
|
+
def __repr__(self):
|
1346
|
+
"""Return representation of the `StateSpace` system."""
|
1347
|
+
return (
|
1348
|
+
f'{self.__class__.__name__}(\n'
|
1349
|
+
f'{repr(self.A)},\n'
|
1350
|
+
f'{repr(self.B)},\n'
|
1351
|
+
f'{repr(self.C)},\n'
|
1352
|
+
f'{repr(self.D)},\n'
|
1353
|
+
f'dt: {repr(self.dt)}\n)'
|
1354
|
+
)
|
1355
|
+
|
1356
|
+
def _check_binop_other(self, other):
|
1357
|
+
return isinstance(other, StateSpace | np.ndarray | float | complex |
|
1358
|
+
np.number | int)
|
1359
|
+
|
1360
|
+
def __mul__(self, other):
|
1361
|
+
"""
|
1362
|
+
Post-multiply another system or a scalar
|
1363
|
+
|
1364
|
+
Handles multiplication of systems in the sense of a frequency domain
|
1365
|
+
multiplication. That means, given two systems E1(s) and E2(s), their
|
1366
|
+
multiplication, H(s) = E1(s) * E2(s), means that applying H(s) to U(s)
|
1367
|
+
is equivalent to first applying E2(s), and then E1(s).
|
1368
|
+
|
1369
|
+
Notes
|
1370
|
+
-----
|
1371
|
+
For SISO systems the order of system application does not matter.
|
1372
|
+
However, for MIMO systems, where the two systems are matrices, the
|
1373
|
+
order above ensures standard Matrix multiplication rules apply.
|
1374
|
+
"""
|
1375
|
+
if not self._check_binop_other(other):
|
1376
|
+
return NotImplemented
|
1377
|
+
|
1378
|
+
if isinstance(other, StateSpace):
|
1379
|
+
# Disallow mix of discrete and continuous systems.
|
1380
|
+
if type(other) is not type(self):
|
1381
|
+
return NotImplemented
|
1382
|
+
|
1383
|
+
if self.dt != other.dt:
|
1384
|
+
raise TypeError('Cannot multiply systems with different `dt`.')
|
1385
|
+
|
1386
|
+
n1 = self.A.shape[0]
|
1387
|
+
n2 = other.A.shape[0]
|
1388
|
+
|
1389
|
+
# Interconnection of systems
|
1390
|
+
# x1' = A1 x1 + B1 u1
|
1391
|
+
# y1 = C1 x1 + D1 u1
|
1392
|
+
# x2' = A2 x2 + B2 y1
|
1393
|
+
# y2 = C2 x2 + D2 y1
|
1394
|
+
#
|
1395
|
+
# Plugging in with u1 = y2 yields
|
1396
|
+
# [x1'] [A1 B1*C2 ] [x1] [B1*D2]
|
1397
|
+
# [x2'] = [0 A2 ] [x2] + [B2 ] u2
|
1398
|
+
# [x1]
|
1399
|
+
# y2 = [C1 D1*C2] [x2] + D1*D2 u2
|
1400
|
+
a = np.vstack((np.hstack((self.A, np.dot(self.B, other.C))),
|
1401
|
+
np.hstack((zeros((n2, n1)), other.A))))
|
1402
|
+
b = np.vstack((np.dot(self.B, other.D), other.B))
|
1403
|
+
c = np.hstack((self.C, np.dot(self.D, other.C)))
|
1404
|
+
d = np.dot(self.D, other.D)
|
1405
|
+
else:
|
1406
|
+
# Assume that other is a scalar / matrix
|
1407
|
+
# For post multiplication the input gets scaled
|
1408
|
+
a = self.A
|
1409
|
+
b = np.dot(self.B, other)
|
1410
|
+
c = self.C
|
1411
|
+
d = np.dot(self.D, other)
|
1412
|
+
|
1413
|
+
common_dtype = np.result_type(a.dtype, b.dtype, c.dtype, d.dtype)
|
1414
|
+
return StateSpace(np.asarray(a, dtype=common_dtype),
|
1415
|
+
np.asarray(b, dtype=common_dtype),
|
1416
|
+
np.asarray(c, dtype=common_dtype),
|
1417
|
+
np.asarray(d, dtype=common_dtype),
|
1418
|
+
**self._dt_dict)
|
1419
|
+
|
1420
|
+
def __rmul__(self, other):
|
1421
|
+
"""Pre-multiply a scalar or matrix (but not StateSpace)"""
|
1422
|
+
if not self._check_binop_other(other) or isinstance(other, StateSpace):
|
1423
|
+
return NotImplemented
|
1424
|
+
|
1425
|
+
# For pre-multiplication only the output gets scaled
|
1426
|
+
a = self.A
|
1427
|
+
b = self.B
|
1428
|
+
c = np.dot(other, self.C)
|
1429
|
+
d = np.dot(other, self.D)
|
1430
|
+
|
1431
|
+
common_dtype = np.result_type(a.dtype, b.dtype, c.dtype, d.dtype)
|
1432
|
+
return StateSpace(np.asarray(a, dtype=common_dtype),
|
1433
|
+
np.asarray(b, dtype=common_dtype),
|
1434
|
+
np.asarray(c, dtype=common_dtype),
|
1435
|
+
np.asarray(d, dtype=common_dtype),
|
1436
|
+
**self._dt_dict)
|
1437
|
+
|
1438
|
+
def __neg__(self):
|
1439
|
+
"""Negate the system (equivalent to pre-multiplying by -1)."""
|
1440
|
+
return StateSpace(self.A, self.B, -self.C, -self.D, **self._dt_dict)
|
1441
|
+
|
1442
|
+
def __add__(self, other):
|
1443
|
+
"""
|
1444
|
+
Adds two systems in the sense of frequency domain addition.
|
1445
|
+
"""
|
1446
|
+
if not self._check_binop_other(other):
|
1447
|
+
return NotImplemented
|
1448
|
+
|
1449
|
+
if isinstance(other, StateSpace):
|
1450
|
+
# Disallow mix of discrete and continuous systems.
|
1451
|
+
if type(other) is not type(self):
|
1452
|
+
raise TypeError(f'Cannot add {type(self)} and {type(other)}')
|
1453
|
+
|
1454
|
+
if self.dt != other.dt:
|
1455
|
+
raise TypeError('Cannot add systems with different `dt`.')
|
1456
|
+
# Interconnection of systems
|
1457
|
+
# x1' = A1 x1 + B1 u
|
1458
|
+
# y1 = C1 x1 + D1 u
|
1459
|
+
# x2' = A2 x2 + B2 u
|
1460
|
+
# y2 = C2 x2 + D2 u
|
1461
|
+
# y = y1 + y2
|
1462
|
+
#
|
1463
|
+
# Plugging in yields
|
1464
|
+
# [x1'] [A1 0 ] [x1] [B1]
|
1465
|
+
# [x2'] = [0 A2] [x2] + [B2] u
|
1466
|
+
# [x1]
|
1467
|
+
# y = [C1 C2] [x2] + [D1 + D2] u
|
1468
|
+
a = linalg.block_diag(self.A, other.A)
|
1469
|
+
b = np.vstack((self.B, other.B))
|
1470
|
+
c = np.hstack((self.C, other.C))
|
1471
|
+
d = self.D + other.D
|
1472
|
+
else:
|
1473
|
+
other = np.atleast_2d(other)
|
1474
|
+
if self.D.shape == other.shape:
|
1475
|
+
# A scalar/matrix is really just a static system (A=0, B=0, C=0)
|
1476
|
+
a = self.A
|
1477
|
+
b = self.B
|
1478
|
+
c = self.C
|
1479
|
+
d = self.D + other
|
1480
|
+
else:
|
1481
|
+
raise ValueError("Cannot add systems with incompatible "
|
1482
|
+
f"dimensions ({self.D.shape} and {other.shape})")
|
1483
|
+
|
1484
|
+
common_dtype = np.result_type(a.dtype, b.dtype, c.dtype, d.dtype)
|
1485
|
+
return StateSpace(np.asarray(a, dtype=common_dtype),
|
1486
|
+
np.asarray(b, dtype=common_dtype),
|
1487
|
+
np.asarray(c, dtype=common_dtype),
|
1488
|
+
np.asarray(d, dtype=common_dtype),
|
1489
|
+
**self._dt_dict)
|
1490
|
+
|
1491
|
+
def __sub__(self, other):
|
1492
|
+
if not self._check_binop_other(other):
|
1493
|
+
return NotImplemented
|
1494
|
+
|
1495
|
+
return self.__add__(-other)
|
1496
|
+
|
1497
|
+
def __radd__(self, other):
|
1498
|
+
if not self._check_binop_other(other):
|
1499
|
+
return NotImplemented
|
1500
|
+
|
1501
|
+
return self.__add__(other)
|
1502
|
+
|
1503
|
+
def __rsub__(self, other):
|
1504
|
+
if not self._check_binop_other(other):
|
1505
|
+
return NotImplemented
|
1506
|
+
|
1507
|
+
return (-self).__add__(other)
|
1508
|
+
|
1509
|
+
def __truediv__(self, other):
|
1510
|
+
"""
|
1511
|
+
Divide by a scalar
|
1512
|
+
"""
|
1513
|
+
# Division by non-StateSpace scalars
|
1514
|
+
if not self._check_binop_other(other) or isinstance(other, StateSpace):
|
1515
|
+
return NotImplemented
|
1516
|
+
|
1517
|
+
if isinstance(other, np.ndarray) and other.ndim > 0:
|
1518
|
+
# It's ambiguous what this means, so disallow it
|
1519
|
+
raise ValueError("Cannot divide StateSpace by non-scalar numpy arrays")
|
1520
|
+
|
1521
|
+
return self.__mul__(1/other)
|
1522
|
+
|
1523
|
+
@property
|
1524
|
+
def A(self):
|
1525
|
+
"""State matrix of the `StateSpace` system."""
|
1526
|
+
return self._A
|
1527
|
+
|
1528
|
+
@A.setter
|
1529
|
+
def A(self, A):
|
1530
|
+
self._A = _atleast_2d_or_none(A)
|
1531
|
+
|
1532
|
+
@property
|
1533
|
+
def B(self):
|
1534
|
+
"""Input matrix of the `StateSpace` system."""
|
1535
|
+
return self._B
|
1536
|
+
|
1537
|
+
@B.setter
|
1538
|
+
def B(self, B):
|
1539
|
+
self._B = _atleast_2d_or_none(B)
|
1540
|
+
self.inputs = self.B.shape[-1]
|
1541
|
+
|
1542
|
+
@property
|
1543
|
+
def C(self):
|
1544
|
+
"""Output matrix of the `StateSpace` system."""
|
1545
|
+
return self._C
|
1546
|
+
|
1547
|
+
@C.setter
|
1548
|
+
def C(self, C):
|
1549
|
+
self._C = _atleast_2d_or_none(C)
|
1550
|
+
self.outputs = self.C.shape[0]
|
1551
|
+
|
1552
|
+
@property
|
1553
|
+
def D(self):
|
1554
|
+
"""Feedthrough matrix of the `StateSpace` system."""
|
1555
|
+
return self._D
|
1556
|
+
|
1557
|
+
@D.setter
|
1558
|
+
def D(self, D):
|
1559
|
+
self._D = _atleast_2d_or_none(D)
|
1560
|
+
|
1561
|
+
def _copy(self, system):
|
1562
|
+
"""
|
1563
|
+
Copy the parameters of another `StateSpace` system.
|
1564
|
+
|
1565
|
+
Parameters
|
1566
|
+
----------
|
1567
|
+
system : instance of `StateSpace`
|
1568
|
+
The state-space system that is to be copied
|
1569
|
+
|
1570
|
+
"""
|
1571
|
+
self.A = system.A
|
1572
|
+
self.B = system.B
|
1573
|
+
self.C = system.C
|
1574
|
+
self.D = system.D
|
1575
|
+
|
1576
|
+
def to_tf(self, **kwargs):
|
1577
|
+
"""
|
1578
|
+
Convert system representation to `TransferFunction`.
|
1579
|
+
|
1580
|
+
Parameters
|
1581
|
+
----------
|
1582
|
+
kwargs : dict, optional
|
1583
|
+
Additional keywords passed to `ss2zpk`
|
1584
|
+
|
1585
|
+
Returns
|
1586
|
+
-------
|
1587
|
+
sys : instance of `TransferFunction`
|
1588
|
+
Transfer function of the current system
|
1589
|
+
|
1590
|
+
"""
|
1591
|
+
return TransferFunction(*ss2tf(self._A, self._B, self._C, self._D,
|
1592
|
+
**kwargs), **self._dt_dict)
|
1593
|
+
|
1594
|
+
def to_zpk(self, **kwargs):
|
1595
|
+
"""
|
1596
|
+
Convert system representation to `ZerosPolesGain`.
|
1597
|
+
|
1598
|
+
Parameters
|
1599
|
+
----------
|
1600
|
+
kwargs : dict, optional
|
1601
|
+
Additional keywords passed to `ss2zpk`
|
1602
|
+
|
1603
|
+
Returns
|
1604
|
+
-------
|
1605
|
+
sys : instance of `ZerosPolesGain`
|
1606
|
+
Zeros, poles, gain representation of the current system
|
1607
|
+
|
1608
|
+
"""
|
1609
|
+
return ZerosPolesGain(*ss2zpk(self._A, self._B, self._C, self._D,
|
1610
|
+
**kwargs), **self._dt_dict)
|
1611
|
+
|
1612
|
+
def to_ss(self):
|
1613
|
+
"""
|
1614
|
+
Return a copy of the current `StateSpace` system.
|
1615
|
+
|
1616
|
+
Returns
|
1617
|
+
-------
|
1618
|
+
sys : instance of `StateSpace`
|
1619
|
+
The current system (copy)
|
1620
|
+
|
1621
|
+
"""
|
1622
|
+
return copy.deepcopy(self)
|
1623
|
+
|
1624
|
+
|
1625
|
+
class StateSpaceContinuous(StateSpace, lti):
|
1626
|
+
r"""
|
1627
|
+
Continuous-time Linear Time Invariant system in state-space form.
|
1628
|
+
|
1629
|
+
Represents the system as the continuous-time, first order differential
|
1630
|
+
equation :math:`\dot{x} = A x + B u`.
|
1631
|
+
Continuous-time `StateSpace` systems inherit additional functionality
|
1632
|
+
from the `lti` class.
|
1633
|
+
|
1634
|
+
Parameters
|
1635
|
+
----------
|
1636
|
+
*system: arguments
|
1637
|
+
The `StateSpace` class can be instantiated with 1 or 3 arguments.
|
1638
|
+
The following gives the number of input arguments and their
|
1639
|
+
interpretation:
|
1640
|
+
|
1641
|
+
* 1: `lti` system: (`StateSpace`, `TransferFunction` or
|
1642
|
+
`ZerosPolesGain`)
|
1643
|
+
* 4: array_like: (A, B, C, D)
|
1644
|
+
|
1645
|
+
See Also
|
1646
|
+
--------
|
1647
|
+
TransferFunction, ZerosPolesGain, lti
|
1648
|
+
ss2zpk, ss2tf, zpk2sos
|
1649
|
+
|
1650
|
+
Notes
|
1651
|
+
-----
|
1652
|
+
Changing the value of properties that are not part of the
|
1653
|
+
`StateSpace` system representation (such as `zeros` or `poles`) is very
|
1654
|
+
inefficient and may lead to numerical inaccuracies. It is better to
|
1655
|
+
convert to the specific system representation first. For example, call
|
1656
|
+
``sys = sys.to_zpk()`` before accessing/changing the zeros, poles or gain.
|
1657
|
+
|
1658
|
+
Examples
|
1659
|
+
--------
|
1660
|
+
>>> import numpy as np
|
1661
|
+
>>> from scipy import signal
|
1662
|
+
|
1663
|
+
>>> a = np.array([[0, 1], [0, 0]])
|
1664
|
+
>>> b = np.array([[0], [1]])
|
1665
|
+
>>> c = np.array([[1, 0]])
|
1666
|
+
>>> d = np.array([[0]])
|
1667
|
+
|
1668
|
+
>>> sys = signal.StateSpace(a, b, c, d)
|
1669
|
+
>>> print(sys)
|
1670
|
+
StateSpaceContinuous(
|
1671
|
+
array([[0, 1],
|
1672
|
+
[0, 0]]),
|
1673
|
+
array([[0],
|
1674
|
+
[1]]),
|
1675
|
+
array([[1, 0]]),
|
1676
|
+
array([[0]]),
|
1677
|
+
dt: None
|
1678
|
+
)
|
1679
|
+
|
1680
|
+
"""
|
1681
|
+
|
1682
|
+
def to_discrete(self, dt, method='zoh', alpha=None):
|
1683
|
+
"""
|
1684
|
+
Returns the discretized `StateSpace` system.
|
1685
|
+
|
1686
|
+
Parameters: See `cont2discrete` for details.
|
1687
|
+
|
1688
|
+
Returns
|
1689
|
+
-------
|
1690
|
+
sys: instance of `dlti` and `StateSpace`
|
1691
|
+
"""
|
1692
|
+
return StateSpace(*cont2discrete((self.A, self.B, self.C, self.D),
|
1693
|
+
dt,
|
1694
|
+
method=method,
|
1695
|
+
alpha=alpha)[:-1],
|
1696
|
+
dt=dt)
|
1697
|
+
|
1698
|
+
|
1699
|
+
class StateSpaceDiscrete(StateSpace, dlti):
|
1700
|
+
r"""
|
1701
|
+
Discrete-time Linear Time Invariant system in state-space form.
|
1702
|
+
|
1703
|
+
Represents the system as the discrete-time difference equation
|
1704
|
+
:math:`x[k+1] = A x[k] + B u[k]`.
|
1705
|
+
`StateSpace` systems inherit additional functionality from the `dlti`
|
1706
|
+
class.
|
1707
|
+
|
1708
|
+
Parameters
|
1709
|
+
----------
|
1710
|
+
*system: arguments
|
1711
|
+
The `StateSpace` class can be instantiated with 1 or 3 arguments.
|
1712
|
+
The following gives the number of input arguments and their
|
1713
|
+
interpretation:
|
1714
|
+
|
1715
|
+
* 1: `dlti` system: (`StateSpace`, `TransferFunction` or
|
1716
|
+
`ZerosPolesGain`)
|
1717
|
+
* 4: array_like: (A, B, C, D)
|
1718
|
+
dt: float, optional
|
1719
|
+
Sampling time [s] of the discrete-time systems. Defaults to `True`
|
1720
|
+
(unspecified sampling time). Must be specified as a keyword argument,
|
1721
|
+
for example, ``dt=0.1``.
|
1722
|
+
|
1723
|
+
See Also
|
1724
|
+
--------
|
1725
|
+
TransferFunction, ZerosPolesGain, dlti
|
1726
|
+
ss2zpk, ss2tf, zpk2sos
|
1727
|
+
|
1728
|
+
Notes
|
1729
|
+
-----
|
1730
|
+
Changing the value of properties that are not part of the
|
1731
|
+
`StateSpace` system representation (such as `zeros` or `poles`) is very
|
1732
|
+
inefficient and may lead to numerical inaccuracies. It is better to
|
1733
|
+
convert to the specific system representation first. For example, call
|
1734
|
+
``sys = sys.to_zpk()`` before accessing/changing the zeros, poles or gain.
|
1735
|
+
|
1736
|
+
Examples
|
1737
|
+
--------
|
1738
|
+
>>> import numpy as np
|
1739
|
+
>>> from scipy import signal
|
1740
|
+
|
1741
|
+
>>> a = np.array([[1, 0.1], [0, 1]])
|
1742
|
+
>>> b = np.array([[0.005], [0.1]])
|
1743
|
+
>>> c = np.array([[1, 0]])
|
1744
|
+
>>> d = np.array([[0]])
|
1745
|
+
|
1746
|
+
>>> signal.StateSpace(a, b, c, d, dt=0.1)
|
1747
|
+
StateSpaceDiscrete(
|
1748
|
+
array([[ 1. , 0.1],
|
1749
|
+
[ 0. , 1. ]]),
|
1750
|
+
array([[ 0.005],
|
1751
|
+
[ 0.1 ]]),
|
1752
|
+
array([[1, 0]]),
|
1753
|
+
array([[0]]),
|
1754
|
+
dt: 0.1
|
1755
|
+
)
|
1756
|
+
|
1757
|
+
"""
|
1758
|
+
pass
|
1759
|
+
|
1760
|
+
|
1761
|
+
def lsim(system, U, T, X0=None, interp=True):
|
1762
|
+
"""
|
1763
|
+
Simulate output of a continuous-time linear system.
|
1764
|
+
|
1765
|
+
Parameters
|
1766
|
+
----------
|
1767
|
+
system : an instance of the LTI class or a tuple describing the system.
|
1768
|
+
The following gives the number of elements in the tuple and
|
1769
|
+
the interpretation:
|
1770
|
+
|
1771
|
+
* 1: (instance of `lti`)
|
1772
|
+
* 2: (num, den)
|
1773
|
+
* 3: (zeros, poles, gain)
|
1774
|
+
* 4: (A, B, C, D)
|
1775
|
+
|
1776
|
+
U : array_like
|
1777
|
+
An input array describing the input at each time `T`
|
1778
|
+
(interpolation is assumed between given times). If there are
|
1779
|
+
multiple inputs, then each column of the rank-2 array
|
1780
|
+
represents an input. If U = 0 or None, a zero input is used.
|
1781
|
+
T : array_like
|
1782
|
+
The time steps at which the input is defined and at which the
|
1783
|
+
output is desired. Must be nonnegative, increasing, and equally spaced.
|
1784
|
+
X0 : array_like, optional
|
1785
|
+
The initial conditions on the state vector (zero by default).
|
1786
|
+
interp : bool, optional
|
1787
|
+
Whether to use linear (True, the default) or zero-order-hold (False)
|
1788
|
+
interpolation for the input array.
|
1789
|
+
|
1790
|
+
Returns
|
1791
|
+
-------
|
1792
|
+
T : 1D ndarray
|
1793
|
+
Time values for the output.
|
1794
|
+
yout : 1D ndarray
|
1795
|
+
System response.
|
1796
|
+
xout : ndarray
|
1797
|
+
Time evolution of the state vector.
|
1798
|
+
|
1799
|
+
Notes
|
1800
|
+
-----
|
1801
|
+
If (num, den) is passed in for ``system``, coefficients for both the
|
1802
|
+
numerator and denominator should be specified in descending exponent
|
1803
|
+
order (e.g. ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``).
|
1804
|
+
|
1805
|
+
Examples
|
1806
|
+
--------
|
1807
|
+
We'll use `lsim` to simulate an analog Bessel filter applied to
|
1808
|
+
a signal.
|
1809
|
+
|
1810
|
+
>>> import numpy as np
|
1811
|
+
>>> from scipy.signal import bessel, lsim
|
1812
|
+
>>> import matplotlib.pyplot as plt
|
1813
|
+
|
1814
|
+
Create a low-pass Bessel filter with a cutoff of 12 Hz.
|
1815
|
+
|
1816
|
+
>>> b, a = bessel(N=5, Wn=2*np.pi*12, btype='lowpass', analog=True)
|
1817
|
+
|
1818
|
+
Generate data to which the filter is applied.
|
1819
|
+
|
1820
|
+
>>> t = np.linspace(0, 1.25, 500, endpoint=False)
|
1821
|
+
|
1822
|
+
The input signal is the sum of three sinusoidal curves, with
|
1823
|
+
frequencies 4 Hz, 40 Hz, and 80 Hz. The filter should mostly
|
1824
|
+
eliminate the 40 Hz and 80 Hz components, leaving just the 4 Hz signal.
|
1825
|
+
|
1826
|
+
>>> u = (np.cos(2*np.pi*4*t) + 0.6*np.sin(2*np.pi*40*t) +
|
1827
|
+
... 0.5*np.cos(2*np.pi*80*t))
|
1828
|
+
|
1829
|
+
Simulate the filter with `lsim`.
|
1830
|
+
|
1831
|
+
>>> tout, yout, xout = lsim((b, a), U=u, T=t)
|
1832
|
+
|
1833
|
+
Plot the result.
|
1834
|
+
|
1835
|
+
>>> plt.plot(t, u, 'r', alpha=0.5, linewidth=1, label='input')
|
1836
|
+
>>> plt.plot(tout, yout, 'k', linewidth=1.5, label='output')
|
1837
|
+
>>> plt.legend(loc='best', shadow=True, framealpha=1)
|
1838
|
+
>>> plt.grid(alpha=0.3)
|
1839
|
+
>>> plt.xlabel('t')
|
1840
|
+
>>> plt.show()
|
1841
|
+
|
1842
|
+
In a second example, we simulate a double integrator ``y'' = u``, with
|
1843
|
+
a constant input ``u = 1``. We'll use the state space representation
|
1844
|
+
of the integrator.
|
1845
|
+
|
1846
|
+
>>> from scipy.signal import lti
|
1847
|
+
>>> A = np.array([[0.0, 1.0], [0.0, 0.0]])
|
1848
|
+
>>> B = np.array([[0.0], [1.0]])
|
1849
|
+
>>> C = np.array([[1.0, 0.0]])
|
1850
|
+
>>> D = 0.0
|
1851
|
+
>>> system = lti(A, B, C, D)
|
1852
|
+
|
1853
|
+
`t` and `u` define the time and input signal for the system to
|
1854
|
+
be simulated.
|
1855
|
+
|
1856
|
+
>>> t = np.linspace(0, 5, num=50)
|
1857
|
+
>>> u = np.ones_like(t)
|
1858
|
+
|
1859
|
+
Compute the simulation, and then plot `y`. As expected, the plot shows
|
1860
|
+
the curve ``y = 0.5*t**2``.
|
1861
|
+
|
1862
|
+
>>> tout, y, x = lsim(system, u, t)
|
1863
|
+
>>> plt.plot(t, y)
|
1864
|
+
>>> plt.grid(alpha=0.3)
|
1865
|
+
>>> plt.xlabel('t')
|
1866
|
+
>>> plt.show()
|
1867
|
+
|
1868
|
+
"""
|
1869
|
+
if isinstance(system, lti):
|
1870
|
+
sys = system._as_ss()
|
1871
|
+
elif isinstance(system, dlti):
|
1872
|
+
raise AttributeError('lsim can only be used with continuous-time '
|
1873
|
+
'systems.')
|
1874
|
+
else:
|
1875
|
+
sys = lti(*system)._as_ss()
|
1876
|
+
T = atleast_1d(T)
|
1877
|
+
if len(T.shape) != 1:
|
1878
|
+
raise ValueError("T must be a rank-1 array.")
|
1879
|
+
|
1880
|
+
A, B, C, D = map(np.asarray, (sys.A, sys.B, sys.C, sys.D))
|
1881
|
+
n_states = A.shape[0]
|
1882
|
+
n_inputs = B.shape[1]
|
1883
|
+
|
1884
|
+
n_steps = T.size
|
1885
|
+
if X0 is None:
|
1886
|
+
X0 = zeros(n_states, sys.A.dtype)
|
1887
|
+
xout = np.empty((n_steps, n_states), sys.A.dtype)
|
1888
|
+
|
1889
|
+
if T[0] == 0:
|
1890
|
+
xout[0] = X0
|
1891
|
+
elif T[0] > 0:
|
1892
|
+
# step forward to initial time, with zero input
|
1893
|
+
xout[0] = dot(X0, linalg.expm(transpose(A) * T[0]))
|
1894
|
+
else:
|
1895
|
+
raise ValueError("Initial time must be nonnegative")
|
1896
|
+
|
1897
|
+
no_input = (U is None or
|
1898
|
+
(isinstance(U, int | float) and U == 0.) or
|
1899
|
+
not np.any(U))
|
1900
|
+
|
1901
|
+
if n_steps == 1:
|
1902
|
+
yout = squeeze(xout @ C.T)
|
1903
|
+
if not no_input:
|
1904
|
+
yout += squeeze(U @ D.T)
|
1905
|
+
return T, yout, squeeze(xout)
|
1906
|
+
|
1907
|
+
dt = T[1] - T[0]
|
1908
|
+
if not np.allclose(np.diff(T), dt):
|
1909
|
+
raise ValueError("Time steps are not equally spaced.")
|
1910
|
+
|
1911
|
+
if no_input:
|
1912
|
+
# Zero input: just use matrix exponential
|
1913
|
+
# take transpose because state is a row vector
|
1914
|
+
expAT_dt = linalg.expm(A.T * dt)
|
1915
|
+
for i in range(1, n_steps):
|
1916
|
+
xout[i] = xout[i-1] @ expAT_dt
|
1917
|
+
yout = squeeze(xout @ C.T)
|
1918
|
+
return T, yout, squeeze(xout)
|
1919
|
+
|
1920
|
+
# Nonzero input
|
1921
|
+
U = atleast_1d(U)
|
1922
|
+
if U.ndim == 1:
|
1923
|
+
U = U[:, np.newaxis]
|
1924
|
+
|
1925
|
+
if U.shape[0] != n_steps:
|
1926
|
+
raise ValueError("U must have the same number of rows "
|
1927
|
+
"as elements in T.")
|
1928
|
+
|
1929
|
+
if U.shape[1] != n_inputs:
|
1930
|
+
raise ValueError("System does not define that many inputs.")
|
1931
|
+
|
1932
|
+
if not interp:
|
1933
|
+
# Zero-order hold
|
1934
|
+
# Algorithm: to integrate from time 0 to time dt, we solve
|
1935
|
+
# xdot = A x + B u, x(0) = x0
|
1936
|
+
# udot = 0, u(0) = u0.
|
1937
|
+
#
|
1938
|
+
# Solution is
|
1939
|
+
# [ x(dt) ] [ A*dt B*dt ] [ x0 ]
|
1940
|
+
# [ u(dt) ] = exp [ 0 0 ] [ u0 ]
|
1941
|
+
M = np.vstack([np.hstack([A * dt, B * dt]),
|
1942
|
+
np.zeros((n_inputs, n_states + n_inputs))])
|
1943
|
+
# transpose everything because the state and input are row vectors
|
1944
|
+
expMT = linalg.expm(M.T)
|
1945
|
+
Ad = expMT[:n_states, :n_states]
|
1946
|
+
Bd = expMT[n_states:, :n_states]
|
1947
|
+
for i in range(1, n_steps):
|
1948
|
+
xout[i] = xout[i-1] @ Ad + U[i-1] @ Bd
|
1949
|
+
else:
|
1950
|
+
# Linear interpolation between steps
|
1951
|
+
# Algorithm: to integrate from time 0 to time dt, with linear
|
1952
|
+
# interpolation between inputs u(0) = u0 and u(dt) = u1, we solve
|
1953
|
+
# xdot = A x + B u, x(0) = x0
|
1954
|
+
# udot = (u1 - u0) / dt, u(0) = u0.
|
1955
|
+
#
|
1956
|
+
# Solution is
|
1957
|
+
# [ x(dt) ] [ A*dt B*dt 0 ] [ x0 ]
|
1958
|
+
# [ u(dt) ] = exp [ 0 0 I ] [ u0 ]
|
1959
|
+
# [u1 - u0] [ 0 0 0 ] [u1 - u0]
|
1960
|
+
M = np.vstack([np.hstack([A * dt, B * dt,
|
1961
|
+
np.zeros((n_states, n_inputs))]),
|
1962
|
+
np.hstack([np.zeros((n_inputs, n_states + n_inputs)),
|
1963
|
+
np.identity(n_inputs)]),
|
1964
|
+
np.zeros((n_inputs, n_states + 2 * n_inputs))])
|
1965
|
+
expMT = linalg.expm(M.T)
|
1966
|
+
Ad = expMT[:n_states, :n_states]
|
1967
|
+
Bd1 = expMT[n_states+n_inputs:, :n_states]
|
1968
|
+
Bd0 = expMT[n_states:n_states + n_inputs, :n_states] - Bd1
|
1969
|
+
for i in range(1, n_steps):
|
1970
|
+
xout[i] = xout[i-1] @ Ad + U[i-1] @ Bd0 + U[i] @ Bd1
|
1971
|
+
|
1972
|
+
yout = squeeze(xout @ C.T) + squeeze(U @ D.T)
|
1973
|
+
return T, yout, squeeze(xout)
|
1974
|
+
|
1975
|
+
|
1976
|
+
def _default_response_times(A, n):
|
1977
|
+
"""Compute a reasonable set of time samples for the response time.
|
1978
|
+
|
1979
|
+
This function is used by `impulse` and `step` to compute the response time
|
1980
|
+
when the `T` argument to the function is None.
|
1981
|
+
|
1982
|
+
Parameters
|
1983
|
+
----------
|
1984
|
+
A : array_like
|
1985
|
+
The system matrix, which is square.
|
1986
|
+
n : int
|
1987
|
+
The number of time samples to generate.
|
1988
|
+
|
1989
|
+
Returns
|
1990
|
+
-------
|
1991
|
+
t : ndarray
|
1992
|
+
The 1-D array of length `n` of time samples at which the response
|
1993
|
+
is to be computed.
|
1994
|
+
"""
|
1995
|
+
# Create a reasonable time interval.
|
1996
|
+
# TODO: This could use some more work.
|
1997
|
+
# For example, what is expected when the system is unstable?
|
1998
|
+
vals = linalg.eigvals(A)
|
1999
|
+
r = min(abs(real(vals)))
|
2000
|
+
if r == 0.0:
|
2001
|
+
r = 1.0
|
2002
|
+
tc = 1.0 / r
|
2003
|
+
t = linspace(0.0, 7 * tc, n)
|
2004
|
+
return t
|
2005
|
+
|
2006
|
+
|
2007
|
+
def impulse(system, X0=None, T=None, N=None):
|
2008
|
+
"""Impulse response of continuous-time system.
|
2009
|
+
|
2010
|
+
Parameters
|
2011
|
+
----------
|
2012
|
+
system : an instance of the LTI class or a tuple of array_like
|
2013
|
+
describing the system.
|
2014
|
+
The following gives the number of elements in the tuple and
|
2015
|
+
the interpretation:
|
2016
|
+
|
2017
|
+
* 1 (instance of `lti`)
|
2018
|
+
* 2 (num, den)
|
2019
|
+
* 3 (zeros, poles, gain)
|
2020
|
+
* 4 (A, B, C, D)
|
2021
|
+
|
2022
|
+
X0 : array_like, optional
|
2023
|
+
Initial state-vector. Defaults to zero.
|
2024
|
+
T : array_like, optional
|
2025
|
+
Time points. Computed if not given.
|
2026
|
+
N : int, optional
|
2027
|
+
The number of time points to compute (if `T` is not given).
|
2028
|
+
|
2029
|
+
Returns
|
2030
|
+
-------
|
2031
|
+
T : ndarray
|
2032
|
+
A 1-D array of time points.
|
2033
|
+
yout : ndarray
|
2034
|
+
A 1-D array containing the impulse response of the system (except for
|
2035
|
+
singularities at zero).
|
2036
|
+
|
2037
|
+
Notes
|
2038
|
+
-----
|
2039
|
+
If (num, den) is passed in for ``system``, coefficients for both the
|
2040
|
+
numerator and denominator should be specified in descending exponent
|
2041
|
+
order (e.g. ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``).
|
2042
|
+
|
2043
|
+
Examples
|
2044
|
+
--------
|
2045
|
+
Compute the impulse response of a second order system with a repeated
|
2046
|
+
root: ``x''(t) + 2*x'(t) + x(t) = u(t)``
|
2047
|
+
|
2048
|
+
>>> from scipy import signal
|
2049
|
+
>>> system = ([1.0], [1.0, 2.0, 1.0])
|
2050
|
+
>>> t, y = signal.impulse(system)
|
2051
|
+
>>> import matplotlib.pyplot as plt
|
2052
|
+
>>> plt.plot(t, y)
|
2053
|
+
|
2054
|
+
"""
|
2055
|
+
if isinstance(system, lti):
|
2056
|
+
sys = system._as_ss()
|
2057
|
+
elif isinstance(system, dlti):
|
2058
|
+
raise AttributeError('impulse can only be used with continuous-time '
|
2059
|
+
'systems.')
|
2060
|
+
else:
|
2061
|
+
sys = lti(*system)._as_ss()
|
2062
|
+
if X0 is None:
|
2063
|
+
X = squeeze(sys.B)
|
2064
|
+
else:
|
2065
|
+
X = squeeze(sys.B + X0)
|
2066
|
+
if N is None:
|
2067
|
+
N = 100
|
2068
|
+
if T is None:
|
2069
|
+
T = _default_response_times(sys.A, N)
|
2070
|
+
else:
|
2071
|
+
T = asarray(T)
|
2072
|
+
|
2073
|
+
_, h, _ = lsim(sys, 0., T, X, interp=False)
|
2074
|
+
return T, h
|
2075
|
+
|
2076
|
+
|
2077
|
+
def step(system, X0=None, T=None, N=None):
|
2078
|
+
"""Step response of continuous-time system.
|
2079
|
+
|
2080
|
+
Parameters
|
2081
|
+
----------
|
2082
|
+
system : an instance of the LTI class or a tuple of array_like
|
2083
|
+
describing the system.
|
2084
|
+
The following gives the number of elements in the tuple and
|
2085
|
+
the interpretation:
|
2086
|
+
|
2087
|
+
* 1 (instance of `lti`)
|
2088
|
+
* 2 (num, den)
|
2089
|
+
* 3 (zeros, poles, gain)
|
2090
|
+
* 4 (A, B, C, D)
|
2091
|
+
|
2092
|
+
X0 : array_like, optional
|
2093
|
+
Initial state-vector (default is zero).
|
2094
|
+
T : array_like, optional
|
2095
|
+
Time points (computed if not given).
|
2096
|
+
N : int, optional
|
2097
|
+
Number of time points to compute if `T` is not given.
|
2098
|
+
|
2099
|
+
Returns
|
2100
|
+
-------
|
2101
|
+
T : 1D ndarray
|
2102
|
+
Output time points.
|
2103
|
+
yout : 1D ndarray
|
2104
|
+
Step response of system.
|
2105
|
+
|
2106
|
+
|
2107
|
+
Notes
|
2108
|
+
-----
|
2109
|
+
If (num, den) is passed in for ``system``, coefficients for both the
|
2110
|
+
numerator and denominator should be specified in descending exponent
|
2111
|
+
order (e.g. ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``).
|
2112
|
+
|
2113
|
+
Examples
|
2114
|
+
--------
|
2115
|
+
>>> from scipy import signal
|
2116
|
+
>>> import matplotlib.pyplot as plt
|
2117
|
+
>>> lti = signal.lti([1.0], [1.0, 1.0])
|
2118
|
+
>>> t, y = signal.step(lti)
|
2119
|
+
>>> plt.plot(t, y)
|
2120
|
+
>>> plt.xlabel('Time [s]')
|
2121
|
+
>>> plt.ylabel('Amplitude')
|
2122
|
+
>>> plt.title('Step response for 1. Order Lowpass')
|
2123
|
+
>>> plt.grid()
|
2124
|
+
|
2125
|
+
"""
|
2126
|
+
if isinstance(system, lti):
|
2127
|
+
sys = system._as_ss()
|
2128
|
+
elif isinstance(system, dlti):
|
2129
|
+
raise AttributeError('step can only be used with continuous-time '
|
2130
|
+
'systems.')
|
2131
|
+
else:
|
2132
|
+
sys = lti(*system)._as_ss()
|
2133
|
+
if N is None:
|
2134
|
+
N = 100
|
2135
|
+
if T is None:
|
2136
|
+
T = _default_response_times(sys.A, N)
|
2137
|
+
else:
|
2138
|
+
T = asarray(T)
|
2139
|
+
U = ones(T.shape, sys.A.dtype)
|
2140
|
+
vals = lsim(sys, U, T, X0=X0, interp=False)
|
2141
|
+
return vals[0], vals[1]
|
2142
|
+
|
2143
|
+
|
2144
|
+
def bode(system, w=None, n=100):
|
2145
|
+
"""
|
2146
|
+
Calculate Bode magnitude and phase data of a continuous-time system.
|
2147
|
+
|
2148
|
+
Parameters
|
2149
|
+
----------
|
2150
|
+
system : an instance of the LTI class or a tuple describing the system.
|
2151
|
+
The following gives the number of elements in the tuple and
|
2152
|
+
the interpretation:
|
2153
|
+
|
2154
|
+
* 1 (instance of `lti`)
|
2155
|
+
* 2 (num, den)
|
2156
|
+
* 3 (zeros, poles, gain)
|
2157
|
+
* 4 (A, B, C, D)
|
2158
|
+
|
2159
|
+
w : array_like, optional
|
2160
|
+
Array of frequencies (in rad/s). Magnitude and phase data is calculated
|
2161
|
+
for every value in this array. If not given a reasonable set will be
|
2162
|
+
calculated.
|
2163
|
+
n : int, optional
|
2164
|
+
Number of frequency points to compute if `w` is not given. The `n`
|
2165
|
+
frequencies are logarithmically spaced in an interval chosen to
|
2166
|
+
include the influence of the poles and zeros of the system.
|
2167
|
+
|
2168
|
+
Returns
|
2169
|
+
-------
|
2170
|
+
w : 1D ndarray
|
2171
|
+
Frequency array [rad/s]
|
2172
|
+
mag : 1D ndarray
|
2173
|
+
Magnitude array [dB]
|
2174
|
+
phase : 1D ndarray
|
2175
|
+
Phase array [deg]
|
2176
|
+
|
2177
|
+
Notes
|
2178
|
+
-----
|
2179
|
+
If (num, den) is passed in for ``system``, coefficients for both the
|
2180
|
+
numerator and denominator should be specified in descending exponent
|
2181
|
+
order (e.g. ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``).
|
2182
|
+
|
2183
|
+
.. versionadded:: 0.11.0
|
2184
|
+
|
2185
|
+
Examples
|
2186
|
+
--------
|
2187
|
+
>>> from scipy import signal
|
2188
|
+
>>> import matplotlib.pyplot as plt
|
2189
|
+
|
2190
|
+
>>> sys = signal.TransferFunction([1], [1, 1])
|
2191
|
+
>>> w, mag, phase = signal.bode(sys)
|
2192
|
+
|
2193
|
+
>>> plt.figure()
|
2194
|
+
>>> plt.semilogx(w, mag) # Bode magnitude plot
|
2195
|
+
>>> plt.figure()
|
2196
|
+
>>> plt.semilogx(w, phase) # Bode phase plot
|
2197
|
+
>>> plt.show()
|
2198
|
+
|
2199
|
+
"""
|
2200
|
+
w, y = freqresp(system, w=w, n=n)
|
2201
|
+
|
2202
|
+
mag = 20.0 * np.log10(abs(y))
|
2203
|
+
phase = np.unwrap(np.arctan2(y.imag, y.real)) * 180.0 / np.pi
|
2204
|
+
|
2205
|
+
return w, mag, phase
|
2206
|
+
|
2207
|
+
|
2208
|
+
def freqresp(system, w=None, n=10000):
|
2209
|
+
r"""Calculate the frequency response of a continuous-time system.
|
2210
|
+
|
2211
|
+
Parameters
|
2212
|
+
----------
|
2213
|
+
system : an instance of the `lti` class or a tuple describing the system.
|
2214
|
+
The following gives the number of elements in the tuple and
|
2215
|
+
the interpretation:
|
2216
|
+
|
2217
|
+
* 1 (instance of `lti`)
|
2218
|
+
* 2 (num, den)
|
2219
|
+
* 3 (zeros, poles, gain)
|
2220
|
+
* 4 (A, B, C, D)
|
2221
|
+
|
2222
|
+
w : array_like, optional
|
2223
|
+
Array of frequencies (in rad/s). Magnitude and phase data is
|
2224
|
+
calculated for every value in this array. If not given, a reasonable
|
2225
|
+
set will be calculated.
|
2226
|
+
n : int, optional
|
2227
|
+
Number of frequency points to compute if `w` is not given. The `n`
|
2228
|
+
frequencies are logarithmically spaced in an interval chosen to
|
2229
|
+
include the influence of the poles and zeros of the system.
|
2230
|
+
|
2231
|
+
Returns
|
2232
|
+
-------
|
2233
|
+
w : 1D ndarray
|
2234
|
+
Frequency array [rad/s]
|
2235
|
+
H : 1D ndarray
|
2236
|
+
Array of complex magnitude values
|
2237
|
+
|
2238
|
+
Notes
|
2239
|
+
-----
|
2240
|
+
If (num, den) is passed in for ``system``, coefficients for both the
|
2241
|
+
numerator and denominator should be specified in descending exponent
|
2242
|
+
order (e.g. ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``).
|
2243
|
+
|
2244
|
+
Examples
|
2245
|
+
--------
|
2246
|
+
Generating the Nyquist plot of a transfer function
|
2247
|
+
|
2248
|
+
>>> from scipy import signal
|
2249
|
+
>>> import matplotlib.pyplot as plt
|
2250
|
+
|
2251
|
+
Construct the transfer function :math:`H(s) = \frac{5}{(s-1)^3}`:
|
2252
|
+
|
2253
|
+
>>> s1 = signal.ZerosPolesGain([], [1, 1, 1], [5])
|
2254
|
+
|
2255
|
+
>>> w, H = signal.freqresp(s1)
|
2256
|
+
|
2257
|
+
>>> plt.figure()
|
2258
|
+
>>> plt.plot(H.real, H.imag, "b")
|
2259
|
+
>>> plt.plot(H.real, -H.imag, "r")
|
2260
|
+
>>> plt.show()
|
2261
|
+
"""
|
2262
|
+
if isinstance(system, lti):
|
2263
|
+
if isinstance(system, TransferFunction | ZerosPolesGain):
|
2264
|
+
sys = system
|
2265
|
+
else:
|
2266
|
+
sys = system._as_zpk()
|
2267
|
+
elif isinstance(system, dlti):
|
2268
|
+
raise AttributeError('freqresp can only be used with continuous-time '
|
2269
|
+
'systems.')
|
2270
|
+
else:
|
2271
|
+
sys = lti(*system)._as_zpk()
|
2272
|
+
|
2273
|
+
if sys.inputs != 1 or sys.outputs != 1:
|
2274
|
+
raise ValueError("freqresp() requires a SISO (single input, single "
|
2275
|
+
"output) system.")
|
2276
|
+
|
2277
|
+
if w is not None:
|
2278
|
+
worN = w
|
2279
|
+
else:
|
2280
|
+
worN = n
|
2281
|
+
|
2282
|
+
if isinstance(sys, TransferFunction):
|
2283
|
+
# In the call to freqs(), sys.num.ravel() is used because there are
|
2284
|
+
# cases where sys.num is a 2-D array with a single row.
|
2285
|
+
w, h = freqs(sys.num.ravel(), sys.den, worN=worN)
|
2286
|
+
|
2287
|
+
elif isinstance(sys, ZerosPolesGain):
|
2288
|
+
w, h = freqs_zpk(sys.zeros, sys.poles, sys.gain, worN=worN)
|
2289
|
+
|
2290
|
+
return w, h
|
2291
|
+
|
2292
|
+
|
2293
|
+
# This class will be used by place_poles to return its results
|
2294
|
+
# see https://code.activestate.com/recipes/52308/
|
2295
|
+
class Bunch:
|
2296
|
+
def __init__(self, **kwds):
|
2297
|
+
self.__dict__.update(kwds)
|
2298
|
+
|
2299
|
+
|
2300
|
+
def _valid_inputs(A, B, poles, method, rtol, maxiter):
|
2301
|
+
"""
|
2302
|
+
Check the poles come in complex conjugate pairs
|
2303
|
+
Check shapes of A, B and poles are compatible.
|
2304
|
+
Check the method chosen is compatible with provided poles
|
2305
|
+
Return update method to use and ordered poles
|
2306
|
+
|
2307
|
+
"""
|
2308
|
+
poles = np.asarray(poles)
|
2309
|
+
if poles.ndim > 1:
|
2310
|
+
raise ValueError("Poles must be a 1D array like.")
|
2311
|
+
# Will raise ValueError if poles do not come in complex conjugates pairs
|
2312
|
+
poles = _order_complex_poles(poles)
|
2313
|
+
if A.ndim > 2:
|
2314
|
+
raise ValueError("A must be a 2D array/matrix.")
|
2315
|
+
if B.ndim > 2:
|
2316
|
+
raise ValueError("B must be a 2D array/matrix")
|
2317
|
+
if A.shape[0] != A.shape[1]:
|
2318
|
+
raise ValueError("A must be square")
|
2319
|
+
if len(poles) > A.shape[0]:
|
2320
|
+
raise ValueError(
|
2321
|
+
f"maximum number of poles is {A.shape[0]} but you asked for {len(poles)}"
|
2322
|
+
)
|
2323
|
+
if len(poles) < A.shape[0]:
|
2324
|
+
raise ValueError(
|
2325
|
+
f"number of poles is {len(poles)} but you should provide {A.shape[0]}"
|
2326
|
+
)
|
2327
|
+
r = np.linalg.matrix_rank(B)
|
2328
|
+
for p in poles:
|
2329
|
+
if sum(p == poles) > r:
|
2330
|
+
raise ValueError("at least one of the requested pole is repeated "
|
2331
|
+
"more than rank(B) times")
|
2332
|
+
# Choose update method
|
2333
|
+
update_loop = _YT_loop
|
2334
|
+
if method not in ('KNV0','YT'):
|
2335
|
+
raise ValueError("The method keyword must be one of 'YT' or 'KNV0'")
|
2336
|
+
|
2337
|
+
if method == "KNV0":
|
2338
|
+
update_loop = _KNV0_loop
|
2339
|
+
if not all(np.isreal(poles)):
|
2340
|
+
raise ValueError("Complex poles are not supported by KNV0")
|
2341
|
+
|
2342
|
+
if maxiter < 1:
|
2343
|
+
raise ValueError("maxiter must be at least equal to 1")
|
2344
|
+
|
2345
|
+
# We do not check rtol <= 0 as the user can use a negative rtol to
|
2346
|
+
# force maxiter iterations
|
2347
|
+
if rtol > 1:
|
2348
|
+
raise ValueError("rtol can not be greater than 1")
|
2349
|
+
|
2350
|
+
return update_loop, poles
|
2351
|
+
|
2352
|
+
|
2353
|
+
def _order_complex_poles(poles):
|
2354
|
+
"""
|
2355
|
+
Check we have complex conjugates pairs and reorder P according to YT, ie
|
2356
|
+
real_poles, complex_i, conjugate complex_i, ....
|
2357
|
+
The lexicographic sort on the complex poles is added to help the user to
|
2358
|
+
compare sets of poles.
|
2359
|
+
"""
|
2360
|
+
ordered_poles = np.sort(poles[np.isreal(poles)])
|
2361
|
+
im_poles = []
|
2362
|
+
for p in np.sort(poles[np.imag(poles) < 0]):
|
2363
|
+
if np.conj(p) in poles:
|
2364
|
+
im_poles.extend((p, np.conj(p)))
|
2365
|
+
|
2366
|
+
ordered_poles = np.hstack((ordered_poles, im_poles))
|
2367
|
+
|
2368
|
+
if poles.shape[0] != len(ordered_poles):
|
2369
|
+
raise ValueError("Complex poles must come with their conjugates")
|
2370
|
+
return ordered_poles
|
2371
|
+
|
2372
|
+
|
2373
|
+
def _KNV0(B, ker_pole, transfer_matrix, j, poles):
|
2374
|
+
"""
|
2375
|
+
Algorithm "KNV0" Kautsky et Al. Robust pole
|
2376
|
+
assignment in linear state feedback, Int journal of Control
|
2377
|
+
1985, vol 41 p 1129->1155
|
2378
|
+
https://la.epfl.ch/files/content/sites/la/files/
|
2379
|
+
users/105941/public/KautskyNicholsDooren
|
2380
|
+
|
2381
|
+
"""
|
2382
|
+
# Remove xj form the base
|
2383
|
+
transfer_matrix_not_j = np.delete(transfer_matrix, j, axis=1)
|
2384
|
+
# If we QR this matrix in full mode Q=Q0|Q1
|
2385
|
+
# then Q1 will be a single column orthogonal to
|
2386
|
+
# Q0, that's what we are looking for !
|
2387
|
+
|
2388
|
+
# After merge of gh-4249 great speed improvements could be achieved
|
2389
|
+
# using QR updates instead of full QR in the line below
|
2390
|
+
|
2391
|
+
# To debug with numpy qr uncomment the line below
|
2392
|
+
# Q, R = np.linalg.qr(transfer_matrix_not_j, mode="complete")
|
2393
|
+
Q, R = s_qr(transfer_matrix_not_j, mode="full")
|
2394
|
+
|
2395
|
+
mat_ker_pj = np.dot(ker_pole[j], ker_pole[j].T)
|
2396
|
+
yj = np.dot(mat_ker_pj, Q[:, -1])
|
2397
|
+
|
2398
|
+
# If Q[:, -1] is "almost" orthogonal to ker_pole[j] its
|
2399
|
+
# projection into ker_pole[j] will yield a vector
|
2400
|
+
# close to 0. As we are looking for a vector in ker_pole[j]
|
2401
|
+
# simply stick with transfer_matrix[:, j] (unless someone provides me with
|
2402
|
+
# a better choice ?)
|
2403
|
+
|
2404
|
+
if not np.allclose(yj, 0):
|
2405
|
+
xj = yj/np.linalg.norm(yj)
|
2406
|
+
transfer_matrix[:, j] = xj
|
2407
|
+
|
2408
|
+
# KNV does not support complex poles, using YT technique the two lines
|
2409
|
+
# below seem to work 9 out of 10 times but it is not reliable enough:
|
2410
|
+
# transfer_matrix[:, j]=real(xj)
|
2411
|
+
# transfer_matrix[:, j+1]=imag(xj)
|
2412
|
+
|
2413
|
+
# Add this at the beginning of this function if you wish to test
|
2414
|
+
# complex support:
|
2415
|
+
# if ~np.isreal(P[j]) and (j>=B.shape[0]-1 or P[j]!=np.conj(P[j+1])):
|
2416
|
+
# return
|
2417
|
+
# Problems arise when imag(xj)=>0 I have no idea on how to fix this
|
2418
|
+
|
2419
|
+
|
2420
|
+
def _YT_real(ker_pole, Q, transfer_matrix, i, j):
|
2421
|
+
"""
|
2422
|
+
Applies algorithm from YT section 6.1 page 19 related to real pairs
|
2423
|
+
"""
|
2424
|
+
# step 1 page 19
|
2425
|
+
u = Q[:, -2, np.newaxis]
|
2426
|
+
v = Q[:, -1, np.newaxis]
|
2427
|
+
|
2428
|
+
# step 2 page 19
|
2429
|
+
m = np.dot(np.dot(ker_pole[i].T, np.dot(u, v.T) -
|
2430
|
+
np.dot(v, u.T)), ker_pole[j])
|
2431
|
+
|
2432
|
+
# step 3 page 19
|
2433
|
+
um, sm, vm = np.linalg.svd(m)
|
2434
|
+
# mu1, mu2 two first columns of U => 2 first lines of U.T
|
2435
|
+
mu1, mu2 = um.T[:2, :, np.newaxis]
|
2436
|
+
# VM is V.T with numpy we want the first two lines of V.T
|
2437
|
+
nu1, nu2 = vm[:2, :, np.newaxis]
|
2438
|
+
|
2439
|
+
# what follows is a rough python translation of the formulas
|
2440
|
+
# in section 6.2 page 20 (step 4)
|
2441
|
+
transfer_matrix_j_mo_transfer_matrix_j = np.vstack((
|
2442
|
+
transfer_matrix[:, i, np.newaxis],
|
2443
|
+
transfer_matrix[:, j, np.newaxis]))
|
2444
|
+
|
2445
|
+
if not np.allclose(sm[0], sm[1]):
|
2446
|
+
ker_pole_imo_mu1 = np.dot(ker_pole[i], mu1)
|
2447
|
+
ker_pole_i_nu1 = np.dot(ker_pole[j], nu1)
|
2448
|
+
ker_pole_mu_nu = np.vstack((ker_pole_imo_mu1, ker_pole_i_nu1))
|
2449
|
+
else:
|
2450
|
+
ker_pole_ij = np.vstack((
|
2451
|
+
np.hstack((ker_pole[i],
|
2452
|
+
np.zeros(ker_pole[i].shape))),
|
2453
|
+
np.hstack((np.zeros(ker_pole[j].shape),
|
2454
|
+
ker_pole[j]))
|
2455
|
+
))
|
2456
|
+
mu_nu_matrix = np.vstack(
|
2457
|
+
(np.hstack((mu1, mu2)), np.hstack((nu1, nu2)))
|
2458
|
+
)
|
2459
|
+
ker_pole_mu_nu = np.dot(ker_pole_ij, mu_nu_matrix)
|
2460
|
+
transfer_matrix_ij = np.dot(np.dot(ker_pole_mu_nu, ker_pole_mu_nu.T),
|
2461
|
+
transfer_matrix_j_mo_transfer_matrix_j)
|
2462
|
+
if not np.allclose(transfer_matrix_ij, 0):
|
2463
|
+
transfer_matrix_ij = (np.sqrt(2)*transfer_matrix_ij /
|
2464
|
+
np.linalg.norm(transfer_matrix_ij))
|
2465
|
+
transfer_matrix[:, i] = transfer_matrix_ij[
|
2466
|
+
:transfer_matrix[:, i].shape[0], 0
|
2467
|
+
]
|
2468
|
+
transfer_matrix[:, j] = transfer_matrix_ij[
|
2469
|
+
transfer_matrix[:, i].shape[0]:, 0
|
2470
|
+
]
|
2471
|
+
else:
|
2472
|
+
# As in knv0 if transfer_matrix_j_mo_transfer_matrix_j is orthogonal to
|
2473
|
+
# Vect{ker_pole_mu_nu} assign transfer_matrixi/transfer_matrix_j to
|
2474
|
+
# ker_pole_mu_nu and iterate. As we are looking for a vector in
|
2475
|
+
# Vect{Matker_pole_MU_NU} (see section 6.1 page 19) this might help
|
2476
|
+
# (that's a guess, not a claim !)
|
2477
|
+
transfer_matrix[:, i] = ker_pole_mu_nu[
|
2478
|
+
:transfer_matrix[:, i].shape[0], 0
|
2479
|
+
]
|
2480
|
+
transfer_matrix[:, j] = ker_pole_mu_nu[
|
2481
|
+
transfer_matrix[:, i].shape[0]:, 0
|
2482
|
+
]
|
2483
|
+
|
2484
|
+
|
2485
|
+
def _YT_complex(ker_pole, Q, transfer_matrix, i, j):
|
2486
|
+
"""
|
2487
|
+
Applies algorithm from YT section 6.2 page 20 related to complex pairs
|
2488
|
+
"""
|
2489
|
+
# step 1 page 20
|
2490
|
+
ur = np.sqrt(2)*Q[:, -2, np.newaxis]
|
2491
|
+
ui = np.sqrt(2)*Q[:, -1, np.newaxis]
|
2492
|
+
u = ur + 1j*ui
|
2493
|
+
|
2494
|
+
# step 2 page 20
|
2495
|
+
ker_pole_ij = ker_pole[i]
|
2496
|
+
m = np.dot(np.dot(np.conj(ker_pole_ij.T), np.dot(u, np.conj(u).T) -
|
2497
|
+
np.dot(np.conj(u), u.T)), ker_pole_ij)
|
2498
|
+
|
2499
|
+
# step 3 page 20
|
2500
|
+
e_val, e_vec = np.linalg.eig(m)
|
2501
|
+
# sort eigenvalues according to their module
|
2502
|
+
e_val_idx = np.argsort(np.abs(e_val))
|
2503
|
+
mu1 = e_vec[:, e_val_idx[-1], np.newaxis]
|
2504
|
+
mu2 = e_vec[:, e_val_idx[-2], np.newaxis]
|
2505
|
+
|
2506
|
+
# what follows is a rough python translation of the formulas
|
2507
|
+
# in section 6.2 page 20 (step 4)
|
2508
|
+
|
2509
|
+
# remember transfer_matrix_i has been split as
|
2510
|
+
# transfer_matrix[i]=real(transfer_matrix_i) and
|
2511
|
+
# transfer_matrix[j]=imag(transfer_matrix_i)
|
2512
|
+
transfer_matrix_j_mo_transfer_matrix_j = (
|
2513
|
+
transfer_matrix[:, i, np.newaxis] +
|
2514
|
+
1j*transfer_matrix[:, j, np.newaxis]
|
2515
|
+
)
|
2516
|
+
if not np.allclose(np.abs(e_val[e_val_idx[-1]]),
|
2517
|
+
np.abs(e_val[e_val_idx[-2]])):
|
2518
|
+
ker_pole_mu = np.dot(ker_pole_ij, mu1)
|
2519
|
+
else:
|
2520
|
+
mu1_mu2_matrix = np.hstack((mu1, mu2))
|
2521
|
+
ker_pole_mu = np.dot(ker_pole_ij, mu1_mu2_matrix)
|
2522
|
+
transfer_matrix_i_j = np.dot(np.dot(ker_pole_mu, np.conj(ker_pole_mu.T)),
|
2523
|
+
transfer_matrix_j_mo_transfer_matrix_j)
|
2524
|
+
|
2525
|
+
if not np.allclose(transfer_matrix_i_j, 0):
|
2526
|
+
transfer_matrix_i_j = (transfer_matrix_i_j /
|
2527
|
+
np.linalg.norm(transfer_matrix_i_j))
|
2528
|
+
transfer_matrix[:, i] = np.real(transfer_matrix_i_j[:, 0])
|
2529
|
+
transfer_matrix[:, j] = np.imag(transfer_matrix_i_j[:, 0])
|
2530
|
+
else:
|
2531
|
+
# same idea as in YT_real
|
2532
|
+
transfer_matrix[:, i] = np.real(ker_pole_mu[:, 0])
|
2533
|
+
transfer_matrix[:, j] = np.imag(ker_pole_mu[:, 0])
|
2534
|
+
|
2535
|
+
|
2536
|
+
def _YT_loop(ker_pole, transfer_matrix, poles, B, maxiter, rtol):
|
2537
|
+
"""
|
2538
|
+
Algorithm "YT" Tits, Yang. Globally Convergent
|
2539
|
+
Algorithms for Robust Pole Assignment by State Feedback
|
2540
|
+
https://hdl.handle.net/1903/5598
|
2541
|
+
The poles P have to be sorted accordingly to section 6.2 page 20
|
2542
|
+
|
2543
|
+
"""
|
2544
|
+
# The IEEE edition of the YT paper gives useful information on the
|
2545
|
+
# optimal update order for the real poles in order to minimize the number
|
2546
|
+
# of times we have to loop over all poles, see page 1442
|
2547
|
+
nb_real = poles[np.isreal(poles)].shape[0]
|
2548
|
+
# hnb => Half Nb Real
|
2549
|
+
hnb = nb_real // 2
|
2550
|
+
|
2551
|
+
# Stick to the indices in the paper and then remove one to get numpy array
|
2552
|
+
# index it is a bit easier to link the code to the paper this way even if it
|
2553
|
+
# is not very clean. The paper is unclear about what should be done when
|
2554
|
+
# there is only one real pole => use KNV0 on this real pole seem to work
|
2555
|
+
if nb_real > 0:
|
2556
|
+
#update the biggest real pole with the smallest one
|
2557
|
+
update_order = [[nb_real], [1]]
|
2558
|
+
else:
|
2559
|
+
update_order = [[],[]]
|
2560
|
+
|
2561
|
+
r_comp = np.arange(nb_real+1, len(poles)+1, 2)
|
2562
|
+
# step 1.a
|
2563
|
+
r_p = np.arange(1, hnb+nb_real % 2)
|
2564
|
+
update_order[0].extend(2*r_p)
|
2565
|
+
update_order[1].extend(2*r_p+1)
|
2566
|
+
# step 1.b
|
2567
|
+
update_order[0].extend(r_comp)
|
2568
|
+
update_order[1].extend(r_comp+1)
|
2569
|
+
# step 1.c
|
2570
|
+
r_p = np.arange(1, hnb+1)
|
2571
|
+
update_order[0].extend(2*r_p-1)
|
2572
|
+
update_order[1].extend(2*r_p)
|
2573
|
+
# step 1.d
|
2574
|
+
if hnb == 0 and np.isreal(poles[0]):
|
2575
|
+
update_order[0].append(1)
|
2576
|
+
update_order[1].append(1)
|
2577
|
+
update_order[0].extend(r_comp)
|
2578
|
+
update_order[1].extend(r_comp+1)
|
2579
|
+
# step 2.a
|
2580
|
+
r_j = np.arange(2, hnb+nb_real % 2)
|
2581
|
+
for j in r_j:
|
2582
|
+
for i in range(1, hnb+1):
|
2583
|
+
update_order[0].append(i)
|
2584
|
+
update_order[1].append(i+j)
|
2585
|
+
# step 2.b
|
2586
|
+
if hnb == 0 and np.isreal(poles[0]):
|
2587
|
+
update_order[0].append(1)
|
2588
|
+
update_order[1].append(1)
|
2589
|
+
update_order[0].extend(r_comp)
|
2590
|
+
update_order[1].extend(r_comp+1)
|
2591
|
+
# step 2.c
|
2592
|
+
r_j = np.arange(2, hnb+nb_real % 2)
|
2593
|
+
for j in r_j:
|
2594
|
+
for i in range(hnb+1, nb_real+1):
|
2595
|
+
idx_1 = i+j
|
2596
|
+
if idx_1 > nb_real:
|
2597
|
+
idx_1 = i+j-nb_real
|
2598
|
+
update_order[0].append(i)
|
2599
|
+
update_order[1].append(idx_1)
|
2600
|
+
# step 2.d
|
2601
|
+
if hnb == 0 and np.isreal(poles[0]):
|
2602
|
+
update_order[0].append(1)
|
2603
|
+
update_order[1].append(1)
|
2604
|
+
update_order[0].extend(r_comp)
|
2605
|
+
update_order[1].extend(r_comp+1)
|
2606
|
+
# step 3.a
|
2607
|
+
for i in range(1, hnb+1):
|
2608
|
+
update_order[0].append(i)
|
2609
|
+
update_order[1].append(i+hnb)
|
2610
|
+
# step 3.b
|
2611
|
+
if hnb == 0 and np.isreal(poles[0]):
|
2612
|
+
update_order[0].append(1)
|
2613
|
+
update_order[1].append(1)
|
2614
|
+
update_order[0].extend(r_comp)
|
2615
|
+
update_order[1].extend(r_comp+1)
|
2616
|
+
|
2617
|
+
update_order = np.array(update_order).T-1
|
2618
|
+
stop = False
|
2619
|
+
nb_try = 0
|
2620
|
+
while nb_try < maxiter and not stop:
|
2621
|
+
det_transfer_matrixb = np.abs(np.linalg.det(transfer_matrix))
|
2622
|
+
for i, j in update_order:
|
2623
|
+
if i == j:
|
2624
|
+
assert i == 0, "i!=0 for KNV call in YT"
|
2625
|
+
assert np.isreal(poles[i]), "calling KNV on a complex pole"
|
2626
|
+
_KNV0(B, ker_pole, transfer_matrix, i, poles)
|
2627
|
+
else:
|
2628
|
+
transfer_matrix_not_i_j = np.delete(transfer_matrix, (i, j),
|
2629
|
+
axis=1)
|
2630
|
+
# after merge of gh-4249 great speed improvements could be
|
2631
|
+
# achieved using QR updates instead of full QR in the line below
|
2632
|
+
|
2633
|
+
#to debug with numpy qr uncomment the line below
|
2634
|
+
#Q, _ = np.linalg.qr(transfer_matrix_not_i_j, mode="complete")
|
2635
|
+
Q, _ = s_qr(transfer_matrix_not_i_j, mode="full")
|
2636
|
+
|
2637
|
+
if np.isreal(poles[i]):
|
2638
|
+
assert np.isreal(poles[j]), "mixing real and complex " + \
|
2639
|
+
"in YT_real" + str(poles)
|
2640
|
+
_YT_real(ker_pole, Q, transfer_matrix, i, j)
|
2641
|
+
else:
|
2642
|
+
assert ~np.isreal(poles[i]), "mixing real and complex " + \
|
2643
|
+
"in YT_real" + str(poles)
|
2644
|
+
_YT_complex(ker_pole, Q, transfer_matrix, i, j)
|
2645
|
+
|
2646
|
+
det_transfer_matrix = np.max((np.sqrt(np.spacing(1)),
|
2647
|
+
np.abs(np.linalg.det(transfer_matrix))))
|
2648
|
+
cur_rtol = np.abs(
|
2649
|
+
(det_transfer_matrix -
|
2650
|
+
det_transfer_matrixb) /
|
2651
|
+
det_transfer_matrix)
|
2652
|
+
if cur_rtol < rtol and det_transfer_matrix > np.sqrt(np.spacing(1)):
|
2653
|
+
# Convergence test from YT page 21
|
2654
|
+
stop = True
|
2655
|
+
nb_try += 1
|
2656
|
+
return stop, cur_rtol, nb_try
|
2657
|
+
|
2658
|
+
|
2659
|
+
def _KNV0_loop(ker_pole, transfer_matrix, poles, B, maxiter, rtol):
|
2660
|
+
"""
|
2661
|
+
Loop over all poles one by one and apply KNV method 0 algorithm
|
2662
|
+
"""
|
2663
|
+
# This method is useful only because we need to be able to call
|
2664
|
+
# _KNV0 from YT without looping over all poles, otherwise it would
|
2665
|
+
# have been fine to mix _KNV0_loop and _KNV0 in a single function
|
2666
|
+
stop = False
|
2667
|
+
nb_try = 0
|
2668
|
+
while nb_try < maxiter and not stop:
|
2669
|
+
det_transfer_matrixb = np.abs(np.linalg.det(transfer_matrix))
|
2670
|
+
for j in range(B.shape[0]):
|
2671
|
+
_KNV0(B, ker_pole, transfer_matrix, j, poles)
|
2672
|
+
|
2673
|
+
det_transfer_matrix = np.max((np.sqrt(np.spacing(1)),
|
2674
|
+
np.abs(np.linalg.det(transfer_matrix))))
|
2675
|
+
cur_rtol = np.abs((det_transfer_matrix - det_transfer_matrixb) /
|
2676
|
+
det_transfer_matrix)
|
2677
|
+
if cur_rtol < rtol and det_transfer_matrix > np.sqrt(np.spacing(1)):
|
2678
|
+
# Convergence test from YT page 21
|
2679
|
+
stop = True
|
2680
|
+
|
2681
|
+
nb_try += 1
|
2682
|
+
return stop, cur_rtol, nb_try
|
2683
|
+
|
2684
|
+
|
2685
|
+
def place_poles(A, B, poles, method="YT", rtol=1e-3, maxiter=30):
|
2686
|
+
"""
|
2687
|
+
Compute K such that eigenvalues (A - dot(B, K))=poles.
|
2688
|
+
|
2689
|
+
K is the gain matrix such as the plant described by the linear system
|
2690
|
+
``AX+BU`` will have its closed-loop poles, i.e the eigenvalues ``A - B*K``,
|
2691
|
+
as close as possible to those asked for in poles.
|
2692
|
+
|
2693
|
+
SISO, MISO and MIMO systems are supported.
|
2694
|
+
|
2695
|
+
Parameters
|
2696
|
+
----------
|
2697
|
+
A, B : ndarray
|
2698
|
+
State-space representation of linear system ``AX + BU``.
|
2699
|
+
poles : array_like
|
2700
|
+
Desired real poles and/or complex conjugates poles.
|
2701
|
+
Complex poles are only supported with ``method="YT"`` (default).
|
2702
|
+
method: {'YT', 'KNV0'}, optional
|
2703
|
+
Which method to choose to find the gain matrix K. One of:
|
2704
|
+
|
2705
|
+
- 'YT': Yang Tits
|
2706
|
+
- 'KNV0': Kautsky, Nichols, Van Dooren update method 0
|
2707
|
+
|
2708
|
+
See References and Notes for details on the algorithms.
|
2709
|
+
rtol: float, optional
|
2710
|
+
After each iteration the determinant of the eigenvectors of
|
2711
|
+
``A - B*K`` is compared to its previous value, when the relative
|
2712
|
+
error between these two values becomes lower than `rtol` the algorithm
|
2713
|
+
stops. Default is 1e-3.
|
2714
|
+
maxiter: int, optional
|
2715
|
+
Maximum number of iterations to compute the gain matrix.
|
2716
|
+
Default is 30.
|
2717
|
+
|
2718
|
+
Returns
|
2719
|
+
-------
|
2720
|
+
full_state_feedback : Bunch object
|
2721
|
+
full_state_feedback is composed of:
|
2722
|
+
gain_matrix : 1-D ndarray
|
2723
|
+
The closed loop matrix K such as the eigenvalues of ``A-BK``
|
2724
|
+
are as close as possible to the requested poles.
|
2725
|
+
computed_poles : 1-D ndarray
|
2726
|
+
The poles corresponding to ``A-BK`` sorted as first the real
|
2727
|
+
poles in increasing order, then the complex conjugates in
|
2728
|
+
lexicographic order.
|
2729
|
+
requested_poles : 1-D ndarray
|
2730
|
+
The poles the algorithm was asked to place sorted as above,
|
2731
|
+
they may differ from what was achieved.
|
2732
|
+
X : 2-D ndarray
|
2733
|
+
The transfer matrix such as ``X * diag(poles) = (A - B*K)*X``
|
2734
|
+
(see Notes)
|
2735
|
+
rtol : float
|
2736
|
+
The relative tolerance achieved on ``det(X)`` (see Notes).
|
2737
|
+
`rtol` will be NaN if it is possible to solve the system
|
2738
|
+
``diag(poles) = (A - B*K)``, or 0 when the optimization
|
2739
|
+
algorithms can't do anything i.e when ``B.shape[1] == 1``.
|
2740
|
+
nb_iter : int
|
2741
|
+
The number of iterations performed before converging.
|
2742
|
+
`nb_iter` will be NaN if it is possible to solve the system
|
2743
|
+
``diag(poles) = (A - B*K)``, or 0 when the optimization
|
2744
|
+
algorithms can't do anything i.e when ``B.shape[1] == 1``.
|
2745
|
+
|
2746
|
+
Notes
|
2747
|
+
-----
|
2748
|
+
The Tits and Yang (YT), [2]_ paper is an update of the original Kautsky et
|
2749
|
+
al. (KNV) paper [1]_. KNV relies on rank-1 updates to find the transfer
|
2750
|
+
matrix X such that ``X * diag(poles) = (A - B*K)*X``, whereas YT uses
|
2751
|
+
rank-2 updates. This yields on average more robust solutions (see [2]_
|
2752
|
+
pp 21-22), furthermore the YT algorithm supports complex poles whereas KNV
|
2753
|
+
does not in its original version. Only update method 0 proposed by KNV has
|
2754
|
+
been implemented here, hence the name ``'KNV0'``.
|
2755
|
+
|
2756
|
+
KNV extended to complex poles is used in Matlab's ``place`` function, YT is
|
2757
|
+
distributed under a non-free licence by Slicot under the name ``robpole``.
|
2758
|
+
It is unclear and undocumented how KNV0 has been extended to complex poles
|
2759
|
+
(Tits and Yang claim on page 14 of their paper that their method can not be
|
2760
|
+
used to extend KNV to complex poles), therefore only YT supports them in
|
2761
|
+
this implementation.
|
2762
|
+
|
2763
|
+
As the solution to the problem of pole placement is not unique for MIMO
|
2764
|
+
systems, both methods start with a tentative transfer matrix which is
|
2765
|
+
altered in various way to increase its determinant. Both methods have been
|
2766
|
+
proven to converge to a stable solution, however depending on the way the
|
2767
|
+
initial transfer matrix is chosen they will converge to different
|
2768
|
+
solutions and therefore there is absolutely no guarantee that using
|
2769
|
+
``'KNV0'`` will yield results similar to Matlab's or any other
|
2770
|
+
implementation of these algorithms.
|
2771
|
+
|
2772
|
+
Using the default method ``'YT'`` should be fine in most cases; ``'KNV0'``
|
2773
|
+
is only provided because it is needed by ``'YT'`` in some specific cases.
|
2774
|
+
Furthermore ``'YT'`` gives on average more robust results than ``'KNV0'``
|
2775
|
+
when ``abs(det(X))`` is used as a robustness indicator.
|
2776
|
+
|
2777
|
+
[2]_ is available as a technical report on the following URL:
|
2778
|
+
https://hdl.handle.net/1903/5598
|
2779
|
+
|
2780
|
+
References
|
2781
|
+
----------
|
2782
|
+
.. [1] J. Kautsky, N.K. Nichols and P. van Dooren, "Robust pole assignment
|
2783
|
+
in linear state feedback", International Journal of Control, Vol. 41
|
2784
|
+
pp. 1129-1155, 1985.
|
2785
|
+
.. [2] A.L. Tits and Y. Yang, "Globally convergent algorithms for robust
|
2786
|
+
pole assignment by state feedback", IEEE Transactions on Automatic
|
2787
|
+
Control, Vol. 41, pp. 1432-1452, 1996.
|
2788
|
+
|
2789
|
+
Examples
|
2790
|
+
--------
|
2791
|
+
A simple example demonstrating real pole placement using both KNV and YT
|
2792
|
+
algorithms. This is example number 1 from section 4 of the reference KNV
|
2793
|
+
publication ([1]_):
|
2794
|
+
|
2795
|
+
>>> import numpy as np
|
2796
|
+
>>> from scipy import signal
|
2797
|
+
>>> import matplotlib.pyplot as plt
|
2798
|
+
|
2799
|
+
>>> A = np.array([[ 1.380, -0.2077, 6.715, -5.676 ],
|
2800
|
+
... [-0.5814, -4.290, 0, 0.6750 ],
|
2801
|
+
... [ 1.067, 4.273, -6.654, 5.893 ],
|
2802
|
+
... [ 0.0480, 4.273, 1.343, -2.104 ]])
|
2803
|
+
>>> B = np.array([[ 0, 5.679 ],
|
2804
|
+
... [ 1.136, 1.136 ],
|
2805
|
+
... [ 0, 0, ],
|
2806
|
+
... [-3.146, 0 ]])
|
2807
|
+
>>> P = np.array([-0.2, -0.5, -5.0566, -8.6659])
|
2808
|
+
|
2809
|
+
Now compute K with KNV method 0, with the default YT method and with the YT
|
2810
|
+
method while forcing 100 iterations of the algorithm and print some results
|
2811
|
+
after each call.
|
2812
|
+
|
2813
|
+
>>> fsf1 = signal.place_poles(A, B, P, method='KNV0')
|
2814
|
+
>>> fsf1.gain_matrix
|
2815
|
+
array([[ 0.20071427, -0.96665799, 0.24066128, -0.10279785],
|
2816
|
+
[ 0.50587268, 0.57779091, 0.51795763, -0.41991442]])
|
2817
|
+
|
2818
|
+
>>> fsf2 = signal.place_poles(A, B, P) # uses YT method
|
2819
|
+
>>> fsf2.computed_poles
|
2820
|
+
array([-8.6659, -5.0566, -0.5 , -0.2 ])
|
2821
|
+
|
2822
|
+
>>> fsf3 = signal.place_poles(A, B, P, rtol=-1, maxiter=100)
|
2823
|
+
>>> fsf3.X
|
2824
|
+
array([[ 0.52072442+0.j, -0.08409372+0.j, -0.56847937+0.j, 0.74823657+0.j],
|
2825
|
+
[-0.04977751+0.j, -0.80872954+0.j, 0.13566234+0.j, -0.29322906+0.j],
|
2826
|
+
[-0.82266932+0.j, -0.19168026+0.j, -0.56348322+0.j, -0.43815060+0.j],
|
2827
|
+
[ 0.22267347+0.j, 0.54967577+0.j, -0.58387806+0.j, -0.40271926+0.j]])
|
2828
|
+
|
2829
|
+
The absolute value of the determinant of X is a good indicator to check the
|
2830
|
+
robustness of the results, both ``'KNV0'`` and ``'YT'`` aim at maximizing
|
2831
|
+
it. Below a comparison of the robustness of the results above:
|
2832
|
+
|
2833
|
+
>>> abs(np.linalg.det(fsf1.X)) < abs(np.linalg.det(fsf2.X))
|
2834
|
+
True
|
2835
|
+
>>> abs(np.linalg.det(fsf2.X)) < abs(np.linalg.det(fsf3.X))
|
2836
|
+
True
|
2837
|
+
|
2838
|
+
Now a simple example for complex poles:
|
2839
|
+
|
2840
|
+
>>> A = np.array([[ 0, 7/3., 0, 0 ],
|
2841
|
+
... [ 0, 0, 0, 7/9. ],
|
2842
|
+
... [ 0, 0, 0, 0 ],
|
2843
|
+
... [ 0, 0, 0, 0 ]])
|
2844
|
+
>>> B = np.array([[ 0, 0 ],
|
2845
|
+
... [ 0, 0 ],
|
2846
|
+
... [ 1, 0 ],
|
2847
|
+
... [ 0, 1 ]])
|
2848
|
+
>>> P = np.array([-3, -1, -2-1j, -2+1j]) / 3.
|
2849
|
+
>>> fsf = signal.place_poles(A, B, P, method='YT')
|
2850
|
+
|
2851
|
+
We can plot the desired and computed poles in the complex plane:
|
2852
|
+
|
2853
|
+
>>> t = np.linspace(0, 2*np.pi, 401)
|
2854
|
+
>>> plt.plot(np.cos(t), np.sin(t), 'k--') # unit circle
|
2855
|
+
>>> plt.plot(fsf.requested_poles.real, fsf.requested_poles.imag,
|
2856
|
+
... 'wo', label='Desired')
|
2857
|
+
>>> plt.plot(fsf.computed_poles.real, fsf.computed_poles.imag, 'bx',
|
2858
|
+
... label='Placed')
|
2859
|
+
>>> plt.grid()
|
2860
|
+
>>> plt.axis('image')
|
2861
|
+
>>> plt.axis([-1.1, 1.1, -1.1, 1.1])
|
2862
|
+
>>> plt.legend(bbox_to_anchor=(1.05, 1), loc=2, numpoints=1)
|
2863
|
+
|
2864
|
+
"""
|
2865
|
+
# Move away all the inputs checking, it only adds noise to the code
|
2866
|
+
update_loop, poles = _valid_inputs(A, B, poles, method, rtol, maxiter)
|
2867
|
+
|
2868
|
+
# The current value of the relative tolerance we achieved
|
2869
|
+
cur_rtol = 0
|
2870
|
+
# The number of iterations needed before converging
|
2871
|
+
nb_iter = 0
|
2872
|
+
|
2873
|
+
# Step A: QR decomposition of B page 1132 KN
|
2874
|
+
# to debug with numpy qr uncomment the line below
|
2875
|
+
# u, z = np.linalg.qr(B, mode="complete")
|
2876
|
+
u, z = s_qr(B, mode="full")
|
2877
|
+
rankB = np.linalg.matrix_rank(B)
|
2878
|
+
u0 = u[:, :rankB]
|
2879
|
+
u1 = u[:, rankB:]
|
2880
|
+
z = z[:rankB, :]
|
2881
|
+
|
2882
|
+
# If we can use the identity matrix as X the solution is obvious
|
2883
|
+
if B.shape[0] == rankB:
|
2884
|
+
# if B is square and full rank there is only one solution
|
2885
|
+
# such as (A+BK)=inv(X)*diag(P)*X with X=eye(A.shape[0])
|
2886
|
+
# i.e K=inv(B)*(diag(P)-A)
|
2887
|
+
# if B has as many lines as its rank (but not square) there are many
|
2888
|
+
# solutions and we can choose one using least squares
|
2889
|
+
# => use lstsq in both cases.
|
2890
|
+
# In both cases the transfer matrix X will be eye(A.shape[0]) and I
|
2891
|
+
# can hardly think of a better one so there is nothing to optimize
|
2892
|
+
#
|
2893
|
+
# for complex poles we use the following trick
|
2894
|
+
#
|
2895
|
+
# |a -b| has for eigenvalues a+b and a-b
|
2896
|
+
# |b a|
|
2897
|
+
#
|
2898
|
+
# |a+bi 0| has the obvious eigenvalues a+bi and a-bi
|
2899
|
+
# |0 a-bi|
|
2900
|
+
#
|
2901
|
+
# e.g solving the first one in R gives the solution
|
2902
|
+
# for the second one in C
|
2903
|
+
diag_poles = np.zeros(A.shape)
|
2904
|
+
idx = 0
|
2905
|
+
while idx < poles.shape[0]:
|
2906
|
+
p = poles[idx]
|
2907
|
+
diag_poles[idx, idx] = np.real(p)
|
2908
|
+
if ~np.isreal(p):
|
2909
|
+
diag_poles[idx, idx+1] = -np.imag(p)
|
2910
|
+
diag_poles[idx+1, idx+1] = np.real(p)
|
2911
|
+
diag_poles[idx+1, idx] = np.imag(p)
|
2912
|
+
idx += 1 # skip next one
|
2913
|
+
idx += 1
|
2914
|
+
gain_matrix = np.linalg.lstsq(B, diag_poles-A, rcond=-1)[0]
|
2915
|
+
transfer_matrix = np.eye(A.shape[0])
|
2916
|
+
cur_rtol = np.nan
|
2917
|
+
nb_iter = np.nan
|
2918
|
+
else:
|
2919
|
+
# step A (p1144 KNV) and beginning of step F: decompose
|
2920
|
+
# dot(U1.T, A-P[i]*I).T and build our set of transfer_matrix vectors
|
2921
|
+
# in the same loop
|
2922
|
+
ker_pole = []
|
2923
|
+
|
2924
|
+
# flag to skip the conjugate of a complex pole
|
2925
|
+
skip_conjugate = False
|
2926
|
+
# select orthonormal base ker_pole for each Pole and vectors for
|
2927
|
+
# transfer_matrix
|
2928
|
+
for j in range(B.shape[0]):
|
2929
|
+
if skip_conjugate:
|
2930
|
+
skip_conjugate = False
|
2931
|
+
continue
|
2932
|
+
pole_space_j = np.dot(u1.T, A-poles[j]*np.eye(B.shape[0])).T
|
2933
|
+
|
2934
|
+
# after QR Q=Q0|Q1
|
2935
|
+
# only Q0 is used to reconstruct the qr'ed (dot Q, R) matrix.
|
2936
|
+
# Q1 is orthogonal to Q0 and will be multiplied by the zeros in
|
2937
|
+
# R when using mode "complete". In default mode Q1 and the zeros
|
2938
|
+
# in R are not computed
|
2939
|
+
|
2940
|
+
# To debug with numpy qr uncomment the line below
|
2941
|
+
# Q, _ = np.linalg.qr(pole_space_j, mode="complete")
|
2942
|
+
Q, _ = s_qr(pole_space_j, mode="full")
|
2943
|
+
|
2944
|
+
ker_pole_j = Q[:, pole_space_j.shape[1]:]
|
2945
|
+
|
2946
|
+
# We want to select one vector in ker_pole_j to build the transfer
|
2947
|
+
# matrix, however qr returns sometimes vectors with zeros on the
|
2948
|
+
# same line for each pole and this yields very long convergence
|
2949
|
+
# times.
|
2950
|
+
# Or some other times a set of vectors, one with zero imaginary
|
2951
|
+
# part and one (or several) with imaginary parts. After trying
|
2952
|
+
# many ways to select the best possible one (eg ditch vectors
|
2953
|
+
# with zero imaginary part for complex poles) I ended up summing
|
2954
|
+
# all vectors in ker_pole_j, this solves 100% of the problems and
|
2955
|
+
# is a valid choice for transfer_matrix.
|
2956
|
+
# This way for complex poles we are sure to have a non zero
|
2957
|
+
# imaginary part that way, and the problem of lines full of zeros
|
2958
|
+
# in transfer_matrix is solved too as when a vector from
|
2959
|
+
# ker_pole_j has a zero the other one(s) when
|
2960
|
+
# ker_pole_j.shape[1]>1) for sure won't have a zero there.
|
2961
|
+
|
2962
|
+
transfer_matrix_j = np.sum(ker_pole_j, axis=1)[:, np.newaxis]
|
2963
|
+
transfer_matrix_j = (transfer_matrix_j /
|
2964
|
+
np.linalg.norm(transfer_matrix_j))
|
2965
|
+
if ~np.isreal(poles[j]): # complex pole
|
2966
|
+
transfer_matrix_j = np.hstack([np.real(transfer_matrix_j),
|
2967
|
+
np.imag(transfer_matrix_j)])
|
2968
|
+
ker_pole.extend([ker_pole_j, ker_pole_j])
|
2969
|
+
|
2970
|
+
# Skip next pole as it is the conjugate
|
2971
|
+
skip_conjugate = True
|
2972
|
+
else: # real pole, nothing to do
|
2973
|
+
ker_pole.append(ker_pole_j)
|
2974
|
+
|
2975
|
+
if j == 0:
|
2976
|
+
transfer_matrix = transfer_matrix_j
|
2977
|
+
else:
|
2978
|
+
transfer_matrix = np.hstack((transfer_matrix, transfer_matrix_j))
|
2979
|
+
|
2980
|
+
if rankB > 1: # otherwise there is nothing we can optimize
|
2981
|
+
stop, cur_rtol, nb_iter = update_loop(ker_pole, transfer_matrix,
|
2982
|
+
poles, B, maxiter, rtol)
|
2983
|
+
if not stop and rtol > 0:
|
2984
|
+
# if rtol<=0 the user has probably done that on purpose,
|
2985
|
+
# don't annoy them
|
2986
|
+
err_msg = (
|
2987
|
+
"Convergence was not reached after maxiter iterations.\n"
|
2988
|
+
f"You asked for a tolerance of {rtol}, we got {cur_rtol}."
|
2989
|
+
)
|
2990
|
+
warnings.warn(err_msg, stacklevel=2)
|
2991
|
+
|
2992
|
+
# reconstruct transfer_matrix to match complex conjugate pairs,
|
2993
|
+
# ie transfer_matrix_j/transfer_matrix_j+1 are
|
2994
|
+
# Re(Complex_pole), Im(Complex_pole) now and will be Re-Im/Re+Im after
|
2995
|
+
transfer_matrix = transfer_matrix.astype(complex)
|
2996
|
+
idx = 0
|
2997
|
+
while idx < poles.shape[0]-1:
|
2998
|
+
if ~np.isreal(poles[idx]):
|
2999
|
+
rel = transfer_matrix[:, idx].copy()
|
3000
|
+
img = transfer_matrix[:, idx+1]
|
3001
|
+
# rel will be an array referencing a column of transfer_matrix
|
3002
|
+
# if we don't copy() it will changer after the next line and
|
3003
|
+
# and the line after will not yield the correct value
|
3004
|
+
transfer_matrix[:, idx] = rel-1j*img
|
3005
|
+
transfer_matrix[:, idx+1] = rel+1j*img
|
3006
|
+
idx += 1 # skip next one
|
3007
|
+
idx += 1
|
3008
|
+
|
3009
|
+
try:
|
3010
|
+
m = np.linalg.solve(transfer_matrix.T, np.dot(np.diag(poles),
|
3011
|
+
transfer_matrix.T)).T
|
3012
|
+
gain_matrix = np.linalg.solve(z, np.dot(u0.T, m-A))
|
3013
|
+
except np.linalg.LinAlgError as e:
|
3014
|
+
raise ValueError("The poles you've chosen can't be placed. "
|
3015
|
+
"Check the controllability matrix and try "
|
3016
|
+
"another set of poles") from e
|
3017
|
+
|
3018
|
+
# Beware: Kautsky solves A+BK but the usual form is A-BK
|
3019
|
+
gain_matrix = -gain_matrix
|
3020
|
+
# K still contains complex with ~=0j imaginary parts, get rid of them
|
3021
|
+
gain_matrix = np.real(gain_matrix)
|
3022
|
+
|
3023
|
+
full_state_feedback = Bunch()
|
3024
|
+
full_state_feedback.gain_matrix = gain_matrix
|
3025
|
+
full_state_feedback.computed_poles = _order_complex_poles(
|
3026
|
+
np.linalg.eig(A - np.dot(B, gain_matrix))[0]
|
3027
|
+
)
|
3028
|
+
full_state_feedback.requested_poles = poles
|
3029
|
+
full_state_feedback.X = transfer_matrix
|
3030
|
+
full_state_feedback.rtol = cur_rtol
|
3031
|
+
full_state_feedback.nb_iter = nb_iter
|
3032
|
+
|
3033
|
+
return full_state_feedback
|
3034
|
+
|
3035
|
+
|
3036
|
+
def dlsim(system, u, t=None, x0=None):
|
3037
|
+
r"""Simulate output of a discrete-time linear system.
|
3038
|
+
|
3039
|
+
Parameters
|
3040
|
+
----------
|
3041
|
+
system : dlti | tuple
|
3042
|
+
An instance of the LTI class `dlti` or a tuple describing the system.
|
3043
|
+
The number of elements in the tuple determine the interpretation. I.e.:
|
3044
|
+
|
3045
|
+
* ``system``: Instance of LTI class `dlti`. Note that derived instances, such
|
3046
|
+
as instances of `TransferFunction`, `ZerosPolesGain`, or `StateSpace`, are
|
3047
|
+
allowed as well.
|
3048
|
+
* ``(num, den, dt)``: Rational polynomial as described in `TransferFunction`.
|
3049
|
+
The coefficients of the polynomials should be specified in descending
|
3050
|
+
exponent order, e.g., z² + 3z + 5 would be represented as ``[1, 3, 5]``.
|
3051
|
+
* ``(zeros, poles, gain, dt)``: Zeros, poles, gain form as described
|
3052
|
+
in `ZerosPolesGain`.
|
3053
|
+
* ``(A, B, C, D, dt)``: State-space form as described in `StateSpace`.
|
3054
|
+
|
3055
|
+
|
3056
|
+
u : array_like
|
3057
|
+
An input array describing the input at each time `t` (interpolation is
|
3058
|
+
assumed between given times). If there are multiple inputs, then each
|
3059
|
+
column of the rank-2 array represents an input.
|
3060
|
+
t : array_like, optional
|
3061
|
+
The time steps at which the input is defined. If `t` is given, it
|
3062
|
+
must be the same length as `u`, and the final value in `t` determines
|
3063
|
+
the number of steps returned in the output.
|
3064
|
+
x0 : array_like, optional
|
3065
|
+
The initial conditions on the state vector (zero by default).
|
3066
|
+
|
3067
|
+
Returns
|
3068
|
+
-------
|
3069
|
+
tout : ndarray
|
3070
|
+
Time values for the output, as a 1-D array.
|
3071
|
+
yout : ndarray
|
3072
|
+
System response, as a 1-D array.
|
3073
|
+
xout : ndarray, optional
|
3074
|
+
Time-evolution of the state-vector. Only generated if the input is a
|
3075
|
+
`StateSpace` system.
|
3076
|
+
|
3077
|
+
See Also
|
3078
|
+
--------
|
3079
|
+
lsim, dstep, dimpulse, cont2discrete
|
3080
|
+
|
3081
|
+
Examples
|
3082
|
+
--------
|
3083
|
+
A simple integrator transfer function with a discrete time step of 1.0
|
3084
|
+
could be implemented as:
|
3085
|
+
|
3086
|
+
>>> import numpy as np
|
3087
|
+
>>> from scipy import signal
|
3088
|
+
>>> tf = ([1.0,], [1.0, -1.0], 1.0)
|
3089
|
+
>>> t_in = [0.0, 1.0, 2.0, 3.0]
|
3090
|
+
>>> u = np.asarray([0.0, 0.0, 1.0, 1.0])
|
3091
|
+
>>> t_out, y = signal.dlsim(tf, u, t=t_in)
|
3092
|
+
>>> y.T
|
3093
|
+
array([[ 0., 0., 0., 1.]])
|
3094
|
+
|
3095
|
+
"""
|
3096
|
+
# Convert system to dlti-StateSpace
|
3097
|
+
if isinstance(system, lti):
|
3098
|
+
raise AttributeError('dlsim can only be used with discrete-time dlti '
|
3099
|
+
'systems.')
|
3100
|
+
elif not isinstance(system, dlti):
|
3101
|
+
system = dlti(*system[:-1], dt=system[-1])
|
3102
|
+
|
3103
|
+
# Condition needed to ensure output remains compatible
|
3104
|
+
is_ss_input = isinstance(system, StateSpace)
|
3105
|
+
system = system._as_ss()
|
3106
|
+
|
3107
|
+
u = np.atleast_1d(u)
|
3108
|
+
|
3109
|
+
if u.ndim == 1:
|
3110
|
+
u = np.atleast_2d(u).T
|
3111
|
+
|
3112
|
+
if t is None:
|
3113
|
+
out_samples = len(u)
|
3114
|
+
stoptime = (out_samples - 1) * system.dt
|
3115
|
+
else:
|
3116
|
+
stoptime = t[-1]
|
3117
|
+
out_samples = int(np.floor(stoptime / system.dt)) + 1
|
3118
|
+
|
3119
|
+
# Pre-build output arrays
|
3120
|
+
xout = np.zeros((out_samples, system.A.shape[0]))
|
3121
|
+
yout = np.zeros((out_samples, system.C.shape[0]))
|
3122
|
+
tout = np.linspace(0.0, stoptime, num=out_samples)
|
3123
|
+
|
3124
|
+
# Check initial condition
|
3125
|
+
if x0 is None:
|
3126
|
+
xout[0, :] = np.zeros((system.A.shape[1],))
|
3127
|
+
else:
|
3128
|
+
xout[0, :] = np.asarray(x0)
|
3129
|
+
|
3130
|
+
# Pre-interpolate inputs into the desired time steps
|
3131
|
+
if t is None:
|
3132
|
+
u_dt = u
|
3133
|
+
else:
|
3134
|
+
if len(u.shape) == 1:
|
3135
|
+
u = u[:, np.newaxis]
|
3136
|
+
|
3137
|
+
u_dt = make_interp_spline(t, u, k=1)(tout)
|
3138
|
+
|
3139
|
+
# Simulate the system
|
3140
|
+
for i in range(0, out_samples - 1):
|
3141
|
+
xout[i+1, :] = (np.dot(system.A, xout[i, :]) +
|
3142
|
+
np.dot(system.B, u_dt[i, :]))
|
3143
|
+
yout[i, :] = (np.dot(system.C, xout[i, :]) +
|
3144
|
+
np.dot(system.D, u_dt[i, :]))
|
3145
|
+
|
3146
|
+
# Last point
|
3147
|
+
yout[out_samples-1, :] = (np.dot(system.C, xout[out_samples-1, :]) +
|
3148
|
+
np.dot(system.D, u_dt[out_samples-1, :]))
|
3149
|
+
|
3150
|
+
if is_ss_input:
|
3151
|
+
return tout, yout, xout
|
3152
|
+
else:
|
3153
|
+
return tout, yout
|
3154
|
+
|
3155
|
+
|
3156
|
+
def dimpulse(system, x0=None, t=None, n=None):
|
3157
|
+
r"""Impulse response of discrete-time system.
|
3158
|
+
|
3159
|
+
Parameters
|
3160
|
+
----------
|
3161
|
+
system : dlti | tuple
|
3162
|
+
An instance of the LTI class `dlti` or a tuple describing the system.
|
3163
|
+
The number of elements in the tuple determine the interpretation. I.e.:
|
3164
|
+
|
3165
|
+
* ``system``: Instance of LTI class `dlti`. Note that derived instances, such
|
3166
|
+
as instances of `TransferFunction`, `ZerosPolesGain`, or `StateSpace`, are
|
3167
|
+
allowed as well.
|
3168
|
+
* ``(num, den, dt)``: Rational polynomial as described in `TransferFunction`.
|
3169
|
+
The coefficients of the polynomials should be specified in descending
|
3170
|
+
exponent order, e.g., z² + 3z + 5 would be represented as ``[1, 3, 5]``.
|
3171
|
+
* ``(zeros, poles, gain, dt)``: Zeros, poles, gain form as described
|
3172
|
+
in `ZerosPolesGain`.
|
3173
|
+
* ``(A, B, C, D, dt)``: State-space form as described in `StateSpace`.
|
3174
|
+
|
3175
|
+
x0 : array_like, optional
|
3176
|
+
Initial state-vector. Defaults to zero.
|
3177
|
+
t : array_like, optional
|
3178
|
+
Time points. Computed if not given.
|
3179
|
+
n : int, optional
|
3180
|
+
The number of time points to compute (if `t` is not given).
|
3181
|
+
|
3182
|
+
Returns
|
3183
|
+
-------
|
3184
|
+
tout : ndarray
|
3185
|
+
Time values for the output, as a 1-D array.
|
3186
|
+
yout : tuple of ndarray
|
3187
|
+
Impulse response of system. Each element of the tuple represents
|
3188
|
+
the output of the system based on an impulse in each input.
|
3189
|
+
|
3190
|
+
See Also
|
3191
|
+
--------
|
3192
|
+
impulse, dstep, dlsim, cont2discrete
|
3193
|
+
|
3194
|
+
Examples
|
3195
|
+
--------
|
3196
|
+
>>> import numpy as np
|
3197
|
+
>>> from scipy import signal
|
3198
|
+
>>> import matplotlib.pyplot as plt
|
3199
|
+
...
|
3200
|
+
>>> dt = 1 # sampling interval is one => time unit is sample number
|
3201
|
+
>>> bb, aa = signal.butter(3, 0.25, fs=1/dt)
|
3202
|
+
>>> t, y = signal.dimpulse((bb, aa, dt), n=25)
|
3203
|
+
...
|
3204
|
+
>>> fig0, ax0 = plt.subplots()
|
3205
|
+
>>> ax0.step(t, np.squeeze(y), '.-', where='post')
|
3206
|
+
>>> ax0.set_title(r"Impulse Response of a $3^\text{rd}$ Order Butterworth Filter")
|
3207
|
+
>>> ax0.set(xlabel='Sample number', ylabel='Amplitude')
|
3208
|
+
>>> ax0.grid()
|
3209
|
+
>>> plt.show()
|
3210
|
+
"""
|
3211
|
+
# Convert system to dlti-StateSpace
|
3212
|
+
if isinstance(system, dlti):
|
3213
|
+
system = system._as_ss()
|
3214
|
+
elif isinstance(system, lti):
|
3215
|
+
raise AttributeError('dimpulse can only be used with discrete-time '
|
3216
|
+
'dlti systems.')
|
3217
|
+
else:
|
3218
|
+
system = dlti(*system[:-1], dt=system[-1])._as_ss()
|
3219
|
+
|
3220
|
+
# Default to 100 samples if unspecified
|
3221
|
+
if n is None:
|
3222
|
+
n = 100
|
3223
|
+
|
3224
|
+
# If time is not specified, use the number of samples
|
3225
|
+
# and system dt
|
3226
|
+
if t is None:
|
3227
|
+
t = np.linspace(0, n * system.dt, n, endpoint=False)
|
3228
|
+
else:
|
3229
|
+
t = np.asarray(t)
|
3230
|
+
|
3231
|
+
# For each input, implement a step change
|
3232
|
+
yout = None
|
3233
|
+
for i in range(0, system.inputs):
|
3234
|
+
u = np.zeros((t.shape[0], system.inputs))
|
3235
|
+
u[0, i] = 1.0
|
3236
|
+
|
3237
|
+
one_output = dlsim(system, u, t=t, x0=x0)
|
3238
|
+
|
3239
|
+
if yout is None:
|
3240
|
+
yout = (one_output[1],)
|
3241
|
+
else:
|
3242
|
+
yout = yout + (one_output[1],)
|
3243
|
+
|
3244
|
+
tout = one_output[0]
|
3245
|
+
|
3246
|
+
return tout, yout
|
3247
|
+
|
3248
|
+
|
3249
|
+
def dstep(system, x0=None, t=None, n=None):
|
3250
|
+
r"""Step response of discrete-time system.
|
3251
|
+
|
3252
|
+
Parameters
|
3253
|
+
----------
|
3254
|
+
system : dlti | tuple
|
3255
|
+
An instance of the LTI class `dlti` or a tuple describing the system.
|
3256
|
+
The number of elements in the tuple determine the interpretation. I.e.:
|
3257
|
+
|
3258
|
+
* ``system``: Instance of LTI class `dlti`. Note that derived instances, such
|
3259
|
+
as instances of `TransferFunction`, `ZerosPolesGain`, or `StateSpace`, are
|
3260
|
+
allowed as well.
|
3261
|
+
* ``(num, den, dt)``: Rational polynomial as described in `TransferFunction`.
|
3262
|
+
The coefficients of the polynomials should be specified in descending
|
3263
|
+
exponent order, e.g., z² + 3z + 5 would be represented as ``[1, 3, 5]``.
|
3264
|
+
* ``(zeros, poles, gain, dt)``: Zeros, poles, gain form as described
|
3265
|
+
in `ZerosPolesGain`.
|
3266
|
+
* ``(A, B, C, D, dt)``: State-space form as described in `StateSpace`.
|
3267
|
+
|
3268
|
+
x0 : array_like, optional
|
3269
|
+
Initial state-vector. Defaults to zero.
|
3270
|
+
t : array_like, optional
|
3271
|
+
Time points. Computed if not given.
|
3272
|
+
n : int, optional
|
3273
|
+
The number of time points to compute (if `t` is not given).
|
3274
|
+
|
3275
|
+
Returns
|
3276
|
+
-------
|
3277
|
+
tout : ndarray
|
3278
|
+
Output time points, as a 1-D array.
|
3279
|
+
yout : tuple of ndarray
|
3280
|
+
Step response of system. Each element of the tuple represents
|
3281
|
+
the output of the system based on a step response to each input.
|
3282
|
+
|
3283
|
+
See Also
|
3284
|
+
--------
|
3285
|
+
step, dimpulse, dlsim, cont2discrete
|
3286
|
+
|
3287
|
+
Examples
|
3288
|
+
--------
|
3289
|
+
The following example illustrates how to create a digital Butterworth filer and
|
3290
|
+
plot its step response:
|
3291
|
+
|
3292
|
+
>>> import numpy as np
|
3293
|
+
>>> from scipy import signal
|
3294
|
+
>>> import matplotlib.pyplot as plt
|
3295
|
+
...
|
3296
|
+
>>> dt = 1 # sampling interval is one => time unit is sample number
|
3297
|
+
>>> bb, aa = signal.butter(3, 0.25, fs=1/dt)
|
3298
|
+
>>> t, y = signal.dstep((bb, aa, dt), n=25)
|
3299
|
+
...
|
3300
|
+
>>> fig0, ax0 = plt.subplots()
|
3301
|
+
>>> ax0.step(t, np.squeeze(y), '.-', where='post')
|
3302
|
+
>>> ax0.set_title(r"Step Response of a $3^\text{rd}$ Order Butterworth Filter")
|
3303
|
+
>>> ax0.set(xlabel='Sample number', ylabel='Amplitude', ylim=(0, 1.1*np.max(y)))
|
3304
|
+
>>> ax0.grid()
|
3305
|
+
>>> plt.show()
|
3306
|
+
"""
|
3307
|
+
# Convert system to dlti-StateSpace
|
3308
|
+
if isinstance(system, dlti):
|
3309
|
+
system = system._as_ss()
|
3310
|
+
elif isinstance(system, lti):
|
3311
|
+
raise AttributeError('dstep can only be used with discrete-time dlti '
|
3312
|
+
'systems.')
|
3313
|
+
else:
|
3314
|
+
system = dlti(*system[:-1], dt=system[-1])._as_ss()
|
3315
|
+
|
3316
|
+
# Default to 100 samples if unspecified
|
3317
|
+
if n is None:
|
3318
|
+
n = 100
|
3319
|
+
|
3320
|
+
# If time is not specified, use the number of samples
|
3321
|
+
# and system dt
|
3322
|
+
if t is None:
|
3323
|
+
t = np.linspace(0, n * system.dt, n, endpoint=False)
|
3324
|
+
else:
|
3325
|
+
t = np.asarray(t)
|
3326
|
+
|
3327
|
+
# For each input, implement a step change
|
3328
|
+
yout = None
|
3329
|
+
for i in range(0, system.inputs):
|
3330
|
+
u = np.zeros((t.shape[0], system.inputs))
|
3331
|
+
u[:, i] = np.ones((t.shape[0],))
|
3332
|
+
|
3333
|
+
one_output = dlsim(system, u, t=t, x0=x0)
|
3334
|
+
|
3335
|
+
if yout is None:
|
3336
|
+
yout = (one_output[1],)
|
3337
|
+
else:
|
3338
|
+
yout = yout + (one_output[1],)
|
3339
|
+
|
3340
|
+
tout = one_output[0]
|
3341
|
+
|
3342
|
+
return tout, yout
|
3343
|
+
|
3344
|
+
|
3345
|
+
def dfreqresp(system, w=None, n=10000, whole=False):
|
3346
|
+
r"""
|
3347
|
+
Calculate the frequency response of a discrete-time system.
|
3348
|
+
|
3349
|
+
Parameters
|
3350
|
+
----------
|
3351
|
+
system : dlti | tuple
|
3352
|
+
An instance of the LTI class `dlti` or a tuple describing the system.
|
3353
|
+
The number of elements in the tuple determine the interpretation. I.e.:
|
3354
|
+
|
3355
|
+
* ``system``: Instance of LTI class `dlti`. Note that derived instances, such
|
3356
|
+
as instances of `TransferFunction`, `ZerosPolesGain`, or `StateSpace`, are
|
3357
|
+
allowed as well.
|
3358
|
+
* ``(num, den, dt)``: Rational polynomial as described in `TransferFunction`.
|
3359
|
+
The coefficients of the polynomials should be specified in descending
|
3360
|
+
exponent order, e.g., z² + 3z + 5 would be represented as ``[1, 3, 5]``.
|
3361
|
+
* ``(zeros, poles, gain, dt)``: Zeros, poles, gain form as described
|
3362
|
+
in `ZerosPolesGain`.
|
3363
|
+
* ``(A, B, C, D, dt)``: State-space form as described in `StateSpace`.
|
3364
|
+
|
3365
|
+
w : array_like, optional
|
3366
|
+
Array of frequencies (in radians/sample). Magnitude and phase data is
|
3367
|
+
calculated for every value in this array. If not given a reasonable
|
3368
|
+
set will be calculated.
|
3369
|
+
n : int, optional
|
3370
|
+
Number of frequency points to compute if `w` is not given. The `n`
|
3371
|
+
frequencies are logarithmically spaced in an interval chosen to
|
3372
|
+
include the influence of the poles and zeros of the system.
|
3373
|
+
whole : bool, optional
|
3374
|
+
Normally, if 'w' is not given, frequencies are computed from 0 to the
|
3375
|
+
Nyquist frequency, pi radians/sample (upper-half of unit-circle). If
|
3376
|
+
`whole` is True, compute frequencies from 0 to 2*pi radians/sample.
|
3377
|
+
|
3378
|
+
Returns
|
3379
|
+
-------
|
3380
|
+
w : 1D ndarray
|
3381
|
+
Frequency array [radians/sample]
|
3382
|
+
H : 1D ndarray
|
3383
|
+
Array of complex magnitude values
|
3384
|
+
|
3385
|
+
Notes
|
3386
|
+
-----
|
3387
|
+
If (num, den) is passed in for ``system``, coefficients for both the
|
3388
|
+
numerator and denominator should be specified in descending exponent
|
3389
|
+
order (e.g. ``z^2 + 3z + 5`` would be represented as ``[1, 3, 5]``).
|
3390
|
+
|
3391
|
+
.. versionadded:: 0.18.0
|
3392
|
+
|
3393
|
+
Examples
|
3394
|
+
--------
|
3395
|
+
The following example generates the Nyquist plot of the transfer function
|
3396
|
+
:math:`H(z) = \frac{1}{z^2 + 2z + 3}` with a sampling time of 0.05 seconds:
|
3397
|
+
|
3398
|
+
>>> from scipy import signal
|
3399
|
+
>>> import matplotlib.pyplot as plt
|
3400
|
+
>>> sys = signal.TransferFunction([1], [1, 2, 3], dt=0.05) # construct H(z)
|
3401
|
+
>>> w, H = signal.dfreqresp(sys)
|
3402
|
+
...
|
3403
|
+
>>> fig0, ax0 = plt.subplots()
|
3404
|
+
>>> ax0.plot(H.real, H.imag, label=r"$H(z=e^{+j\omega})$")
|
3405
|
+
>>> ax0.plot(H.real, -H.imag, label=r"$H(z=e^{-j\omega})$")
|
3406
|
+
>>> ax0.set_title(r"Nyquist Plot of $H(z) = 1 / (z^2 + 2z + 3)$")
|
3407
|
+
>>> ax0.set(xlabel=r"$\text{Re}\{z\}$", ylabel=r"$\text{Im}\{z\}$",
|
3408
|
+
... xlim=(-0.2, 0.65), aspect='equal')
|
3409
|
+
>>> ax0.plot(H[0].real, H[0].imag, 'k.') # mark H(exp(1j*w[0]))
|
3410
|
+
>>> ax0.text(0.2, 0, r"$H(e^{j0})$")
|
3411
|
+
>>> ax0.grid(True)
|
3412
|
+
>>> ax0.legend()
|
3413
|
+
>>> plt.show()
|
3414
|
+
"""
|
3415
|
+
if not isinstance(system, dlti):
|
3416
|
+
if isinstance(system, lti):
|
3417
|
+
raise AttributeError('dfreqresp can only be used with '
|
3418
|
+
'discrete-time systems.')
|
3419
|
+
|
3420
|
+
system = dlti(*system[:-1], dt=system[-1])
|
3421
|
+
|
3422
|
+
if isinstance(system, StateSpace):
|
3423
|
+
# No SS->ZPK code exists right now, just SS->TF->ZPK
|
3424
|
+
system = system._as_tf()
|
3425
|
+
|
3426
|
+
if not isinstance(system, TransferFunction | ZerosPolesGain):
|
3427
|
+
raise ValueError('Unknown system type')
|
3428
|
+
|
3429
|
+
if system.inputs != 1 or system.outputs != 1:
|
3430
|
+
raise ValueError("dfreqresp requires a SISO (single input, single "
|
3431
|
+
"output) system.")
|
3432
|
+
|
3433
|
+
if w is not None:
|
3434
|
+
worN = w
|
3435
|
+
else:
|
3436
|
+
worN = n
|
3437
|
+
|
3438
|
+
if isinstance(system, TransferFunction):
|
3439
|
+
# Convert numerator and denominator from polynomials in the variable
|
3440
|
+
# 'z' to polynomials in the variable 'z^-1', as freqz expects.
|
3441
|
+
num, den = TransferFunction._z_to_zinv(system.num.ravel(), system.den)
|
3442
|
+
w, h = freqz(num, den, worN=worN, whole=whole)
|
3443
|
+
|
3444
|
+
elif isinstance(system, ZerosPolesGain):
|
3445
|
+
w, h = freqz_zpk(system.zeros, system.poles, system.gain, worN=worN,
|
3446
|
+
whole=whole)
|
3447
|
+
|
3448
|
+
return w, h
|
3449
|
+
|
3450
|
+
|
3451
|
+
def dbode(system, w=None, n=100):
|
3452
|
+
r"""Calculate Bode magnitude and phase data of a discrete-time system.
|
3453
|
+
|
3454
|
+
Parameters
|
3455
|
+
----------
|
3456
|
+
system : dlti | tuple
|
3457
|
+
An instance of the LTI class `dlti` or a tuple describing the system.
|
3458
|
+
The number of elements in the tuple determine the interpretation. I.e.:
|
3459
|
+
|
3460
|
+
* ``system``: Instance of LTI class `dlti`. Note that derived instances, such
|
3461
|
+
as instances of `TransferFunction`, `ZerosPolesGain`, or `StateSpace`, are
|
3462
|
+
allowed as well.
|
3463
|
+
* ``(num, den, dt)``: Rational polynomial as described in `TransferFunction`.
|
3464
|
+
The coefficients of the polynomials should be specified in descending
|
3465
|
+
exponent order, e.g., z² + 3z + 5 would be represented as ``[1, 3, 5]``.
|
3466
|
+
* ``(zeros, poles, gain, dt)``: Zeros, poles, gain form as described
|
3467
|
+
in `ZerosPolesGain`.
|
3468
|
+
* ``(A, B, C, D, dt)``: State-space form as described in `StateSpace`.
|
3469
|
+
|
3470
|
+
w : array_like, optional
|
3471
|
+
Array of frequencies normalized to the Nyquist frequency being π, i.e.,
|
3472
|
+
having unit radiant / sample. Magnitude and phase data is calculated for every
|
3473
|
+
value in this array. If not given, a reasonable set will be calculated.
|
3474
|
+
n : int, optional
|
3475
|
+
Number of frequency points to compute if `w` is not given. The `n`
|
3476
|
+
frequencies are logarithmically spaced in an interval chosen to
|
3477
|
+
include the influence of the poles and zeros of the system.
|
3478
|
+
|
3479
|
+
Returns
|
3480
|
+
-------
|
3481
|
+
w : 1D ndarray
|
3482
|
+
Array of frequencies normalized to the Nyquist frequency being ``np.pi/dt``
|
3483
|
+
with ``dt`` being the sampling interval of the `system` parameter.
|
3484
|
+
The unit is rad/s assuming ``dt`` is in seconds.
|
3485
|
+
mag : 1D ndarray
|
3486
|
+
Magnitude array in dB
|
3487
|
+
phase : 1D ndarray
|
3488
|
+
Phase array in degrees
|
3489
|
+
|
3490
|
+
Notes
|
3491
|
+
-----
|
3492
|
+
This function is a convenience wrapper around `dfreqresp` for extracting
|
3493
|
+
magnitude and phase from the calculated complex-valued amplitude of the
|
3494
|
+
frequency response.
|
3495
|
+
|
3496
|
+
.. versionadded:: 0.18.0
|
3497
|
+
|
3498
|
+
See Also
|
3499
|
+
--------
|
3500
|
+
dfreqresp, dlti, TransferFunction, ZerosPolesGain, StateSpace
|
3501
|
+
|
3502
|
+
|
3503
|
+
Examples
|
3504
|
+
--------
|
3505
|
+
The following example shows how to create a Bode plot of a 5-th order
|
3506
|
+
Butterworth lowpass filter with a corner frequency of 100 Hz:
|
3507
|
+
|
3508
|
+
>>> import matplotlib.pyplot as plt
|
3509
|
+
>>> import numpy as np
|
3510
|
+
>>> from scipy import signal
|
3511
|
+
...
|
3512
|
+
>>> T = 1e-4 # sampling interval in s
|
3513
|
+
>>> f_c, o = 1e2, 5 # corner frequency in Hz (i.e., -3 dB value) and filter order
|
3514
|
+
>>> bb, aa = signal.butter(o, f_c, 'lowpass', fs=1/T)
|
3515
|
+
...
|
3516
|
+
>>> w, mag, phase = signal.dbode((bb, aa, T))
|
3517
|
+
>>> w /= 2*np.pi # convert unit of frequency into Hertz
|
3518
|
+
...
|
3519
|
+
>>> fg, (ax0, ax1) = plt.subplots(2, 1, sharex='all', figsize=(5, 4),
|
3520
|
+
... tight_layout=True)
|
3521
|
+
>>> ax0.set_title("Bode Plot of Butterworth Lowpass Filter " +
|
3522
|
+
... rf"($f_c={f_c:g}\,$Hz, order={o})")
|
3523
|
+
>>> ax0.set_ylabel(r"Magnitude in dB")
|
3524
|
+
>>> ax1.set(ylabel=r"Phase in Degrees",
|
3525
|
+
... xlabel="Frequency $f$ in Hertz", xlim=(w[1], w[-1]))
|
3526
|
+
>>> ax0.semilogx(w, mag, 'C0-', label=r"$20\,\log_{10}|G(f)|$") # Magnitude plot
|
3527
|
+
>>> ax1.semilogx(w, phase, 'C1-', label=r"$\angle G(f)$") # Phase plot
|
3528
|
+
...
|
3529
|
+
>>> for ax_ in (ax0, ax1):
|
3530
|
+
... ax_.axvline(f_c, color='m', alpha=0.25, label=rf"${f_c=:g}\,$Hz")
|
3531
|
+
... ax_.grid(which='both', axis='x') # plot major & minor vertical grid lines
|
3532
|
+
... ax_.grid(which='major', axis='y')
|
3533
|
+
... ax_.legend()
|
3534
|
+
>>> plt.show()
|
3535
|
+
"""
|
3536
|
+
w, y = dfreqresp(system, w=w, n=n)
|
3537
|
+
|
3538
|
+
if isinstance(system, dlti):
|
3539
|
+
dt = system.dt
|
3540
|
+
else:
|
3541
|
+
dt = system[-1]
|
3542
|
+
|
3543
|
+
mag = 20.0 * np.log10(abs(y))
|
3544
|
+
phase = np.rad2deg(np.unwrap(np.angle(y)))
|
3545
|
+
|
3546
|
+
return w / dt, mag, phase
|