py-neuromodulation 0.0.3__py3-none-any.whl → 0.0.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- py_neuromodulation/ConnectivityDecoding/Automated Anatomical Labeling 3 (Rolls 2020).nii +0 -0
- py_neuromodulation/ConnectivityDecoding/_get_grid_hull.m +34 -0
- py_neuromodulation/ConnectivityDecoding/_get_grid_whole_brain.py +95 -0
- py_neuromodulation/ConnectivityDecoding/_helper_write_connectome.py +107 -0
- py_neuromodulation/ConnectivityDecoding/mni_coords_cortical_surface.mat +0 -0
- py_neuromodulation/ConnectivityDecoding/mni_coords_whole_brain.mat +0 -0
- py_neuromodulation/ConnectivityDecoding/rmap_func_all.nii +0 -0
- py_neuromodulation/ConnectivityDecoding/rmap_struc.nii +0 -0
- py_neuromodulation/FieldTrip.py +589 -589
- py_neuromodulation/__init__.py +74 -13
- py_neuromodulation/_write_example_dataset_helper.py +83 -65
- py_neuromodulation/data/README +6 -0
- py_neuromodulation/data/dataset_description.json +8 -0
- py_neuromodulation/data/participants.json +32 -0
- py_neuromodulation/data/participants.tsv +2 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_space-mni_coordsystem.json +5 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_space-mni_electrodes.tsv +11 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_channels.tsv +11 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.eeg +0 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.json +18 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.vhdr +35 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.vmrk +13 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/sub-testsub_ses-EphysMedOff_scans.tsv +2 -0
- py_neuromodulation/grid_cortex.tsv +40 -0
- py_neuromodulation/grid_subcortex.tsv +1429 -0
- py_neuromodulation/liblsl/libpugixml.so.1.12 +0 -0
- py_neuromodulation/liblsl/linux/bionic_amd64/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/bookworm_amd64/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/focal_amd46/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/jammy_amd64/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/jammy_x86/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/noble_amd64/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/macos/amd64/liblsl.1.16.2.dylib +0 -0
- py_neuromodulation/liblsl/macos/arm64/liblsl.1.16.0.dylib +0 -0
- py_neuromodulation/liblsl/windows/amd64/liblsl.1.16.2.dll +0 -0
- py_neuromodulation/liblsl/windows/x86/liblsl.1.16.2.dll +0 -0
- py_neuromodulation/nm_IO.py +413 -417
- py_neuromodulation/nm_RMAP.py +496 -531
- py_neuromodulation/nm_analysis.py +993 -1074
- py_neuromodulation/nm_artifacts.py +30 -25
- py_neuromodulation/nm_bispectra.py +154 -168
- py_neuromodulation/nm_bursts.py +292 -198
- py_neuromodulation/nm_coherence.py +251 -205
- py_neuromodulation/nm_database.py +149 -0
- py_neuromodulation/nm_decode.py +918 -992
- py_neuromodulation/nm_define_nmchannels.py +300 -302
- py_neuromodulation/nm_features.py +144 -116
- py_neuromodulation/nm_filter.py +219 -219
- py_neuromodulation/nm_filter_preprocessing.py +79 -91
- py_neuromodulation/nm_fooof.py +139 -159
- py_neuromodulation/nm_generator.py +45 -37
- py_neuromodulation/nm_hjorth_raw.py +52 -73
- py_neuromodulation/nm_kalmanfilter.py +71 -58
- py_neuromodulation/nm_linelength.py +21 -33
- py_neuromodulation/nm_logger.py +66 -0
- py_neuromodulation/nm_mne_connectivity.py +149 -112
- py_neuromodulation/nm_mnelsl_generator.py +90 -0
- py_neuromodulation/nm_mnelsl_stream.py +116 -0
- py_neuromodulation/nm_nolds.py +96 -93
- py_neuromodulation/nm_normalization.py +173 -214
- py_neuromodulation/nm_oscillatory.py +423 -448
- py_neuromodulation/nm_plots.py +585 -612
- py_neuromodulation/nm_preprocessing.py +83 -0
- py_neuromodulation/nm_projection.py +370 -394
- py_neuromodulation/nm_rereference.py +97 -95
- py_neuromodulation/nm_resample.py +59 -50
- py_neuromodulation/nm_run_analysis.py +325 -435
- py_neuromodulation/nm_settings.py +289 -68
- py_neuromodulation/nm_settings.yaml +244 -0
- py_neuromodulation/nm_sharpwaves.py +423 -401
- py_neuromodulation/nm_stats.py +464 -480
- py_neuromodulation/nm_stream.py +398 -0
- py_neuromodulation/nm_stream_abc.py +166 -218
- py_neuromodulation/nm_types.py +193 -0
- py_neuromodulation/plots/STN_surf.mat +0 -0
- py_neuromodulation/plots/Vertices.mat +0 -0
- py_neuromodulation/plots/faces.mat +0 -0
- py_neuromodulation/plots/grid.mat +0 -0
- {py_neuromodulation-0.0.3.dist-info → py_neuromodulation-0.0.5.dist-info}/METADATA +185 -182
- py_neuromodulation-0.0.5.dist-info/RECORD +83 -0
- {py_neuromodulation-0.0.3.dist-info → py_neuromodulation-0.0.5.dist-info}/WHEEL +1 -2
- {py_neuromodulation-0.0.3.dist-info → py_neuromodulation-0.0.5.dist-info/licenses}/LICENSE +21 -21
- docs/build/_downloads/09df217f95985497f45d69e2d4bdc5b1/plot_2_example_add_feature.py +0 -68
- docs/build/_downloads/3b4900a2b2818ff30362215b76f7d5eb/plot_1_example_BIDS.py +0 -233
- docs/build/_downloads/7e92dd2e6cc86b239d14cafad972ae4f/plot_3_example_sharpwave_analysis.py +0 -219
- docs/build/_downloads/c2db0bf2b334d541b00662b991682256/plot_6_real_time_demo.py +0 -97
- docs/build/_downloads/ce3914826f782cbd1ea8fd024eaf0ac3/plot_5_example_rmap_computing.py +0 -64
- docs/build/_downloads/da36848a41e6a3235d91fb7cfb6d59b4/plot_0_first_demo.py +0 -192
- docs/build/_downloads/eaa4305c75b19a1e2eea941f742a6331/plot_4_example_gridPointProjection.py +0 -210
- docs/build/html/_downloads/09df217f95985497f45d69e2d4bdc5b1/plot_2_example_add_feature.py +0 -68
- docs/build/html/_downloads/3b4900a2b2818ff30362215b76f7d5eb/plot_1_example_BIDS.py +0 -239
- docs/build/html/_downloads/7e92dd2e6cc86b239d14cafad972ae4f/plot_3_example_sharpwave_analysis.py +0 -219
- docs/build/html/_downloads/c2db0bf2b334d541b00662b991682256/plot_6_real_time_demo.py +0 -97
- docs/build/html/_downloads/ce3914826f782cbd1ea8fd024eaf0ac3/plot_5_example_rmap_computing.py +0 -64
- docs/build/html/_downloads/da36848a41e6a3235d91fb7cfb6d59b4/plot_0_first_demo.py +0 -192
- docs/build/html/_downloads/eaa4305c75b19a1e2eea941f742a6331/plot_4_example_gridPointProjection.py +0 -210
- docs/source/_build/html/_downloads/09df217f95985497f45d69e2d4bdc5b1/plot_2_example_add_feature.py +0 -76
- docs/source/_build/html/_downloads/0d0d0a76e8f648d5d3cbc47da6351932/plot_real_time_demo.py +0 -97
- docs/source/_build/html/_downloads/3b4900a2b2818ff30362215b76f7d5eb/plot_1_example_BIDS.py +0 -240
- docs/source/_build/html/_downloads/5d73cadc59a8805c47e3b84063afc157/plot_example_BIDS.py +0 -233
- docs/source/_build/html/_downloads/7660317fa5a6bfbd12fcca9961457fc4/plot_example_rmap_computing.py +0 -63
- docs/source/_build/html/_downloads/7e92dd2e6cc86b239d14cafad972ae4f/plot_3_example_sharpwave_analysis.py +0 -219
- docs/source/_build/html/_downloads/839e5b319379f7fd9e867deb00fd797f/plot_example_gridPointProjection.py +0 -210
- docs/source/_build/html/_downloads/ae8be19afe5e559f011fc9b138968ba0/plot_first_demo.py +0 -192
- docs/source/_build/html/_downloads/b8b06cacc17969d3725a0b6f1d7741c5/plot_example_sharpwave_analysis.py +0 -219
- docs/source/_build/html/_downloads/c2db0bf2b334d541b00662b991682256/plot_6_real_time_demo.py +0 -121
- docs/source/_build/html/_downloads/c31a86c0b68cb4167d968091ace8080d/plot_example_add_feature.py +0 -68
- docs/source/_build/html/_downloads/ce3914826f782cbd1ea8fd024eaf0ac3/plot_5_example_rmap_computing.py +0 -64
- docs/source/_build/html/_downloads/da36848a41e6a3235d91fb7cfb6d59b4/plot_0_first_demo.py +0 -189
- docs/source/_build/html/_downloads/eaa4305c75b19a1e2eea941f742a6331/plot_4_example_gridPointProjection.py +0 -210
- docs/source/auto_examples/plot_0_first_demo.py +0 -189
- docs/source/auto_examples/plot_1_example_BIDS.py +0 -240
- docs/source/auto_examples/plot_2_example_add_feature.py +0 -76
- docs/source/auto_examples/plot_3_example_sharpwave_analysis.py +0 -219
- docs/source/auto_examples/plot_4_example_gridPointProjection.py +0 -210
- docs/source/auto_examples/plot_5_example_rmap_computing.py +0 -64
- docs/source/auto_examples/plot_6_real_time_demo.py +0 -121
- docs/source/conf.py +0 -105
- examples/plot_0_first_demo.py +0 -189
- examples/plot_1_example_BIDS.py +0 -240
- examples/plot_2_example_add_feature.py +0 -76
- examples/plot_3_example_sharpwave_analysis.py +0 -219
- examples/plot_4_example_gridPointProjection.py +0 -210
- examples/plot_5_example_rmap_computing.py +0 -64
- examples/plot_6_real_time_demo.py +0 -121
- packages/realtime_decoding/build/lib/realtime_decoding/__init__.py +0 -4
- packages/realtime_decoding/build/lib/realtime_decoding/decoder.py +0 -104
- packages/realtime_decoding/build/lib/realtime_decoding/features.py +0 -163
- packages/realtime_decoding/build/lib/realtime_decoding/helpers.py +0 -15
- packages/realtime_decoding/build/lib/realtime_decoding/run_decoding.py +0 -345
- packages/realtime_decoding/build/lib/realtime_decoding/trainer.py +0 -54
- packages/tmsi/build/lib/TMSiFileFormats/__init__.py +0 -37
- packages/tmsi/build/lib/TMSiFileFormats/file_formats/__init__.py +0 -36
- packages/tmsi/build/lib/TMSiFileFormats/file_formats/lsl_stream_writer.py +0 -200
- packages/tmsi/build/lib/TMSiFileFormats/file_formats/poly5_file_writer.py +0 -496
- packages/tmsi/build/lib/TMSiFileFormats/file_formats/poly5_to_edf_converter.py +0 -236
- packages/tmsi/build/lib/TMSiFileFormats/file_formats/xdf_file_writer.py +0 -977
- packages/tmsi/build/lib/TMSiFileFormats/file_readers/__init__.py +0 -35
- packages/tmsi/build/lib/TMSiFileFormats/file_readers/edf_reader.py +0 -116
- packages/tmsi/build/lib/TMSiFileFormats/file_readers/poly5reader.py +0 -294
- packages/tmsi/build/lib/TMSiFileFormats/file_readers/xdf_reader.py +0 -229
- packages/tmsi/build/lib/TMSiFileFormats/file_writer.py +0 -102
- packages/tmsi/build/lib/TMSiPlotters/__init__.py +0 -2
- packages/tmsi/build/lib/TMSiPlotters/gui/__init__.py +0 -39
- packages/tmsi/build/lib/TMSiPlotters/gui/_plotter_gui.py +0 -234
- packages/tmsi/build/lib/TMSiPlotters/gui/plotting_gui.py +0 -440
- packages/tmsi/build/lib/TMSiPlotters/plotters/__init__.py +0 -44
- packages/tmsi/build/lib/TMSiPlotters/plotters/hd_emg_plotter.py +0 -446
- packages/tmsi/build/lib/TMSiPlotters/plotters/impedance_plotter.py +0 -589
- packages/tmsi/build/lib/TMSiPlotters/plotters/signal_plotter.py +0 -1326
- packages/tmsi/build/lib/TMSiSDK/__init__.py +0 -54
- packages/tmsi/build/lib/TMSiSDK/device.py +0 -588
- packages/tmsi/build/lib/TMSiSDK/devices/__init__.py +0 -34
- packages/tmsi/build/lib/TMSiSDK/devices/saga/TMSi_Device_API.py +0 -1764
- packages/tmsi/build/lib/TMSiSDK/devices/saga/__init__.py +0 -34
- packages/tmsi/build/lib/TMSiSDK/devices/saga/saga_device.py +0 -1366
- packages/tmsi/build/lib/TMSiSDK/devices/saga/saga_types.py +0 -520
- packages/tmsi/build/lib/TMSiSDK/devices/saga/xml_saga_config.py +0 -165
- packages/tmsi/build/lib/TMSiSDK/error.py +0 -95
- packages/tmsi/build/lib/TMSiSDK/sample_data.py +0 -63
- packages/tmsi/build/lib/TMSiSDK/sample_data_server.py +0 -99
- packages/tmsi/build/lib/TMSiSDK/settings.py +0 -45
- packages/tmsi/build/lib/TMSiSDK/tmsi_device.py +0 -111
- packages/tmsi/build/lib/__init__.py +0 -4
- packages/tmsi/build/lib/apex_sdk/__init__.py +0 -34
- packages/tmsi/build/lib/apex_sdk/device/__init__.py +0 -41
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_API.py +0 -1009
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_API_enums.py +0 -239
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_API_structures.py +0 -668
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_device.py +0 -1611
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_dongle.py +0 -38
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_event_reader.py +0 -57
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_channel.py +0 -44
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_config.py +0 -150
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_const.py +0 -36
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_impedance_channel.py +0 -48
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_info.py +0 -108
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/dongle_info.py +0 -39
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/measurements/download_measurement.py +0 -77
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/measurements/eeg_measurement.py +0 -150
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/measurements/impedance_measurement.py +0 -129
- packages/tmsi/build/lib/apex_sdk/device/threads/conversion_thread.py +0 -59
- packages/tmsi/build/lib/apex_sdk/device/threads/sampling_thread.py +0 -57
- packages/tmsi/build/lib/apex_sdk/device/tmsi_channel.py +0 -83
- packages/tmsi/build/lib/apex_sdk/device/tmsi_device.py +0 -201
- packages/tmsi/build/lib/apex_sdk/device/tmsi_device_enums.py +0 -103
- packages/tmsi/build/lib/apex_sdk/device/tmsi_dongle.py +0 -43
- packages/tmsi/build/lib/apex_sdk/device/tmsi_event_reader.py +0 -50
- packages/tmsi/build/lib/apex_sdk/device/tmsi_measurement.py +0 -118
- packages/tmsi/build/lib/apex_sdk/sample_data_server/__init__.py +0 -33
- packages/tmsi/build/lib/apex_sdk/sample_data_server/event_data.py +0 -44
- packages/tmsi/build/lib/apex_sdk/sample_data_server/sample_data.py +0 -50
- packages/tmsi/build/lib/apex_sdk/sample_data_server/sample_data_server.py +0 -136
- packages/tmsi/build/lib/apex_sdk/tmsi_errors/error.py +0 -126
- packages/tmsi/build/lib/apex_sdk/tmsi_sdk.py +0 -113
- packages/tmsi/build/lib/apex_sdk/tmsi_utilities/apex/apex_structure_generator.py +0 -134
- packages/tmsi/build/lib/apex_sdk/tmsi_utilities/decorators.py +0 -60
- packages/tmsi/build/lib/apex_sdk/tmsi_utilities/logger_filter.py +0 -42
- packages/tmsi/build/lib/apex_sdk/tmsi_utilities/singleton.py +0 -42
- packages/tmsi/build/lib/apex_sdk/tmsi_utilities/support_functions.py +0 -72
- packages/tmsi/build/lib/apex_sdk/tmsi_utilities/tmsi_logger.py +0 -98
- py_neuromodulation/nm_EpochStream.py +0 -92
- py_neuromodulation/nm_across_patient_decoding.py +0 -927
- py_neuromodulation/nm_cohortwrapper.py +0 -435
- py_neuromodulation/nm_eval_timing.py +0 -239
- py_neuromodulation/nm_features_abc.py +0 -39
- py_neuromodulation/nm_stream_offline.py +0 -358
- py_neuromodulation/utils/_logging.py +0 -24
- py_neuromodulation-0.0.3.dist-info/RECORD +0 -188
- py_neuromodulation-0.0.3.dist-info/top_level.txt +0 -5
- tests/__init__.py +0 -0
- tests/conftest.py +0 -117
- tests/test_all_examples.py +0 -10
- tests/test_all_features.py +0 -63
- tests/test_bispectra.py +0 -70
- tests/test_bursts.py +0 -105
- tests/test_feature_sampling_rates.py +0 -143
- tests/test_fooof.py +0 -16
- tests/test_initalization_offline_stream.py +0 -41
- tests/test_multiprocessing.py +0 -58
- tests/test_nan_values.py +0 -29
- tests/test_nm_filter.py +0 -95
- tests/test_nm_resample.py +0 -63
- tests/test_normalization_settings.py +0 -146
- tests/test_notch_filter.py +0 -31
- tests/test_osc_features.py +0 -424
- tests/test_preprocessing_filter.py +0 -151
- tests/test_rereference.py +0 -171
- tests/test_sampling.py +0 -57
- tests/test_settings_change_after_init.py +0 -76
- tests/test_sharpwave.py +0 -165
- tests/test_target_channel_add.py +0 -100
- tests/test_timing.py +0 -80
tests/test_nm_filter.py
DELETED
|
@@ -1,95 +0,0 @@
|
|
|
1
|
-
"""Test the nm_filter module."""
|
|
2
|
-
import numpy as np
|
|
3
|
-
from py_neuromodulation import nm_filter
|
|
4
|
-
import pytest
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
class TestMNEFilterData:
|
|
8
|
-
"""Test filter_data method of MNEFilter class."""
|
|
9
|
-
|
|
10
|
-
@pytest.mark.parametrize(
|
|
11
|
-
"filter_length",
|
|
12
|
-
["500ms", "999ms", "1999ms", "3999ms", "2s"],
|
|
13
|
-
)
|
|
14
|
-
def test_filter_length(self, filter_length) -> None:
|
|
15
|
-
"""Test different filter lengths."""
|
|
16
|
-
f_ranges = [
|
|
17
|
-
[13, 35],
|
|
18
|
-
]
|
|
19
|
-
sfreq = 4000
|
|
20
|
-
duration = 10
|
|
21
|
-
times = np.linspace(0, duration, int(duration * sfreq))
|
|
22
|
-
bandpass_filter = nm_filter.MNEFilter(
|
|
23
|
-
f_ranges=f_ranges,
|
|
24
|
-
sfreq=sfreq,
|
|
25
|
-
filter_length=filter_length,
|
|
26
|
-
l_trans_bandwidth=8, # transition bandwidth needs to be adjusted for smaller filter length
|
|
27
|
-
h_trans_bandwidth=8,
|
|
28
|
-
verbose=None,
|
|
29
|
-
)
|
|
30
|
-
oscill_freqs = 50
|
|
31
|
-
data = np.sin(2 * np.pi * times * oscill_freqs)
|
|
32
|
-
data_filtered = bandpass_filter.filter_data(data)
|
|
33
|
-
assert data_filtered.shape == (
|
|
34
|
-
1,
|
|
35
|
-
len(f_ranges),
|
|
36
|
-
duration * sfreq,
|
|
37
|
-
)
|
|
38
|
-
|
|
39
|
-
def test_filter_1d(self) -> None:
|
|
40
|
-
"""Test filtering of 1d array with multiple frequency ranges."""
|
|
41
|
-
f_ranges = [
|
|
42
|
-
[4, 8],
|
|
43
|
-
[8, 12],
|
|
44
|
-
[13, 35],
|
|
45
|
-
[60, 200],
|
|
46
|
-
[200, 500],
|
|
47
|
-
]
|
|
48
|
-
sfreq = 4000
|
|
49
|
-
duration = 10
|
|
50
|
-
times = np.linspace(0, duration, int(duration * sfreq))
|
|
51
|
-
bandpass_filter = nm_filter.MNEFilter(
|
|
52
|
-
f_ranges=f_ranges,
|
|
53
|
-
sfreq=sfreq,
|
|
54
|
-
filter_length="999ms",
|
|
55
|
-
l_trans_bandwidth=4,
|
|
56
|
-
h_trans_bandwidth=4,
|
|
57
|
-
verbose=None,
|
|
58
|
-
)
|
|
59
|
-
oscill_freqs = 50
|
|
60
|
-
data = np.sin(2 * np.pi * times * oscill_freqs)
|
|
61
|
-
data_filtered = bandpass_filter.filter_data(data)
|
|
62
|
-
assert data_filtered.shape == (
|
|
63
|
-
1,
|
|
64
|
-
len(f_ranges),
|
|
65
|
-
duration * sfreq,
|
|
66
|
-
)
|
|
67
|
-
|
|
68
|
-
def test_filter_2d(self) -> None:
|
|
69
|
-
"""Test filtering of 2d array with multiple frequency ranges and multiple channels."""
|
|
70
|
-
f_ranges = [
|
|
71
|
-
[4, 8],
|
|
72
|
-
[8, 12],
|
|
73
|
-
[13, 35],
|
|
74
|
-
[60, 200],
|
|
75
|
-
[200, 500],
|
|
76
|
-
]
|
|
77
|
-
sfreq = 4000
|
|
78
|
-
duration = 10
|
|
79
|
-
times = np.linspace(0, duration, int(duration * sfreq))
|
|
80
|
-
bandpass_filter = nm_filter.MNEFilter(
|
|
81
|
-
f_ranges=f_ranges,
|
|
82
|
-
sfreq=sfreq,
|
|
83
|
-
filter_length="999ms",
|
|
84
|
-
l_trans_bandwidth=4,
|
|
85
|
-
h_trans_bandwidth=4,
|
|
86
|
-
verbose=None,
|
|
87
|
-
)
|
|
88
|
-
oscill_freqs = np.expand_dims(np.arange(10, 51, 10), axis=-1)
|
|
89
|
-
data = np.sin(2 * np.pi * times * oscill_freqs)
|
|
90
|
-
data_filtered = bandpass_filter.filter_data(data)
|
|
91
|
-
assert data_filtered.shape == (
|
|
92
|
-
oscill_freqs.shape[0],
|
|
93
|
-
len(f_ranges),
|
|
94
|
-
duration * sfreq,
|
|
95
|
-
)
|
tests/test_nm_resample.py
DELETED
|
@@ -1,63 +0,0 @@
|
|
|
1
|
-
"""Test the nm_resample module."""
|
|
2
|
-
import numpy as np
|
|
3
|
-
|
|
4
|
-
from py_neuromodulation import nm_resample
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
def test_upsample():
|
|
8
|
-
"""Test case where data is upsampled."""
|
|
9
|
-
sfreq_old = 4000.0
|
|
10
|
-
duration = 10
|
|
11
|
-
times = np.linspace(0, duration, int(duration * sfreq_old))
|
|
12
|
-
oscill_freqs = np.expand_dims(np.arange(10, 51, 10), axis=-1)
|
|
13
|
-
data = np.sin(2 * np.pi * times * oscill_freqs)
|
|
14
|
-
|
|
15
|
-
sfreq_new = 1000.0
|
|
16
|
-
resample = nm_resample.Resampler(
|
|
17
|
-
resample_freq_hz=sfreq_new,
|
|
18
|
-
sfreq=sfreq_old,
|
|
19
|
-
)
|
|
20
|
-
data_resampled = resample.process(data)
|
|
21
|
-
assert data_resampled.shape[-1] == int(duration * sfreq_new)
|
|
22
|
-
# This test only works when ratio of old and new sfreq is an integer
|
|
23
|
-
# It will also only work up to a certain decimal precision.
|
|
24
|
-
resampled_naive = data[..., :: int(sfreq_old / sfreq_new)]
|
|
25
|
-
np.testing.assert_array_almost_equal(
|
|
26
|
-
data[..., :: int(sfreq_old / sfreq_new)],
|
|
27
|
-
resampled_naive,
|
|
28
|
-
decimal=2,
|
|
29
|
-
)
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
def test_downsample():
|
|
33
|
-
"""Test case where data is downsampled."""
|
|
34
|
-
sfreq_old = 1000.0
|
|
35
|
-
duration = 10
|
|
36
|
-
times = np.linspace(0, duration, int(duration * sfreq_old))
|
|
37
|
-
oscill_freqs = np.expand_dims(np.arange(10, 51, 10), axis=-1)
|
|
38
|
-
data = np.sin(2 * np.pi * times * oscill_freqs)
|
|
39
|
-
|
|
40
|
-
sfreq_new = 4000.0
|
|
41
|
-
resample = nm_resample.Resampler(
|
|
42
|
-
resample_freq_hz=sfreq_new,
|
|
43
|
-
sfreq=sfreq_old,
|
|
44
|
-
)
|
|
45
|
-
data_resampled = resample.process(data)
|
|
46
|
-
assert data_resampled.shape[-1] == int(duration * sfreq_new)
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
def test_no_resample():
|
|
50
|
-
"""Test case where no resampling is performed."""
|
|
51
|
-
sfreq_old = 1000.0
|
|
52
|
-
duration = 10
|
|
53
|
-
times = np.linspace(0, duration, int(duration * sfreq_old))
|
|
54
|
-
oscill_freqs = np.expand_dims(np.arange(10, 51, 10), axis=-1)
|
|
55
|
-
data = np.sin(2 * np.pi * times * oscill_freqs)
|
|
56
|
-
|
|
57
|
-
sfreq_new = 1000.0
|
|
58
|
-
resample = nm_resample.Resampler(
|
|
59
|
-
resample_freq_hz=sfreq_new,
|
|
60
|
-
sfreq=sfreq_old,
|
|
61
|
-
)
|
|
62
|
-
data_resampled = resample.process(data)
|
|
63
|
-
np.testing.assert_array_almost_equal(data, data_resampled)
|
|
@@ -1,146 +0,0 @@
|
|
|
1
|
-
import os
|
|
2
|
-
import unittest
|
|
3
|
-
import pytest
|
|
4
|
-
import numpy as np
|
|
5
|
-
|
|
6
|
-
from py_neuromodulation import nm_normalization
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
def test_raw_normalization_init():
|
|
10
|
-
with pytest.raises(Exception):
|
|
11
|
-
nm_normalization.RawNormalizer(
|
|
12
|
-
sfreq=1000,
|
|
13
|
-
sampling_rate_features_hz=500,
|
|
14
|
-
normalization_method="meann",
|
|
15
|
-
normalization_time_s=30,
|
|
16
|
-
clip=3,
|
|
17
|
-
)
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
def test_feature_normalization_init():
|
|
21
|
-
with pytest.raises(Exception):
|
|
22
|
-
nm_normalization.FeatureNormalizer(
|
|
23
|
-
sampling_rate_features_hz=500,
|
|
24
|
-
normalization_method="meann",
|
|
25
|
-
normalization_time_s=30,
|
|
26
|
-
clip=3,
|
|
27
|
-
)
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
def test_process_norm_features():
|
|
31
|
-
norm = nm_normalization.FeatureNormalizer(
|
|
32
|
-
sampling_rate_features_hz=500,
|
|
33
|
-
normalization_method="mean",
|
|
34
|
-
normalization_time_s=30,
|
|
35
|
-
clip=3,
|
|
36
|
-
)
|
|
37
|
-
data = np.ones([1, 5])
|
|
38
|
-
data_normed = norm.process(data)
|
|
39
|
-
|
|
40
|
-
assert np.all(np.isfinite(data_normed) == True)
|
|
41
|
-
|
|
42
|
-
assert np.all(np.equal(data, norm.previous) == 1)
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
def test_previous_size_FeatureNorm():
|
|
46
|
-
norm = nm_normalization.FeatureNormalizer(
|
|
47
|
-
sampling_rate_features_hz=10,
|
|
48
|
-
normalization_method="zscore",
|
|
49
|
-
normalization_time_s=10,
|
|
50
|
-
clip=3,
|
|
51
|
-
)
|
|
52
|
-
|
|
53
|
-
num_features = 5
|
|
54
|
-
|
|
55
|
-
for _ in range(150):
|
|
56
|
-
np.random.seed(0)
|
|
57
|
-
data = norm.process(np.random.random([1, num_features]))
|
|
58
|
-
|
|
59
|
-
assert norm.previous.shape[0] < norm.num_samples_normalize
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
def test_zscore_feature_analysis():
|
|
63
|
-
norm = nm_normalization.FeatureNormalizer(
|
|
64
|
-
sampling_rate_features_hz=10,
|
|
65
|
-
normalization_method="zscore",
|
|
66
|
-
normalization_time_s=30,
|
|
67
|
-
clip=False,
|
|
68
|
-
)
|
|
69
|
-
|
|
70
|
-
num_features = 5
|
|
71
|
-
|
|
72
|
-
for _ in range(400):
|
|
73
|
-
np.random.seed(0)
|
|
74
|
-
data_to_norm = np.random.random([1, num_features])
|
|
75
|
-
data_normed = norm.process(data_to_norm)
|
|
76
|
-
|
|
77
|
-
expect_res = (
|
|
78
|
-
norm.previous[:, 0].std() * data_normed[0, 0]
|
|
79
|
-
+ norm.previous[:, 0].mean()
|
|
80
|
-
)
|
|
81
|
-
|
|
82
|
-
assert pytest.approx(expect_res, 0.1) == data_to_norm[0, 0]
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
def test_zscore_raw_analysis():
|
|
86
|
-
norm = nm_normalization.RawNormalizer(
|
|
87
|
-
sampling_rate_features_hz=10,
|
|
88
|
-
normalization_method="zscore",
|
|
89
|
-
normalization_time_s=30,
|
|
90
|
-
sfreq=10,
|
|
91
|
-
clip=False,
|
|
92
|
-
)
|
|
93
|
-
|
|
94
|
-
num_samples = 100
|
|
95
|
-
|
|
96
|
-
for _ in range(400):
|
|
97
|
-
data_to_norm = np.random.random([1, num_samples])
|
|
98
|
-
data_normed = norm.process(data_to_norm)
|
|
99
|
-
|
|
100
|
-
expect_res = (
|
|
101
|
-
norm.previous[:, 0].std() * data_normed[0, 0]
|
|
102
|
-
+ norm.previous[:, 0].mean()
|
|
103
|
-
)
|
|
104
|
-
|
|
105
|
-
np.testing.assert_allclose(
|
|
106
|
-
expect_res, data_to_norm[0, 0], rtol=0.1, atol=0.1
|
|
107
|
-
)
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
def test_all_norm_methods_raw():
|
|
111
|
-
for norm_method in [e.value for e in nm_normalization.NORM_METHODS]:
|
|
112
|
-
norm = nm_normalization.RawNormalizer(
|
|
113
|
-
sampling_rate_features_hz=10,
|
|
114
|
-
normalization_method=norm_method,
|
|
115
|
-
normalization_time_s=30,
|
|
116
|
-
sfreq=10,
|
|
117
|
-
clip=False,
|
|
118
|
-
)
|
|
119
|
-
|
|
120
|
-
num_samples = 10
|
|
121
|
-
|
|
122
|
-
for _ in range(10):
|
|
123
|
-
np.random.seed(0)
|
|
124
|
-
data_to_norm = np.random.random([1, num_samples])
|
|
125
|
-
data_normed = norm.process(data_to_norm)
|
|
126
|
-
|
|
127
|
-
assert np.all(np.isfinite(data_normed) == True)
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
def test_all_norm_methods_feature():
|
|
131
|
-
for norm_method in [e.value for e in nm_normalization.NORM_METHODS]:
|
|
132
|
-
norm = nm_normalization.FeatureNormalizer(
|
|
133
|
-
sampling_rate_features_hz=10,
|
|
134
|
-
normalization_method=norm_method,
|
|
135
|
-
normalization_time_s=30,
|
|
136
|
-
clip=False,
|
|
137
|
-
)
|
|
138
|
-
|
|
139
|
-
num_samples = 10
|
|
140
|
-
|
|
141
|
-
for i in range(10):
|
|
142
|
-
np.random.seed(i)
|
|
143
|
-
data_to_norm = np.random.random([1, num_samples])
|
|
144
|
-
data_normed = norm.process(data_to_norm)
|
|
145
|
-
|
|
146
|
-
assert np.all(np.isfinite(data_normed) == True)
|
tests/test_notch_filter.py
DELETED
|
@@ -1,31 +0,0 @@
|
|
|
1
|
-
import numpy as np
|
|
2
|
-
import pytest
|
|
3
|
-
from scipy import fft, signal
|
|
4
|
-
|
|
5
|
-
from py_neuromodulation import nm_filter
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
def test_notch_filter_setup():
|
|
9
|
-
|
|
10
|
-
# by Nyquist theorem, frequencies are computed up to half sfreq
|
|
11
|
-
for sfreq in [150, 200, 500, 1000]:
|
|
12
|
-
line_noise = 50
|
|
13
|
-
|
|
14
|
-
notch_filter = nm_filter.NotchFilter(sfreq, line_noise)
|
|
15
|
-
|
|
16
|
-
# the computed filter is saved in self.filter_bank
|
|
17
|
-
|
|
18
|
-
data = np.random.random(sfreq)
|
|
19
|
-
filtered_dat = notch_filter.process(data)
|
|
20
|
-
|
|
21
|
-
Z_filtered = np.abs(fft.rfft(filtered_dat))
|
|
22
|
-
Z_nonfiltered = np.abs(fft.rfft(data))
|
|
23
|
-
freqs = fft.rfftfreq(sfreq, 1 / sfreq)
|
|
24
|
-
idx = (np.abs(freqs - line_noise)).argmin()
|
|
25
|
-
|
|
26
|
-
assert np.mean(Z_filtered[idx - 1 : idx + 1]) < np.mean(
|
|
27
|
-
Z_nonfiltered[idx - 1 : idx + 1]
|
|
28
|
-
), (
|
|
29
|
-
f"testing notch filter with sampling frequency {line_noise} failed"
|
|
30
|
-
f" for comparison fft power vs no filtering"
|
|
31
|
-
)
|