py-neuromodulation 0.0.3__py3-none-any.whl → 0.0.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (233) hide show
  1. py_neuromodulation/ConnectivityDecoding/Automated Anatomical Labeling 3 (Rolls 2020).nii +0 -0
  2. py_neuromodulation/ConnectivityDecoding/_get_grid_hull.m +34 -0
  3. py_neuromodulation/ConnectivityDecoding/_get_grid_whole_brain.py +95 -0
  4. py_neuromodulation/ConnectivityDecoding/_helper_write_connectome.py +107 -0
  5. py_neuromodulation/ConnectivityDecoding/mni_coords_cortical_surface.mat +0 -0
  6. py_neuromodulation/ConnectivityDecoding/mni_coords_whole_brain.mat +0 -0
  7. py_neuromodulation/ConnectivityDecoding/rmap_func_all.nii +0 -0
  8. py_neuromodulation/ConnectivityDecoding/rmap_struc.nii +0 -0
  9. py_neuromodulation/FieldTrip.py +589 -589
  10. py_neuromodulation/__init__.py +74 -13
  11. py_neuromodulation/_write_example_dataset_helper.py +83 -65
  12. py_neuromodulation/data/README +6 -0
  13. py_neuromodulation/data/dataset_description.json +8 -0
  14. py_neuromodulation/data/participants.json +32 -0
  15. py_neuromodulation/data/participants.tsv +2 -0
  16. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_space-mni_coordsystem.json +5 -0
  17. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_space-mni_electrodes.tsv +11 -0
  18. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_channels.tsv +11 -0
  19. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.eeg +0 -0
  20. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.json +18 -0
  21. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.vhdr +35 -0
  22. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.vmrk +13 -0
  23. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/sub-testsub_ses-EphysMedOff_scans.tsv +2 -0
  24. py_neuromodulation/grid_cortex.tsv +40 -0
  25. py_neuromodulation/grid_subcortex.tsv +1429 -0
  26. py_neuromodulation/liblsl/libpugixml.so.1.12 +0 -0
  27. py_neuromodulation/liblsl/linux/bionic_amd64/liblsl.1.16.2.so +0 -0
  28. py_neuromodulation/liblsl/linux/bookworm_amd64/liblsl.1.16.2.so +0 -0
  29. py_neuromodulation/liblsl/linux/focal_amd46/liblsl.1.16.2.so +0 -0
  30. py_neuromodulation/liblsl/linux/jammy_amd64/liblsl.1.16.2.so +0 -0
  31. py_neuromodulation/liblsl/linux/jammy_x86/liblsl.1.16.2.so +0 -0
  32. py_neuromodulation/liblsl/linux/noble_amd64/liblsl.1.16.2.so +0 -0
  33. py_neuromodulation/liblsl/macos/amd64/liblsl.1.16.2.dylib +0 -0
  34. py_neuromodulation/liblsl/macos/arm64/liblsl.1.16.0.dylib +0 -0
  35. py_neuromodulation/liblsl/windows/amd64/liblsl.1.16.2.dll +0 -0
  36. py_neuromodulation/liblsl/windows/x86/liblsl.1.16.2.dll +0 -0
  37. py_neuromodulation/nm_IO.py +413 -417
  38. py_neuromodulation/nm_RMAP.py +496 -531
  39. py_neuromodulation/nm_analysis.py +993 -1074
  40. py_neuromodulation/nm_artifacts.py +30 -25
  41. py_neuromodulation/nm_bispectra.py +154 -168
  42. py_neuromodulation/nm_bursts.py +292 -198
  43. py_neuromodulation/nm_coherence.py +251 -205
  44. py_neuromodulation/nm_database.py +149 -0
  45. py_neuromodulation/nm_decode.py +918 -992
  46. py_neuromodulation/nm_define_nmchannels.py +300 -302
  47. py_neuromodulation/nm_features.py +144 -116
  48. py_neuromodulation/nm_filter.py +219 -219
  49. py_neuromodulation/nm_filter_preprocessing.py +79 -91
  50. py_neuromodulation/nm_fooof.py +139 -159
  51. py_neuromodulation/nm_generator.py +45 -37
  52. py_neuromodulation/nm_hjorth_raw.py +52 -73
  53. py_neuromodulation/nm_kalmanfilter.py +71 -58
  54. py_neuromodulation/nm_linelength.py +21 -33
  55. py_neuromodulation/nm_logger.py +66 -0
  56. py_neuromodulation/nm_mne_connectivity.py +149 -112
  57. py_neuromodulation/nm_mnelsl_generator.py +90 -0
  58. py_neuromodulation/nm_mnelsl_stream.py +116 -0
  59. py_neuromodulation/nm_nolds.py +96 -93
  60. py_neuromodulation/nm_normalization.py +173 -214
  61. py_neuromodulation/nm_oscillatory.py +423 -448
  62. py_neuromodulation/nm_plots.py +585 -612
  63. py_neuromodulation/nm_preprocessing.py +83 -0
  64. py_neuromodulation/nm_projection.py +370 -394
  65. py_neuromodulation/nm_rereference.py +97 -95
  66. py_neuromodulation/nm_resample.py +59 -50
  67. py_neuromodulation/nm_run_analysis.py +325 -435
  68. py_neuromodulation/nm_settings.py +289 -68
  69. py_neuromodulation/nm_settings.yaml +244 -0
  70. py_neuromodulation/nm_sharpwaves.py +423 -401
  71. py_neuromodulation/nm_stats.py +464 -480
  72. py_neuromodulation/nm_stream.py +398 -0
  73. py_neuromodulation/nm_stream_abc.py +166 -218
  74. py_neuromodulation/nm_types.py +193 -0
  75. py_neuromodulation/plots/STN_surf.mat +0 -0
  76. py_neuromodulation/plots/Vertices.mat +0 -0
  77. py_neuromodulation/plots/faces.mat +0 -0
  78. py_neuromodulation/plots/grid.mat +0 -0
  79. {py_neuromodulation-0.0.3.dist-info → py_neuromodulation-0.0.5.dist-info}/METADATA +185 -182
  80. py_neuromodulation-0.0.5.dist-info/RECORD +83 -0
  81. {py_neuromodulation-0.0.3.dist-info → py_neuromodulation-0.0.5.dist-info}/WHEEL +1 -2
  82. {py_neuromodulation-0.0.3.dist-info → py_neuromodulation-0.0.5.dist-info/licenses}/LICENSE +21 -21
  83. docs/build/_downloads/09df217f95985497f45d69e2d4bdc5b1/plot_2_example_add_feature.py +0 -68
  84. docs/build/_downloads/3b4900a2b2818ff30362215b76f7d5eb/plot_1_example_BIDS.py +0 -233
  85. docs/build/_downloads/7e92dd2e6cc86b239d14cafad972ae4f/plot_3_example_sharpwave_analysis.py +0 -219
  86. docs/build/_downloads/c2db0bf2b334d541b00662b991682256/plot_6_real_time_demo.py +0 -97
  87. docs/build/_downloads/ce3914826f782cbd1ea8fd024eaf0ac3/plot_5_example_rmap_computing.py +0 -64
  88. docs/build/_downloads/da36848a41e6a3235d91fb7cfb6d59b4/plot_0_first_demo.py +0 -192
  89. docs/build/_downloads/eaa4305c75b19a1e2eea941f742a6331/plot_4_example_gridPointProjection.py +0 -210
  90. docs/build/html/_downloads/09df217f95985497f45d69e2d4bdc5b1/plot_2_example_add_feature.py +0 -68
  91. docs/build/html/_downloads/3b4900a2b2818ff30362215b76f7d5eb/plot_1_example_BIDS.py +0 -239
  92. docs/build/html/_downloads/7e92dd2e6cc86b239d14cafad972ae4f/plot_3_example_sharpwave_analysis.py +0 -219
  93. docs/build/html/_downloads/c2db0bf2b334d541b00662b991682256/plot_6_real_time_demo.py +0 -97
  94. docs/build/html/_downloads/ce3914826f782cbd1ea8fd024eaf0ac3/plot_5_example_rmap_computing.py +0 -64
  95. docs/build/html/_downloads/da36848a41e6a3235d91fb7cfb6d59b4/plot_0_first_demo.py +0 -192
  96. docs/build/html/_downloads/eaa4305c75b19a1e2eea941f742a6331/plot_4_example_gridPointProjection.py +0 -210
  97. docs/source/_build/html/_downloads/09df217f95985497f45d69e2d4bdc5b1/plot_2_example_add_feature.py +0 -76
  98. docs/source/_build/html/_downloads/0d0d0a76e8f648d5d3cbc47da6351932/plot_real_time_demo.py +0 -97
  99. docs/source/_build/html/_downloads/3b4900a2b2818ff30362215b76f7d5eb/plot_1_example_BIDS.py +0 -240
  100. docs/source/_build/html/_downloads/5d73cadc59a8805c47e3b84063afc157/plot_example_BIDS.py +0 -233
  101. docs/source/_build/html/_downloads/7660317fa5a6bfbd12fcca9961457fc4/plot_example_rmap_computing.py +0 -63
  102. docs/source/_build/html/_downloads/7e92dd2e6cc86b239d14cafad972ae4f/plot_3_example_sharpwave_analysis.py +0 -219
  103. docs/source/_build/html/_downloads/839e5b319379f7fd9e867deb00fd797f/plot_example_gridPointProjection.py +0 -210
  104. docs/source/_build/html/_downloads/ae8be19afe5e559f011fc9b138968ba0/plot_first_demo.py +0 -192
  105. docs/source/_build/html/_downloads/b8b06cacc17969d3725a0b6f1d7741c5/plot_example_sharpwave_analysis.py +0 -219
  106. docs/source/_build/html/_downloads/c2db0bf2b334d541b00662b991682256/plot_6_real_time_demo.py +0 -121
  107. docs/source/_build/html/_downloads/c31a86c0b68cb4167d968091ace8080d/plot_example_add_feature.py +0 -68
  108. docs/source/_build/html/_downloads/ce3914826f782cbd1ea8fd024eaf0ac3/plot_5_example_rmap_computing.py +0 -64
  109. docs/source/_build/html/_downloads/da36848a41e6a3235d91fb7cfb6d59b4/plot_0_first_demo.py +0 -189
  110. docs/source/_build/html/_downloads/eaa4305c75b19a1e2eea941f742a6331/plot_4_example_gridPointProjection.py +0 -210
  111. docs/source/auto_examples/plot_0_first_demo.py +0 -189
  112. docs/source/auto_examples/plot_1_example_BIDS.py +0 -240
  113. docs/source/auto_examples/plot_2_example_add_feature.py +0 -76
  114. docs/source/auto_examples/plot_3_example_sharpwave_analysis.py +0 -219
  115. docs/source/auto_examples/plot_4_example_gridPointProjection.py +0 -210
  116. docs/source/auto_examples/plot_5_example_rmap_computing.py +0 -64
  117. docs/source/auto_examples/plot_6_real_time_demo.py +0 -121
  118. docs/source/conf.py +0 -105
  119. examples/plot_0_first_demo.py +0 -189
  120. examples/plot_1_example_BIDS.py +0 -240
  121. examples/plot_2_example_add_feature.py +0 -76
  122. examples/plot_3_example_sharpwave_analysis.py +0 -219
  123. examples/plot_4_example_gridPointProjection.py +0 -210
  124. examples/plot_5_example_rmap_computing.py +0 -64
  125. examples/plot_6_real_time_demo.py +0 -121
  126. packages/realtime_decoding/build/lib/realtime_decoding/__init__.py +0 -4
  127. packages/realtime_decoding/build/lib/realtime_decoding/decoder.py +0 -104
  128. packages/realtime_decoding/build/lib/realtime_decoding/features.py +0 -163
  129. packages/realtime_decoding/build/lib/realtime_decoding/helpers.py +0 -15
  130. packages/realtime_decoding/build/lib/realtime_decoding/run_decoding.py +0 -345
  131. packages/realtime_decoding/build/lib/realtime_decoding/trainer.py +0 -54
  132. packages/tmsi/build/lib/TMSiFileFormats/__init__.py +0 -37
  133. packages/tmsi/build/lib/TMSiFileFormats/file_formats/__init__.py +0 -36
  134. packages/tmsi/build/lib/TMSiFileFormats/file_formats/lsl_stream_writer.py +0 -200
  135. packages/tmsi/build/lib/TMSiFileFormats/file_formats/poly5_file_writer.py +0 -496
  136. packages/tmsi/build/lib/TMSiFileFormats/file_formats/poly5_to_edf_converter.py +0 -236
  137. packages/tmsi/build/lib/TMSiFileFormats/file_formats/xdf_file_writer.py +0 -977
  138. packages/tmsi/build/lib/TMSiFileFormats/file_readers/__init__.py +0 -35
  139. packages/tmsi/build/lib/TMSiFileFormats/file_readers/edf_reader.py +0 -116
  140. packages/tmsi/build/lib/TMSiFileFormats/file_readers/poly5reader.py +0 -294
  141. packages/tmsi/build/lib/TMSiFileFormats/file_readers/xdf_reader.py +0 -229
  142. packages/tmsi/build/lib/TMSiFileFormats/file_writer.py +0 -102
  143. packages/tmsi/build/lib/TMSiPlotters/__init__.py +0 -2
  144. packages/tmsi/build/lib/TMSiPlotters/gui/__init__.py +0 -39
  145. packages/tmsi/build/lib/TMSiPlotters/gui/_plotter_gui.py +0 -234
  146. packages/tmsi/build/lib/TMSiPlotters/gui/plotting_gui.py +0 -440
  147. packages/tmsi/build/lib/TMSiPlotters/plotters/__init__.py +0 -44
  148. packages/tmsi/build/lib/TMSiPlotters/plotters/hd_emg_plotter.py +0 -446
  149. packages/tmsi/build/lib/TMSiPlotters/plotters/impedance_plotter.py +0 -589
  150. packages/tmsi/build/lib/TMSiPlotters/plotters/signal_plotter.py +0 -1326
  151. packages/tmsi/build/lib/TMSiSDK/__init__.py +0 -54
  152. packages/tmsi/build/lib/TMSiSDK/device.py +0 -588
  153. packages/tmsi/build/lib/TMSiSDK/devices/__init__.py +0 -34
  154. packages/tmsi/build/lib/TMSiSDK/devices/saga/TMSi_Device_API.py +0 -1764
  155. packages/tmsi/build/lib/TMSiSDK/devices/saga/__init__.py +0 -34
  156. packages/tmsi/build/lib/TMSiSDK/devices/saga/saga_device.py +0 -1366
  157. packages/tmsi/build/lib/TMSiSDK/devices/saga/saga_types.py +0 -520
  158. packages/tmsi/build/lib/TMSiSDK/devices/saga/xml_saga_config.py +0 -165
  159. packages/tmsi/build/lib/TMSiSDK/error.py +0 -95
  160. packages/tmsi/build/lib/TMSiSDK/sample_data.py +0 -63
  161. packages/tmsi/build/lib/TMSiSDK/sample_data_server.py +0 -99
  162. packages/tmsi/build/lib/TMSiSDK/settings.py +0 -45
  163. packages/tmsi/build/lib/TMSiSDK/tmsi_device.py +0 -111
  164. packages/tmsi/build/lib/__init__.py +0 -4
  165. packages/tmsi/build/lib/apex_sdk/__init__.py +0 -34
  166. packages/tmsi/build/lib/apex_sdk/device/__init__.py +0 -41
  167. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_API.py +0 -1009
  168. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_API_enums.py +0 -239
  169. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_API_structures.py +0 -668
  170. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_device.py +0 -1611
  171. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_dongle.py +0 -38
  172. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_event_reader.py +0 -57
  173. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_channel.py +0 -44
  174. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_config.py +0 -150
  175. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_const.py +0 -36
  176. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_impedance_channel.py +0 -48
  177. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_info.py +0 -108
  178. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/dongle_info.py +0 -39
  179. packages/tmsi/build/lib/apex_sdk/device/devices/apex/measurements/download_measurement.py +0 -77
  180. packages/tmsi/build/lib/apex_sdk/device/devices/apex/measurements/eeg_measurement.py +0 -150
  181. packages/tmsi/build/lib/apex_sdk/device/devices/apex/measurements/impedance_measurement.py +0 -129
  182. packages/tmsi/build/lib/apex_sdk/device/threads/conversion_thread.py +0 -59
  183. packages/tmsi/build/lib/apex_sdk/device/threads/sampling_thread.py +0 -57
  184. packages/tmsi/build/lib/apex_sdk/device/tmsi_channel.py +0 -83
  185. packages/tmsi/build/lib/apex_sdk/device/tmsi_device.py +0 -201
  186. packages/tmsi/build/lib/apex_sdk/device/tmsi_device_enums.py +0 -103
  187. packages/tmsi/build/lib/apex_sdk/device/tmsi_dongle.py +0 -43
  188. packages/tmsi/build/lib/apex_sdk/device/tmsi_event_reader.py +0 -50
  189. packages/tmsi/build/lib/apex_sdk/device/tmsi_measurement.py +0 -118
  190. packages/tmsi/build/lib/apex_sdk/sample_data_server/__init__.py +0 -33
  191. packages/tmsi/build/lib/apex_sdk/sample_data_server/event_data.py +0 -44
  192. packages/tmsi/build/lib/apex_sdk/sample_data_server/sample_data.py +0 -50
  193. packages/tmsi/build/lib/apex_sdk/sample_data_server/sample_data_server.py +0 -136
  194. packages/tmsi/build/lib/apex_sdk/tmsi_errors/error.py +0 -126
  195. packages/tmsi/build/lib/apex_sdk/tmsi_sdk.py +0 -113
  196. packages/tmsi/build/lib/apex_sdk/tmsi_utilities/apex/apex_structure_generator.py +0 -134
  197. packages/tmsi/build/lib/apex_sdk/tmsi_utilities/decorators.py +0 -60
  198. packages/tmsi/build/lib/apex_sdk/tmsi_utilities/logger_filter.py +0 -42
  199. packages/tmsi/build/lib/apex_sdk/tmsi_utilities/singleton.py +0 -42
  200. packages/tmsi/build/lib/apex_sdk/tmsi_utilities/support_functions.py +0 -72
  201. packages/tmsi/build/lib/apex_sdk/tmsi_utilities/tmsi_logger.py +0 -98
  202. py_neuromodulation/nm_EpochStream.py +0 -92
  203. py_neuromodulation/nm_across_patient_decoding.py +0 -927
  204. py_neuromodulation/nm_cohortwrapper.py +0 -435
  205. py_neuromodulation/nm_eval_timing.py +0 -239
  206. py_neuromodulation/nm_features_abc.py +0 -39
  207. py_neuromodulation/nm_stream_offline.py +0 -358
  208. py_neuromodulation/utils/_logging.py +0 -24
  209. py_neuromodulation-0.0.3.dist-info/RECORD +0 -188
  210. py_neuromodulation-0.0.3.dist-info/top_level.txt +0 -5
  211. tests/__init__.py +0 -0
  212. tests/conftest.py +0 -117
  213. tests/test_all_examples.py +0 -10
  214. tests/test_all_features.py +0 -63
  215. tests/test_bispectra.py +0 -70
  216. tests/test_bursts.py +0 -105
  217. tests/test_feature_sampling_rates.py +0 -143
  218. tests/test_fooof.py +0 -16
  219. tests/test_initalization_offline_stream.py +0 -41
  220. tests/test_multiprocessing.py +0 -58
  221. tests/test_nan_values.py +0 -29
  222. tests/test_nm_filter.py +0 -95
  223. tests/test_nm_resample.py +0 -63
  224. tests/test_normalization_settings.py +0 -146
  225. tests/test_notch_filter.py +0 -31
  226. tests/test_osc_features.py +0 -424
  227. tests/test_preprocessing_filter.py +0 -151
  228. tests/test_rereference.py +0 -171
  229. tests/test_sampling.py +0 -57
  230. tests/test_settings_change_after_init.py +0 -76
  231. tests/test_sharpwave.py +0 -165
  232. tests/test_target_channel_add.py +0 -100
  233. tests/test_timing.py +0 -80
@@ -1,240 +0,0 @@
1
- """
2
- ECoG Movement decoding example
3
- ==============================
4
-
5
- """
6
-
7
- # %%
8
- # This example notebook read openly accessible data from the publication
9
- # *Electrocorticography is superior to subthalamic local field potentials
10
- # for movement decoding in Parkinson’s disease*
11
- # (`Merk et al. 2022 <https://elifesciences.org/articles/75126>_`).
12
- # The dataset is available `here <https://doi.org/10.7910/DVN/IO2FLM>`_.
13
- #
14
- # For simplicity one example subject is automatically shipped within
15
- # this repo at the *py_neuromodulation/data* folder, stored in
16
- # `iEEG BIDS <https://www.nature.com/articles/s41597-019-0105-7>`_ format.
17
-
18
- # %%
19
- from sklearn import metrics, model_selection, linear_model
20
- import matplotlib.pyplot as plt
21
-
22
- import py_neuromodulation as nm
23
- from py_neuromodulation import (
24
- nm_analysis,
25
- nm_decode,
26
- nm_define_nmchannels,
27
- nm_IO,
28
- nm_plots,
29
- nm_settings,
30
- )
31
-
32
- # %%
33
- # Let's read the example using `mne_bids <https://mne.tools/mne-bids/stable/index.html>`_.
34
- # The resulting raw object is of type `mne.RawArray <https://mne.tools/stable/generated/mne.io.RawArray.html>`_.
35
- # We can use the properties such as sampling frequency, channel names, channel types all from the mne array and create the *nm_channels* DataFrame:
36
-
37
- (
38
- RUN_NAME,
39
- PATH_RUN,
40
- PATH_BIDS,
41
- PATH_OUT,
42
- datatype,
43
- ) = nm_IO.get_paths_example_data()
44
-
45
- (
46
- raw,
47
- data,
48
- sfreq,
49
- line_noise,
50
- coord_list,
51
- coord_names,
52
- ) = nm_IO.read_BIDS_data(
53
- PATH_RUN=PATH_RUN, BIDS_PATH=PATH_BIDS, datatype=datatype
54
- )
55
-
56
- nm_channels = nm_define_nmchannels.set_channels(
57
- ch_names=raw.ch_names,
58
- ch_types=raw.get_channel_types(),
59
- reference="default",
60
- bads=raw.info["bads"],
61
- new_names="default",
62
- used_types=("ecog", "dbs", "seeg"),
63
- target_keywords=["MOV_RIGHT"],
64
- )
65
-
66
- nm_channels
67
-
68
- # %%
69
- # This example contains the grip force movement traces, we'll use the *MOV_RIGHT* channel as a decoding target channel.
70
- # Let's check some of the raw feature and time series traces:
71
-
72
- plt.figure(figsize=(12, 4), dpi=300)
73
- plt.subplot(121)
74
- plt.plot(raw.times, data[-1, :])
75
- plt.xlabel("Time [s]")
76
- plt.ylabel("a.u.")
77
- plt.title("Movement label")
78
- plt.xlim(0, 20)
79
-
80
- plt.subplot(122)
81
- for idx, ch_name in enumerate(nm_channels.query("used == 1").name):
82
- plt.plot(raw.times, data[idx, :] + idx * 300, label=ch_name)
83
- plt.legend(bbox_to_anchor=(1, 0.5), loc="center left")
84
- plt.title("ECoG + STN-LFP time series")
85
- plt.xlabel("Time [s]")
86
- plt.ylabel("Voltage a.u.")
87
- plt.xlim(0, 20)
88
-
89
- # %%
90
- settings = nm_settings.get_default_settings()
91
- settings = nm_settings.set_settings_fast_compute(settings)
92
-
93
- settings["features"]["welch"] = True
94
- settings["features"]["fft"] = True
95
- settings["features"]["bursts"] = True
96
- settings["features"]["sharpwave_analysis"] = True
97
- settings["features"]["coherence"] = True
98
- settings["coherence"]["channels"] = [["LFP_RIGHT_0", "ECOG_RIGHT_0"]]
99
- settings["coherence"]["frequency_bands"] = ["high beta", "low gamma"]
100
- settings["sharpwave_analysis_settings"]["estimator"]["mean"] = []
101
- for sw_feature in list(
102
- settings["sharpwave_analysis_settings"]["sharpwave_features"].keys()
103
- ):
104
- settings["sharpwave_analysis_settings"]["sharpwave_features"][
105
- sw_feature
106
- ] = True
107
- settings["sharpwave_analysis_settings"]["estimator"]["mean"].append(
108
- sw_feature
109
- )
110
-
111
- # %%
112
- stream = nm.Stream(
113
- sfreq=sfreq,
114
- nm_channels=nm_channels,
115
- settings=settings,
116
- line_noise=line_noise,
117
- coord_list=coord_list,
118
- coord_names=coord_names,
119
- verbose=True,
120
- )
121
-
122
- # %%
123
- features = stream.run(
124
- data=data,
125
- out_path_root=PATH_OUT,
126
- folder_name=RUN_NAME,
127
- )
128
-
129
- # %%
130
- # Feature Analysis Movement
131
- # -------------------------
132
- # The obtained performances can now be read and visualized using the :class:`nm_analysis.Feature_Reader`.
133
-
134
- # initialize analyzer
135
- feature_reader = nm_analysis.Feature_Reader(
136
- feature_dir=PATH_OUT,
137
- feature_file=RUN_NAME,
138
- )
139
- feature_reader.label_name = "MOV_RIGHT"
140
- feature_reader.label = feature_reader.feature_arr["MOV_RIGHT"]
141
-
142
- # %%
143
- feature_reader.feature_arr.iloc[100:108, -6:]
144
-
145
- # %%
146
- print(feature_reader.feature_arr.shape)
147
-
148
- # %%
149
- feature_reader._get_target_ch()
150
-
151
- # %%
152
- feature_reader.plot_target_averaged_channel(
153
- ch="ECOG_RIGHT_0",
154
- list_feature_keywords=None,
155
- epoch_len=4,
156
- threshold=0.5,
157
- ytick_labelsize=7,
158
- figsize_x=12,
159
- figsize_y=12,
160
- )
161
-
162
- # %%
163
- feature_reader.plot_all_features(
164
- ytick_labelsize=6,
165
- clim_low=-2,
166
- clim_high=2,
167
- ch_used="ECOG_RIGHT_0",
168
- time_limit_low_s=0,
169
- time_limit_high_s=20,
170
- normalize=True,
171
- save=True,
172
- )
173
-
174
- # %%
175
- nm_plots.plot_corr_matrix(
176
- feature=feature_reader.feature_arr.filter(regex="ECOG_RIGHT_0"),
177
- ch_name="ECOG_RIGHT_0-avgref",
178
- feature_names=feature_reader.feature_arr.filter(
179
- regex="ECOG_RIGHT_0-avgref"
180
- ).columns,
181
- feature_file=feature_reader.feature_file,
182
- show_plot=True,
183
- figsize=(15, 15),
184
- )
185
-
186
- # %%
187
- # Decoding
188
- # --------
189
- #
190
- # The main focus of the *py_neuromodulation* pipeline is feature estimation.
191
- # Nevertheless, the user can also use the pipeline for machine learning decoding.
192
- # It can be used for regression and classification problems and also dimensionality reduction such as PCA and CCA.
193
- #
194
- # Here, we show an example using the XGBOOST classifier. The used labels came from a continuous grip force movement target, named "MOV_RIGHT".
195
- #
196
- # First we initialize the :class:`~nm_decode.Decoder` class, which the specified *validation method*, here being a simple 3-fold cross validation,
197
- # the evaluation metric, used machine learning model, and the channels we want to evaluate performances for.
198
- #
199
- # There are many more implemented methods, but we will here limit it to the ones presented.
200
-
201
- model = linear_model.LinearRegression()
202
-
203
- feature_reader.decoder = nm_decode.Decoder(
204
- features=feature_reader.feature_arr,
205
- label=feature_reader.label,
206
- label_name=feature_reader.label_name,
207
- used_chs=feature_reader.used_chs,
208
- model=model,
209
- eval_method=metrics.r2_score,
210
- cv_method=model_selection.KFold(n_splits=3, shuffle=True),
211
- )
212
-
213
- # %%
214
- performances = feature_reader.run_ML_model(
215
- estimate_channels=True,
216
- estimate_gridpoints=False,
217
- estimate_all_channels_combined=True,
218
- save_results=True,
219
- )
220
-
221
- # %%
222
- # The performances are a dictionary that can be transformed into a DataFrame:
223
-
224
- df_per = feature_reader.get_dataframe_performances(performances)
225
-
226
- df_per
227
-
228
- # %%
229
- ax = nm_plots.plot_df_subjects(
230
- df_per,
231
- x_col="sub",
232
- y_col="performance_test",
233
- hue="ch_type",
234
- PATH_SAVE=PATH_OUT / RUN_NAME / (RUN_NAME + "_decoding_performance.png"),
235
- figsize_tuple=(8, 5),
236
- )
237
- ax.set_ylabel(r"$R^2$ Correlation")
238
- ax.set_xlabel("Subject 000")
239
- ax.set_title("Performance comparison Movement decoding")
240
- plt.tight_layout()
@@ -1,233 +0,0 @@
1
- """
2
- ECoG Movement decoding example
3
- ==============================
4
-
5
- """
6
-
7
- # %%
8
- # This example notebook read openly accessible data from the publication
9
- # *Electrocorticography is superior to subthalamic local field potentials
10
- # for movement decoding in Parkinson’s disease*
11
- # (`Merk et al. 2022 <https://elifesciences.org/articles/75126>_`).
12
- # The dataset is available `here <https://doi.org/10.7910/DVN/IO2FLM>`_.
13
- #
14
- # For simplicity one example subject is automatically shipped within
15
- # this repo at the *py_neuromodulation/data* folder, stored in
16
- # `iEEG BIDS <https://www.nature.com/articles/s41597-019-0105-7>`_ format.
17
-
18
- # %%
19
- from sklearn import metrics, model_selection, linear_model
20
- import matplotlib.pyplot as plt
21
-
22
- import py_neuromodulation as nm
23
- from py_neuromodulation import (
24
- nm_analysis,
25
- nm_decode,
26
- nm_define_nmchannels,
27
- nm_IO,
28
- nm_plots,
29
- nm_settings,
30
- )
31
-
32
- # %%
33
- # Let's read the example using `mne_bids <https://mne.tools/mne-bids/stable/index.html>`_.
34
- # The resulting raw object is of type `mne.RawArray <https://mne.tools/stable/generated/mne.io.RawArray.html>`_.
35
- # We can use the properties such as sampling frequency, channel names, channel types all from the mne array and create the *nm_channels* DataFrame:
36
-
37
- RUN_NAME, PATH_RUN, PATH_BIDS, PATH_OUT, datatype = nm_IO.get_paths_example_data()
38
-
39
- (
40
- raw,
41
- data,
42
- sfreq,
43
- line_noise,
44
- coord_list,
45
- coord_names,
46
- ) = nm_IO.read_BIDS_data(
47
- PATH_RUN=PATH_RUN, BIDS_PATH=PATH_BIDS, datatype=datatype
48
- )
49
-
50
- nm_channels = nm_define_nmchannels.set_channels(
51
- ch_names=raw.ch_names,
52
- ch_types=raw.get_channel_types(),
53
- reference="default",
54
- bads=raw.info["bads"],
55
- new_names="default",
56
- used_types=("ecog", "dbs", "seeg"),
57
- target_keywords=["MOV_RIGHT"],
58
- )
59
-
60
- nm_channels
61
-
62
- # %%
63
- # This example contains the grip force movement traces, we'll use the *MOV_RIGHT_CLEAN* channel as a decoding target channel.
64
- # Let's check some of the raw feature and time series traces:
65
-
66
- plt.figure(figsize=(12, 4), dpi=300)
67
- plt.subplot(121)
68
- plt.plot(raw.times, data[-1, :])
69
- plt.xlabel("Time [s]")
70
- plt.ylabel("a.u.")
71
- plt.title("Movement label")
72
- plt.xlim(0, 20)
73
-
74
- plt.subplot(122)
75
- for idx, ch_name in enumerate(nm_channels.query("used == 1").name):
76
- plt.plot(raw.times, data[idx, :] + idx * 300, label=ch_name)
77
- plt.legend(bbox_to_anchor=(1, 0.5), loc="center left")
78
- plt.title("ECoG + STN-LFP time series")
79
- plt.xlabel("Time [s]")
80
- plt.ylabel("Voltage a.u.")
81
- plt.xlim(0, 20)
82
-
83
- # %%
84
- settings = nm_settings.get_default_settings()
85
- settings = nm_settings.set_settings_fast_compute(settings)
86
-
87
- settings["features"]["fft"] = True
88
- settings["features"]["bursts"] = False
89
- settings["features"]["sharpwave_analysis"] = False
90
- settings["features"]["coherence"] = False # True
91
- settings["coherence"]["channels"] = [["LFP_RIGHT_0", "ECOG_RIGHT_0"]]
92
- settings["coherence"]["frequency_bands"] = ["high beta", "low gamma"]
93
- settings["sharpwave_analysis_settings"]["estimator"]["mean"] = []
94
- for sw_feature in list(
95
- settings["sharpwave_analysis_settings"]["sharpwave_features"].keys()
96
- ):
97
- settings["sharpwave_analysis_settings"]["sharpwave_features"][
98
- sw_feature
99
- ] = True
100
- settings["sharpwave_analysis_settings"]["estimator"]["mean"].append(
101
- sw_feature
102
- )
103
-
104
- # %%
105
- stream = nm.Stream(
106
- sfreq=sfreq,
107
- nm_channels=nm_channels,
108
- settings=settings,
109
- line_noise=line_noise,
110
- coord_list=coord_list,
111
- coord_names=coord_names,
112
- verbose=True,
113
- )
114
-
115
- # %%
116
- features = stream.run(
117
- data=data,
118
- out_path_root=PATH_OUT,
119
- folder_name=RUN_NAME,
120
- )
121
-
122
- # %%
123
- # Feature Analysis
124
- # ----------------
125
- # The obtained performances can now be read and visualized using the :class:`nm_analysis.Feature_Reader`.
126
-
127
- # initialize analyzer
128
- feature_reader = nm_analysis.Feature_Reader(
129
- feature_dir=PATH_OUT,
130
- feature_file=RUN_NAME,
131
- )
132
- feature_reader.label_name = "MOV_RIGHT"
133
- feature_reader.label = feature_reader.feature_arr["MOV_RIGHT"]
134
-
135
- # %%
136
- feature_reader.feature_arr.iloc[100:108, -6:]
137
-
138
- # %%
139
- print(feature_reader.feature_arr.shape)
140
-
141
- # %%
142
- feature_reader._get_target_ch()
143
-
144
- # %%
145
- feature_reader.plot_target_averaged_channel(
146
- ch="ECOG_RIGHT_0",
147
- list_feature_keywords=None,
148
- epoch_len=4,
149
- threshold=0.5,
150
- ytick_labelsize=7,
151
- figsize_x=12,
152
- figsize_y=12,
153
- )
154
-
155
- # %%
156
- feature_reader.plot_all_features(
157
- ytick_labelsize=3,
158
- clim_low=-2,
159
- clim_high=2,
160
- ch_used="ECOG_RIGHT_0",
161
- time_limit_low_s=0,
162
- time_limit_high_s=20,
163
- normalize=True,
164
- save=True,
165
- )
166
-
167
- # %%
168
- nm_plots.plot_corr_matrix(
169
- feature=feature_reader.feature_arr.filter(regex="ECOG_RIGHT_0"),
170
- ch_name="ECOG_RIGHT_0-avgref",
171
- feature_names=feature_reader.feature_arr.filter(
172
- regex="ECOG_RIGHT_0-avgref"
173
- ).columns,
174
- feature_file=feature_reader.feature_file,
175
- show_plot=True,
176
- figsize=(15, 15),
177
- )
178
-
179
- # %%
180
- # Decoding
181
- # --------
182
- #
183
- # The main focus of the *py_neuromodulation* pipeline is feature estimation.
184
- # Nevertheless, the user can also use the pipeline for machine learning decoding.
185
- # It can be used for regression and classification problems and also dimensionality reduction such as PCA and CCA.
186
- #
187
- # Here, we show an example using the XGBOOST classifier. The used labels came from a continuous grip force movement target, named "MOV_LEFT_CLEAN".
188
- #
189
- # First we initialize the :class:`~nm_decode.Decoder` class, which the specified *validation method*, here being a simple 3-fold cross validation,
190
- # the evaluation metric, used machine learning model, and the channels we want to evaluate performances for.
191
- #
192
- # There are many more implemented methods, but we will here limit it to the ones presented.
193
-
194
- model = linear_model.LinearRegression()
195
-
196
- feature_reader.decoder = nm_decode.Decoder(
197
- features=feature_reader.feature_arr,
198
- label=feature_reader.label,
199
- label_name=feature_reader.label_name,
200
- used_chs=feature_reader.used_chs,
201
- model=model,
202
- eval_method=metrics.r2_score,
203
- cv_method=model_selection.KFold(n_splits=3, shuffle=True),
204
- )
205
-
206
- # %%
207
- performances = feature_reader.run_ML_model(
208
- estimate_channels=True,
209
- estimate_gridpoints=False,
210
- estimate_all_channels_combined=True,
211
- save_results=True,
212
- )
213
-
214
- # %%
215
- # The performances are a dictionary that can be transformed into a DataFrame:
216
-
217
- df_per = feature_reader.get_dataframe_performances(performances)
218
-
219
- df_per
220
-
221
- # %%
222
- ax = nm_plots.plot_df_subjects(
223
- df_per,
224
- x_col="sub",
225
- y_col="performance_test",
226
- hue="ch_type",
227
- PATH_SAVE=PATH_OUT / RUN_NAME / (RUN_NAME + "_decoding_performance.png"),
228
- figsize_tuple=(8, 5)
229
- )
230
- ax.set_ylabel(r"$R^2$ Correlation")
231
- ax.set_xlabel("Subject 000")
232
- ax.set_title("Performance comparison Movement decoding")
233
- plt.tight_layout()
@@ -1,63 +0,0 @@
1
- """
2
- R-Map computation
3
- =================
4
-
5
- """
6
- # %%
7
- # sphinx_gallery_thumbnail_path = '_static/RMAP_figure.png'
8
-
9
- # %%
10
- # Across patient decoding using R-Map optimal connectivity
11
- # --------------------------------------------------------
12
- #
13
- # ECoG electrode placement is commonly very heterogeneous across patients and cohorts.
14
- # To still facilitate approaches that are able to perform decoding applications without patient individual training,
15
- # two across-patient decoding approaches were previously investigated for movement decoding:
16
- #
17
- #
18
- # * grid-point decoding
19
- # * optimal connectivity channel decoding
20
- #
21
- # First, the grid-point decoding approach relies on definition of a cortical or subcortical grid.
22
- # Data from individual grid points is then interpolated onto those common grid points.
23
- # The approach was also explained in the :ref:`/auto_examples/plot_example_gridPointProjection.rst` notebook.
24
- #
25
- # .. image:: ../_static/RMAP_figure.png
26
- # :alt: R-Map and grid point approach for decoding without patient-individual training
27
- #
28
- # The R-Map decoding approach relies on the other hand on computation of whole brain connectivity. The electrode MNI space locations need to be known,
29
- # then the following steps can be performed for decoding without patient individual training:
30
- #
31
- # #. Using the `wjn_toolbox <https://github.com/neuromodulation/wjn_toolbox>`_ *wjn_specrical_roi* function, the MNI coordinates can be transformed into NIFTI (.nii) files,
32
- # containing the electrode contact region of interest (ROI):
33
- #
34
- # .. code-block:: python
35
- #
36
- # wjn_spherical_roi(roiname, mni, 4)
37
- #
38
- # #. For the given *ROI.nii* files, the LeadDBS `LeadMapper <https://netstim.gitbook.io/leaddbs/connectomics/lead-mapper>`_ tool can be used for functional or structural connectivity estimation.
39
- # #. The py_neuromodulation :class:`~nm_RMAP.py` module can then compute the R-Map given the contact-individual connectivity fingerprints:
40
- #
41
- # .. code-block:: python
42
- #
43
- # nm_RMAP.calculate_RMap_numba(fingerprints, performances)
44
- #
45
- # #. The fingerprints from test-set patients can then be correlated with the calculated R-Map:
46
- #
47
- # .. code-block:: python
48
- #
49
- # nm_RMAP.get_corr_numba(fp, fp_test)
50
- #
51
- # #. The channel with highest correlation can then be selected for decoding without individual training. :class:`~nm_RMAP.py` contain already leave one channel
52
- # and leave one patient out cross validation functions:
53
- #
54
- # .. code-block:: python
55
- #
56
- # nm_RMAP.leave_one_sub_out_cv(l_fps_names, l_fps_dat, l_per, sub_list)
57
- #
58
- # #. The obtained R-Map correlations can then be estimated statistically and plotted against true correlates:
59
- #
60
- # .. code-block:: python
61
- #
62
- # nm_RMAP.plot_performance_prediction_correlation(per_left_out, per_predict, out_path_save)
63
- #