py-neuromodulation 0.0.3__py3-none-any.whl → 0.0.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- py_neuromodulation/ConnectivityDecoding/Automated Anatomical Labeling 3 (Rolls 2020).nii +0 -0
- py_neuromodulation/ConnectivityDecoding/_get_grid_hull.m +34 -0
- py_neuromodulation/ConnectivityDecoding/_get_grid_whole_brain.py +95 -0
- py_neuromodulation/ConnectivityDecoding/_helper_write_connectome.py +107 -0
- py_neuromodulation/ConnectivityDecoding/mni_coords_cortical_surface.mat +0 -0
- py_neuromodulation/ConnectivityDecoding/mni_coords_whole_brain.mat +0 -0
- py_neuromodulation/ConnectivityDecoding/rmap_func_all.nii +0 -0
- py_neuromodulation/ConnectivityDecoding/rmap_struc.nii +0 -0
- py_neuromodulation/FieldTrip.py +589 -589
- py_neuromodulation/__init__.py +74 -13
- py_neuromodulation/_write_example_dataset_helper.py +83 -65
- py_neuromodulation/data/README +6 -0
- py_neuromodulation/data/dataset_description.json +8 -0
- py_neuromodulation/data/participants.json +32 -0
- py_neuromodulation/data/participants.tsv +2 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_space-mni_coordsystem.json +5 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_space-mni_electrodes.tsv +11 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_channels.tsv +11 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.eeg +0 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.json +18 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.vhdr +35 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.vmrk +13 -0
- py_neuromodulation/data/sub-testsub/ses-EphysMedOff/sub-testsub_ses-EphysMedOff_scans.tsv +2 -0
- py_neuromodulation/grid_cortex.tsv +40 -0
- py_neuromodulation/grid_subcortex.tsv +1429 -0
- py_neuromodulation/liblsl/libpugixml.so.1.12 +0 -0
- py_neuromodulation/liblsl/linux/bionic_amd64/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/bookworm_amd64/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/focal_amd46/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/jammy_amd64/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/jammy_x86/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/linux/noble_amd64/liblsl.1.16.2.so +0 -0
- py_neuromodulation/liblsl/macos/amd64/liblsl.1.16.2.dylib +0 -0
- py_neuromodulation/liblsl/macos/arm64/liblsl.1.16.0.dylib +0 -0
- py_neuromodulation/liblsl/windows/amd64/liblsl.1.16.2.dll +0 -0
- py_neuromodulation/liblsl/windows/x86/liblsl.1.16.2.dll +0 -0
- py_neuromodulation/nm_IO.py +413 -417
- py_neuromodulation/nm_RMAP.py +496 -531
- py_neuromodulation/nm_analysis.py +993 -1074
- py_neuromodulation/nm_artifacts.py +30 -25
- py_neuromodulation/nm_bispectra.py +154 -168
- py_neuromodulation/nm_bursts.py +292 -198
- py_neuromodulation/nm_coherence.py +251 -205
- py_neuromodulation/nm_database.py +149 -0
- py_neuromodulation/nm_decode.py +918 -992
- py_neuromodulation/nm_define_nmchannels.py +300 -302
- py_neuromodulation/nm_features.py +144 -116
- py_neuromodulation/nm_filter.py +219 -219
- py_neuromodulation/nm_filter_preprocessing.py +79 -91
- py_neuromodulation/nm_fooof.py +139 -159
- py_neuromodulation/nm_generator.py +45 -37
- py_neuromodulation/nm_hjorth_raw.py +52 -73
- py_neuromodulation/nm_kalmanfilter.py +71 -58
- py_neuromodulation/nm_linelength.py +21 -33
- py_neuromodulation/nm_logger.py +66 -0
- py_neuromodulation/nm_mne_connectivity.py +149 -112
- py_neuromodulation/nm_mnelsl_generator.py +90 -0
- py_neuromodulation/nm_mnelsl_stream.py +116 -0
- py_neuromodulation/nm_nolds.py +96 -93
- py_neuromodulation/nm_normalization.py +173 -214
- py_neuromodulation/nm_oscillatory.py +423 -448
- py_neuromodulation/nm_plots.py +585 -612
- py_neuromodulation/nm_preprocessing.py +83 -0
- py_neuromodulation/nm_projection.py +370 -394
- py_neuromodulation/nm_rereference.py +97 -95
- py_neuromodulation/nm_resample.py +59 -50
- py_neuromodulation/nm_run_analysis.py +325 -435
- py_neuromodulation/nm_settings.py +289 -68
- py_neuromodulation/nm_settings.yaml +244 -0
- py_neuromodulation/nm_sharpwaves.py +423 -401
- py_neuromodulation/nm_stats.py +464 -480
- py_neuromodulation/nm_stream.py +398 -0
- py_neuromodulation/nm_stream_abc.py +166 -218
- py_neuromodulation/nm_types.py +193 -0
- py_neuromodulation/plots/STN_surf.mat +0 -0
- py_neuromodulation/plots/Vertices.mat +0 -0
- py_neuromodulation/plots/faces.mat +0 -0
- py_neuromodulation/plots/grid.mat +0 -0
- {py_neuromodulation-0.0.3.dist-info → py_neuromodulation-0.0.5.dist-info}/METADATA +185 -182
- py_neuromodulation-0.0.5.dist-info/RECORD +83 -0
- {py_neuromodulation-0.0.3.dist-info → py_neuromodulation-0.0.5.dist-info}/WHEEL +1 -2
- {py_neuromodulation-0.0.3.dist-info → py_neuromodulation-0.0.5.dist-info/licenses}/LICENSE +21 -21
- docs/build/_downloads/09df217f95985497f45d69e2d4bdc5b1/plot_2_example_add_feature.py +0 -68
- docs/build/_downloads/3b4900a2b2818ff30362215b76f7d5eb/plot_1_example_BIDS.py +0 -233
- docs/build/_downloads/7e92dd2e6cc86b239d14cafad972ae4f/plot_3_example_sharpwave_analysis.py +0 -219
- docs/build/_downloads/c2db0bf2b334d541b00662b991682256/plot_6_real_time_demo.py +0 -97
- docs/build/_downloads/ce3914826f782cbd1ea8fd024eaf0ac3/plot_5_example_rmap_computing.py +0 -64
- docs/build/_downloads/da36848a41e6a3235d91fb7cfb6d59b4/plot_0_first_demo.py +0 -192
- docs/build/_downloads/eaa4305c75b19a1e2eea941f742a6331/plot_4_example_gridPointProjection.py +0 -210
- docs/build/html/_downloads/09df217f95985497f45d69e2d4bdc5b1/plot_2_example_add_feature.py +0 -68
- docs/build/html/_downloads/3b4900a2b2818ff30362215b76f7d5eb/plot_1_example_BIDS.py +0 -239
- docs/build/html/_downloads/7e92dd2e6cc86b239d14cafad972ae4f/plot_3_example_sharpwave_analysis.py +0 -219
- docs/build/html/_downloads/c2db0bf2b334d541b00662b991682256/plot_6_real_time_demo.py +0 -97
- docs/build/html/_downloads/ce3914826f782cbd1ea8fd024eaf0ac3/plot_5_example_rmap_computing.py +0 -64
- docs/build/html/_downloads/da36848a41e6a3235d91fb7cfb6d59b4/plot_0_first_demo.py +0 -192
- docs/build/html/_downloads/eaa4305c75b19a1e2eea941f742a6331/plot_4_example_gridPointProjection.py +0 -210
- docs/source/_build/html/_downloads/09df217f95985497f45d69e2d4bdc5b1/plot_2_example_add_feature.py +0 -76
- docs/source/_build/html/_downloads/0d0d0a76e8f648d5d3cbc47da6351932/plot_real_time_demo.py +0 -97
- docs/source/_build/html/_downloads/3b4900a2b2818ff30362215b76f7d5eb/plot_1_example_BIDS.py +0 -240
- docs/source/_build/html/_downloads/5d73cadc59a8805c47e3b84063afc157/plot_example_BIDS.py +0 -233
- docs/source/_build/html/_downloads/7660317fa5a6bfbd12fcca9961457fc4/plot_example_rmap_computing.py +0 -63
- docs/source/_build/html/_downloads/7e92dd2e6cc86b239d14cafad972ae4f/plot_3_example_sharpwave_analysis.py +0 -219
- docs/source/_build/html/_downloads/839e5b319379f7fd9e867deb00fd797f/plot_example_gridPointProjection.py +0 -210
- docs/source/_build/html/_downloads/ae8be19afe5e559f011fc9b138968ba0/plot_first_demo.py +0 -192
- docs/source/_build/html/_downloads/b8b06cacc17969d3725a0b6f1d7741c5/plot_example_sharpwave_analysis.py +0 -219
- docs/source/_build/html/_downloads/c2db0bf2b334d541b00662b991682256/plot_6_real_time_demo.py +0 -121
- docs/source/_build/html/_downloads/c31a86c0b68cb4167d968091ace8080d/plot_example_add_feature.py +0 -68
- docs/source/_build/html/_downloads/ce3914826f782cbd1ea8fd024eaf0ac3/plot_5_example_rmap_computing.py +0 -64
- docs/source/_build/html/_downloads/da36848a41e6a3235d91fb7cfb6d59b4/plot_0_first_demo.py +0 -189
- docs/source/_build/html/_downloads/eaa4305c75b19a1e2eea941f742a6331/plot_4_example_gridPointProjection.py +0 -210
- docs/source/auto_examples/plot_0_first_demo.py +0 -189
- docs/source/auto_examples/plot_1_example_BIDS.py +0 -240
- docs/source/auto_examples/plot_2_example_add_feature.py +0 -76
- docs/source/auto_examples/plot_3_example_sharpwave_analysis.py +0 -219
- docs/source/auto_examples/plot_4_example_gridPointProjection.py +0 -210
- docs/source/auto_examples/plot_5_example_rmap_computing.py +0 -64
- docs/source/auto_examples/plot_6_real_time_demo.py +0 -121
- docs/source/conf.py +0 -105
- examples/plot_0_first_demo.py +0 -189
- examples/plot_1_example_BIDS.py +0 -240
- examples/plot_2_example_add_feature.py +0 -76
- examples/plot_3_example_sharpwave_analysis.py +0 -219
- examples/plot_4_example_gridPointProjection.py +0 -210
- examples/plot_5_example_rmap_computing.py +0 -64
- examples/plot_6_real_time_demo.py +0 -121
- packages/realtime_decoding/build/lib/realtime_decoding/__init__.py +0 -4
- packages/realtime_decoding/build/lib/realtime_decoding/decoder.py +0 -104
- packages/realtime_decoding/build/lib/realtime_decoding/features.py +0 -163
- packages/realtime_decoding/build/lib/realtime_decoding/helpers.py +0 -15
- packages/realtime_decoding/build/lib/realtime_decoding/run_decoding.py +0 -345
- packages/realtime_decoding/build/lib/realtime_decoding/trainer.py +0 -54
- packages/tmsi/build/lib/TMSiFileFormats/__init__.py +0 -37
- packages/tmsi/build/lib/TMSiFileFormats/file_formats/__init__.py +0 -36
- packages/tmsi/build/lib/TMSiFileFormats/file_formats/lsl_stream_writer.py +0 -200
- packages/tmsi/build/lib/TMSiFileFormats/file_formats/poly5_file_writer.py +0 -496
- packages/tmsi/build/lib/TMSiFileFormats/file_formats/poly5_to_edf_converter.py +0 -236
- packages/tmsi/build/lib/TMSiFileFormats/file_formats/xdf_file_writer.py +0 -977
- packages/tmsi/build/lib/TMSiFileFormats/file_readers/__init__.py +0 -35
- packages/tmsi/build/lib/TMSiFileFormats/file_readers/edf_reader.py +0 -116
- packages/tmsi/build/lib/TMSiFileFormats/file_readers/poly5reader.py +0 -294
- packages/tmsi/build/lib/TMSiFileFormats/file_readers/xdf_reader.py +0 -229
- packages/tmsi/build/lib/TMSiFileFormats/file_writer.py +0 -102
- packages/tmsi/build/lib/TMSiPlotters/__init__.py +0 -2
- packages/tmsi/build/lib/TMSiPlotters/gui/__init__.py +0 -39
- packages/tmsi/build/lib/TMSiPlotters/gui/_plotter_gui.py +0 -234
- packages/tmsi/build/lib/TMSiPlotters/gui/plotting_gui.py +0 -440
- packages/tmsi/build/lib/TMSiPlotters/plotters/__init__.py +0 -44
- packages/tmsi/build/lib/TMSiPlotters/plotters/hd_emg_plotter.py +0 -446
- packages/tmsi/build/lib/TMSiPlotters/plotters/impedance_plotter.py +0 -589
- packages/tmsi/build/lib/TMSiPlotters/plotters/signal_plotter.py +0 -1326
- packages/tmsi/build/lib/TMSiSDK/__init__.py +0 -54
- packages/tmsi/build/lib/TMSiSDK/device.py +0 -588
- packages/tmsi/build/lib/TMSiSDK/devices/__init__.py +0 -34
- packages/tmsi/build/lib/TMSiSDK/devices/saga/TMSi_Device_API.py +0 -1764
- packages/tmsi/build/lib/TMSiSDK/devices/saga/__init__.py +0 -34
- packages/tmsi/build/lib/TMSiSDK/devices/saga/saga_device.py +0 -1366
- packages/tmsi/build/lib/TMSiSDK/devices/saga/saga_types.py +0 -520
- packages/tmsi/build/lib/TMSiSDK/devices/saga/xml_saga_config.py +0 -165
- packages/tmsi/build/lib/TMSiSDK/error.py +0 -95
- packages/tmsi/build/lib/TMSiSDK/sample_data.py +0 -63
- packages/tmsi/build/lib/TMSiSDK/sample_data_server.py +0 -99
- packages/tmsi/build/lib/TMSiSDK/settings.py +0 -45
- packages/tmsi/build/lib/TMSiSDK/tmsi_device.py +0 -111
- packages/tmsi/build/lib/__init__.py +0 -4
- packages/tmsi/build/lib/apex_sdk/__init__.py +0 -34
- packages/tmsi/build/lib/apex_sdk/device/__init__.py +0 -41
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_API.py +0 -1009
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_API_enums.py +0 -239
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_API_structures.py +0 -668
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_device.py +0 -1611
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_dongle.py +0 -38
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_event_reader.py +0 -57
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_channel.py +0 -44
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_config.py +0 -150
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_const.py +0 -36
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_impedance_channel.py +0 -48
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_info.py +0 -108
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/dongle_info.py +0 -39
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/measurements/download_measurement.py +0 -77
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/measurements/eeg_measurement.py +0 -150
- packages/tmsi/build/lib/apex_sdk/device/devices/apex/measurements/impedance_measurement.py +0 -129
- packages/tmsi/build/lib/apex_sdk/device/threads/conversion_thread.py +0 -59
- packages/tmsi/build/lib/apex_sdk/device/threads/sampling_thread.py +0 -57
- packages/tmsi/build/lib/apex_sdk/device/tmsi_channel.py +0 -83
- packages/tmsi/build/lib/apex_sdk/device/tmsi_device.py +0 -201
- packages/tmsi/build/lib/apex_sdk/device/tmsi_device_enums.py +0 -103
- packages/tmsi/build/lib/apex_sdk/device/tmsi_dongle.py +0 -43
- packages/tmsi/build/lib/apex_sdk/device/tmsi_event_reader.py +0 -50
- packages/tmsi/build/lib/apex_sdk/device/tmsi_measurement.py +0 -118
- packages/tmsi/build/lib/apex_sdk/sample_data_server/__init__.py +0 -33
- packages/tmsi/build/lib/apex_sdk/sample_data_server/event_data.py +0 -44
- packages/tmsi/build/lib/apex_sdk/sample_data_server/sample_data.py +0 -50
- packages/tmsi/build/lib/apex_sdk/sample_data_server/sample_data_server.py +0 -136
- packages/tmsi/build/lib/apex_sdk/tmsi_errors/error.py +0 -126
- packages/tmsi/build/lib/apex_sdk/tmsi_sdk.py +0 -113
- packages/tmsi/build/lib/apex_sdk/tmsi_utilities/apex/apex_structure_generator.py +0 -134
- packages/tmsi/build/lib/apex_sdk/tmsi_utilities/decorators.py +0 -60
- packages/tmsi/build/lib/apex_sdk/tmsi_utilities/logger_filter.py +0 -42
- packages/tmsi/build/lib/apex_sdk/tmsi_utilities/singleton.py +0 -42
- packages/tmsi/build/lib/apex_sdk/tmsi_utilities/support_functions.py +0 -72
- packages/tmsi/build/lib/apex_sdk/tmsi_utilities/tmsi_logger.py +0 -98
- py_neuromodulation/nm_EpochStream.py +0 -92
- py_neuromodulation/nm_across_patient_decoding.py +0 -927
- py_neuromodulation/nm_cohortwrapper.py +0 -435
- py_neuromodulation/nm_eval_timing.py +0 -239
- py_neuromodulation/nm_features_abc.py +0 -39
- py_neuromodulation/nm_stream_offline.py +0 -358
- py_neuromodulation/utils/_logging.py +0 -24
- py_neuromodulation-0.0.3.dist-info/RECORD +0 -188
- py_neuromodulation-0.0.3.dist-info/top_level.txt +0 -5
- tests/__init__.py +0 -0
- tests/conftest.py +0 -117
- tests/test_all_examples.py +0 -10
- tests/test_all_features.py +0 -63
- tests/test_bispectra.py +0 -70
- tests/test_bursts.py +0 -105
- tests/test_feature_sampling_rates.py +0 -143
- tests/test_fooof.py +0 -16
- tests/test_initalization_offline_stream.py +0 -41
- tests/test_multiprocessing.py +0 -58
- tests/test_nan_values.py +0 -29
- tests/test_nm_filter.py +0 -95
- tests/test_nm_resample.py +0 -63
- tests/test_normalization_settings.py +0 -146
- tests/test_notch_filter.py +0 -31
- tests/test_osc_features.py +0 -424
- tests/test_preprocessing_filter.py +0 -151
- tests/test_rereference.py +0 -171
- tests/test_sampling.py +0 -57
- tests/test_settings_change_after_init.py +0 -76
- tests/test_sharpwave.py +0 -165
- tests/test_target_channel_add.py +0 -100
- tests/test_timing.py +0 -80
py_neuromodulation/nm_RMAP.py
CHANGED
|
@@ -1,531 +1,496 @@
|
|
|
1
|
-
import numpy as np
|
|
2
|
-
import
|
|
3
|
-
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
import
|
|
9
|
-
import
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
from
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
if
|
|
94
|
-
if
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
self.
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
self.
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
return
|
|
161
|
-
|
|
162
|
-
def
|
|
163
|
-
"""
|
|
164
|
-
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
|
|
191
|
-
|
|
192
|
-
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
|
|
204
|
-
|
|
205
|
-
|
|
206
|
-
|
|
207
|
-
|
|
208
|
-
|
|
209
|
-
|
|
210
|
-
|
|
211
|
-
|
|
212
|
-
|
|
213
|
-
|
|
214
|
-
|
|
215
|
-
|
|
216
|
-
|
|
217
|
-
|
|
218
|
-
|
|
219
|
-
|
|
220
|
-
|
|
221
|
-
|
|
222
|
-
|
|
223
|
-
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
|
|
227
|
-
|
|
228
|
-
|
|
229
|
-
|
|
230
|
-
|
|
231
|
-
|
|
232
|
-
|
|
233
|
-
|
|
234
|
-
|
|
235
|
-
|
|
236
|
-
|
|
237
|
-
|
|
238
|
-
|
|
239
|
-
|
|
240
|
-
|
|
241
|
-
|
|
242
|
-
|
|
243
|
-
|
|
244
|
-
|
|
245
|
-
|
|
246
|
-
|
|
247
|
-
|
|
248
|
-
|
|
249
|
-
|
|
250
|
-
|
|
251
|
-
|
|
252
|
-
|
|
253
|
-
|
|
254
|
-
|
|
255
|
-
|
|
256
|
-
|
|
257
|
-
|
|
258
|
-
self.
|
|
259
|
-
|
|
260
|
-
|
|
261
|
-
|
|
262
|
-
|
|
263
|
-
|
|
264
|
-
|
|
265
|
-
|
|
266
|
-
|
|
267
|
-
|
|
268
|
-
|
|
269
|
-
|
|
270
|
-
|
|
271
|
-
|
|
272
|
-
|
|
273
|
-
|
|
274
|
-
|
|
275
|
-
|
|
276
|
-
|
|
277
|
-
|
|
278
|
-
|
|
279
|
-
|
|
280
|
-
|
|
281
|
-
|
|
282
|
-
|
|
283
|
-
|
|
284
|
-
|
|
285
|
-
|
|
286
|
-
|
|
287
|
-
|
|
288
|
-
|
|
289
|
-
|
|
290
|
-
|
|
291
|
-
|
|
292
|
-
|
|
293
|
-
|
|
294
|
-
|
|
295
|
-
|
|
296
|
-
|
|
297
|
-
),
|
|
298
|
-
|
|
299
|
-
|
|
300
|
-
|
|
301
|
-
|
|
302
|
-
|
|
303
|
-
def
|
|
304
|
-
|
|
305
|
-
|
|
306
|
-
|
|
307
|
-
|
|
308
|
-
|
|
309
|
-
|
|
310
|
-
|
|
311
|
-
|
|
312
|
-
|
|
313
|
-
|
|
314
|
-
|
|
315
|
-
|
|
316
|
-
|
|
317
|
-
|
|
318
|
-
|
|
319
|
-
|
|
320
|
-
|
|
321
|
-
|
|
322
|
-
|
|
323
|
-
|
|
324
|
-
|
|
325
|
-
|
|
326
|
-
|
|
327
|
-
|
|
328
|
-
path_dir
|
|
329
|
-
|
|
330
|
-
|
|
331
|
-
|
|
332
|
-
|
|
333
|
-
|
|
334
|
-
|
|
335
|
-
|
|
336
|
-
|
|
337
|
-
|
|
338
|
-
|
|
339
|
-
|
|
340
|
-
|
|
341
|
-
|
|
342
|
-
|
|
343
|
-
|
|
344
|
-
|
|
345
|
-
|
|
346
|
-
|
|
347
|
-
|
|
348
|
-
|
|
349
|
-
|
|
350
|
-
|
|
351
|
-
|
|
352
|
-
|
|
353
|
-
|
|
354
|
-
|
|
355
|
-
|
|
356
|
-
|
|
357
|
-
|
|
358
|
-
|
|
359
|
-
|
|
360
|
-
|
|
361
|
-
|
|
362
|
-
|
|
363
|
-
|
|
364
|
-
|
|
365
|
-
|
|
366
|
-
|
|
367
|
-
|
|
368
|
-
|
|
369
|
-
|
|
370
|
-
|
|
371
|
-
|
|
372
|
-
|
|
373
|
-
|
|
374
|
-
|
|
375
|
-
|
|
376
|
-
|
|
377
|
-
|
|
378
|
-
|
|
379
|
-
|
|
380
|
-
|
|
381
|
-
|
|
382
|
-
|
|
383
|
-
|
|
384
|
-
|
|
385
|
-
|
|
386
|
-
|
|
387
|
-
#
|
|
388
|
-
|
|
389
|
-
|
|
390
|
-
|
|
391
|
-
|
|
392
|
-
|
|
393
|
-
|
|
394
|
-
|
|
395
|
-
|
|
396
|
-
|
|
397
|
-
|
|
398
|
-
|
|
399
|
-
|
|
400
|
-
|
|
401
|
-
|
|
402
|
-
|
|
403
|
-
|
|
404
|
-
|
|
405
|
-
|
|
406
|
-
|
|
407
|
-
|
|
408
|
-
|
|
409
|
-
|
|
410
|
-
|
|
411
|
-
|
|
412
|
-
|
|
413
|
-
|
|
414
|
-
|
|
415
|
-
|
|
416
|
-
|
|
417
|
-
|
|
418
|
-
|
|
419
|
-
|
|
420
|
-
|
|
421
|
-
|
|
422
|
-
|
|
423
|
-
|
|
424
|
-
|
|
425
|
-
|
|
426
|
-
|
|
427
|
-
|
|
428
|
-
|
|
429
|
-
|
|
430
|
-
|
|
431
|
-
|
|
432
|
-
|
|
433
|
-
|
|
434
|
-
|
|
435
|
-
|
|
436
|
-
|
|
437
|
-
|
|
438
|
-
|
|
439
|
-
|
|
440
|
-
|
|
441
|
-
|
|
442
|
-
|
|
443
|
-
|
|
444
|
-
|
|
445
|
-
|
|
446
|
-
|
|
447
|
-
|
|
448
|
-
|
|
449
|
-
|
|
450
|
-
|
|
451
|
-
|
|
452
|
-
|
|
453
|
-
|
|
454
|
-
|
|
455
|
-
|
|
456
|
-
|
|
457
|
-
|
|
458
|
-
|
|
459
|
-
|
|
460
|
-
|
|
461
|
-
|
|
462
|
-
|
|
463
|
-
|
|
464
|
-
|
|
465
|
-
|
|
466
|
-
|
|
467
|
-
|
|
468
|
-
|
|
469
|
-
|
|
470
|
-
|
|
471
|
-
|
|
472
|
-
|
|
473
|
-
|
|
474
|
-
|
|
475
|
-
)
|
|
476
|
-
|
|
477
|
-
|
|
478
|
-
|
|
479
|
-
|
|
480
|
-
|
|
481
|
-
|
|
482
|
-
|
|
483
|
-
|
|
484
|
-
|
|
485
|
-
|
|
486
|
-
|
|
487
|
-
|
|
488
|
-
|
|
489
|
-
|
|
490
|
-
|
|
491
|
-
|
|
492
|
-
|
|
493
|
-
|
|
494
|
-
|
|
495
|
-
|
|
496
|
-
|
|
497
|
-
fp_pairs = []
|
|
498
|
-
|
|
499
|
-
for cohort in cohorts_train.keys():
|
|
500
|
-
for sub in cohorts_train[cohort]:
|
|
501
|
-
fps_name, fps = self.get_fingerprints_from_path_with_cond(
|
|
502
|
-
path_dir=path_dir,
|
|
503
|
-
str_to_keep=f"{cohort}_{sub}_ROI",
|
|
504
|
-
keep=True,
|
|
505
|
-
)
|
|
506
|
-
|
|
507
|
-
for fp, fp_name in zip(fps, fps_name):
|
|
508
|
-
ch = fp_name[
|
|
509
|
-
fp_name.find("ROI") + 4 : fp_name.find("func") - 1
|
|
510
|
-
]
|
|
511
|
-
corr_val = self.get_corr_numba(fp_test, fp)
|
|
512
|
-
fp_pairs.append([cohort, sub, ch, corr_val])
|
|
513
|
-
|
|
514
|
-
idx_max = np.argmax(np.array(fp_pairs)[:, 3])
|
|
515
|
-
return fp_pairs[idx_max][0:3]
|
|
516
|
-
|
|
517
|
-
def plot_performance_prediction_correlation(
|
|
518
|
-
per_left_out, per_predict, out_path_save: str = None
|
|
519
|
-
):
|
|
520
|
-
df_plt_corr = pd.DataFrame()
|
|
521
|
-
df_plt_corr["test_performance"] = per_left_out
|
|
522
|
-
df_plt_corr["struct_conn_predict"] = (
|
|
523
|
-
per_predict # change "struct" with "funct" for functional connectivity
|
|
524
|
-
)
|
|
525
|
-
|
|
526
|
-
nm_plots.reg_plot(
|
|
527
|
-
x_col="test_performance",
|
|
528
|
-
y_col="struct_conn_predict",
|
|
529
|
-
data=df_plt_corr,
|
|
530
|
-
out_path_save=out_path_save,
|
|
531
|
-
)
|
|
1
|
+
import numpy as np
|
|
2
|
+
from pathlib import PurePath, Path
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
# from numba import jit
|
|
6
|
+
import scipy.io as sio
|
|
7
|
+
import pandas as pd
|
|
8
|
+
import nibabel as nib
|
|
9
|
+
from matplotlib import pyplot as plt
|
|
10
|
+
|
|
11
|
+
from py_neuromodulation.nm_plots import reg_plot
|
|
12
|
+
from py_neuromodulation.nm_types import _PathLike
|
|
13
|
+
from py_neuromodulation import PYNM_DIR
|
|
14
|
+
|
|
15
|
+
LIST_STRUC_UNCONNECTED_GRIDPOINTS_HULL = [256, 385, 417, 447, 819, 914]
|
|
16
|
+
LIST_STRUC_UNCONNECTED_GRIDPOINTS_WHOLEBRAIN = [
|
|
17
|
+
1,
|
|
18
|
+
8,
|
|
19
|
+
16,
|
|
20
|
+
33,
|
|
21
|
+
34,
|
|
22
|
+
35,
|
|
23
|
+
36,
|
|
24
|
+
37,
|
|
25
|
+
51,
|
|
26
|
+
75,
|
|
27
|
+
77,
|
|
28
|
+
78,
|
|
29
|
+
99,
|
|
30
|
+
109,
|
|
31
|
+
115,
|
|
32
|
+
136,
|
|
33
|
+
155,
|
|
34
|
+
170,
|
|
35
|
+
210,
|
|
36
|
+
215,
|
|
37
|
+
243,
|
|
38
|
+
352,
|
|
39
|
+
359,
|
|
40
|
+
361,
|
|
41
|
+
415,
|
|
42
|
+
416,
|
|
43
|
+
422,
|
|
44
|
+
529,
|
|
45
|
+
567,
|
|
46
|
+
569,
|
|
47
|
+
622,
|
|
48
|
+
623,
|
|
49
|
+
625,
|
|
50
|
+
627,
|
|
51
|
+
632,
|
|
52
|
+
633,
|
|
53
|
+
634,
|
|
54
|
+
635,
|
|
55
|
+
639,
|
|
56
|
+
640,
|
|
57
|
+
641,
|
|
58
|
+
643,
|
|
59
|
+
644,
|
|
60
|
+
650,
|
|
61
|
+
661,
|
|
62
|
+
663,
|
|
63
|
+
667,
|
|
64
|
+
683,
|
|
65
|
+
684,
|
|
66
|
+
685,
|
|
67
|
+
704,
|
|
68
|
+
708,
|
|
69
|
+
722,
|
|
70
|
+
839,
|
|
71
|
+
840,
|
|
72
|
+
905,
|
|
73
|
+
993,
|
|
74
|
+
1011,
|
|
75
|
+
]
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
class ConnectivityChannelSelector:
|
|
79
|
+
def __init__(
|
|
80
|
+
self,
|
|
81
|
+
whole_brain_connectome: bool = True,
|
|
82
|
+
func_connectivity: bool = True,
|
|
83
|
+
) -> None:
|
|
84
|
+
"""ConnectivityChannelSelector
|
|
85
|
+
|
|
86
|
+
Parameters
|
|
87
|
+
----------
|
|
88
|
+
whole_brain_connectome : bool, optional
|
|
89
|
+
if True a 1236 whole-brain point grid is chosen,
|
|
90
|
+
if False, a 1025 point grid of the cortical hull is loaded,
|
|
91
|
+
by default True
|
|
92
|
+
func_connectivity : bool, optional
|
|
93
|
+
if true, functional connectivity fMRI is loaded,
|
|
94
|
+
if false structural dMRIby, default True
|
|
95
|
+
"""
|
|
96
|
+
|
|
97
|
+
self.connectome_name = self._get_connectome_name(
|
|
98
|
+
whole_brain_connectome, func_connectivity
|
|
99
|
+
)
|
|
100
|
+
|
|
101
|
+
self.whole_brain_connectome = whole_brain_connectome
|
|
102
|
+
self.func_connectivity = func_connectivity
|
|
103
|
+
|
|
104
|
+
self.PATH_CONN_DECODING = PYNM_DIR / "ConnectivityDecoding"
|
|
105
|
+
|
|
106
|
+
if whole_brain_connectome:
|
|
107
|
+
self.PATH_GRID = PurePath(
|
|
108
|
+
self.PATH_CONN_DECODING,
|
|
109
|
+
"mni_coords_whole_brain.mat",
|
|
110
|
+
)
|
|
111
|
+
self.grid = sio.loadmat(self.PATH_GRID)["downsample_ctx"]
|
|
112
|
+
if not func_connectivity:
|
|
113
|
+
# reduce the grid to only valid points that are not in LIST_STRUC_UNCONNECTED_GRIDPOINTS_WHOLEBRAIN
|
|
114
|
+
self.grid = np.delete(
|
|
115
|
+
self.grid,
|
|
116
|
+
LIST_STRUC_UNCONNECTED_GRIDPOINTS_WHOLEBRAIN,
|
|
117
|
+
axis=0,
|
|
118
|
+
)
|
|
119
|
+
else:
|
|
120
|
+
self.PATH_GRID = PurePath(
|
|
121
|
+
self.PATH_CONN_DECODING,
|
|
122
|
+
"mni_coords_cortical_surface.mat",
|
|
123
|
+
)
|
|
124
|
+
self.grid = sio.loadmat(self.PATH_GRID)["downsample_ctx"]
|
|
125
|
+
if not func_connectivity:
|
|
126
|
+
# reduce the grid to only valid points that are not in LIST_STRUC_UNCONNECTED_GRIDPOINTS_HULL
|
|
127
|
+
self.grid = np.delete(
|
|
128
|
+
self.grid, LIST_STRUC_UNCONNECTED_GRIDPOINTS_HULL, axis=0
|
|
129
|
+
)
|
|
130
|
+
|
|
131
|
+
if func_connectivity:
|
|
132
|
+
self.RMAP_arr = nib.load(
|
|
133
|
+
PurePath(self.PATH_CONN_DECODING, "RMAP_func_all.nii")
|
|
134
|
+
).get_fdata()
|
|
135
|
+
else:
|
|
136
|
+
self.RMAP_arr = nib.load(
|
|
137
|
+
PurePath(self.PATH_CONN_DECODING, "RMAP_struc.nii")
|
|
138
|
+
).get_fdata()
|
|
139
|
+
|
|
140
|
+
def _get_connectome_name(self, whole_brain_connectome: str, func_connectivity: str):
|
|
141
|
+
connectome_name = "connectome_"
|
|
142
|
+
if whole_brain_connectome:
|
|
143
|
+
connectome_name += "whole_brain_"
|
|
144
|
+
else:
|
|
145
|
+
connectome_name += "hull_"
|
|
146
|
+
if func_connectivity:
|
|
147
|
+
connectome_name += "func"
|
|
148
|
+
else:
|
|
149
|
+
connectome_name += "struc"
|
|
150
|
+
return connectome_name
|
|
151
|
+
|
|
152
|
+
def get_available_connectomes(self) -> list:
|
|
153
|
+
"""Return list of saved connectomes in the
|
|
154
|
+
package folder/ConnectivityDecoding/connectome_folder/ folder.
|
|
155
|
+
|
|
156
|
+
Returns
|
|
157
|
+
-------
|
|
158
|
+
list_connectomes: list
|
|
159
|
+
"""
|
|
160
|
+
return list(Path(self.PATH_CONN_DECODING, "connectome_folder").iterdir())
|
|
161
|
+
|
|
162
|
+
def plot_grid(self) -> None:
|
|
163
|
+
"""Plot the loaded template grid that passed coordinates are matched to."""
|
|
164
|
+
|
|
165
|
+
fig = plt.figure()
|
|
166
|
+
ax = fig.add_subplot(111, projection="3d")
|
|
167
|
+
ax.scatter(self.grid[:, 0], self.grid[:, 1], self.grid[:, 2], s=50, alpha=0.2)
|
|
168
|
+
plt.show()
|
|
169
|
+
|
|
170
|
+
def get_closest_node(self, coord: list | np.ndarray) -> tuple[list, list]:
|
|
171
|
+
"""Given a list or np.array of coordinates, return the closest nodes in the
|
|
172
|
+
grid and their indices.
|
|
173
|
+
|
|
174
|
+
Parameters
|
|
175
|
+
----------
|
|
176
|
+
coord : np.ndarray
|
|
177
|
+
MNI coordinates with shape (num_channels, 3)
|
|
178
|
+
|
|
179
|
+
Returns
|
|
180
|
+
-------
|
|
181
|
+
Tuple[list, list]
|
|
182
|
+
Grid coordinates, grid indices
|
|
183
|
+
"""
|
|
184
|
+
|
|
185
|
+
idx_ = []
|
|
186
|
+
for c in coord:
|
|
187
|
+
dist = np.linalg.norm(self.grid - c, axis=1)
|
|
188
|
+
idx_.append(np.argmin(dist))
|
|
189
|
+
|
|
190
|
+
return [self.grid[idx] for idx in idx_], idx_
|
|
191
|
+
|
|
192
|
+
def get_rmap_correlations(
|
|
193
|
+
self, fps: list | np.ndarray, RMAP_use: np.ndarray | None = None
|
|
194
|
+
) -> list:
|
|
195
|
+
"""Calculate correlations of passed fingerprints with the RMAP
|
|
196
|
+
|
|
197
|
+
Parameters
|
|
198
|
+
----------
|
|
199
|
+
fps : Union[list, np.array]
|
|
200
|
+
List of fingerprints
|
|
201
|
+
RMAP_use : np.ndarray, optional
|
|
202
|
+
Passed RMAP, by default None
|
|
203
|
+
|
|
204
|
+
Returns
|
|
205
|
+
-------
|
|
206
|
+
List
|
|
207
|
+
correlation values
|
|
208
|
+
"""
|
|
209
|
+
|
|
210
|
+
RMAP_ = self.RMAP_arr if RMAP_use is None else RMAP_use
|
|
211
|
+
RMAP_ = RMAP_.flatten()
|
|
212
|
+
corrs = []
|
|
213
|
+
for fp in fps:
|
|
214
|
+
corrs.append(np.corrcoef(RMAP_, fp.flatten())[0][1])
|
|
215
|
+
return corrs
|
|
216
|
+
|
|
217
|
+
def load_connectome(
|
|
218
|
+
self,
|
|
219
|
+
whole_brain_connectome: bool | None = None,
|
|
220
|
+
func_connectivity: bool | None = None,
|
|
221
|
+
) -> None:
|
|
222
|
+
"""Load connectome, if not available download connectome from
|
|
223
|
+
Zenodo.
|
|
224
|
+
|
|
225
|
+
Parameters
|
|
226
|
+
----------
|
|
227
|
+
whole_brain_connectome : bool, optional
|
|
228
|
+
if true whole brain connectome
|
|
229
|
+
if false cortical hull grid connectome, by default None
|
|
230
|
+
func_connectivity : bool, optional
|
|
231
|
+
if true fMRI if false dMRI, by default None
|
|
232
|
+
"""
|
|
233
|
+
|
|
234
|
+
if whole_brain_connectome is not None:
|
|
235
|
+
self.whole_brain_connectome = whole_brain_connectome
|
|
236
|
+
if func_connectivity is not None:
|
|
237
|
+
self.func_connectivity = func_connectivity
|
|
238
|
+
|
|
239
|
+
self.connectome_name = self._get_connectome_name(
|
|
240
|
+
self.whole_brain_connectome, self.func_connectivity
|
|
241
|
+
)
|
|
242
|
+
|
|
243
|
+
PATH_CONNECTOME = Path(
|
|
244
|
+
self.PATH_CONN_DECODING,
|
|
245
|
+
"connectome_folder",
|
|
246
|
+
self.connectome_name + ".mat",
|
|
247
|
+
)
|
|
248
|
+
|
|
249
|
+
if not PATH_CONNECTOME.exists():
|
|
250
|
+
user_input = input(
|
|
251
|
+
"Do you want to download the connectome? (yes/no): "
|
|
252
|
+
).lower()
|
|
253
|
+
if user_input == "yes":
|
|
254
|
+
self._download_connectome()
|
|
255
|
+
elif user_input == "no":
|
|
256
|
+
print("Connectome missing, has to be downloaded")
|
|
257
|
+
|
|
258
|
+
self.connectome = sio.loadmat(PATH_CONNECTOME)
|
|
259
|
+
|
|
260
|
+
def get_grid_fingerprints(self, grid_idx: list | np.ndarray) -> list:
|
|
261
|
+
return [self.connectome[str(grid_idx)] for grid_idx in grid_idx]
|
|
262
|
+
|
|
263
|
+
def download_connectome(
|
|
264
|
+
self,
|
|
265
|
+
):
|
|
266
|
+
|
|
267
|
+
from urllib.request import urlretrieve
|
|
268
|
+
|
|
269
|
+
# download the connectome from the Zenodo API
|
|
270
|
+
print("Downloading the connectome...")
|
|
271
|
+
|
|
272
|
+
record_id = "10804702"
|
|
273
|
+
file_name = self.connectome_name
|
|
274
|
+
|
|
275
|
+
filepath = Path(self.PATH_CONN_DECODING, "connectome_folder")
|
|
276
|
+
filepath.mkdir(parents=True, exist_ok=True)
|
|
277
|
+
|
|
278
|
+
urlretrieve(
|
|
279
|
+
f"https://zenodo.org/api/records/{record_id}/files/{file_name}/content",
|
|
280
|
+
filepath / f"{self.connectome_name}.mat",
|
|
281
|
+
)
|
|
282
|
+
|
|
283
|
+
|
|
284
|
+
class RMAPCross_Val_ChannelSelector:
|
|
285
|
+
def __init__(self) -> None:
|
|
286
|
+
pass
|
|
287
|
+
|
|
288
|
+
def load_fingerprint(self, path_nii) -> None:
|
|
289
|
+
"""Return Nifti fingerprint"""
|
|
290
|
+
epi_img = nib.load(path_nii)
|
|
291
|
+
self.affine = epi_img.affine
|
|
292
|
+
fp = epi_img.get_fdata()
|
|
293
|
+
return fp
|
|
294
|
+
|
|
295
|
+
def load_all_fingerprints(self, path_dir: str, cond_str: str = "_AvgR_Fz.nii"):
|
|
296
|
+
if cond_str is not None:
|
|
297
|
+
l_fps = list(filter(lambda k: cond_str in str(k), Path(path_dir).iterdir()))
|
|
298
|
+
else:
|
|
299
|
+
l_fps = list(Path(path_dir).iterdir())
|
|
300
|
+
|
|
301
|
+
return l_fps, [self.load_fingerprint(PurePath(path_dir, f)) for f in l_fps]
|
|
302
|
+
|
|
303
|
+
def get_fingerprints_from_path_with_cond(
|
|
304
|
+
self,
|
|
305
|
+
path_dir: _PathLike,
|
|
306
|
+
str_to_omit: str = "",
|
|
307
|
+
str_to_keep: str = "",
|
|
308
|
+
keep: bool = True,
|
|
309
|
+
) -> tuple[list, list]:
|
|
310
|
+
l_fps = []
|
|
311
|
+
|
|
312
|
+
if keep and str_to_keep:
|
|
313
|
+
l_fps = list(
|
|
314
|
+
filter(
|
|
315
|
+
lambda k: "_AvgR_Fz.nii" in str(k) and str_to_keep in str(k),
|
|
316
|
+
Path(path_dir).iterdir(),
|
|
317
|
+
)
|
|
318
|
+
)
|
|
319
|
+
|
|
320
|
+
elif not keep and str_to_omit:
|
|
321
|
+
l_fps = list(
|
|
322
|
+
filter(
|
|
323
|
+
lambda k: "_AvgR_Fz.nii" in str(k) and str_to_omit not in str(k),
|
|
324
|
+
Path(path_dir).iterdir(),
|
|
325
|
+
)
|
|
326
|
+
)
|
|
327
|
+
|
|
328
|
+
return l_fps, [self.load_fingerprint(PurePath(path_dir, f)) for f in l_fps]
|
|
329
|
+
|
|
330
|
+
@staticmethod
|
|
331
|
+
def save_Nii(
|
|
332
|
+
fp: np.ndarray,
|
|
333
|
+
affine: np.ndarray,
|
|
334
|
+
name: str = "img.nii",
|
|
335
|
+
reshape: bool = True,
|
|
336
|
+
):
|
|
337
|
+
if reshape:
|
|
338
|
+
fp = np.reshape(fp, (91, 109, 91), order="F")
|
|
339
|
+
|
|
340
|
+
img = nib.nifti1.Nifti1Image(fp, affine=affine)
|
|
341
|
+
|
|
342
|
+
nib.save(img, name)
|
|
343
|
+
|
|
344
|
+
def get_RMAP(self, X: np.ndarray, y: np.ndarray):
|
|
345
|
+
# faster than calculate_RMap_numba
|
|
346
|
+
# https://stackoverflow.com/questions/71252740/correlating-an-array-row-wise-with-a-vector/71253141#71253141
|
|
347
|
+
|
|
348
|
+
r = (
|
|
349
|
+
len(y) * np.sum(X * y[None, :], axis=-1) - (np.sum(X, axis=-1) * np.sum(y))
|
|
350
|
+
) / (
|
|
351
|
+
np.sqrt(
|
|
352
|
+
(len(y) * np.sum(X**2, axis=-1) - np.sum(X, axis=-1) ** 2)
|
|
353
|
+
* (len(y) * np.sum(y**2) - np.sum(y) ** 2)
|
|
354
|
+
)
|
|
355
|
+
)
|
|
356
|
+
return r
|
|
357
|
+
|
|
358
|
+
@staticmethod
|
|
359
|
+
# @jit(nopython=True)
|
|
360
|
+
def calculate_RMap_numba(fp, performances):
|
|
361
|
+
# The RMap also needs performances; for every fingerprint / channel
|
|
362
|
+
# Save the corresponding performance
|
|
363
|
+
# for every voxel; correlate it with performances
|
|
364
|
+
|
|
365
|
+
arr = fp[0].flatten()
|
|
366
|
+
NUM_VOXELS = arr.shape[0]
|
|
367
|
+
LEN_FPS = len(fp)
|
|
368
|
+
fp_arr = np.empty((NUM_VOXELS, LEN_FPS))
|
|
369
|
+
for fp_idx, fp_ in enumerate(fp):
|
|
370
|
+
fp_arr[:, fp_idx] = fp_.flatten()
|
|
371
|
+
|
|
372
|
+
RMAP = np.zeros(NUM_VOXELS)
|
|
373
|
+
for voxel in range(NUM_VOXELS):
|
|
374
|
+
corr_val = np.corrcoef(fp_arr[voxel, :], performances)[0][1]
|
|
375
|
+
|
|
376
|
+
RMAP[voxel] = corr_val
|
|
377
|
+
|
|
378
|
+
return RMAP
|
|
379
|
+
|
|
380
|
+
@staticmethod
|
|
381
|
+
# @jit(nopython=True)
|
|
382
|
+
def get_corr_numba(fp, fp_test):
|
|
383
|
+
val = np.corrcoef(fp_test, fp)[0][1]
|
|
384
|
+
return val
|
|
385
|
+
|
|
386
|
+
def leave_one_ch_out_cv(self, l_fps_names: list, l_fps_dat: list, l_per: list):
|
|
387
|
+
# l_fps_dat is not flattened
|
|
388
|
+
|
|
389
|
+
per_left_out = []
|
|
390
|
+
per_predict = []
|
|
391
|
+
|
|
392
|
+
for idx_left_out, f_left_out in enumerate(l_fps_names):
|
|
393
|
+
# print(idx_left_out)
|
|
394
|
+
l_cv = l_fps_dat.copy()
|
|
395
|
+
per_cv = l_per.copy()
|
|
396
|
+
|
|
397
|
+
l_cv.pop(idx_left_out)
|
|
398
|
+
per_cv.pop(idx_left_out)
|
|
399
|
+
|
|
400
|
+
conn_arr = []
|
|
401
|
+
for f in l_cv:
|
|
402
|
+
conn_arr.append(f.flatten())
|
|
403
|
+
conn_arr = np.array(conn_arr)
|
|
404
|
+
|
|
405
|
+
rmap_cv = np.nan_to_num(self.get_RMAP(conn_arr.T, np.array(per_cv)))
|
|
406
|
+
|
|
407
|
+
per_predict.append(
|
|
408
|
+
np.nan_to_num(
|
|
409
|
+
self.get_corr_numba(rmap_cv, l_fps_dat[idx_left_out].flatten())
|
|
410
|
+
)
|
|
411
|
+
)
|
|
412
|
+
per_left_out.append(l_per[idx_left_out])
|
|
413
|
+
return per_left_out, per_predict
|
|
414
|
+
|
|
415
|
+
def leave_one_sub_out_cv(
|
|
416
|
+
self, l_fps_names: list, l_fps_dat: list, l_per: list, sub_list: list
|
|
417
|
+
):
|
|
418
|
+
# l_fps_dat assume non flatted arrays
|
|
419
|
+
# each fp including the sub_list string will be iteratively removed for test set
|
|
420
|
+
|
|
421
|
+
per_predict = []
|
|
422
|
+
per_left_out = []
|
|
423
|
+
|
|
424
|
+
for subject_test in sub_list:
|
|
425
|
+
# print(subject_test)
|
|
426
|
+
idx_test = [idx for idx, f in enumerate(l_fps_names) if subject_test in f]
|
|
427
|
+
idx_train = [
|
|
428
|
+
idx for idx, f in enumerate(l_fps_names) if subject_test not in f
|
|
429
|
+
]
|
|
430
|
+
l_cv = list(np.array(l_fps_dat)[idx_train])
|
|
431
|
+
per_cv = list(np.array(l_per)[idx_train])
|
|
432
|
+
|
|
433
|
+
conn_arr = []
|
|
434
|
+
for f in l_cv:
|
|
435
|
+
conn_arr.append(f.flatten())
|
|
436
|
+
conn_arr = np.array(conn_arr)
|
|
437
|
+
rmap_cv = np.nan_to_num(self.get_RMAP(conn_arr.T, np.array(per_cv)))
|
|
438
|
+
|
|
439
|
+
for idx in idx_test:
|
|
440
|
+
per_predict.append(
|
|
441
|
+
np.nan_to_num(
|
|
442
|
+
self.get_corr_numba(rmap_cv, l_fps_dat[idx].flatten())
|
|
443
|
+
)
|
|
444
|
+
)
|
|
445
|
+
per_left_out.append(l_per[idx])
|
|
446
|
+
return per_left_out, per_predict
|
|
447
|
+
|
|
448
|
+
def get_highest_corr_sub_ch(
|
|
449
|
+
self,
|
|
450
|
+
cohort_test: str,
|
|
451
|
+
sub_test: str,
|
|
452
|
+
ch_test: str,
|
|
453
|
+
cohorts_train: dict,
|
|
454
|
+
path_dir: str = r"C:\Users\ICN_admin\OneDrive - Charité - Universitätsmedizin Berlin\Connectomics\DecodingToolbox_BerlinPittsburgh_Beijing\functional_connectivity",
|
|
455
|
+
):
|
|
456
|
+
fp_test = self.get_fingerprints_from_path_with_cond(
|
|
457
|
+
path_dir=path_dir,
|
|
458
|
+
str_to_keep=f"{cohort_test}_{sub_test}_ROI_{ch_test}",
|
|
459
|
+
keep=True,
|
|
460
|
+
)[1][
|
|
461
|
+
0
|
|
462
|
+
].flatten() # index 1 for getting the array, 0 for the list fp that was found
|
|
463
|
+
|
|
464
|
+
fp_pairs = []
|
|
465
|
+
|
|
466
|
+
for cohort in cohorts_train.keys():
|
|
467
|
+
for sub in cohorts_train[cohort]:
|
|
468
|
+
fps_name, fps = self.get_fingerprints_from_path_with_cond(
|
|
469
|
+
path_dir=path_dir,
|
|
470
|
+
str_to_keep=f"{cohort}_{sub}_ROI",
|
|
471
|
+
keep=True,
|
|
472
|
+
)
|
|
473
|
+
|
|
474
|
+
for fp, fp_name in zip(fps, fps_name):
|
|
475
|
+
ch = fp_name[fp_name.find("ROI") + 4 : fp_name.find("func") - 1]
|
|
476
|
+
corr_val = self.get_corr_numba(fp_test, fp)
|
|
477
|
+
fp_pairs.append([cohort, sub, ch, corr_val])
|
|
478
|
+
|
|
479
|
+
idx_max = np.argmax(np.array(fp_pairs)[:, 3])
|
|
480
|
+
return fp_pairs[idx_max][0:3]
|
|
481
|
+
|
|
482
|
+
def plot_performance_prediction_correlation(
|
|
483
|
+
per_left_out, per_predict, out_path_save: str | None = None
|
|
484
|
+
):
|
|
485
|
+
df_plt_corr = pd.DataFrame()
|
|
486
|
+
df_plt_corr["test_performance"] = per_left_out
|
|
487
|
+
df_plt_corr["struct_conn_predict"] = (
|
|
488
|
+
per_predict # change "struct" with "funct" for functional connectivity
|
|
489
|
+
)
|
|
490
|
+
|
|
491
|
+
reg_plot(
|
|
492
|
+
x_col="test_performance",
|
|
493
|
+
y_col="struct_conn_predict",
|
|
494
|
+
data=df_plt_corr,
|
|
495
|
+
out_path_save=out_path_save,
|
|
496
|
+
)
|