py-neuromodulation 0.0.3__py3-none-any.whl → 0.0.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- py_neuromodulation/ConnectivityDecoding/Automated Anatomical Labeling 3 (Rolls 2020).nii +0 -0
- py_neuromodulation/ConnectivityDecoding/_get_grid_hull.m +34 -0
- py_neuromodulation/ConnectivityDecoding/_get_grid_whole_brain.py +95 -0
- py_neuromodulation/ConnectivityDecoding/_helper_write_connectome.py +107 -0
- py_neuromodulation/ConnectivityDecoding/mni_coords_cortical_surface.mat +0 -0
- py_neuromodulation/ConnectivityDecoding/mni_coords_whole_brain.mat +0 -0
- py_neuromodulation/ConnectivityDecoding/rmap_func_all.nii +0 -0
- py_neuromodulation/ConnectivityDecoding/rmap_struc.nii +0 -0
- py_neuromodulation/FieldTrip.py +589 -589
- py_neuromodulation/__init__.py +74 -13
- py_neuromodulation/_write_example_dataset_helper.py +83 -65
- py_neuromodulation/data/README +6 -0
- py_neuromodulation/data/dataset_description.json +8 -0
- py_neuromodulation/data/participants.json +32 -0
- py_neuromodulation/data/participants.tsv +2 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_space-mni_coordsystem.json +5 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_space-mni_electrodes.tsv +11 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_channels.tsv +11 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.eeg +0 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.json +18 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.vhdr +35 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.vmrk +13 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/sub-testsub_ses-EphysMedOff_scans.tsv +2 -0
- py_neuromodulation/grid_cortex.tsv +40 -0
- py_neuromodulation/grid_subcortex.tsv +1429 -0
- py_neuromodulation/liblsl/libpugixml.so.1.12 +0 -0
- py_neuromodulation/liblsl/linux/bionic_amd64/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/bookworm_amd64/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/focal_amd46/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/jammy_amd64/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/jammy_x86/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/noble_amd64/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/macos/amd64/liblsl.1.16.2.dylib +0 -0
- py_neuromodulation/liblsl/macos/arm64/liblsl.1.16.0.dylib +0 -0
- py_neuromodulation/liblsl/windows/amd64/liblsl.1.16.2.dll +0 -0
- py_neuromodulation/liblsl/windows/x86/liblsl.1.16.2.dll +0 -0
- py_neuromodulation/nm_IO.py +413 -417
- py_neuromodulation/nm_RMAP.py +496 -531
- py_neuromodulation/nm_analysis.py +993 -1074
- py_neuromodulation/nm_artifacts.py +30 -25
- py_neuromodulation/nm_bispectra.py +154 -168
- py_neuromodulation/nm_bursts.py +292 -198
- py_neuromodulation/nm_coherence.py +251 -205
- py_neuromodulation/nm_database.py +149 -0
- py_neuromodulation/nm_decode.py +918 -992
- py_neuromodulation/nm_define_nmchannels.py +300 -302
- py_neuromodulation/nm_features.py +144 -116
- py_neuromodulation/nm_filter.py +219 -219
- py_neuromodulation/nm_filter_preprocessing.py +79 -91
- py_neuromodulation/nm_fooof.py +139 -159
- py_neuromodulation/nm_generator.py +45 -37
- py_neuromodulation/nm_hjorth_raw.py +52 -73
- py_neuromodulation/nm_kalmanfilter.py +71 -58
- py_neuromodulation/nm_linelength.py +21 -33
- py_neuromodulation/nm_logger.py +66 -0
- py_neuromodulation/nm_mne_connectivity.py +149 -112
- py_neuromodulation/nm_mnelsl_generator.py +90 -0
- py_neuromodulation/nm_mnelsl_stream.py +116 -0
- py_neuromodulation/nm_nolds.py +96 -93
- py_neuromodulation/nm_normalization.py +173 -214
- py_neuromodulation/nm_oscillatory.py +423 -448
- py_neuromodulation/nm_plots.py +585 -612
- py_neuromodulation/nm_preprocessing.py +83 -0
- py_neuromodulation/nm_projection.py +370 -394
- py_neuromodulation/nm_rereference.py +97 -95
- py_neuromodulation/nm_resample.py +59 -50
- py_neuromodulation/nm_run_analysis.py +325 -435
- py_neuromodulation/nm_settings.py +289 -68
- py_neuromodulation/nm_settings.yaml +244 -0
- py_neuromodulation/nm_sharpwaves.py +423 -401
- py_neuromodulation/nm_stats.py +464 -480
- py_neuromodulation/nm_stream.py +398 -0
- py_neuromodulation/nm_stream_abc.py +166 -218
- py_neuromodulation/nm_types.py +193 -0
- py_neuromodulation/plots/STN_surf.mat +0 -0
- py_neuromodulation/plots/Vertices.mat +0 -0
- py_neuromodulation/plots/faces.mat +0 -0
- py_neuromodulation/plots/grid.mat +0 -0
- {py_neuromodulation-0.0.3.dist-info → py_neuromodulation-0.0.5.dist-info}/METADATA +185 -182
- py_neuromodulation-0.0.5.dist-info/RECORD +83 -0
- {py_neuromodulation-0.0.3.dist-info → py_neuromodulation-0.0.5.dist-info}/WHEEL +1 -2
- {py_neuromodulation-0.0.3.dist-info → py_neuromodulation-0.0.5.dist-info/licenses}/LICENSE +21 -21
- docs/build/_downloads/09df217f95985497f45d69e2d4bdc5b1/plot_2_example_add_feature.py +0 -68
- docs/build/_downloads/3b4900a2b2818ff30362215b76f7d5eb/plot_1_example_BIDS.py +0 -233
- docs/build/_downloads/7e92dd2e6cc86b239d14cafad972ae4f/plot_3_example_sharpwave_analysis.py +0 -219
- docs/build/_downloads/c2db0bf2b334d541b00662b991682256/plot_6_real_time_demo.py +0 -97
- docs/build/_downloads/ce3914826f782cbd1ea8fd024eaf0ac3/plot_5_example_rmap_computing.py +0 -64
- docs/build/_downloads/da36848a41e6a3235d91fb7cfb6d59b4/plot_0_first_demo.py +0 -192
- docs/build/_downloads/eaa4305c75b19a1e2eea941f742a6331/plot_4_example_gridPointProjection.py +0 -210
- docs/build/html/_downloads/09df217f95985497f45d69e2d4bdc5b1/plot_2_example_add_feature.py +0 -68
- docs/build/html/_downloads/3b4900a2b2818ff30362215b76f7d5eb/plot_1_example_BIDS.py +0 -239
- docs/build/html/_downloads/7e92dd2e6cc86b239d14cafad972ae4f/plot_3_example_sharpwave_analysis.py +0 -219
- docs/build/html/_downloads/c2db0bf2b334d541b00662b991682256/plot_6_real_time_demo.py +0 -97
- docs/build/html/_downloads/ce3914826f782cbd1ea8fd024eaf0ac3/plot_5_example_rmap_computing.py +0 -64
- docs/build/html/_downloads/da36848a41e6a3235d91fb7cfb6d59b4/plot_0_first_demo.py +0 -192
- docs/build/html/_downloads/eaa4305c75b19a1e2eea941f742a6331/plot_4_example_gridPointProjection.py +0 -210
- docs/source/_build/html/_downloads/09df217f95985497f45d69e2d4bdc5b1/plot_2_example_add_feature.py +0 -76
- docs/source/_build/html/_downloads/0d0d0a76e8f648d5d3cbc47da6351932/plot_real_time_demo.py +0 -97
- docs/source/_build/html/_downloads/3b4900a2b2818ff30362215b76f7d5eb/plot_1_example_BIDS.py +0 -240
- docs/source/_build/html/_downloads/5d73cadc59a8805c47e3b84063afc157/plot_example_BIDS.py +0 -233
- docs/source/_build/html/_downloads/7660317fa5a6bfbd12fcca9961457fc4/plot_example_rmap_computing.py +0 -63
- docs/source/_build/html/_downloads/7e92dd2e6cc86b239d14cafad972ae4f/plot_3_example_sharpwave_analysis.py +0 -219
- docs/source/_build/html/_downloads/839e5b319379f7fd9e867deb00fd797f/plot_example_gridPointProjection.py +0 -210
- docs/source/_build/html/_downloads/ae8be19afe5e559f011fc9b138968ba0/plot_first_demo.py +0 -192
- docs/source/_build/html/_downloads/b8b06cacc17969d3725a0b6f1d7741c5/plot_example_sharpwave_analysis.py +0 -219
- docs/source/_build/html/_downloads/c2db0bf2b334d541b00662b991682256/plot_6_real_time_demo.py +0 -121
- docs/source/_build/html/_downloads/c31a86c0b68cb4167d968091ace8080d/plot_example_add_feature.py +0 -68
- docs/source/_build/html/_downloads/ce3914826f782cbd1ea8fd024eaf0ac3/plot_5_example_rmap_computing.py +0 -64
- docs/source/_build/html/_downloads/da36848a41e6a3235d91fb7cfb6d59b4/plot_0_first_demo.py +0 -189
- docs/source/_build/html/_downloads/eaa4305c75b19a1e2eea941f742a6331/plot_4_example_gridPointProjection.py +0 -210
- docs/source/auto_examples/plot_0_first_demo.py +0 -189
- docs/source/auto_examples/plot_1_example_BIDS.py +0 -240
- docs/source/auto_examples/plot_2_example_add_feature.py +0 -76
- docs/source/auto_examples/plot_3_example_sharpwave_analysis.py +0 -219
- docs/source/auto_examples/plot_4_example_gridPointProjection.py +0 -210
- docs/source/auto_examples/plot_5_example_rmap_computing.py +0 -64
- docs/source/auto_examples/plot_6_real_time_demo.py +0 -121
- docs/source/conf.py +0 -105
- examples/plot_0_first_demo.py +0 -189
- examples/plot_1_example_BIDS.py +0 -240
- examples/plot_2_example_add_feature.py +0 -76
- examples/plot_3_example_sharpwave_analysis.py +0 -219
- examples/plot_4_example_gridPointProjection.py +0 -210
- examples/plot_5_example_rmap_computing.py +0 -64
- examples/plot_6_real_time_demo.py +0 -121
- packages/realtime_decoding/build/lib/realtime_decoding/__init__.py +0 -4
- packages/realtime_decoding/build/lib/realtime_decoding/decoder.py +0 -104
- packages/realtime_decoding/build/lib/realtime_decoding/features.py +0 -163
- packages/realtime_decoding/build/lib/realtime_decoding/helpers.py +0 -15
- packages/realtime_decoding/build/lib/realtime_decoding/run_decoding.py +0 -345
- packages/realtime_decoding/build/lib/realtime_decoding/trainer.py +0 -54
- packages/tmsi/build/lib/TMSiFileFormats/__init__.py +0 -37
- packages/tmsi/build/lib/TMSiFileFormats/file_formats/__init__.py +0 -36
- packages/tmsi/build/lib/TMSiFileFormats/file_formats/lsl_stream_writer.py +0 -200
- packages/tmsi/build/lib/TMSiFileFormats/file_formats/poly5_file_writer.py +0 -496
- packages/tmsi/build/lib/TMSiFileFormats/file_formats/poly5_to_edf_converter.py +0 -236
- packages/tmsi/build/lib/TMSiFileFormats/file_formats/xdf_file_writer.py +0 -977
- packages/tmsi/build/lib/TMSiFileFormats/file_readers/__init__.py +0 -35
- packages/tmsi/build/lib/TMSiFileFormats/file_readers/edf_reader.py +0 -116
- packages/tmsi/build/lib/TMSiFileFormats/file_readers/poly5reader.py +0 -294
- packages/tmsi/build/lib/TMSiFileFormats/file_readers/xdf_reader.py +0 -229
- packages/tmsi/build/lib/TMSiFileFormats/file_writer.py +0 -102
- packages/tmsi/build/lib/TMSiPlotters/__init__.py +0 -2
- packages/tmsi/build/lib/TMSiPlotters/gui/__init__.py +0 -39
- packages/tmsi/build/lib/TMSiPlotters/gui/_plotter_gui.py +0 -234
- packages/tmsi/build/lib/TMSiPlotters/gui/plotting_gui.py +0 -440
- packages/tmsi/build/lib/TMSiPlotters/plotters/__init__.py +0 -44
- packages/tmsi/build/lib/TMSiPlotters/plotters/hd_emg_plotter.py +0 -446
- packages/tmsi/build/lib/TMSiPlotters/plotters/impedance_plotter.py +0 -589
- packages/tmsi/build/lib/TMSiPlotters/plotters/signal_plotter.py +0 -1326
- packages/tmsi/build/lib/TMSiSDK/__init__.py +0 -54
- packages/tmsi/build/lib/TMSiSDK/device.py +0 -588
- packages/tmsi/build/lib/TMSiSDK/devices/__init__.py +0 -34
- packages/tmsi/build/lib/TMSiSDK/devices/saga/TMSi_Device_API.py +0 -1764
- packages/tmsi/build/lib/TMSiSDK/devices/saga/__init__.py +0 -34
- packages/tmsi/build/lib/TMSiSDK/devices/saga/saga_device.py +0 -1366
- packages/tmsi/build/lib/TMSiSDK/devices/saga/saga_types.py +0 -520
- packages/tmsi/build/lib/TMSiSDK/devices/saga/xml_saga_config.py +0 -165
- packages/tmsi/build/lib/TMSiSDK/error.py +0 -95
- packages/tmsi/build/lib/TMSiSDK/sample_data.py +0 -63
- packages/tmsi/build/lib/TMSiSDK/sample_data_server.py +0 -99
- packages/tmsi/build/lib/TMSiSDK/settings.py +0 -45
- packages/tmsi/build/lib/TMSiSDK/tmsi_device.py +0 -111
- packages/tmsi/build/lib/__init__.py +0 -4
- packages/tmsi/build/lib/apex_sdk/__init__.py +0 -34
- packages/tmsi/build/lib/apex_sdk/device/__init__.py +0 -41
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_API.py +0 -1009
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_API_enums.py +0 -239
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_API_structures.py +0 -668
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_device.py +0 -1611
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_dongle.py +0 -38
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_event_reader.py +0 -57
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_channel.py +0 -44
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_config.py +0 -150
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_const.py +0 -36
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_impedance_channel.py +0 -48
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_info.py +0 -108
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/dongle_info.py +0 -39
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/measurements/download_measurement.py +0 -77
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/measurements/eeg_measurement.py +0 -150
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/measurements/impedance_measurement.py +0 -129
- packages/tmsi/build/lib/apex_sdk/device/threads/conversion_thread.py +0 -59
- packages/tmsi/build/lib/apex_sdk/device/threads/sampling_thread.py +0 -57
- packages/tmsi/build/lib/apex_sdk/device/tmsi_channel.py +0 -83
- packages/tmsi/build/lib/apex_sdk/device/tmsi_device.py +0 -201
- packages/tmsi/build/lib/apex_sdk/device/tmsi_device_enums.py +0 -103
- packages/tmsi/build/lib/apex_sdk/device/tmsi_dongle.py +0 -43
- packages/tmsi/build/lib/apex_sdk/device/tmsi_event_reader.py +0 -50
- packages/tmsi/build/lib/apex_sdk/device/tmsi_measurement.py +0 -118
- packages/tmsi/build/lib/apex_sdk/sample_data_server/__init__.py +0 -33
- packages/tmsi/build/lib/apex_sdk/sample_data_server/event_data.py +0 -44
- packages/tmsi/build/lib/apex_sdk/sample_data_server/sample_data.py +0 -50
- packages/tmsi/build/lib/apex_sdk/sample_data_server/sample_data_server.py +0 -136
- packages/tmsi/build/lib/apex_sdk/tmsi_errors/error.py +0 -126
- packages/tmsi/build/lib/apex_sdk/tmsi_sdk.py +0 -113
- packages/tmsi/build/lib/apex_sdk/tmsi_utilities/apex/apex_structure_generator.py +0 -134
- packages/tmsi/build/lib/apex_sdk/tmsi_utilities/decorators.py +0 -60
- packages/tmsi/build/lib/apex_sdk/tmsi_utilities/logger_filter.py +0 -42
- packages/tmsi/build/lib/apex_sdk/tmsi_utilities/singleton.py +0 -42
- packages/tmsi/build/lib/apex_sdk/tmsi_utilities/support_functions.py +0 -72
- packages/tmsi/build/lib/apex_sdk/tmsi_utilities/tmsi_logger.py +0 -98
- py_neuromodulation/nm_EpochStream.py +0 -92
- py_neuromodulation/nm_across_patient_decoding.py +0 -927
- py_neuromodulation/nm_cohortwrapper.py +0 -435
- py_neuromodulation/nm_eval_timing.py +0 -239
- py_neuromodulation/nm_features_abc.py +0 -39
- py_neuromodulation/nm_stream_offline.py +0 -358
- py_neuromodulation/utils/_logging.py +0 -24
- py_neuromodulation-0.0.3.dist-info/RECORD +0 -188
- py_neuromodulation-0.0.3.dist-info/top_level.txt +0 -5
- tests/__init__.py +0 -0
- tests/conftest.py +0 -117
- tests/test_all_examples.py +0 -10
- tests/test_all_features.py +0 -63
- tests/test_bispectra.py +0 -70
- tests/test_bursts.py +0 -105
- tests/test_feature_sampling_rates.py +0 -143
- tests/test_fooof.py +0 -16
- tests/test_initalization_offline_stream.py +0 -41
- tests/test_multiprocessing.py +0 -58
- tests/test_nan_values.py +0 -29
- tests/test_nm_filter.py +0 -95
- tests/test_nm_resample.py +0 -63
- tests/test_normalization_settings.py +0 -146
- tests/test_notch_filter.py +0 -31
- tests/test_osc_features.py +0 -424
- tests/test_preprocessing_filter.py +0 -151
- tests/test_rereference.py +0 -171
- tests/test_sampling.py +0 -57
- tests/test_settings_change_after_init.py +0 -76
- tests/test_sharpwave.py +0 -165
- tests/test_target_channel_add.py +0 -100
- tests/test_timing.py +0 -80
|
@@ -1,448 +1,423 @@
|
|
|
1
|
-
from
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
from
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
)
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
def
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
|
|
163
|
-
|
|
164
|
-
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
|
|
191
|
-
|
|
192
|
-
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
|
|
204
|
-
|
|
205
|
-
|
|
206
|
-
|
|
207
|
-
|
|
208
|
-
|
|
209
|
-
|
|
210
|
-
|
|
211
|
-
|
|
212
|
-
|
|
213
|
-
|
|
214
|
-
|
|
215
|
-
|
|
216
|
-
|
|
217
|
-
|
|
218
|
-
|
|
219
|
-
|
|
220
|
-
|
|
221
|
-
|
|
222
|
-
|
|
223
|
-
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
|
|
227
|
-
|
|
228
|
-
|
|
229
|
-
|
|
230
|
-
|
|
231
|
-
|
|
232
|
-
|
|
233
|
-
|
|
234
|
-
|
|
235
|
-
|
|
236
|
-
|
|
237
|
-
|
|
238
|
-
|
|
239
|
-
|
|
240
|
-
|
|
241
|
-
|
|
242
|
-
|
|
243
|
-
|
|
244
|
-
f"{ch_name}
|
|
245
|
-
|
|
246
|
-
|
|
247
|
-
|
|
248
|
-
|
|
249
|
-
|
|
250
|
-
|
|
251
|
-
|
|
252
|
-
|
|
253
|
-
|
|
254
|
-
|
|
255
|
-
|
|
256
|
-
|
|
257
|
-
|
|
258
|
-
|
|
259
|
-
|
|
260
|
-
|
|
261
|
-
|
|
262
|
-
|
|
263
|
-
|
|
264
|
-
|
|
265
|
-
|
|
266
|
-
|
|
267
|
-
|
|
268
|
-
|
|
269
|
-
|
|
270
|
-
|
|
271
|
-
|
|
272
|
-
|
|
273
|
-
|
|
274
|
-
|
|
275
|
-
|
|
276
|
-
|
|
277
|
-
|
|
278
|
-
|
|
279
|
-
|
|
280
|
-
|
|
281
|
-
|
|
282
|
-
|
|
283
|
-
|
|
284
|
-
|
|
285
|
-
|
|
286
|
-
|
|
287
|
-
|
|
288
|
-
|
|
289
|
-
|
|
290
|
-
|
|
291
|
-
|
|
292
|
-
|
|
293
|
-
|
|
294
|
-
|
|
295
|
-
|
|
296
|
-
|
|
297
|
-
|
|
298
|
-
|
|
299
|
-
|
|
300
|
-
|
|
301
|
-
|
|
302
|
-
|
|
303
|
-
|
|
304
|
-
|
|
305
|
-
|
|
306
|
-
|
|
307
|
-
|
|
308
|
-
|
|
309
|
-
|
|
310
|
-
|
|
311
|
-
|
|
312
|
-
|
|
313
|
-
class BandPower(
|
|
314
|
-
def __init__(
|
|
315
|
-
self,
|
|
316
|
-
settings:
|
|
317
|
-
ch_names: Iterable[str],
|
|
318
|
-
sfreq: float,
|
|
319
|
-
use_kf: bool = None,
|
|
320
|
-
) -> None:
|
|
321
|
-
|
|
322
|
-
|
|
323
|
-
|
|
324
|
-
self.
|
|
325
|
-
|
|
326
|
-
|
|
327
|
-
|
|
328
|
-
|
|
329
|
-
|
|
330
|
-
|
|
331
|
-
self.
|
|
332
|
-
|
|
333
|
-
|
|
334
|
-
|
|
335
|
-
|
|
336
|
-
self.
|
|
337
|
-
|
|
338
|
-
|
|
339
|
-
|
|
340
|
-
|
|
341
|
-
|
|
342
|
-
|
|
343
|
-
|
|
344
|
-
|
|
345
|
-
|
|
346
|
-
|
|
347
|
-
|
|
348
|
-
|
|
349
|
-
|
|
350
|
-
|
|
351
|
-
|
|
352
|
-
|
|
353
|
-
|
|
354
|
-
|
|
355
|
-
|
|
356
|
-
|
|
357
|
-
|
|
358
|
-
|
|
359
|
-
|
|
360
|
-
|
|
361
|
-
|
|
362
|
-
|
|
363
|
-
|
|
364
|
-
|
|
365
|
-
|
|
366
|
-
|
|
367
|
-
|
|
368
|
-
|
|
369
|
-
|
|
370
|
-
|
|
371
|
-
|
|
372
|
-
|
|
373
|
-
|
|
374
|
-
|
|
375
|
-
].
|
|
376
|
-
|
|
377
|
-
|
|
378
|
-
|
|
379
|
-
|
|
380
|
-
|
|
381
|
-
|
|
382
|
-
|
|
383
|
-
|
|
384
|
-
|
|
385
|
-
for
|
|
386
|
-
|
|
387
|
-
|
|
388
|
-
|
|
389
|
-
|
|
390
|
-
|
|
391
|
-
|
|
392
|
-
|
|
393
|
-
|
|
394
|
-
|
|
395
|
-
|
|
396
|
-
|
|
397
|
-
|
|
398
|
-
|
|
399
|
-
|
|
400
|
-
|
|
401
|
-
|
|
402
|
-
|
|
403
|
-
|
|
404
|
-
|
|
405
|
-
|
|
406
|
-
|
|
407
|
-
|
|
408
|
-
|
|
409
|
-
|
|
410
|
-
|
|
411
|
-
|
|
412
|
-
|
|
413
|
-
|
|
414
|
-
|
|
415
|
-
|
|
416
|
-
|
|
417
|
-
|
|
418
|
-
|
|
419
|
-
|
|
420
|
-
|
|
421
|
-
|
|
422
|
-
|
|
423
|
-
|
|
424
|
-
feature_calc = np.var(data[ch_idx, f_band_idx, -seglen:])
|
|
425
|
-
elif bp_feature == "mobility":
|
|
426
|
-
deriv_variance = np.var(
|
|
427
|
-
np.diff(data[ch_idx, f_band_idx, -seglen:])
|
|
428
|
-
)
|
|
429
|
-
feature_calc = np.sqrt(
|
|
430
|
-
deriv_variance / np.var(data[ch_idx, f_band_idx, -seglen:])
|
|
431
|
-
)
|
|
432
|
-
elif bp_feature == "complexity":
|
|
433
|
-
dat_deriv = np.diff(data[ch_idx, f_band_idx, -seglen:])
|
|
434
|
-
deriv_variance = np.var(dat_deriv)
|
|
435
|
-
mobility = np.sqrt(
|
|
436
|
-
deriv_variance / np.var(data[ch_idx, f_band_idx, -seglen:])
|
|
437
|
-
)
|
|
438
|
-
dat_deriv_2 = np.diff(dat_deriv)
|
|
439
|
-
dat_deriv_2_var = np.var(dat_deriv_2)
|
|
440
|
-
deriv_mobility = np.sqrt(dat_deriv_2_var / deriv_variance)
|
|
441
|
-
feature_calc = deriv_mobility / mobility
|
|
442
|
-
|
|
443
|
-
if self.KF_dict and (bp_feature == "activity"):
|
|
444
|
-
feature_calc = self.update_KF(feature_calc, feature_name)
|
|
445
|
-
|
|
446
|
-
features_compute[feature_name] = np.nan_to_num(feature_calc)
|
|
447
|
-
|
|
448
|
-
return features_compute
|
|
1
|
+
from collections.abc import Iterable
|
|
2
|
+
import numpy as np
|
|
3
|
+
from itertools import product
|
|
4
|
+
|
|
5
|
+
from py_neuromodulation.nm_types import NMBaseModel
|
|
6
|
+
from pydantic import field_validator
|
|
7
|
+
from typing import TYPE_CHECKING
|
|
8
|
+
|
|
9
|
+
from py_neuromodulation.nm_features import NMFeature
|
|
10
|
+
from py_neuromodulation.nm_types import BoolSelector
|
|
11
|
+
|
|
12
|
+
if TYPE_CHECKING:
|
|
13
|
+
from py_neuromodulation.nm_settings import NMSettings
|
|
14
|
+
from py_neuromodulation.nm_kalmanfilter import KalmanSettings
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class OscillatoryFeatures(BoolSelector):
|
|
18
|
+
mean: bool = True
|
|
19
|
+
median: bool = False
|
|
20
|
+
std: bool = False
|
|
21
|
+
max: bool = False
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
class OscillatorySettings(NMBaseModel):
|
|
25
|
+
windowlength_ms: int = 1000
|
|
26
|
+
log_transform: bool = True
|
|
27
|
+
features: OscillatoryFeatures = OscillatoryFeatures(
|
|
28
|
+
mean=True, median=False, std=False, max=False
|
|
29
|
+
)
|
|
30
|
+
return_spectrum: bool = False
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
ESTIMATOR_DICT = {
|
|
34
|
+
"mean": np.nanmean,
|
|
35
|
+
"median": np.nanmedian,
|
|
36
|
+
"std": np.nanstd,
|
|
37
|
+
"max": np.nanmax,
|
|
38
|
+
}
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
class OscillatoryFeature(NMFeature):
|
|
42
|
+
def __init__(
|
|
43
|
+
self, settings: "NMSettings", ch_names: Iterable[str], sfreq: int
|
|
44
|
+
) -> None:
|
|
45
|
+
settings.validate()
|
|
46
|
+
self.settings: OscillatorySettings # Assignment in subclass __init__
|
|
47
|
+
self.osc_feature_name: str # Required for output
|
|
48
|
+
|
|
49
|
+
self.sfreq = int(sfreq)
|
|
50
|
+
self.ch_names = ch_names
|
|
51
|
+
|
|
52
|
+
self.frequency_ranges = settings.frequency_ranges_hz
|
|
53
|
+
|
|
54
|
+
# Test settings
|
|
55
|
+
assert self.settings.windowlength_ms <= settings.segment_length_features_ms, (
|
|
56
|
+
f"oscillatory feature windowlength_ms = ({self.settings.windowlength_ms})"
|
|
57
|
+
f"needs to be smaller than"
|
|
58
|
+
f"settings['segment_length_features_ms'] = {settings.segment_length_features_ms}",
|
|
59
|
+
)
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
class FFT(OscillatoryFeature):
|
|
63
|
+
def __init__(
|
|
64
|
+
self,
|
|
65
|
+
settings: "NMSettings",
|
|
66
|
+
ch_names: Iterable[str],
|
|
67
|
+
sfreq: int,
|
|
68
|
+
) -> None:
|
|
69
|
+
from scipy.fft import rfftfreq
|
|
70
|
+
|
|
71
|
+
self.osc_feature_name = "fft"
|
|
72
|
+
self.settings = settings.fft_settings
|
|
73
|
+
# super.__init__ needs osc_feature_name and settings
|
|
74
|
+
super().__init__(settings, ch_names, sfreq)
|
|
75
|
+
|
|
76
|
+
window_ms = self.settings.windowlength_ms
|
|
77
|
+
|
|
78
|
+
self.window_samples = int(-np.floor(window_ms / 1000 * sfreq))
|
|
79
|
+
self.freqs = rfftfreq(-self.window_samples, 1 / np.floor(self.sfreq))
|
|
80
|
+
|
|
81
|
+
# Pre-calculate frequency ranges
|
|
82
|
+
self.idx_range = [
|
|
83
|
+
(
|
|
84
|
+
f_band,
|
|
85
|
+
np.where((self.freqs >= f_range[0]) & (self.freqs < f_range[1]))[0],
|
|
86
|
+
)
|
|
87
|
+
for f_band, f_range in self.frequency_ranges.items()
|
|
88
|
+
]
|
|
89
|
+
|
|
90
|
+
self.estimators = [
|
|
91
|
+
(est, ESTIMATOR_DICT[est]) for est in self.settings.features.get_enabled()
|
|
92
|
+
]
|
|
93
|
+
|
|
94
|
+
def calc_feature(self, data: np.ndarray) -> dict:
|
|
95
|
+
data = data[:, self.window_samples :]
|
|
96
|
+
|
|
97
|
+
from scipy.fft import rfft
|
|
98
|
+
|
|
99
|
+
Z = np.abs(rfft(data)) # type: ignore
|
|
100
|
+
|
|
101
|
+
if self.settings.log_transform:
|
|
102
|
+
Z = np.log10(Z)
|
|
103
|
+
|
|
104
|
+
feature_results = {}
|
|
105
|
+
|
|
106
|
+
for f_band_name, idx_range in self.idx_range:
|
|
107
|
+
# TODO Can we get rid of this for-loop? Hard to vectorize windows of different lengths...
|
|
108
|
+
Z_band = Z[:, idx_range] # Data for all channels
|
|
109
|
+
|
|
110
|
+
for est_name, est_fun in self.estimators:
|
|
111
|
+
result = est_fun(Z_band, axis=1)
|
|
112
|
+
|
|
113
|
+
for ch_idx, ch_name in enumerate(self.ch_names):
|
|
114
|
+
feature_results[
|
|
115
|
+
f"{ch_name}_{self.osc_feature_name}_{f_band_name}_{est_name}"
|
|
116
|
+
] = result[ch_idx]
|
|
117
|
+
|
|
118
|
+
if self.settings.return_spectrum:
|
|
119
|
+
combinations = product(enumerate(self.ch_names), enumerate(self.freqs))
|
|
120
|
+
for (ch_idx, ch_name), (idx, f) in combinations:
|
|
121
|
+
feature_results[f"{ch_name}_fft_psd_{int(f)}"] = Z[ch_idx][idx]
|
|
122
|
+
|
|
123
|
+
return feature_results
|
|
124
|
+
|
|
125
|
+
|
|
126
|
+
class Welch(OscillatoryFeature):
|
|
127
|
+
def __init__(
|
|
128
|
+
self,
|
|
129
|
+
settings: "NMSettings",
|
|
130
|
+
ch_names: Iterable[str],
|
|
131
|
+
sfreq: int,
|
|
132
|
+
) -> None:
|
|
133
|
+
from scipy.fft import rfftfreq
|
|
134
|
+
|
|
135
|
+
self.osc_feature_name = "welch"
|
|
136
|
+
self.settings = settings.welch_settings
|
|
137
|
+
# super.__init__ needs osc_feature_name and settings
|
|
138
|
+
super().__init__(settings, ch_names, sfreq)
|
|
139
|
+
|
|
140
|
+
self.freqs = rfftfreq(self.sfreq, 1 / self.sfreq)
|
|
141
|
+
|
|
142
|
+
self.idx_range = [
|
|
143
|
+
(
|
|
144
|
+
f_band,
|
|
145
|
+
np.where((self.freqs >= f_range[0]) & (self.freqs < f_range[1]))[0],
|
|
146
|
+
)
|
|
147
|
+
for f_band, f_range in self.frequency_ranges.items()
|
|
148
|
+
]
|
|
149
|
+
|
|
150
|
+
self.estimators = [
|
|
151
|
+
(est, ESTIMATOR_DICT[est]) for est in self.settings.features.get_enabled()
|
|
152
|
+
]
|
|
153
|
+
|
|
154
|
+
def calc_feature(self, data: np.ndarray) -> dict:
|
|
155
|
+
from scipy.signal import welch
|
|
156
|
+
|
|
157
|
+
_, Z = welch(
|
|
158
|
+
data,
|
|
159
|
+
fs=self.sfreq,
|
|
160
|
+
window="hann",
|
|
161
|
+
nperseg=self.sfreq,
|
|
162
|
+
noverlap=None,
|
|
163
|
+
)
|
|
164
|
+
|
|
165
|
+
if self.settings.log_transform:
|
|
166
|
+
Z = np.log10(Z)
|
|
167
|
+
|
|
168
|
+
feature_results = {}
|
|
169
|
+
|
|
170
|
+
for f_band_name, idx_range in self.idx_range:
|
|
171
|
+
Z_band = Z[:, idx_range]
|
|
172
|
+
|
|
173
|
+
for est_name, est_fun in self.estimators:
|
|
174
|
+
result = est_fun(Z_band, axis=1)
|
|
175
|
+
|
|
176
|
+
for ch_idx, ch_name in enumerate(self.ch_names):
|
|
177
|
+
feature_results[
|
|
178
|
+
f"{ch_name}_{self.osc_feature_name}_{f_band_name}_{est_name}"
|
|
179
|
+
] = result[ch_idx]
|
|
180
|
+
|
|
181
|
+
if self.settings.return_spectrum:
|
|
182
|
+
combinations = product(enumerate(self.ch_names), enumerate(self.freqs))
|
|
183
|
+
for (ch_idx, ch_name), (idx, f) in combinations:
|
|
184
|
+
feature_results[f"{ch_name}_welch_psd_{str(f)}"] = Z[ch_idx][idx]
|
|
185
|
+
|
|
186
|
+
return feature_results
|
|
187
|
+
|
|
188
|
+
|
|
189
|
+
class STFT(OscillatoryFeature):
|
|
190
|
+
def __init__(
|
|
191
|
+
self,
|
|
192
|
+
settings: "NMSettings",
|
|
193
|
+
ch_names: Iterable[str],
|
|
194
|
+
sfreq: int,
|
|
195
|
+
) -> None:
|
|
196
|
+
from scipy.fft import rfftfreq
|
|
197
|
+
|
|
198
|
+
self.osc_feature_name = "stft"
|
|
199
|
+
self.settings = settings.stft_settings
|
|
200
|
+
# super.__init__ needs osc_feature_name and settings
|
|
201
|
+
super().__init__(settings, ch_names, sfreq)
|
|
202
|
+
|
|
203
|
+
self.nperseg = self.settings.windowlength_ms
|
|
204
|
+
|
|
205
|
+
self.freqs = rfftfreq(self.nperseg, 1 / self.sfreq)
|
|
206
|
+
|
|
207
|
+
self.idx_range = [
|
|
208
|
+
(
|
|
209
|
+
f_band,
|
|
210
|
+
np.where((self.freqs >= f_range[0]) & (self.freqs <= f_range[1]))[0],
|
|
211
|
+
)
|
|
212
|
+
for f_band, f_range in self.frequency_ranges.items()
|
|
213
|
+
]
|
|
214
|
+
|
|
215
|
+
self.estimators = [
|
|
216
|
+
(est, ESTIMATOR_DICT[est]) for est in self.settings.features.get_enabled()
|
|
217
|
+
]
|
|
218
|
+
|
|
219
|
+
def calc_feature(self, data: np.ndarray) -> dict:
|
|
220
|
+
from scipy.signal import stft
|
|
221
|
+
|
|
222
|
+
_, _, Zxx = stft(
|
|
223
|
+
data,
|
|
224
|
+
fs=self.sfreq,
|
|
225
|
+
window="hamming",
|
|
226
|
+
nperseg=self.nperseg,
|
|
227
|
+
boundary="even",
|
|
228
|
+
)
|
|
229
|
+
|
|
230
|
+
Z = np.abs(Zxx)
|
|
231
|
+
if self.settings.log_transform:
|
|
232
|
+
Z = np.log10(Z)
|
|
233
|
+
|
|
234
|
+
feature_results = {}
|
|
235
|
+
|
|
236
|
+
for f_band_name, idx_range in self.idx_range:
|
|
237
|
+
Z_band = Z[:, idx_range, :]
|
|
238
|
+
|
|
239
|
+
for est_name, est_fun in self.estimators:
|
|
240
|
+
result = est_fun(Z_band, axis=(1, 2))
|
|
241
|
+
|
|
242
|
+
for ch_idx, ch_name in enumerate(self.ch_names):
|
|
243
|
+
feature_results[
|
|
244
|
+
f"{ch_name}_{self.osc_feature_name}_{f_band_name}_{est_name}"
|
|
245
|
+
] = result[ch_idx]
|
|
246
|
+
|
|
247
|
+
if self.settings.return_spectrum:
|
|
248
|
+
combinations = product(enumerate(self.ch_names), enumerate(self.freqs))
|
|
249
|
+
for (ch_idx, ch_name), (idx, f) in combinations:
|
|
250
|
+
feature_results[f"{ch_name}_stft_psd_{str(f)}"] = Z[ch_idx].mean(
|
|
251
|
+
axis=1
|
|
252
|
+
)[idx]
|
|
253
|
+
|
|
254
|
+
return feature_results
|
|
255
|
+
|
|
256
|
+
|
|
257
|
+
class BandpowerFeatures(BoolSelector):
|
|
258
|
+
activity: bool = True
|
|
259
|
+
mobility: bool = False
|
|
260
|
+
complexity: bool = False
|
|
261
|
+
|
|
262
|
+
|
|
263
|
+
###################################
|
|
264
|
+
######## BANDPOWER FEATURE ########
|
|
265
|
+
###################################
|
|
266
|
+
|
|
267
|
+
|
|
268
|
+
class BandpassSettings(NMBaseModel):
|
|
269
|
+
segment_lengths_ms: dict[str, int] = {
|
|
270
|
+
"theta": 1000,
|
|
271
|
+
"alpha": 500,
|
|
272
|
+
"low_beta": 333,
|
|
273
|
+
"high_beta": 333,
|
|
274
|
+
"low_gamma": 100,
|
|
275
|
+
"high_gamma": 100,
|
|
276
|
+
"HFA": 100,
|
|
277
|
+
}
|
|
278
|
+
bandpower_features: BandpowerFeatures = BandpowerFeatures()
|
|
279
|
+
log_transform: bool = True
|
|
280
|
+
kalman_filter: bool = False
|
|
281
|
+
|
|
282
|
+
@field_validator("segment_lengths_ms")
|
|
283
|
+
@classmethod
|
|
284
|
+
# Replace spaces with underscores in frequency band names
|
|
285
|
+
def fbands_spaces_to_underscores(cls, segment_lengths_ms: dict[str, int]):
|
|
286
|
+
return {k.replace(" ", "_"): v for k, v in segment_lengths_ms.items()}
|
|
287
|
+
|
|
288
|
+
@field_validator("bandpower_features")
|
|
289
|
+
@classmethod
|
|
290
|
+
def bandpower_features_validator(cls, bandpower_features: BandpowerFeatures):
|
|
291
|
+
assert (
|
|
292
|
+
len(bandpower_features.get_enabled()) > 0
|
|
293
|
+
), "Set at least one bandpower_feature to True."
|
|
294
|
+
|
|
295
|
+
return bandpower_features
|
|
296
|
+
|
|
297
|
+
def validate_fbands(self, settings: "NMSettings") -> None:
|
|
298
|
+
# Ensure that each freq-band is defined in the global settings
|
|
299
|
+
for fband_name in settings.frequency_ranges_hz.keys():
|
|
300
|
+
assert fband_name in self.segment_lengths_ms, (
|
|
301
|
+
f"frequency range {fband_name} "
|
|
302
|
+
"needs to be defined in settings.bandpass_filter_settings.segment_lengths_ms]"
|
|
303
|
+
)
|
|
304
|
+
|
|
305
|
+
# Ensure that segment length for each freq-band is smaller than the feature segment length setting
|
|
306
|
+
for fband_name, seg_length_fband in self.segment_lengths_ms.items():
|
|
307
|
+
assert seg_length_fband <= settings.segment_length_features_ms, (
|
|
308
|
+
f"segment length {seg_length_fband} needs to be smaller than "
|
|
309
|
+
f" settings['segment_length_features_ms'] = {settings.segment_length_features_ms}"
|
|
310
|
+
)
|
|
311
|
+
|
|
312
|
+
|
|
313
|
+
class BandPower(NMFeature):
|
|
314
|
+
def __init__(
|
|
315
|
+
self,
|
|
316
|
+
settings: "NMSettings",
|
|
317
|
+
ch_names: Iterable[str],
|
|
318
|
+
sfreq: float,
|
|
319
|
+
use_kf: bool | None = None,
|
|
320
|
+
) -> None:
|
|
321
|
+
settings.validate()
|
|
322
|
+
|
|
323
|
+
self.bp_settings: BandpassSettings = settings.bandpass_filter_settings
|
|
324
|
+
self.kalman_filter_settings: KalmanSettings = settings.kalman_filter_settings
|
|
325
|
+
self.sfreq = sfreq
|
|
326
|
+
self.ch_names = ch_names
|
|
327
|
+
self.KF_dict: dict = {}
|
|
328
|
+
|
|
329
|
+
from py_neuromodulation.nm_filter import MNEFilter
|
|
330
|
+
|
|
331
|
+
self.bandpass_filter = MNEFilter(
|
|
332
|
+
f_ranges=[
|
|
333
|
+
tuple(frange) for frange in settings.frequency_ranges_hz.values()
|
|
334
|
+
],
|
|
335
|
+
sfreq=self.sfreq,
|
|
336
|
+
filter_length=self.sfreq - 1,
|
|
337
|
+
verbose=False,
|
|
338
|
+
)
|
|
339
|
+
|
|
340
|
+
if use_kf or (use_kf is None and self.bp_settings.kalman_filter):
|
|
341
|
+
self.init_KF("bandpass_activity")
|
|
342
|
+
|
|
343
|
+
seglengths = self.bp_settings.segment_lengths_ms
|
|
344
|
+
|
|
345
|
+
self.feature_params = []
|
|
346
|
+
for ch_idx, ch_name in enumerate(self.ch_names):
|
|
347
|
+
for f_band_idx, f_band in enumerate(settings.frequency_ranges_hz.keys()):
|
|
348
|
+
seglength_ms = seglengths[f_band]
|
|
349
|
+
seglen = int(np.floor(self.sfreq / 1000 * seglength_ms))
|
|
350
|
+
for bp_feature in self.bp_settings.bandpower_features.get_enabled():
|
|
351
|
+
feature_name = "_".join([ch_name, "bandpass", bp_feature, f_band])
|
|
352
|
+
self.feature_params.append(
|
|
353
|
+
(
|
|
354
|
+
ch_idx,
|
|
355
|
+
f_band_idx,
|
|
356
|
+
seglen,
|
|
357
|
+
bp_feature,
|
|
358
|
+
feature_name,
|
|
359
|
+
)
|
|
360
|
+
)
|
|
361
|
+
|
|
362
|
+
def init_KF(self, feature: str) -> None:
|
|
363
|
+
from py_neuromodulation.nm_kalmanfilter import define_KF
|
|
364
|
+
|
|
365
|
+
for f_band in self.kalman_filter_settings.frequency_bands:
|
|
366
|
+
for channel in self.ch_names:
|
|
367
|
+
self.KF_dict["_".join([channel, feature, f_band])] = define_KF(
|
|
368
|
+
self.kalman_filter_settings.Tp,
|
|
369
|
+
self.kalman_filter_settings.sigma_w,
|
|
370
|
+
self.kalman_filter_settings.sigma_v,
|
|
371
|
+
)
|
|
372
|
+
|
|
373
|
+
def update_KF(self, feature_calc: np.floating, KF_name: str) -> np.floating:
|
|
374
|
+
if KF_name in self.KF_dict:
|
|
375
|
+
self.KF_dict[KF_name].predict()
|
|
376
|
+
self.KF_dict[KF_name].update(feature_calc)
|
|
377
|
+
feature_calc = self.KF_dict[KF_name].x[0]
|
|
378
|
+
return feature_calc
|
|
379
|
+
|
|
380
|
+
def calc_feature(self, data: np.ndarray) -> dict:
|
|
381
|
+
data = self.bandpass_filter.filter_data(data)
|
|
382
|
+
|
|
383
|
+
feature_results = {}
|
|
384
|
+
|
|
385
|
+
for (
|
|
386
|
+
ch_idx,
|
|
387
|
+
f_band_idx,
|
|
388
|
+
seglen,
|
|
389
|
+
bp_feature,
|
|
390
|
+
feature_name,
|
|
391
|
+
) in self.feature_params:
|
|
392
|
+
feature_results[feature_name] = self.calc_bp_feature(
|
|
393
|
+
bp_feature, feature_name, data[ch_idx, f_band_idx, -seglen:]
|
|
394
|
+
)
|
|
395
|
+
|
|
396
|
+
return feature_results
|
|
397
|
+
|
|
398
|
+
def calc_bp_feature(self, bp_feature, feature_name, data):
|
|
399
|
+
match bp_feature:
|
|
400
|
+
case "activity":
|
|
401
|
+
feature_calc = np.var(data)
|
|
402
|
+
if self.bp_settings.log_transform:
|
|
403
|
+
feature_calc = np.log10(feature_calc)
|
|
404
|
+
if self.KF_dict:
|
|
405
|
+
feature_calc = self.update_KF(feature_calc, feature_name)
|
|
406
|
+
case "mobility":
|
|
407
|
+
feature_calc = np.sqrt(np.var(np.diff(data)) / np.var(data))
|
|
408
|
+
case "complexity":
|
|
409
|
+
feature_calc = self.calc_complexity(data)
|
|
410
|
+
case _:
|
|
411
|
+
raise ValueError(f"Unknown bandpower feature: {bp_feature}")
|
|
412
|
+
|
|
413
|
+
return np.nan_to_num(feature_calc)
|
|
414
|
+
|
|
415
|
+
@staticmethod
|
|
416
|
+
def calc_complexity(data: np.ndarray) -> float:
|
|
417
|
+
dat_deriv = np.diff(data)
|
|
418
|
+
deriv_variance = np.var(dat_deriv)
|
|
419
|
+
mobility = np.sqrt(deriv_variance / np.var(data))
|
|
420
|
+
dat_deriv_2_var = np.var(np.diff(dat_deriv))
|
|
421
|
+
deriv_mobility = np.sqrt(dat_deriv_2_var / deriv_variance)
|
|
422
|
+
|
|
423
|
+
return deriv_mobility / mobility
|