py-neuromodulation 0.0.3__py3-none-any.whl → 0.0.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- py_neuromodulation/ConnectivityDecoding/Automated Anatomical Labeling 3 (Rolls 2020).nii +0 -0
- py_neuromodulation/ConnectivityDecoding/_get_grid_hull.m +34 -0
- py_neuromodulation/ConnectivityDecoding/_get_grid_whole_brain.py +95 -0
- py_neuromodulation/ConnectivityDecoding/_helper_write_connectome.py +107 -0
- py_neuromodulation/ConnectivityDecoding/mni_coords_cortical_surface.mat +0 -0
- py_neuromodulation/ConnectivityDecoding/mni_coords_whole_brain.mat +0 -0
- py_neuromodulation/ConnectivityDecoding/rmap_func_all.nii +0 -0
- py_neuromodulation/ConnectivityDecoding/rmap_struc.nii +0 -0
- py_neuromodulation/FieldTrip.py +589 -589
- py_neuromodulation/__init__.py +74 -13
- py_neuromodulation/_write_example_dataset_helper.py +83 -65
- py_neuromodulation/data/README +6 -0
- py_neuromodulation/data/dataset_description.json +8 -0
- py_neuromodulation/data/participants.json +32 -0
- py_neuromodulation/data/participants.tsv +2 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_space-mni_coordsystem.json +5 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_space-mni_electrodes.tsv +11 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_channels.tsv +11 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.eeg +0 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.json +18 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.vhdr +35 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.vmrk +13 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/sub-testsub_ses-EphysMedOff_scans.tsv +2 -0
- py_neuromodulation/grid_cortex.tsv +40 -0
- py_neuromodulation/grid_subcortex.tsv +1429 -0
- py_neuromodulation/liblsl/libpugixml.so.1.12 +0 -0
- py_neuromodulation/liblsl/linux/bionic_amd64/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/bookworm_amd64/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/focal_amd46/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/jammy_amd64/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/jammy_x86/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/noble_amd64/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/macos/amd64/liblsl.1.16.2.dylib +0 -0
- py_neuromodulation/liblsl/macos/arm64/liblsl.1.16.0.dylib +0 -0
- py_neuromodulation/liblsl/windows/amd64/liblsl.1.16.2.dll +0 -0
- py_neuromodulation/liblsl/windows/x86/liblsl.1.16.2.dll +0 -0
- py_neuromodulation/nm_IO.py +413 -417
- py_neuromodulation/nm_RMAP.py +496 -531
- py_neuromodulation/nm_analysis.py +993 -1074
- py_neuromodulation/nm_artifacts.py +30 -25
- py_neuromodulation/nm_bispectra.py +154 -168
- py_neuromodulation/nm_bursts.py +292 -198
- py_neuromodulation/nm_coherence.py +251 -205
- py_neuromodulation/nm_database.py +149 -0
- py_neuromodulation/nm_decode.py +918 -992
- py_neuromodulation/nm_define_nmchannels.py +300 -302
- py_neuromodulation/nm_features.py +144 -116
- py_neuromodulation/nm_filter.py +219 -219
- py_neuromodulation/nm_filter_preprocessing.py +79 -91
- py_neuromodulation/nm_fooof.py +139 -159
- py_neuromodulation/nm_generator.py +45 -37
- py_neuromodulation/nm_hjorth_raw.py +52 -73
- py_neuromodulation/nm_kalmanfilter.py +71 -58
- py_neuromodulation/nm_linelength.py +21 -33
- py_neuromodulation/nm_logger.py +66 -0
- py_neuromodulation/nm_mne_connectivity.py +149 -112
- py_neuromodulation/nm_mnelsl_generator.py +90 -0
- py_neuromodulation/nm_mnelsl_stream.py +116 -0
- py_neuromodulation/nm_nolds.py +96 -93
- py_neuromodulation/nm_normalization.py +173 -214
- py_neuromodulation/nm_oscillatory.py +423 -448
- py_neuromodulation/nm_plots.py +585 -612
- py_neuromodulation/nm_preprocessing.py +83 -0
- py_neuromodulation/nm_projection.py +370 -394
- py_neuromodulation/nm_rereference.py +97 -95
- py_neuromodulation/nm_resample.py +59 -50
- py_neuromodulation/nm_run_analysis.py +325 -435
- py_neuromodulation/nm_settings.py +289 -68
- py_neuromodulation/nm_settings.yaml +244 -0
- py_neuromodulation/nm_sharpwaves.py +423 -401
- py_neuromodulation/nm_stats.py +464 -480
- py_neuromodulation/nm_stream.py +398 -0
- py_neuromodulation/nm_stream_abc.py +166 -218
- py_neuromodulation/nm_types.py +193 -0
- py_neuromodulation/plots/STN_surf.mat +0 -0
- py_neuromodulation/plots/Vertices.mat +0 -0
- py_neuromodulation/plots/faces.mat +0 -0
- py_neuromodulation/plots/grid.mat +0 -0
- {py_neuromodulation-0.0.3.dist-info → py_neuromodulation-0.0.5.dist-info}/METADATA +185 -182
- py_neuromodulation-0.0.5.dist-info/RECORD +83 -0
- {py_neuromodulation-0.0.3.dist-info → py_neuromodulation-0.0.5.dist-info}/WHEEL +1 -2
- {py_neuromodulation-0.0.3.dist-info → py_neuromodulation-0.0.5.dist-info/licenses}/LICENSE +21 -21
- docs/build/_downloads/09df217f95985497f45d69e2d4bdc5b1/plot_2_example_add_feature.py +0 -68
- docs/build/_downloads/3b4900a2b2818ff30362215b76f7d5eb/plot_1_example_BIDS.py +0 -233
- docs/build/_downloads/7e92dd2e6cc86b239d14cafad972ae4f/plot_3_example_sharpwave_analysis.py +0 -219
- docs/build/_downloads/c2db0bf2b334d541b00662b991682256/plot_6_real_time_demo.py +0 -97
- docs/build/_downloads/ce3914826f782cbd1ea8fd024eaf0ac3/plot_5_example_rmap_computing.py +0 -64
- docs/build/_downloads/da36848a41e6a3235d91fb7cfb6d59b4/plot_0_first_demo.py +0 -192
- docs/build/_downloads/eaa4305c75b19a1e2eea941f742a6331/plot_4_example_gridPointProjection.py +0 -210
- docs/build/html/_downloads/09df217f95985497f45d69e2d4bdc5b1/plot_2_example_add_feature.py +0 -68
- docs/build/html/_downloads/3b4900a2b2818ff30362215b76f7d5eb/plot_1_example_BIDS.py +0 -239
- docs/build/html/_downloads/7e92dd2e6cc86b239d14cafad972ae4f/plot_3_example_sharpwave_analysis.py +0 -219
- docs/build/html/_downloads/c2db0bf2b334d541b00662b991682256/plot_6_real_time_demo.py +0 -97
- docs/build/html/_downloads/ce3914826f782cbd1ea8fd024eaf0ac3/plot_5_example_rmap_computing.py +0 -64
- docs/build/html/_downloads/da36848a41e6a3235d91fb7cfb6d59b4/plot_0_first_demo.py +0 -192
- docs/build/html/_downloads/eaa4305c75b19a1e2eea941f742a6331/plot_4_example_gridPointProjection.py +0 -210
- docs/source/_build/html/_downloads/09df217f95985497f45d69e2d4bdc5b1/plot_2_example_add_feature.py +0 -76
- docs/source/_build/html/_downloads/0d0d0a76e8f648d5d3cbc47da6351932/plot_real_time_demo.py +0 -97
- docs/source/_build/html/_downloads/3b4900a2b2818ff30362215b76f7d5eb/plot_1_example_BIDS.py +0 -240
- docs/source/_build/html/_downloads/5d73cadc59a8805c47e3b84063afc157/plot_example_BIDS.py +0 -233
- docs/source/_build/html/_downloads/7660317fa5a6bfbd12fcca9961457fc4/plot_example_rmap_computing.py +0 -63
- docs/source/_build/html/_downloads/7e92dd2e6cc86b239d14cafad972ae4f/plot_3_example_sharpwave_analysis.py +0 -219
- docs/source/_build/html/_downloads/839e5b319379f7fd9e867deb00fd797f/plot_example_gridPointProjection.py +0 -210
- docs/source/_build/html/_downloads/ae8be19afe5e559f011fc9b138968ba0/plot_first_demo.py +0 -192
- docs/source/_build/html/_downloads/b8b06cacc17969d3725a0b6f1d7741c5/plot_example_sharpwave_analysis.py +0 -219
- docs/source/_build/html/_downloads/c2db0bf2b334d541b00662b991682256/plot_6_real_time_demo.py +0 -121
- docs/source/_build/html/_downloads/c31a86c0b68cb4167d968091ace8080d/plot_example_add_feature.py +0 -68
- docs/source/_build/html/_downloads/ce3914826f782cbd1ea8fd024eaf0ac3/plot_5_example_rmap_computing.py +0 -64
- docs/source/_build/html/_downloads/da36848a41e6a3235d91fb7cfb6d59b4/plot_0_first_demo.py +0 -189
- docs/source/_build/html/_downloads/eaa4305c75b19a1e2eea941f742a6331/plot_4_example_gridPointProjection.py +0 -210
- docs/source/auto_examples/plot_0_first_demo.py +0 -189
- docs/source/auto_examples/plot_1_example_BIDS.py +0 -240
- docs/source/auto_examples/plot_2_example_add_feature.py +0 -76
- docs/source/auto_examples/plot_3_example_sharpwave_analysis.py +0 -219
- docs/source/auto_examples/plot_4_example_gridPointProjection.py +0 -210
- docs/source/auto_examples/plot_5_example_rmap_computing.py +0 -64
- docs/source/auto_examples/plot_6_real_time_demo.py +0 -121
- docs/source/conf.py +0 -105
- examples/plot_0_first_demo.py +0 -189
- examples/plot_1_example_BIDS.py +0 -240
- examples/plot_2_example_add_feature.py +0 -76
- examples/plot_3_example_sharpwave_analysis.py +0 -219
- examples/plot_4_example_gridPointProjection.py +0 -210
- examples/plot_5_example_rmap_computing.py +0 -64
- examples/plot_6_real_time_demo.py +0 -121
- packages/realtime_decoding/build/lib/realtime_decoding/__init__.py +0 -4
- packages/realtime_decoding/build/lib/realtime_decoding/decoder.py +0 -104
- packages/realtime_decoding/build/lib/realtime_decoding/features.py +0 -163
- packages/realtime_decoding/build/lib/realtime_decoding/helpers.py +0 -15
- packages/realtime_decoding/build/lib/realtime_decoding/run_decoding.py +0 -345
- packages/realtime_decoding/build/lib/realtime_decoding/trainer.py +0 -54
- packages/tmsi/build/lib/TMSiFileFormats/__init__.py +0 -37
- packages/tmsi/build/lib/TMSiFileFormats/file_formats/__init__.py +0 -36
- packages/tmsi/build/lib/TMSiFileFormats/file_formats/lsl_stream_writer.py +0 -200
- packages/tmsi/build/lib/TMSiFileFormats/file_formats/poly5_file_writer.py +0 -496
- packages/tmsi/build/lib/TMSiFileFormats/file_formats/poly5_to_edf_converter.py +0 -236
- packages/tmsi/build/lib/TMSiFileFormats/file_formats/xdf_file_writer.py +0 -977
- packages/tmsi/build/lib/TMSiFileFormats/file_readers/__init__.py +0 -35
- packages/tmsi/build/lib/TMSiFileFormats/file_readers/edf_reader.py +0 -116
- packages/tmsi/build/lib/TMSiFileFormats/file_readers/poly5reader.py +0 -294
- packages/tmsi/build/lib/TMSiFileFormats/file_readers/xdf_reader.py +0 -229
- packages/tmsi/build/lib/TMSiFileFormats/file_writer.py +0 -102
- packages/tmsi/build/lib/TMSiPlotters/__init__.py +0 -2
- packages/tmsi/build/lib/TMSiPlotters/gui/__init__.py +0 -39
- packages/tmsi/build/lib/TMSiPlotters/gui/_plotter_gui.py +0 -234
- packages/tmsi/build/lib/TMSiPlotters/gui/plotting_gui.py +0 -440
- packages/tmsi/build/lib/TMSiPlotters/plotters/__init__.py +0 -44
- packages/tmsi/build/lib/TMSiPlotters/plotters/hd_emg_plotter.py +0 -446
- packages/tmsi/build/lib/TMSiPlotters/plotters/impedance_plotter.py +0 -589
- packages/tmsi/build/lib/TMSiPlotters/plotters/signal_plotter.py +0 -1326
- packages/tmsi/build/lib/TMSiSDK/__init__.py +0 -54
- packages/tmsi/build/lib/TMSiSDK/device.py +0 -588
- packages/tmsi/build/lib/TMSiSDK/devices/__init__.py +0 -34
- packages/tmsi/build/lib/TMSiSDK/devices/saga/TMSi_Device_API.py +0 -1764
- packages/tmsi/build/lib/TMSiSDK/devices/saga/__init__.py +0 -34
- packages/tmsi/build/lib/TMSiSDK/devices/saga/saga_device.py +0 -1366
- packages/tmsi/build/lib/TMSiSDK/devices/saga/saga_types.py +0 -520
- packages/tmsi/build/lib/TMSiSDK/devices/saga/xml_saga_config.py +0 -165
- packages/tmsi/build/lib/TMSiSDK/error.py +0 -95
- packages/tmsi/build/lib/TMSiSDK/sample_data.py +0 -63
- packages/tmsi/build/lib/TMSiSDK/sample_data_server.py +0 -99
- packages/tmsi/build/lib/TMSiSDK/settings.py +0 -45
- packages/tmsi/build/lib/TMSiSDK/tmsi_device.py +0 -111
- packages/tmsi/build/lib/__init__.py +0 -4
- packages/tmsi/build/lib/apex_sdk/__init__.py +0 -34
- packages/tmsi/build/lib/apex_sdk/device/__init__.py +0 -41
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_API.py +0 -1009
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_API_enums.py +0 -239
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_API_structures.py +0 -668
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_device.py +0 -1611
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_dongle.py +0 -38
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_event_reader.py +0 -57
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_channel.py +0 -44
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_config.py +0 -150
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_const.py +0 -36
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_impedance_channel.py +0 -48
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_info.py +0 -108
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/dongle_info.py +0 -39
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/measurements/download_measurement.py +0 -77
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/measurements/eeg_measurement.py +0 -150
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/measurements/impedance_measurement.py +0 -129
- packages/tmsi/build/lib/apex_sdk/device/threads/conversion_thread.py +0 -59
- packages/tmsi/build/lib/apex_sdk/device/threads/sampling_thread.py +0 -57
- packages/tmsi/build/lib/apex_sdk/device/tmsi_channel.py +0 -83
- packages/tmsi/build/lib/apex_sdk/device/tmsi_device.py +0 -201
- packages/tmsi/build/lib/apex_sdk/device/tmsi_device_enums.py +0 -103
- packages/tmsi/build/lib/apex_sdk/device/tmsi_dongle.py +0 -43
- packages/tmsi/build/lib/apex_sdk/device/tmsi_event_reader.py +0 -50
- packages/tmsi/build/lib/apex_sdk/device/tmsi_measurement.py +0 -118
- packages/tmsi/build/lib/apex_sdk/sample_data_server/__init__.py +0 -33
- packages/tmsi/build/lib/apex_sdk/sample_data_server/event_data.py +0 -44
- packages/tmsi/build/lib/apex_sdk/sample_data_server/sample_data.py +0 -50
- packages/tmsi/build/lib/apex_sdk/sample_data_server/sample_data_server.py +0 -136
- packages/tmsi/build/lib/apex_sdk/tmsi_errors/error.py +0 -126
- packages/tmsi/build/lib/apex_sdk/tmsi_sdk.py +0 -113
- packages/tmsi/build/lib/apex_sdk/tmsi_utilities/apex/apex_structure_generator.py +0 -134
- packages/tmsi/build/lib/apex_sdk/tmsi_utilities/decorators.py +0 -60
- packages/tmsi/build/lib/apex_sdk/tmsi_utilities/logger_filter.py +0 -42
- packages/tmsi/build/lib/apex_sdk/tmsi_utilities/singleton.py +0 -42
- packages/tmsi/build/lib/apex_sdk/tmsi_utilities/support_functions.py +0 -72
- packages/tmsi/build/lib/apex_sdk/tmsi_utilities/tmsi_logger.py +0 -98
- py_neuromodulation/nm_EpochStream.py +0 -92
- py_neuromodulation/nm_across_patient_decoding.py +0 -927
- py_neuromodulation/nm_cohortwrapper.py +0 -435
- py_neuromodulation/nm_eval_timing.py +0 -239
- py_neuromodulation/nm_features_abc.py +0 -39
- py_neuromodulation/nm_stream_offline.py +0 -358
- py_neuromodulation/utils/_logging.py +0 -24
- py_neuromodulation-0.0.3.dist-info/RECORD +0 -188
- py_neuromodulation-0.0.3.dist-info/top_level.txt +0 -5
- tests/__init__.py +0 -0
- tests/conftest.py +0 -117
- tests/test_all_examples.py +0 -10
- tests/test_all_features.py +0 -63
- tests/test_bispectra.py +0 -70
- tests/test_bursts.py +0 -105
- tests/test_feature_sampling_rates.py +0 -143
- tests/test_fooof.py +0 -16
- tests/test_initalization_offline_stream.py +0 -41
- tests/test_multiprocessing.py +0 -58
- tests/test_nan_values.py +0 -29
- tests/test_nm_filter.py +0 -95
- tests/test_nm_resample.py +0 -63
- tests/test_normalization_settings.py +0 -146
- tests/test_notch_filter.py +0 -31
- tests/test_osc_features.py +0 -424
- tests/test_preprocessing_filter.py +0 -151
- tests/test_rereference.py +0 -171
- tests/test_sampling.py +0 -57
- tests/test_settings_change_after_init.py +0 -76
- tests/test_sharpwave.py +0 -165
- tests/test_target_channel_add.py +0 -100
- tests/test_timing.py +0 -80
|
@@ -1,1074 +1,993 @@
|
|
|
1
|
-
import
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
import
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
from scipy import
|
|
12
|
-
|
|
13
|
-
from py_neuromodulation import
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
"
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
self.
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
)
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
self.
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
self.
|
|
79
|
-
self.
|
|
80
|
-
self.
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
|
|
163
|
-
|
|
164
|
-
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
|
|
191
|
-
|
|
192
|
-
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
|
|
204
|
-
|
|
205
|
-
|
|
206
|
-
|
|
207
|
-
|
|
208
|
-
|
|
209
|
-
|
|
210
|
-
|
|
211
|
-
|
|
212
|
-
|
|
213
|
-
self.
|
|
214
|
-
|
|
215
|
-
|
|
216
|
-
|
|
217
|
-
|
|
218
|
-
|
|
219
|
-
|
|
220
|
-
|
|
221
|
-
|
|
222
|
-
|
|
223
|
-
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
|
|
227
|
-
|
|
228
|
-
def
|
|
229
|
-
|
|
230
|
-
|
|
231
|
-
|
|
232
|
-
|
|
233
|
-
|
|
234
|
-
|
|
235
|
-
|
|
236
|
-
|
|
237
|
-
|
|
238
|
-
|
|
239
|
-
|
|
240
|
-
|
|
241
|
-
|
|
242
|
-
|
|
243
|
-
|
|
244
|
-
|
|
245
|
-
|
|
246
|
-
|
|
247
|
-
|
|
248
|
-
|
|
249
|
-
|
|
250
|
-
|
|
251
|
-
|
|
252
|
-
|
|
253
|
-
|
|
254
|
-
|
|
255
|
-
|
|
256
|
-
|
|
257
|
-
|
|
258
|
-
|
|
259
|
-
|
|
260
|
-
|
|
261
|
-
|
|
262
|
-
|
|
263
|
-
|
|
264
|
-
|
|
265
|
-
|
|
266
|
-
|
|
267
|
-
|
|
268
|
-
|
|
269
|
-
|
|
270
|
-
|
|
271
|
-
|
|
272
|
-
|
|
273
|
-
|
|
274
|
-
|
|
275
|
-
|
|
276
|
-
|
|
277
|
-
|
|
278
|
-
|
|
279
|
-
|
|
280
|
-
|
|
281
|
-
|
|
282
|
-
|
|
283
|
-
|
|
284
|
-
|
|
285
|
-
|
|
286
|
-
|
|
287
|
-
|
|
288
|
-
|
|
289
|
-
|
|
290
|
-
|
|
291
|
-
|
|
292
|
-
|
|
293
|
-
|
|
294
|
-
|
|
295
|
-
|
|
296
|
-
|
|
297
|
-
|
|
298
|
-
|
|
299
|
-
|
|
300
|
-
|
|
301
|
-
|
|
302
|
-
|
|
303
|
-
|
|
304
|
-
|
|
305
|
-
|
|
306
|
-
|
|
307
|
-
|
|
308
|
-
|
|
309
|
-
|
|
310
|
-
|
|
311
|
-
|
|
312
|
-
|
|
313
|
-
|
|
314
|
-
|
|
315
|
-
|
|
316
|
-
|
|
317
|
-
|
|
318
|
-
|
|
319
|
-
|
|
320
|
-
|
|
321
|
-
|
|
322
|
-
|
|
323
|
-
|
|
324
|
-
|
|
325
|
-
|
|
326
|
-
|
|
327
|
-
|
|
328
|
-
|
|
329
|
-
|
|
330
|
-
|
|
331
|
-
|
|
332
|
-
|
|
333
|
-
|
|
334
|
-
|
|
335
|
-
|
|
336
|
-
|
|
337
|
-
|
|
338
|
-
|
|
339
|
-
|
|
340
|
-
|
|
341
|
-
|
|
342
|
-
|
|
343
|
-
|
|
344
|
-
|
|
345
|
-
|
|
346
|
-
|
|
347
|
-
|
|
348
|
-
|
|
349
|
-
|
|
350
|
-
|
|
351
|
-
|
|
352
|
-
|
|
353
|
-
|
|
354
|
-
|
|
355
|
-
|
|
356
|
-
|
|
357
|
-
|
|
358
|
-
|
|
359
|
-
|
|
360
|
-
|
|
361
|
-
|
|
362
|
-
|
|
363
|
-
|
|
364
|
-
|
|
365
|
-
|
|
366
|
-
|
|
367
|
-
|
|
368
|
-
|
|
369
|
-
|
|
370
|
-
|
|
371
|
-
|
|
372
|
-
|
|
373
|
-
|
|
374
|
-
|
|
375
|
-
|
|
376
|
-
|
|
377
|
-
|
|
378
|
-
|
|
379
|
-
|
|
380
|
-
|
|
381
|
-
|
|
382
|
-
|
|
383
|
-
|
|
384
|
-
|
|
385
|
-
|
|
386
|
-
|
|
387
|
-
|
|
388
|
-
|
|
389
|
-
|
|
390
|
-
|
|
391
|
-
|
|
392
|
-
|
|
393
|
-
|
|
394
|
-
|
|
395
|
-
|
|
396
|
-
|
|
397
|
-
|
|
398
|
-
|
|
399
|
-
|
|
400
|
-
|
|
401
|
-
|
|
402
|
-
|
|
403
|
-
|
|
404
|
-
|
|
405
|
-
|
|
406
|
-
|
|
407
|
-
|
|
408
|
-
|
|
409
|
-
|
|
410
|
-
|
|
411
|
-
|
|
412
|
-
|
|
413
|
-
|
|
414
|
-
|
|
415
|
-
|
|
416
|
-
|
|
417
|
-
|
|
418
|
-
|
|
419
|
-
|
|
420
|
-
|
|
421
|
-
|
|
422
|
-
|
|
423
|
-
|
|
424
|
-
|
|
425
|
-
|
|
426
|
-
|
|
427
|
-
|
|
428
|
-
|
|
429
|
-
|
|
430
|
-
|
|
431
|
-
|
|
432
|
-
|
|
433
|
-
|
|
434
|
-
|
|
435
|
-
|
|
436
|
-
|
|
437
|
-
|
|
438
|
-
|
|
439
|
-
|
|
440
|
-
|
|
441
|
-
|
|
442
|
-
|
|
443
|
-
|
|
444
|
-
|
|
445
|
-
|
|
446
|
-
|
|
447
|
-
|
|
448
|
-
|
|
449
|
-
|
|
450
|
-
|
|
451
|
-
|
|
452
|
-
|
|
453
|
-
|
|
454
|
-
|
|
455
|
-
|
|
456
|
-
|
|
457
|
-
|
|
458
|
-
|
|
459
|
-
|
|
460
|
-
|
|
461
|
-
|
|
462
|
-
|
|
463
|
-
|
|
464
|
-
|
|
465
|
-
|
|
466
|
-
|
|
467
|
-
|
|
468
|
-
|
|
469
|
-
|
|
470
|
-
|
|
471
|
-
|
|
472
|
-
|
|
473
|
-
|
|
474
|
-
|
|
475
|
-
|
|
476
|
-
|
|
477
|
-
|
|
478
|
-
|
|
479
|
-
|
|
480
|
-
|
|
481
|
-
|
|
482
|
-
|
|
483
|
-
|
|
484
|
-
|
|
485
|
-
|
|
486
|
-
|
|
487
|
-
|
|
488
|
-
|
|
489
|
-
|
|
490
|
-
|
|
491
|
-
|
|
492
|
-
|
|
493
|
-
|
|
494
|
-
|
|
495
|
-
|
|
496
|
-
|
|
497
|
-
|
|
498
|
-
|
|
499
|
-
|
|
500
|
-
|
|
501
|
-
|
|
502
|
-
|
|
503
|
-
|
|
504
|
-
if
|
|
505
|
-
else None,
|
|
506
|
-
|
|
507
|
-
|
|
508
|
-
|
|
509
|
-
|
|
510
|
-
|
|
511
|
-
|
|
512
|
-
|
|
513
|
-
|
|
514
|
-
|
|
515
|
-
|
|
516
|
-
|
|
517
|
-
|
|
518
|
-
|
|
519
|
-
|
|
520
|
-
self
|
|
521
|
-
|
|
522
|
-
|
|
523
|
-
|
|
524
|
-
|
|
525
|
-
|
|
526
|
-
|
|
527
|
-
|
|
528
|
-
|
|
529
|
-
|
|
530
|
-
|
|
531
|
-
|
|
532
|
-
|
|
533
|
-
|
|
534
|
-
|
|
535
|
-
|
|
536
|
-
|
|
537
|
-
|
|
538
|
-
|
|
539
|
-
|
|
540
|
-
|
|
541
|
-
|
|
542
|
-
|
|
543
|
-
|
|
544
|
-
|
|
545
|
-
|
|
546
|
-
|
|
547
|
-
|
|
548
|
-
|
|
549
|
-
|
|
550
|
-
|
|
551
|
-
|
|
552
|
-
|
|
553
|
-
|
|
554
|
-
|
|
555
|
-
|
|
556
|
-
|
|
557
|
-
|
|
558
|
-
|
|
559
|
-
|
|
560
|
-
|
|
561
|
-
|
|
562
|
-
|
|
563
|
-
|
|
564
|
-
|
|
565
|
-
|
|
566
|
-
|
|
567
|
-
|
|
568
|
-
|
|
569
|
-
|
|
570
|
-
|
|
571
|
-
|
|
572
|
-
|
|
573
|
-
|
|
574
|
-
|
|
575
|
-
|
|
576
|
-
|
|
577
|
-
|
|
578
|
-
|
|
579
|
-
|
|
580
|
-
|
|
581
|
-
|
|
582
|
-
|
|
583
|
-
|
|
584
|
-
|
|
585
|
-
|
|
586
|
-
|
|
587
|
-
|
|
588
|
-
|
|
589
|
-
|
|
590
|
-
|
|
591
|
-
|
|
592
|
-
|
|
593
|
-
|
|
594
|
-
|
|
595
|
-
|
|
596
|
-
|
|
597
|
-
|
|
598
|
-
|
|
599
|
-
|
|
600
|
-
|
|
601
|
-
|
|
602
|
-
|
|
603
|
-
|
|
604
|
-
|
|
605
|
-
|
|
606
|
-
|
|
607
|
-
|
|
608
|
-
|
|
609
|
-
|
|
610
|
-
|
|
611
|
-
|
|
612
|
-
|
|
613
|
-
|
|
614
|
-
|
|
615
|
-
|
|
616
|
-
|
|
617
|
-
|
|
618
|
-
|
|
619
|
-
|
|
620
|
-
|
|
621
|
-
|
|
622
|
-
|
|
623
|
-
|
|
624
|
-
|
|
625
|
-
|
|
626
|
-
|
|
627
|
-
|
|
628
|
-
|
|
629
|
-
|
|
630
|
-
|
|
631
|
-
|
|
632
|
-
|
|
633
|
-
|
|
634
|
-
|
|
635
|
-
|
|
636
|
-
|
|
637
|
-
|
|
638
|
-
|
|
639
|
-
|
|
640
|
-
|
|
641
|
-
|
|
642
|
-
|
|
643
|
-
|
|
644
|
-
|
|
645
|
-
|
|
646
|
-
|
|
647
|
-
|
|
648
|
-
|
|
649
|
-
|
|
650
|
-
|
|
651
|
-
|
|
652
|
-
|
|
653
|
-
|
|
654
|
-
|
|
655
|
-
|
|
656
|
-
|
|
657
|
-
|
|
658
|
-
|
|
659
|
-
|
|
660
|
-
|
|
661
|
-
|
|
662
|
-
|
|
663
|
-
|
|
664
|
-
|
|
665
|
-
|
|
666
|
-
|
|
667
|
-
|
|
668
|
-
|
|
669
|
-
if
|
|
670
|
-
self.decoder
|
|
671
|
-
|
|
672
|
-
|
|
673
|
-
self.decoder
|
|
674
|
-
|
|
675
|
-
|
|
676
|
-
|
|
677
|
-
|
|
678
|
-
|
|
679
|
-
|
|
680
|
-
|
|
681
|
-
|
|
682
|
-
|
|
683
|
-
|
|
684
|
-
|
|
685
|
-
|
|
686
|
-
|
|
687
|
-
|
|
688
|
-
|
|
689
|
-
|
|
690
|
-
|
|
691
|
-
|
|
692
|
-
|
|
693
|
-
|
|
694
|
-
|
|
695
|
-
|
|
696
|
-
|
|
697
|
-
|
|
698
|
-
|
|
699
|
-
|
|
700
|
-
|
|
701
|
-
|
|
702
|
-
|
|
703
|
-
|
|
704
|
-
|
|
705
|
-
|
|
706
|
-
|
|
707
|
-
|
|
708
|
-
|
|
709
|
-
|
|
710
|
-
|
|
711
|
-
|
|
712
|
-
|
|
713
|
-
|
|
714
|
-
|
|
715
|
-
|
|
716
|
-
|
|
717
|
-
|
|
718
|
-
|
|
719
|
-
|
|
720
|
-
|
|
721
|
-
|
|
722
|
-
|
|
723
|
-
|
|
724
|
-
|
|
725
|
-
|
|
726
|
-
|
|
727
|
-
|
|
728
|
-
|
|
729
|
-
|
|
730
|
-
|
|
731
|
-
|
|
732
|
-
|
|
733
|
-
|
|
734
|
-
|
|
735
|
-
|
|
736
|
-
|
|
737
|
-
|
|
738
|
-
|
|
739
|
-
|
|
740
|
-
|
|
741
|
-
|
|
742
|
-
|
|
743
|
-
|
|
744
|
-
|
|
745
|
-
|
|
746
|
-
|
|
747
|
-
|
|
748
|
-
|
|
749
|
-
|
|
750
|
-
|
|
751
|
-
|
|
752
|
-
|
|
753
|
-
|
|
754
|
-
|
|
755
|
-
|
|
756
|
-
|
|
757
|
-
|
|
758
|
-
|
|
759
|
-
|
|
760
|
-
|
|
761
|
-
|
|
762
|
-
|
|
763
|
-
|
|
764
|
-
)
|
|
765
|
-
|
|
766
|
-
|
|
767
|
-
|
|
768
|
-
|
|
769
|
-
|
|
770
|
-
|
|
771
|
-
|
|
772
|
-
|
|
773
|
-
|
|
774
|
-
|
|
775
|
-
|
|
776
|
-
|
|
777
|
-
|
|
778
|
-
|
|
779
|
-
|
|
780
|
-
|
|
781
|
-
|
|
782
|
-
|
|
783
|
-
|
|
784
|
-
|
|
785
|
-
|
|
786
|
-
|
|
787
|
-
|
|
788
|
-
|
|
789
|
-
|
|
790
|
-
|
|
791
|
-
|
|
792
|
-
|
|
793
|
-
|
|
794
|
-
|
|
795
|
-
|
|
796
|
-
|
|
797
|
-
|
|
798
|
-
|
|
799
|
-
|
|
800
|
-
|
|
801
|
-
|
|
802
|
-
|
|
803
|
-
|
|
804
|
-
|
|
805
|
-
|
|
806
|
-
|
|
807
|
-
|
|
808
|
-
|
|
809
|
-
|
|
810
|
-
|
|
811
|
-
|
|
812
|
-
|
|
813
|
-
|
|
814
|
-
|
|
815
|
-
|
|
816
|
-
|
|
817
|
-
|
|
818
|
-
|
|
819
|
-
|
|
820
|
-
|
|
821
|
-
|
|
822
|
-
|
|
823
|
-
|
|
824
|
-
|
|
825
|
-
|
|
826
|
-
|
|
827
|
-
|
|
828
|
-
|
|
829
|
-
|
|
830
|
-
|
|
831
|
-
|
|
832
|
-
|
|
833
|
-
|
|
834
|
-
|
|
835
|
-
|
|
836
|
-
|
|
837
|
-
|
|
838
|
-
|
|
839
|
-
|
|
840
|
-
|
|
841
|
-
|
|
842
|
-
|
|
843
|
-
|
|
844
|
-
|
|
845
|
-
|
|
846
|
-
|
|
847
|
-
|
|
848
|
-
|
|
849
|
-
|
|
850
|
-
|
|
851
|
-
|
|
852
|
-
|
|
853
|
-
|
|
854
|
-
|
|
855
|
-
|
|
856
|
-
|
|
857
|
-
|
|
858
|
-
|
|
859
|
-
|
|
860
|
-
|
|
861
|
-
|
|
862
|
-
|
|
863
|
-
|
|
864
|
-
|
|
865
|
-
|
|
866
|
-
|
|
867
|
-
|
|
868
|
-
|
|
869
|
-
|
|
870
|
-
|
|
871
|
-
|
|
872
|
-
|
|
873
|
-
|
|
874
|
-
|
|
875
|
-
|
|
876
|
-
|
|
877
|
-
|
|
878
|
-
|
|
879
|
-
|
|
880
|
-
|
|
881
|
-
|
|
882
|
-
|
|
883
|
-
|
|
884
|
-
|
|
885
|
-
|
|
886
|
-
|
|
887
|
-
|
|
888
|
-
|
|
889
|
-
|
|
890
|
-
|
|
891
|
-
|
|
892
|
-
|
|
893
|
-
|
|
894
|
-
|
|
895
|
-
|
|
896
|
-
|
|
897
|
-
|
|
898
|
-
|
|
899
|
-
|
|
900
|
-
|
|
901
|
-
|
|
902
|
-
|
|
903
|
-
|
|
904
|
-
|
|
905
|
-
|
|
906
|
-
|
|
907
|
-
|
|
908
|
-
|
|
909
|
-
|
|
910
|
-
|
|
911
|
-
|
|
912
|
-
|
|
913
|
-
|
|
914
|
-
|
|
915
|
-
|
|
916
|
-
|
|
917
|
-
|
|
918
|
-
|
|
919
|
-
|
|
920
|
-
|
|
921
|
-
|
|
922
|
-
|
|
923
|
-
|
|
924
|
-
|
|
925
|
-
|
|
926
|
-
|
|
927
|
-
|
|
928
|
-
|
|
929
|
-
|
|
930
|
-
|
|
931
|
-
|
|
932
|
-
|
|
933
|
-
|
|
934
|
-
|
|
935
|
-
|
|
936
|
-
|
|
937
|
-
|
|
938
|
-
|
|
939
|
-
|
|
940
|
-
|
|
941
|
-
|
|
942
|
-
|
|
943
|
-
|
|
944
|
-
|
|
945
|
-
|
|
946
|
-
|
|
947
|
-
|
|
948
|
-
|
|
949
|
-
|
|
950
|
-
|
|
951
|
-
|
|
952
|
-
|
|
953
|
-
|
|
954
|
-
|
|
955
|
-
|
|
956
|
-
|
|
957
|
-
|
|
958
|
-
|
|
959
|
-
|
|
960
|
-
|
|
961
|
-
|
|
962
|
-
|
|
963
|
-
|
|
964
|
-
|
|
965
|
-
|
|
966
|
-
|
|
967
|
-
performance_dict
|
|
968
|
-
|
|
969
|
-
|
|
970
|
-
|
|
971
|
-
|
|
972
|
-
|
|
973
|
-
|
|
974
|
-
|
|
975
|
-
|
|
976
|
-
|
|
977
|
-
|
|
978
|
-
|
|
979
|
-
|
|
980
|
-
|
|
981
|
-
|
|
982
|
-
|
|
983
|
-
|
|
984
|
-
|
|
985
|
-
|
|
986
|
-
|
|
987
|
-
|
|
988
|
-
|
|
989
|
-
|
|
990
|
-
|
|
991
|
-
|
|
992
|
-
|
|
993
|
-
|
|
994
|
-
if read_all_combined:
|
|
995
|
-
performance_dict[subject_name]["all_ch_combined"] = {}
|
|
996
|
-
write_CV_res_in_performance_dict(
|
|
997
|
-
ML_res.all_ch_results,
|
|
998
|
-
performance_dict[subject_name]["all_ch_combined"],
|
|
999
|
-
read_mov_detection_rates=read_mov_detection_rates,
|
|
1000
|
-
read_bay_opt_params=read_bay_opt_params,
|
|
1001
|
-
)
|
|
1002
|
-
|
|
1003
|
-
if read_grid_points:
|
|
1004
|
-
performance_dict[subject_name][
|
|
1005
|
-
"active_gridpoints"
|
|
1006
|
-
] = ML_res.active_gridpoints
|
|
1007
|
-
|
|
1008
|
-
for project_settings, grid_type in zip(
|
|
1009
|
-
["project_cortex", "project_subcortex"],
|
|
1010
|
-
["gridcortex_", "gridsubcortex_"],
|
|
1011
|
-
):
|
|
1012
|
-
if self.settings["postprocessing"][project_settings] is False:
|
|
1013
|
-
continue
|
|
1014
|
-
|
|
1015
|
-
# the sidecar keys are grid_cortex and subcortex_grid
|
|
1016
|
-
for grid_point in range(
|
|
1017
|
-
len(self.sidecar["grid_" + project_settings.split("_")[1]])
|
|
1018
|
-
):
|
|
1019
|
-
|
|
1020
|
-
gp_str = grid_type + str(grid_point)
|
|
1021
|
-
|
|
1022
|
-
performance_dict[subject_name][gp_str] = {}
|
|
1023
|
-
performance_dict[subject_name][gp_str][
|
|
1024
|
-
"coord"
|
|
1025
|
-
] = self.sidecar["grid_" + project_settings.split("_")[1]][
|
|
1026
|
-
grid_point
|
|
1027
|
-
]
|
|
1028
|
-
|
|
1029
|
-
if gp_str in ML_res.active_gridpoints:
|
|
1030
|
-
write_CV_res_in_performance_dict(
|
|
1031
|
-
ML_res.gridpoint_ind_results[gp_str],
|
|
1032
|
-
performance_dict[subject_name][gp_str],
|
|
1033
|
-
read_mov_detection_rates=read_mov_detection_rates,
|
|
1034
|
-
read_bay_opt_params=read_bay_opt_params,
|
|
1035
|
-
)
|
|
1036
|
-
else:
|
|
1037
|
-
# set non interpolated grid point to default performance
|
|
1038
|
-
performance_dict[subject_name][gp_str][
|
|
1039
|
-
"performance_test"
|
|
1040
|
-
] = DEFAULT_PERFORMANCE
|
|
1041
|
-
performance_dict[subject_name][gp_str][
|
|
1042
|
-
"performance_train"
|
|
1043
|
-
] = DEFAULT_PERFORMANCE
|
|
1044
|
-
|
|
1045
|
-
if save_results:
|
|
1046
|
-
nm_IO.save_general_dict(
|
|
1047
|
-
dict_=performance_dict,
|
|
1048
|
-
path_out=PATH_OUT,
|
|
1049
|
-
str_add=str_add,
|
|
1050
|
-
folder_name=folder_name,
|
|
1051
|
-
)
|
|
1052
|
-
return performance_dict
|
|
1053
|
-
|
|
1054
|
-
@staticmethod
|
|
1055
|
-
def get_dataframe_performances(p: dict) -> pd.DataFrame:
|
|
1056
|
-
performances = []
|
|
1057
|
-
for sub in p.keys():
|
|
1058
|
-
for ch in p[sub].keys():
|
|
1059
|
-
if "active_gridpoints" in ch:
|
|
1060
|
-
continue
|
|
1061
|
-
dict_add = p[sub][ch].copy()
|
|
1062
|
-
dict_add["sub"] = sub
|
|
1063
|
-
dict_add["ch"] = ch
|
|
1064
|
-
|
|
1065
|
-
if "all_ch_" in ch:
|
|
1066
|
-
dict_add["ch_type"] = "all ch combinded"
|
|
1067
|
-
elif "gridcortex" in ch:
|
|
1068
|
-
dict_add["ch_type"] = "cortex grid"
|
|
1069
|
-
else:
|
|
1070
|
-
dict_add["ch_type"] = "electrode ch"
|
|
1071
|
-
performances.append(dict_add)
|
|
1072
|
-
df = pd.DataFrame(performances)
|
|
1073
|
-
|
|
1074
|
-
return df
|
|
1
|
+
from pathlib import PurePath
|
|
2
|
+
|
|
3
|
+
import pickle
|
|
4
|
+
import numpy as np
|
|
5
|
+
import pandas as pd
|
|
6
|
+
|
|
7
|
+
from sklearn.linear_model import LogisticRegression
|
|
8
|
+
from sklearn.metrics import r2_score
|
|
9
|
+
from sklearn.model_selection import KFold
|
|
10
|
+
|
|
11
|
+
from scipy.stats import zscore as scipy_zscore
|
|
12
|
+
|
|
13
|
+
from py_neuromodulation import nm_IO, nm_plots
|
|
14
|
+
from py_neuromodulation.nm_decode import Decoder
|
|
15
|
+
from py_neuromodulation.nm_types import _PathLike
|
|
16
|
+
from py_neuromodulation.nm_settings import NMSettings
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
target_filter_str = {
|
|
20
|
+
"CLEAN",
|
|
21
|
+
"SQUARED_EMG",
|
|
22
|
+
"SQUARED_INTERPOLATED_EMG",
|
|
23
|
+
"SQUARED_ROTAWHEEL",
|
|
24
|
+
"SQUARED_ROTATION" "rota_squared",
|
|
25
|
+
}
|
|
26
|
+
features_reverse_order_plotting = {"stft", "fft", "bandpass"}
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
class FeatureReader:
|
|
30
|
+
def __init__(
|
|
31
|
+
self,
|
|
32
|
+
feature_dir: _PathLike,
|
|
33
|
+
feature_file: _PathLike = "",
|
|
34
|
+
binarize_label: bool = True,
|
|
35
|
+
) -> None:
|
|
36
|
+
"""Feature_Reader enables analysis methods on top of NM_reader and NM_Decoder
|
|
37
|
+
|
|
38
|
+
Parameters
|
|
39
|
+
----------
|
|
40
|
+
feature_dir : str, optional
|
|
41
|
+
Path to py_neuromodulation estimated feature runs, where each feature is a folder,
|
|
42
|
+
feature_file : str, optional
|
|
43
|
+
specific feature run, if None it is set to the first feature folder in feature_dir
|
|
44
|
+
binarize_label : bool
|
|
45
|
+
binarize label, by default True
|
|
46
|
+
|
|
47
|
+
"""
|
|
48
|
+
self.feature_dir = feature_dir
|
|
49
|
+
self.feature_list: list[str] = nm_IO.get_run_list_indir(self.feature_dir)
|
|
50
|
+
self.feature_file = feature_file if feature_file else self.feature_list[0]
|
|
51
|
+
|
|
52
|
+
FILE_BASENAME = PurePath(self.feature_file).stem
|
|
53
|
+
PATH_READ_FILE = str(PurePath(self.feature_dir, FILE_BASENAME, FILE_BASENAME))
|
|
54
|
+
|
|
55
|
+
self.settings = NMSettings.from_file(PATH_READ_FILE)
|
|
56
|
+
self.sidecar = nm_IO.read_sidecar(PATH_READ_FILE)
|
|
57
|
+
if self.sidecar["sess_right"] is None:
|
|
58
|
+
if "coords" in self.sidecar:
|
|
59
|
+
if len(self.sidecar["coords"]["cortex_left"]["ch_names"]) > 0:
|
|
60
|
+
self.sidecar["sess_right"] = False
|
|
61
|
+
if len(self.sidecar["coords"]["cortex_right"]["ch_names"]) > 0:
|
|
62
|
+
self.sidecar["sess_right"] = True
|
|
63
|
+
self.sfreq = self.sidecar["sfreq"]
|
|
64
|
+
self.nm_channels = nm_IO.read_nm_channels(PATH_READ_FILE)
|
|
65
|
+
self.feature_arr = nm_IO.read_features(PATH_READ_FILE)
|
|
66
|
+
|
|
67
|
+
self.ch_names = self.nm_channels.new_name
|
|
68
|
+
self.used_chs = list(
|
|
69
|
+
self.nm_channels[
|
|
70
|
+
(self.nm_channels["target"] == 0) & (self.nm_channels["used"] == 1)
|
|
71
|
+
]["new_name"]
|
|
72
|
+
)
|
|
73
|
+
self.ch_names_ECOG = self.nm_channels.query(
|
|
74
|
+
'(type=="ecog") and (used == 1) and (status=="good")'
|
|
75
|
+
).new_name.to_list()
|
|
76
|
+
|
|
77
|
+
# init plotter
|
|
78
|
+
self.nmplotter = nm_plots.NM_Plot()
|
|
79
|
+
if self.nm_channels["target"].sum() > 0:
|
|
80
|
+
self.label_name = self._get_target_ch()
|
|
81
|
+
self.label = self.read_target_ch(
|
|
82
|
+
self.feature_arr,
|
|
83
|
+
self.label_name,
|
|
84
|
+
binarize=binarize_label,
|
|
85
|
+
binarize_th=0.3,
|
|
86
|
+
)
|
|
87
|
+
|
|
88
|
+
def _get_target_ch(self) -> str:
|
|
89
|
+
target_names = list(self.nm_channels[self.nm_channels["target"] == 1]["name"])
|
|
90
|
+
target_clean = [
|
|
91
|
+
target_name
|
|
92
|
+
for target_name in target_names
|
|
93
|
+
for filter_str in target_filter_str
|
|
94
|
+
if filter_str.lower() in target_name.lower()
|
|
95
|
+
]
|
|
96
|
+
|
|
97
|
+
if len(target_clean) == 0:
|
|
98
|
+
if "ARTIFACT" not in target_names[0]:
|
|
99
|
+
target = target_names[0]
|
|
100
|
+
elif len(target_names) > 1:
|
|
101
|
+
target = target_names[1]
|
|
102
|
+
else:
|
|
103
|
+
target = target_names[0]
|
|
104
|
+
else:
|
|
105
|
+
for target_ in target_clean:
|
|
106
|
+
# try to select contralateral label
|
|
107
|
+
if self.sidecar["sess_right"] and "LEFT" in target_:
|
|
108
|
+
target = target_
|
|
109
|
+
continue
|
|
110
|
+
elif not self.sidecar["sess_right"] and "RIGHT" in target_:
|
|
111
|
+
target = target_
|
|
112
|
+
continue
|
|
113
|
+
if target_ == target_clean[-1]:
|
|
114
|
+
target = target_clean[0] # set label to last element
|
|
115
|
+
return target
|
|
116
|
+
|
|
117
|
+
@staticmethod
|
|
118
|
+
def read_target_ch(
|
|
119
|
+
feature_arr: "pd.DataFrame",
|
|
120
|
+
label_name: str,
|
|
121
|
+
binarize: bool = True,
|
|
122
|
+
binarize_th: float = 0.3,
|
|
123
|
+
) -> np.ndarray:
|
|
124
|
+
"""_summary_
|
|
125
|
+
|
|
126
|
+
Parameters
|
|
127
|
+
----------
|
|
128
|
+
feature_arr : pd.DataFrame
|
|
129
|
+
_description_
|
|
130
|
+
label_name : str
|
|
131
|
+
_description_
|
|
132
|
+
binarize : bool, optional
|
|
133
|
+
_description_, by default True
|
|
134
|
+
binarize_th : float, optional
|
|
135
|
+
_description_, by default 0.3
|
|
136
|
+
|
|
137
|
+
Returns
|
|
138
|
+
-------
|
|
139
|
+
_type_
|
|
140
|
+
_description_
|
|
141
|
+
"""
|
|
142
|
+
|
|
143
|
+
label = np.nan_to_num(np.array(feature_arr[label_name]))
|
|
144
|
+
if binarize:
|
|
145
|
+
label = label > binarize_th
|
|
146
|
+
return label
|
|
147
|
+
|
|
148
|
+
@staticmethod
|
|
149
|
+
def filter_features(
|
|
150
|
+
feature_columns: list,
|
|
151
|
+
ch_name: str | None = None,
|
|
152
|
+
list_feature_keywords: list[str] | None = None,
|
|
153
|
+
) -> list:
|
|
154
|
+
"""filters read features by ch_name and/or modality
|
|
155
|
+
|
|
156
|
+
Parameters
|
|
157
|
+
----------
|
|
158
|
+
feature_columns : list
|
|
159
|
+
ch_name : str, optional
|
|
160
|
+
list_feature_keywords : list[str], optional
|
|
161
|
+
list of feature strings that need to be in the columns, by default None
|
|
162
|
+
|
|
163
|
+
Returns
|
|
164
|
+
-------
|
|
165
|
+
features : list
|
|
166
|
+
column list that suffice the ch_name and list_feature_keywords
|
|
167
|
+
"""
|
|
168
|
+
|
|
169
|
+
if ch_name is not None:
|
|
170
|
+
feature_select = [i for i in list(feature_columns) if ch_name in i]
|
|
171
|
+
else:
|
|
172
|
+
feature_select = feature_columns
|
|
173
|
+
|
|
174
|
+
if list_feature_keywords is not None:
|
|
175
|
+
feature_select = [
|
|
176
|
+
f for f in feature_select if any(x in f for x in list_feature_keywords)
|
|
177
|
+
]
|
|
178
|
+
|
|
179
|
+
if (
|
|
180
|
+
len(
|
|
181
|
+
[
|
|
182
|
+
mod
|
|
183
|
+
for mod in features_reverse_order_plotting
|
|
184
|
+
if mod in list_feature_keywords
|
|
185
|
+
]
|
|
186
|
+
)
|
|
187
|
+
> 0
|
|
188
|
+
):
|
|
189
|
+
# flip list s.t. theta band is lowest in subsequent plot
|
|
190
|
+
feature_select = feature_select[::-1]
|
|
191
|
+
|
|
192
|
+
return feature_select
|
|
193
|
+
|
|
194
|
+
def set_target_ch(self, ch_name: str) -> None:
|
|
195
|
+
self.label_name = ch_name
|
|
196
|
+
|
|
197
|
+
def normalize_features(
|
|
198
|
+
self,
|
|
199
|
+
) -> "pd.DataFrame":
|
|
200
|
+
"""Normalize feature_arr feature columns
|
|
201
|
+
|
|
202
|
+
Returns:
|
|
203
|
+
pd.DataFrame: z-scored feature_arr
|
|
204
|
+
"""
|
|
205
|
+
cols_norm = [c for c in self.feature_arr.columns if "time" not in c]
|
|
206
|
+
feature_arr_norm = scipy_zscore(self.feature_arr[cols_norm], nan_policy="omit")
|
|
207
|
+
feature_arr_norm["time"] = self.feature_arr["time"]
|
|
208
|
+
return feature_arr_norm
|
|
209
|
+
|
|
210
|
+
def plot_cort_projection(self) -> None:
|
|
211
|
+
"""_summary_"""
|
|
212
|
+
|
|
213
|
+
if self.sidecar["sess_right"]:
|
|
214
|
+
ecog_strip = np.array(self.sidecar["coords"]["cortex_right"]["positions"])
|
|
215
|
+
else:
|
|
216
|
+
ecog_strip = np.array(self.sidecar["coords"]["cortex_left"]["positions"])
|
|
217
|
+
self.nmplotter.plot_cortex(
|
|
218
|
+
grid_cortex=np.array(self.sidecar["grid_cortex"])
|
|
219
|
+
if "grid_cortex" in self.sidecar
|
|
220
|
+
else None,
|
|
221
|
+
ecog_strip=ecog_strip,
|
|
222
|
+
grid_color=np.array(self.sidecar["proj_matrix_cortex"]).sum(axis=1)
|
|
223
|
+
if "grid_cortex" in self.sidecar
|
|
224
|
+
else None,
|
|
225
|
+
set_clim=False,
|
|
226
|
+
)
|
|
227
|
+
|
|
228
|
+
def plot_target_avg_all_channels(
|
|
229
|
+
self,
|
|
230
|
+
ch_names_ECOG=None,
|
|
231
|
+
list_feature_keywords: list[str] = ["stft"],
|
|
232
|
+
epoch_len: int = 4,
|
|
233
|
+
threshold: float = 0.1,
|
|
234
|
+
):
|
|
235
|
+
"""Wrapper that call plot_features_per_channel
|
|
236
|
+
for every given ECoG channel
|
|
237
|
+
|
|
238
|
+
Parameters
|
|
239
|
+
----------
|
|
240
|
+
ch_names_ECOG : list, optional
|
|
241
|
+
list of ECoG channel to plot features for, by default None
|
|
242
|
+
list_feature_keywords : list[str], optional
|
|
243
|
+
keywords to plot, by default ["stft"]
|
|
244
|
+
epoch_len : int, optional
|
|
245
|
+
epoch length in seconds, by default 4
|
|
246
|
+
threshold : float, optional
|
|
247
|
+
threshold for event detection, by default 0.1
|
|
248
|
+
"""
|
|
249
|
+
|
|
250
|
+
if ch_names_ECOG is None:
|
|
251
|
+
ch_names_ECOG = self.ch_names_ECOG
|
|
252
|
+
for ch_name_ECOG in ch_names_ECOG:
|
|
253
|
+
self.plot_target_averaged_channel(
|
|
254
|
+
ch=ch_name_ECOG,
|
|
255
|
+
list_feature_keywords=list_feature_keywords,
|
|
256
|
+
epoch_len=epoch_len,
|
|
257
|
+
threshold=threshold,
|
|
258
|
+
)
|
|
259
|
+
|
|
260
|
+
def plot_target_averaged_channel(
|
|
261
|
+
self,
|
|
262
|
+
ch: str = "",
|
|
263
|
+
list_feature_keywords: list[str] | None = None,
|
|
264
|
+
features_to_plt: list | None = None,
|
|
265
|
+
epoch_len: int = 4,
|
|
266
|
+
threshold: float = 0.1,
|
|
267
|
+
normalize_data: bool = True,
|
|
268
|
+
show_plot: bool = True,
|
|
269
|
+
title: str = "Movement aligned features",
|
|
270
|
+
ytick_labelsize=None,
|
|
271
|
+
figsize_x: float = 8,
|
|
272
|
+
figsize_y: float = 8,
|
|
273
|
+
) -> None:
|
|
274
|
+
"""_summary_
|
|
275
|
+
|
|
276
|
+
Parameters
|
|
277
|
+
----------
|
|
278
|
+
ch : str, optional
|
|
279
|
+
list_feature_keywords : Optional[list[str]], optional
|
|
280
|
+
features_to_plt : list, optional
|
|
281
|
+
epoch_len : int, optional
|
|
282
|
+
threshold : float, optional
|
|
283
|
+
normalize_data : bool, optional
|
|
284
|
+
show_plot : bool, optional
|
|
285
|
+
title : str, optional
|
|
286
|
+
by default "Movement aligned features"
|
|
287
|
+
ytick_labelsize : _type_, optional
|
|
288
|
+
figsize_x : float, optional
|
|
289
|
+
by default 8
|
|
290
|
+
figsize_y : float, optional
|
|
291
|
+
by default 8
|
|
292
|
+
"""
|
|
293
|
+
|
|
294
|
+
# TODO: This does not work properly when we have bipolar rereferencing
|
|
295
|
+
|
|
296
|
+
if features_to_plt is None:
|
|
297
|
+
filtered_df = self.feature_arr[
|
|
298
|
+
self.filter_features(
|
|
299
|
+
self.feature_arr.columns, ch, list_feature_keywords
|
|
300
|
+
)[::-1]
|
|
301
|
+
]
|
|
302
|
+
else:
|
|
303
|
+
filtered_df = self.feature_arr[features_to_plt]
|
|
304
|
+
|
|
305
|
+
data = np.expand_dims(np.array(filtered_df), axis=1)
|
|
306
|
+
|
|
307
|
+
X_epoch, y_epoch = self.get_epochs(
|
|
308
|
+
data,
|
|
309
|
+
self.label,
|
|
310
|
+
epoch_len=epoch_len,
|
|
311
|
+
sfreq=self.settings.sampling_rate_features_hz,
|
|
312
|
+
threshold=threshold,
|
|
313
|
+
)
|
|
314
|
+
|
|
315
|
+
nm_plots.plot_epochs_avg(
|
|
316
|
+
X_epoch=X_epoch,
|
|
317
|
+
y_epoch=y_epoch,
|
|
318
|
+
epoch_len=epoch_len,
|
|
319
|
+
sfreq=self.settings.sampling_rate_features_hz,
|
|
320
|
+
feature_names=list(filtered_df.columns),
|
|
321
|
+
feature_str_add="_".join(list_feature_keywords)
|
|
322
|
+
if list_feature_keywords is not None
|
|
323
|
+
else "all",
|
|
324
|
+
cut_ch_name_cols=True,
|
|
325
|
+
ch_name=ch,
|
|
326
|
+
label_name=self.label_name,
|
|
327
|
+
normalize_data=normalize_data,
|
|
328
|
+
show_plot=show_plot,
|
|
329
|
+
save=True,
|
|
330
|
+
OUT_PATH=self.feature_dir,
|
|
331
|
+
feature_file=self.feature_file,
|
|
332
|
+
str_title=title,
|
|
333
|
+
ytick_labelsize=ytick_labelsize,
|
|
334
|
+
figsize_x=figsize_x,
|
|
335
|
+
figsize_y=figsize_y,
|
|
336
|
+
)
|
|
337
|
+
|
|
338
|
+
def plot_all_features(
|
|
339
|
+
self,
|
|
340
|
+
ch_used: str | None = None,
|
|
341
|
+
time_limit_low_s: float | None = None,
|
|
342
|
+
time_limit_high_s: float | None = None,
|
|
343
|
+
normalize: bool = True,
|
|
344
|
+
save: bool = False,
|
|
345
|
+
title="all_feature_plt.pdf",
|
|
346
|
+
ytick_labelsize: int = 10,
|
|
347
|
+
clim_low: float | None = None,
|
|
348
|
+
clim_high: float | None = None,
|
|
349
|
+
):
|
|
350
|
+
"""_summary_
|
|
351
|
+
|
|
352
|
+
Parameters
|
|
353
|
+
----------
|
|
354
|
+
ch_used : str, optional
|
|
355
|
+
time_limit_low_s : float, optional
|
|
356
|
+
time_limit_high_s : float, optional
|
|
357
|
+
normalize : bool, optional
|
|
358
|
+
save : bool, optional
|
|
359
|
+
title : str, optional
|
|
360
|
+
default "all_feature_plt.pdf"
|
|
361
|
+
ytick_labelsize : int, optional
|
|
362
|
+
by default 10
|
|
363
|
+
clim_low : float, optional
|
|
364
|
+
by default None
|
|
365
|
+
clim_high : float, optional
|
|
366
|
+
by default None
|
|
367
|
+
"""
|
|
368
|
+
|
|
369
|
+
if ch_used is not None:
|
|
370
|
+
col_used = [
|
|
371
|
+
c
|
|
372
|
+
for c in self.feature_arr.columns
|
|
373
|
+
if c.startswith(ch_used) or c == "time" or "LABEL" in c or "MOV" in c
|
|
374
|
+
]
|
|
375
|
+
df = self.feature_arr[col_used[::-1]]
|
|
376
|
+
else:
|
|
377
|
+
df = self.feature_arr[self.feature_arr.columns[::-1]]
|
|
378
|
+
|
|
379
|
+
nm_plots.plot_all_features(
|
|
380
|
+
df=df,
|
|
381
|
+
time_limit_low_s=time_limit_low_s,
|
|
382
|
+
time_limit_high_s=time_limit_high_s,
|
|
383
|
+
normalize=normalize,
|
|
384
|
+
save=save,
|
|
385
|
+
title=title,
|
|
386
|
+
ytick_labelsize=ytick_labelsize,
|
|
387
|
+
feature_file=self.feature_file,
|
|
388
|
+
OUT_PATH=self.feature_dir,
|
|
389
|
+
clim_low=clim_low,
|
|
390
|
+
clim_high=clim_high,
|
|
391
|
+
)
|
|
392
|
+
|
|
393
|
+
@staticmethod
|
|
394
|
+
def get_performace_sub_strip(performance_sub: dict, plt_grid: bool = False):
|
|
395
|
+
ecog_strip_performance = []
|
|
396
|
+
ecog_coords_strip = []
|
|
397
|
+
cortex_grid = []
|
|
398
|
+
grid_performance = []
|
|
399
|
+
|
|
400
|
+
channels_ = performance_sub.keys()
|
|
401
|
+
|
|
402
|
+
for ch in channels_:
|
|
403
|
+
if "grid" not in ch and "combined" not in ch:
|
|
404
|
+
ecog_coords_strip.append(performance_sub[ch]["coord"])
|
|
405
|
+
ecog_strip_performance.append(performance_sub[ch]["performance_test"])
|
|
406
|
+
elif plt_grid and "gridcortex_" in ch:
|
|
407
|
+
cortex_grid.append(performance_sub[ch]["coord"])
|
|
408
|
+
grid_performance.append(performance_sub[ch]["performance_test"])
|
|
409
|
+
|
|
410
|
+
if len(ecog_coords_strip) > 0:
|
|
411
|
+
ecog_coords_strip = np.vstack(ecog_coords_strip)
|
|
412
|
+
|
|
413
|
+
return (
|
|
414
|
+
ecog_strip_performance,
|
|
415
|
+
ecog_coords_strip,
|
|
416
|
+
cortex_grid,
|
|
417
|
+
grid_performance,
|
|
418
|
+
)
|
|
419
|
+
|
|
420
|
+
def plot_across_subject_grd_ch_performance(
|
|
421
|
+
self,
|
|
422
|
+
performance_dict=None,
|
|
423
|
+
plt_grid=False,
|
|
424
|
+
feature_str_add="performance_allch_allgrid",
|
|
425
|
+
):
|
|
426
|
+
ecog_strip_performance = []
|
|
427
|
+
ecog_coords_strip = []
|
|
428
|
+
grid_performance = []
|
|
429
|
+
for sub in performance_dict.keys():
|
|
430
|
+
(
|
|
431
|
+
ecog_strip_performance_sub,
|
|
432
|
+
ecog_coords_strip_sub,
|
|
433
|
+
_,
|
|
434
|
+
grid_performance_sub,
|
|
435
|
+
) = self.get_performace_sub_strip(performance_dict[sub], plt_grid=plt_grid)
|
|
436
|
+
ecog_strip_performance.extend(ecog_strip_performance_sub)
|
|
437
|
+
ecog_coords_strip.extend(ecog_coords_strip_sub)
|
|
438
|
+
grid_performance.append(grid_performance_sub)
|
|
439
|
+
grid_performance = list(np.vstack(grid_performance).mean(axis=0))
|
|
440
|
+
coords_all = np.array(ecog_coords_strip)
|
|
441
|
+
coords_all[:, 0] = np.abs(coords_all[:, 0])
|
|
442
|
+
|
|
443
|
+
self.nmplotter.plot_cortex(
|
|
444
|
+
grid_cortex=np.array(self.sidecar["grid_cortex"])
|
|
445
|
+
if "grid_cortex" in self.sidecar
|
|
446
|
+
else None,
|
|
447
|
+
ecog_strip=coords_all if len(ecog_coords_strip) > 0 else None,
|
|
448
|
+
grid_color=grid_performance if len(grid_performance) > 0 else None,
|
|
449
|
+
strip_color=np.array(ecog_strip_performance)
|
|
450
|
+
if len(ecog_strip_performance) > 0
|
|
451
|
+
else None,
|
|
452
|
+
sess_right=self.sidecar["sess_right"],
|
|
453
|
+
save=True,
|
|
454
|
+
OUT_PATH=self.feature_dir,
|
|
455
|
+
feature_file=self.feature_file,
|
|
456
|
+
feature_str_add=feature_str_add,
|
|
457
|
+
show_plot=True,
|
|
458
|
+
)
|
|
459
|
+
|
|
460
|
+
def plot_subject_grid_ch_performance(
|
|
461
|
+
self,
|
|
462
|
+
subject_name=None,
|
|
463
|
+
performance_dict=None,
|
|
464
|
+
plt_grid=False,
|
|
465
|
+
feature_str_add="performance_allch_allgrid",
|
|
466
|
+
):
|
|
467
|
+
"""plot subject specific performance for individual channeal and optional grid points
|
|
468
|
+
|
|
469
|
+
Parameters
|
|
470
|
+
----------
|
|
471
|
+
subject_name : string, optional
|
|
472
|
+
used subject, by default None
|
|
473
|
+
performance_dict : dict, optional
|
|
474
|
+
by default None
|
|
475
|
+
plt_grid : bool, optional
|
|
476
|
+
True to plot grid performances, by default False
|
|
477
|
+
feature_str_add : string, optional
|
|
478
|
+
figure output_name
|
|
479
|
+
"""
|
|
480
|
+
|
|
481
|
+
ecog_strip_performance = []
|
|
482
|
+
ecog_coords_strip = []
|
|
483
|
+
cortex_grid = []
|
|
484
|
+
grid_performance = []
|
|
485
|
+
|
|
486
|
+
if subject_name is None:
|
|
487
|
+
subject_name = self.feature_file[
|
|
488
|
+
self.feature_file.find("sub-") : self.feature_file.find("_ses")
|
|
489
|
+
][4:]
|
|
490
|
+
|
|
491
|
+
(
|
|
492
|
+
ecog_strip_performance,
|
|
493
|
+
ecog_coords_strip,
|
|
494
|
+
cortex_grid,
|
|
495
|
+
grid_performance,
|
|
496
|
+
) = self.get_performace_sub_strip(
|
|
497
|
+
performance_dict[subject_name], plt_grid=plt_grid
|
|
498
|
+
)
|
|
499
|
+
|
|
500
|
+
self.nmplotter.plot_cortex(
|
|
501
|
+
grid_cortex=np.array(self.sidecar["grid_cortex"])
|
|
502
|
+
if "grid_cortex" in self.sidecar
|
|
503
|
+
else None,
|
|
504
|
+
ecog_strip=ecog_coords_strip if len(ecog_coords_strip) > 0 else None,
|
|
505
|
+
grid_color=grid_performance if len(grid_performance) > 0 else None,
|
|
506
|
+
strip_color=ecog_strip_performance
|
|
507
|
+
if len(ecog_strip_performance) > 0
|
|
508
|
+
else None,
|
|
509
|
+
sess_right=self.sidecar["sess_right"],
|
|
510
|
+
save=True,
|
|
511
|
+
OUT_PATH=self.feature_dir,
|
|
512
|
+
feature_file=self.feature_file,
|
|
513
|
+
feature_str_add=feature_str_add,
|
|
514
|
+
show_plot=True,
|
|
515
|
+
)
|
|
516
|
+
|
|
517
|
+
def plot_feature_series_time(
|
|
518
|
+
self,
|
|
519
|
+
):
|
|
520
|
+
self.nmplotter.plot_feature_series_time(self.feature_arr)
|
|
521
|
+
|
|
522
|
+
def plot_corr_matrix(
|
|
523
|
+
self,
|
|
524
|
+
):
|
|
525
|
+
return nm_plots.plot_corr_matrix(
|
|
526
|
+
self.feature_arr,
|
|
527
|
+
)
|
|
528
|
+
|
|
529
|
+
@staticmethod
|
|
530
|
+
def get_epochs(
|
|
531
|
+
data, y_, epoch_len, sfreq, threshold=0
|
|
532
|
+
) -> tuple[np.ndarray, np.ndarray]:
|
|
533
|
+
"""Return epoched data.
|
|
534
|
+
|
|
535
|
+
Parameters
|
|
536
|
+
----------
|
|
537
|
+
data : np.ndarray
|
|
538
|
+
array of extracted features of shape (n_samples, n_channels, n_features)
|
|
539
|
+
y_ : np.ndarray
|
|
540
|
+
array of labels e.g. ones for movement and zeros for
|
|
541
|
+
no movement or baseline corr. rotameter data
|
|
542
|
+
epoch_len : int
|
|
543
|
+
length of epoch in seconds
|
|
544
|
+
sfreq : int/float
|
|
545
|
+
sampling frequency of data
|
|
546
|
+
threshold : int/float
|
|
547
|
+
(Optional) threshold to be used for identifying events
|
|
548
|
+
(default=0 for y_tr with only ones
|
|
549
|
+
and zeros)
|
|
550
|
+
|
|
551
|
+
Returns
|
|
552
|
+
-------
|
|
553
|
+
epoch_ : np.ndarray
|
|
554
|
+
array of epoched ieeg data with shape (epochs,samples,channels,features)
|
|
555
|
+
y_arr : np.ndarray
|
|
556
|
+
array of epoched event label data with shape (epochs,samples)
|
|
557
|
+
"""
|
|
558
|
+
|
|
559
|
+
epoch_lim = int(epoch_len * sfreq)
|
|
560
|
+
|
|
561
|
+
ind_mov = np.where(np.diff(np.array(y_ > threshold) * 1) == 1)[0]
|
|
562
|
+
|
|
563
|
+
low_limit = ind_mov > epoch_lim / 2
|
|
564
|
+
up_limit = ind_mov < y_.shape[0] - epoch_lim / 2
|
|
565
|
+
|
|
566
|
+
ind_mov = ind_mov[low_limit & up_limit]
|
|
567
|
+
|
|
568
|
+
epoch_ = np.zeros([ind_mov.shape[0], epoch_lim, data.shape[1], data.shape[2]])
|
|
569
|
+
|
|
570
|
+
y_arr = np.zeros([ind_mov.shape[0], int(epoch_lim)])
|
|
571
|
+
|
|
572
|
+
for idx, i in enumerate(ind_mov):
|
|
573
|
+
epoch_[idx, :, :, :] = data[i - epoch_lim // 2 : i + epoch_lim // 2, :, :]
|
|
574
|
+
|
|
575
|
+
y_arr[idx, :] = y_[i - epoch_lim // 2 : i + epoch_lim // 2]
|
|
576
|
+
|
|
577
|
+
return epoch_, y_arr
|
|
578
|
+
|
|
579
|
+
def set_decoder(
|
|
580
|
+
self,
|
|
581
|
+
decoder: Decoder | None = None,
|
|
582
|
+
TRAIN_VAL_SPLIT=False,
|
|
583
|
+
RUN_BAY_OPT=False,
|
|
584
|
+
save_coef=False,
|
|
585
|
+
model=LogisticRegression,
|
|
586
|
+
eval_method=r2_score,
|
|
587
|
+
cv_method=KFold(n_splits=3, shuffle=False),
|
|
588
|
+
get_movement_detection_rate: bool = False,
|
|
589
|
+
mov_detection_threshold=0.5,
|
|
590
|
+
min_consequent_count=3,
|
|
591
|
+
threshold_score=True,
|
|
592
|
+
bay_opt_param_space: list = [],
|
|
593
|
+
STACK_FEATURES_N_SAMPLES=False,
|
|
594
|
+
time_stack_n_samples=5,
|
|
595
|
+
use_nested_cv=False,
|
|
596
|
+
VERBOSE=False,
|
|
597
|
+
undersampling=False,
|
|
598
|
+
oversampling=False,
|
|
599
|
+
mrmr_select=False,
|
|
600
|
+
pca=False,
|
|
601
|
+
cca=False,
|
|
602
|
+
):
|
|
603
|
+
if decoder is not None:
|
|
604
|
+
self.decoder = decoder
|
|
605
|
+
else:
|
|
606
|
+
self.decoder = Decoder(
|
|
607
|
+
features=self.feature_arr,
|
|
608
|
+
label=self.label,
|
|
609
|
+
label_name=self.label_name,
|
|
610
|
+
used_chs=self.used_chs,
|
|
611
|
+
model=model,
|
|
612
|
+
eval_method=eval_method,
|
|
613
|
+
cv_method=cv_method,
|
|
614
|
+
threshold_score=threshold_score,
|
|
615
|
+
TRAIN_VAL_SPLIT=TRAIN_VAL_SPLIT,
|
|
616
|
+
RUN_BAY_OPT=RUN_BAY_OPT,
|
|
617
|
+
save_coef=save_coef,
|
|
618
|
+
get_movement_detection_rate=get_movement_detection_rate,
|
|
619
|
+
min_consequent_count=min_consequent_count,
|
|
620
|
+
mov_detection_threshold=mov_detection_threshold,
|
|
621
|
+
bay_opt_param_space=bay_opt_param_space,
|
|
622
|
+
STACK_FEATURES_N_SAMPLES=STACK_FEATURES_N_SAMPLES,
|
|
623
|
+
time_stack_n_samples=time_stack_n_samples,
|
|
624
|
+
VERBOSE=VERBOSE,
|
|
625
|
+
use_nested_cv=use_nested_cv,
|
|
626
|
+
undersampling=undersampling,
|
|
627
|
+
oversampling=oversampling,
|
|
628
|
+
mrmr_select=mrmr_select,
|
|
629
|
+
sfreq=self.sfreq,
|
|
630
|
+
pca=pca,
|
|
631
|
+
cca=cca,
|
|
632
|
+
)
|
|
633
|
+
|
|
634
|
+
def run_ML_model(
|
|
635
|
+
self,
|
|
636
|
+
feature_file: str | None = None,
|
|
637
|
+
estimate_gridpoints: bool = False,
|
|
638
|
+
estimate_channels: bool = True,
|
|
639
|
+
estimate_all_channels_combined: bool = False,
|
|
640
|
+
output_name: str = "LM",
|
|
641
|
+
save_results: bool = True,
|
|
642
|
+
):
|
|
643
|
+
"""machine learning model evaluation for ECoG strip channels and/or grid points
|
|
644
|
+
|
|
645
|
+
Parameters
|
|
646
|
+
----------
|
|
647
|
+
feature_file : string, optional
|
|
648
|
+
estimate_gridpoints : bool, optional
|
|
649
|
+
run ML analysis for grid points, by default True
|
|
650
|
+
estimate_channels : bool, optional
|
|
651
|
+
run ML analysis for ECoG strip channel, by default True
|
|
652
|
+
estimate_all_channels_combined : bool, optional
|
|
653
|
+
run ML analysis features of all channels concatenated, by default False
|
|
654
|
+
model : sklearn model, optional
|
|
655
|
+
ML model, needs to obtain fit and predict functions,
|
|
656
|
+
by default linear_model.LogisticRegression(class_weight="balanced")
|
|
657
|
+
eval_method : sklearn.metrics, optional
|
|
658
|
+
evaluation performance metric, by default metrics.balanced_accuracy_score
|
|
659
|
+
cv_method : sklearn.model_selection, optional
|
|
660
|
+
valdation strategy, by default model_selection.KFold(n_splits=3, shuffle=False)
|
|
661
|
+
output_name : str, optional
|
|
662
|
+
saving name, by default "LM"
|
|
663
|
+
save_results : boolean
|
|
664
|
+
if true, save model._coef trained coefficients
|
|
665
|
+
"""
|
|
666
|
+
if feature_file is None:
|
|
667
|
+
feature_file = self.feature_file
|
|
668
|
+
|
|
669
|
+
if estimate_gridpoints:
|
|
670
|
+
self.decoder.set_data_grid_points()
|
|
671
|
+
_ = self.decoder.run_CV_caller("grid_points")
|
|
672
|
+
if estimate_channels:
|
|
673
|
+
self.decoder.set_data_ind_channels()
|
|
674
|
+
_ = self.decoder.run_CV_caller("ind_channels")
|
|
675
|
+
if estimate_all_channels_combined:
|
|
676
|
+
_ = self.decoder.run_CV_caller("all_channels_combined")
|
|
677
|
+
|
|
678
|
+
if save_results:
|
|
679
|
+
self.decoder.save(
|
|
680
|
+
self.feature_dir,
|
|
681
|
+
self.feature_file
|
|
682
|
+
if ".vhdr" in self.feature_file
|
|
683
|
+
else self.feature_file,
|
|
684
|
+
output_name,
|
|
685
|
+
)
|
|
686
|
+
|
|
687
|
+
return self.read_results(
|
|
688
|
+
read_grid_points=estimate_gridpoints,
|
|
689
|
+
read_all_combined=estimate_all_channels_combined,
|
|
690
|
+
read_channels=estimate_channels,
|
|
691
|
+
ML_model_name=output_name,
|
|
692
|
+
read_mov_detection_rates=self.decoder.get_movement_detection_rate,
|
|
693
|
+
read_bay_opt_params=self.decoder.RUN_BAY_OPT,
|
|
694
|
+
read_mrmr=self.decoder.mrmr_select,
|
|
695
|
+
model_save=self.decoder.model_save,
|
|
696
|
+
)
|
|
697
|
+
|
|
698
|
+
def read_results(
|
|
699
|
+
self,
|
|
700
|
+
performance_dict: dict = {},
|
|
701
|
+
subject_name: str | None = None,
|
|
702
|
+
DEFAULT_PERFORMANCE: float = 0.5,
|
|
703
|
+
read_grid_points: bool = True,
|
|
704
|
+
read_channels: bool = True,
|
|
705
|
+
read_all_combined: bool = False,
|
|
706
|
+
ML_model_name: str = "LM",
|
|
707
|
+
read_mov_detection_rates: bool = False,
|
|
708
|
+
read_bay_opt_params: bool = False,
|
|
709
|
+
read_mrmr: bool = False,
|
|
710
|
+
model_save: bool = False,
|
|
711
|
+
save_results: bool = False,
|
|
712
|
+
PATH_OUT: str = "", # Removed None default, save_general_dict does not handle None anyway
|
|
713
|
+
folder_name: str = "",
|
|
714
|
+
str_add: str = "",
|
|
715
|
+
):
|
|
716
|
+
"""Save performances of a given patient into performance_dict from saved nm_decoder
|
|
717
|
+
|
|
718
|
+
Parameters
|
|
719
|
+
----------
|
|
720
|
+
performance_dict : dictionary
|
|
721
|
+
dictionary including decoding performances, by default dictionary
|
|
722
|
+
subject_name : string, optional
|
|
723
|
+
subject name, by default None
|
|
724
|
+
DEFAULT_PERFORMANCE : float, optional
|
|
725
|
+
chance performance, by default 0.5
|
|
726
|
+
read_grid_points : bool, optional
|
|
727
|
+
true if grid point performances are read, by default True
|
|
728
|
+
read_channels : bool, optional
|
|
729
|
+
true if channels performances are read, by default True
|
|
730
|
+
read_all_combined : bool, optional
|
|
731
|
+
true if all combined channel performances are read, by default False
|
|
732
|
+
ML_model_name : str, optional
|
|
733
|
+
machine learning model name, by default 'LM'
|
|
734
|
+
read_mov_detection_rates : boolean, by defaulte False
|
|
735
|
+
if True, read movement detection rates, as well as fpr's and tpr's
|
|
736
|
+
read_bay_opt_params : boolean, by default False
|
|
737
|
+
read_mrmr : boolean, by default False
|
|
738
|
+
model_save : boolean, by default False
|
|
739
|
+
save_results : boolean, by default False
|
|
740
|
+
PATH_OUT : string, by default None
|
|
741
|
+
folder_name : string, by default None
|
|
742
|
+
str_add : string, by default None
|
|
743
|
+
|
|
744
|
+
Returns
|
|
745
|
+
-------
|
|
746
|
+
performance_dict : dictionary
|
|
747
|
+
|
|
748
|
+
"""
|
|
749
|
+
|
|
750
|
+
if ".vhdr" in self.feature_file:
|
|
751
|
+
feature_file = self.feature_file[: -len(".vhdr")]
|
|
752
|
+
else:
|
|
753
|
+
feature_file = self.feature_file
|
|
754
|
+
|
|
755
|
+
if subject_name is None:
|
|
756
|
+
subject_name = feature_file[
|
|
757
|
+
feature_file.find("sub-") : feature_file.find("_ses")
|
|
758
|
+
][4:]
|
|
759
|
+
|
|
760
|
+
PATH_ML_ = PurePath(
|
|
761
|
+
self.feature_dir,
|
|
762
|
+
feature_file,
|
|
763
|
+
feature_file + "_" + ML_model_name + "_ML_RES.p",
|
|
764
|
+
)
|
|
765
|
+
|
|
766
|
+
# read ML results
|
|
767
|
+
with open(PATH_ML_, "rb") as input:
|
|
768
|
+
ML_res = pickle.load(input)
|
|
769
|
+
if self.decoder is None:
|
|
770
|
+
self.decoder = ML_res
|
|
771
|
+
|
|
772
|
+
performance_dict[subject_name] = {}
|
|
773
|
+
|
|
774
|
+
def write_CV_res_in_performance_dict(
|
|
775
|
+
obj_read,
|
|
776
|
+
obj_write,
|
|
777
|
+
read_mov_detection_rates=read_mov_detection_rates,
|
|
778
|
+
read_bay_opt_params=False,
|
|
779
|
+
):
|
|
780
|
+
def transform_list_of_dicts_into_dict_of_lists(l_):
|
|
781
|
+
dict_out = {}
|
|
782
|
+
for key_, _ in l_[0].items():
|
|
783
|
+
key_l = []
|
|
784
|
+
for dict_ in l_:
|
|
785
|
+
key_l.append(dict_[key_])
|
|
786
|
+
dict_out[key_] = key_l
|
|
787
|
+
return dict_out
|
|
788
|
+
|
|
789
|
+
def read_ML_performances(
|
|
790
|
+
obj_read, obj_write, set_inner_CV_res: bool = False
|
|
791
|
+
):
|
|
792
|
+
def set_score(
|
|
793
|
+
key_set: str = "",
|
|
794
|
+
key_get: str = "",
|
|
795
|
+
take_mean: bool = True,
|
|
796
|
+
val=None,
|
|
797
|
+
):
|
|
798
|
+
if set_inner_CV_res:
|
|
799
|
+
key_set = "InnerCV_" + key_set
|
|
800
|
+
key_get = "InnerCV_" + key_get
|
|
801
|
+
if take_mean:
|
|
802
|
+
val = np.mean(obj_read[key_get])
|
|
803
|
+
obj_write[key_set] = val
|
|
804
|
+
|
|
805
|
+
set_score(
|
|
806
|
+
key_set="performance_test",
|
|
807
|
+
key_get="score_test",
|
|
808
|
+
take_mean=True,
|
|
809
|
+
)
|
|
810
|
+
set_score(
|
|
811
|
+
key_set="performance_train",
|
|
812
|
+
key_get="score_train",
|
|
813
|
+
take_mean=True,
|
|
814
|
+
)
|
|
815
|
+
|
|
816
|
+
if "coef" in obj_read:
|
|
817
|
+
set_score(
|
|
818
|
+
key_set="coef",
|
|
819
|
+
key_get="coef",
|
|
820
|
+
take_mean=False,
|
|
821
|
+
val=np.concatenate(obj_read["coef"]),
|
|
822
|
+
)
|
|
823
|
+
|
|
824
|
+
if read_mov_detection_rates:
|
|
825
|
+
set_score(
|
|
826
|
+
key_set="mov_detection_rates_test",
|
|
827
|
+
key_get="mov_detection_rates_test",
|
|
828
|
+
take_mean=True,
|
|
829
|
+
)
|
|
830
|
+
set_score(
|
|
831
|
+
key_set="mov_detection_rates_train",
|
|
832
|
+
key_get="mov_detection_rates_train",
|
|
833
|
+
take_mean=True,
|
|
834
|
+
)
|
|
835
|
+
set_score(
|
|
836
|
+
key_set="fprate_test",
|
|
837
|
+
key_get="fprate_test",
|
|
838
|
+
take_mean=True,
|
|
839
|
+
)
|
|
840
|
+
set_score(
|
|
841
|
+
key_set="fprate_train",
|
|
842
|
+
key_get="fprate_train",
|
|
843
|
+
take_mean=True,
|
|
844
|
+
)
|
|
845
|
+
set_score(
|
|
846
|
+
key_set="tprate_test",
|
|
847
|
+
key_get="tprate_test",
|
|
848
|
+
take_mean=True,
|
|
849
|
+
)
|
|
850
|
+
set_score(
|
|
851
|
+
key_set="tprate_train",
|
|
852
|
+
key_get="tprate_train",
|
|
853
|
+
take_mean=True,
|
|
854
|
+
)
|
|
855
|
+
|
|
856
|
+
if read_bay_opt_params:
|
|
857
|
+
# transform dict into keys for json saving
|
|
858
|
+
dict_to_save = transform_list_of_dicts_into_dict_of_lists(
|
|
859
|
+
obj_read["best_bay_opt_params"]
|
|
860
|
+
)
|
|
861
|
+
set_score(
|
|
862
|
+
key_set="bay_opt_best_params",
|
|
863
|
+
take_mean=False,
|
|
864
|
+
val=dict_to_save,
|
|
865
|
+
)
|
|
866
|
+
|
|
867
|
+
if read_mrmr:
|
|
868
|
+
# transform dict into keys for json saving
|
|
869
|
+
|
|
870
|
+
set_score(
|
|
871
|
+
key_set="mrmr_select",
|
|
872
|
+
take_mean=False,
|
|
873
|
+
val=obj_read["mrmr_select"],
|
|
874
|
+
)
|
|
875
|
+
if model_save:
|
|
876
|
+
set_score(
|
|
877
|
+
key_set="model_save",
|
|
878
|
+
take_mean=False,
|
|
879
|
+
val=obj_read["model_save"],
|
|
880
|
+
)
|
|
881
|
+
|
|
882
|
+
read_ML_performances(obj_read, obj_write)
|
|
883
|
+
|
|
884
|
+
if len([key_ for key_ in obj_read.keys() if "InnerCV_" in key_]) > 0:
|
|
885
|
+
read_ML_performances(obj_read, obj_write, set_inner_CV_res=True)
|
|
886
|
+
|
|
887
|
+
if read_channels:
|
|
888
|
+
ch_to_use = self.ch_names_ECOG
|
|
889
|
+
ch_to_use = self.decoder.used_chs
|
|
890
|
+
for ch in ch_to_use:
|
|
891
|
+
performance_dict[subject_name][ch] = {}
|
|
892
|
+
|
|
893
|
+
if "coords" in self.sidecar:
|
|
894
|
+
if len(self.sidecar["coords"]) > 0: # check if coords are empty
|
|
895
|
+
coords_exist = False
|
|
896
|
+
for cortex_loc in self.sidecar["coords"].keys():
|
|
897
|
+
for ch_name_coord_idx, ch_name_coord in enumerate(
|
|
898
|
+
self.sidecar["coords"][cortex_loc]["ch_names"]
|
|
899
|
+
):
|
|
900
|
+
if ch.startswith(ch_name_coord):
|
|
901
|
+
coords = self.sidecar["coords"][cortex_loc][
|
|
902
|
+
"positions"
|
|
903
|
+
][ch_name_coord_idx]
|
|
904
|
+
coords_exist = (
|
|
905
|
+
True # optimally break out of the two loops...
|
|
906
|
+
)
|
|
907
|
+
if not coords_exist:
|
|
908
|
+
coords = None
|
|
909
|
+
performance_dict[subject_name][ch]["coord"] = coords
|
|
910
|
+
write_CV_res_in_performance_dict(
|
|
911
|
+
ML_res.ch_ind_results[ch],
|
|
912
|
+
performance_dict[subject_name][ch],
|
|
913
|
+
read_mov_detection_rates=read_mov_detection_rates,
|
|
914
|
+
read_bay_opt_params=read_bay_opt_params,
|
|
915
|
+
)
|
|
916
|
+
|
|
917
|
+
if read_all_combined:
|
|
918
|
+
performance_dict[subject_name]["all_ch_combined"] = {}
|
|
919
|
+
write_CV_res_in_performance_dict(
|
|
920
|
+
ML_res.all_ch_results,
|
|
921
|
+
performance_dict[subject_name]["all_ch_combined"],
|
|
922
|
+
read_mov_detection_rates=read_mov_detection_rates,
|
|
923
|
+
read_bay_opt_params=read_bay_opt_params,
|
|
924
|
+
)
|
|
925
|
+
|
|
926
|
+
if read_grid_points:
|
|
927
|
+
performance_dict[subject_name]["active_gridpoints"] = (
|
|
928
|
+
ML_res.active_gridpoints
|
|
929
|
+
)
|
|
930
|
+
|
|
931
|
+
for project_settings, grid_type in zip(
|
|
932
|
+
["project_cortex", "project_subcortex"],
|
|
933
|
+
["gridcortex_", "gridsubcortex_"],
|
|
934
|
+
):
|
|
935
|
+
if not self.settings.postprocessing[project_settings]:
|
|
936
|
+
continue
|
|
937
|
+
|
|
938
|
+
# the sidecar keys are grid_cortex and subcortex_grid
|
|
939
|
+
for grid_point in range(
|
|
940
|
+
len(self.sidecar["grid_" + project_settings.split("_")[1]])
|
|
941
|
+
):
|
|
942
|
+
gp_str = grid_type + str(grid_point)
|
|
943
|
+
|
|
944
|
+
performance_dict[subject_name][gp_str] = {}
|
|
945
|
+
performance_dict[subject_name][gp_str]["coord"] = self.sidecar[
|
|
946
|
+
"grid_" + project_settings.split("_")[1]
|
|
947
|
+
][grid_point]
|
|
948
|
+
|
|
949
|
+
if gp_str in ML_res.active_gridpoints:
|
|
950
|
+
write_CV_res_in_performance_dict(
|
|
951
|
+
ML_res.gridpoint_ind_results[gp_str],
|
|
952
|
+
performance_dict[subject_name][gp_str],
|
|
953
|
+
read_mov_detection_rates=read_mov_detection_rates,
|
|
954
|
+
read_bay_opt_params=read_bay_opt_params,
|
|
955
|
+
)
|
|
956
|
+
else:
|
|
957
|
+
# set non interpolated grid point to default performance
|
|
958
|
+
performance_dict[subject_name][gp_str]["performance_test"] = (
|
|
959
|
+
DEFAULT_PERFORMANCE
|
|
960
|
+
)
|
|
961
|
+
performance_dict[subject_name][gp_str]["performance_train"] = (
|
|
962
|
+
DEFAULT_PERFORMANCE
|
|
963
|
+
)
|
|
964
|
+
|
|
965
|
+
if save_results:
|
|
966
|
+
nm_IO.save_general_dict(
|
|
967
|
+
dict_=performance_dict,
|
|
968
|
+
path_out=PATH_OUT,
|
|
969
|
+
prefix=folder_name,
|
|
970
|
+
str_add=str_add,
|
|
971
|
+
)
|
|
972
|
+
return performance_dict
|
|
973
|
+
|
|
974
|
+
@staticmethod
|
|
975
|
+
def get_dataframe_performances(p: dict) -> "pd.DataFrame":
|
|
976
|
+
performances = []
|
|
977
|
+
for sub in p.keys():
|
|
978
|
+
for ch in p[sub].keys():
|
|
979
|
+
if "active_gridpoints" in ch:
|
|
980
|
+
continue
|
|
981
|
+
dict_add = p[sub][ch].copy()
|
|
982
|
+
dict_add["sub"] = sub
|
|
983
|
+
dict_add["ch"] = ch
|
|
984
|
+
|
|
985
|
+
if "all_ch_" in ch:
|
|
986
|
+
dict_add["ch_type"] = "all ch combinded"
|
|
987
|
+
elif "gridcortex" in ch:
|
|
988
|
+
dict_add["ch_type"] = "cortex grid"
|
|
989
|
+
else:
|
|
990
|
+
dict_add["ch_type"] = "electrode ch"
|
|
991
|
+
performances.append(dict_add)
|
|
992
|
+
|
|
993
|
+
return pd.DataFrame(performances)
|