py-neuromodulation 0.0.3__py3-none-any.whl → 0.0.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (233) hide show
  1. py_neuromodulation/ConnectivityDecoding/Automated Anatomical Labeling 3 (Rolls 2020).nii +0 -0
  2. py_neuromodulation/ConnectivityDecoding/_get_grid_hull.m +34 -0
  3. py_neuromodulation/ConnectivityDecoding/_get_grid_whole_brain.py +95 -0
  4. py_neuromodulation/ConnectivityDecoding/_helper_write_connectome.py +107 -0
  5. py_neuromodulation/ConnectivityDecoding/mni_coords_cortical_surface.mat +0 -0
  6. py_neuromodulation/ConnectivityDecoding/mni_coords_whole_brain.mat +0 -0
  7. py_neuromodulation/ConnectivityDecoding/rmap_func_all.nii +0 -0
  8. py_neuromodulation/ConnectivityDecoding/rmap_struc.nii +0 -0
  9. py_neuromodulation/FieldTrip.py +589 -589
  10. py_neuromodulation/__init__.py +74 -13
  11. py_neuromodulation/_write_example_dataset_helper.py +83 -65
  12. py_neuromodulation/data/README +6 -0
  13. py_neuromodulation/data/dataset_description.json +8 -0
  14. py_neuromodulation/data/participants.json +32 -0
  15. py_neuromodulation/data/participants.tsv +2 -0
  16. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_space-mni_coordsystem.json +5 -0
  17. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_space-mni_electrodes.tsv +11 -0
  18. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_channels.tsv +11 -0
  19. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.eeg +0 -0
  20. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.json +18 -0
  21. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.vhdr +35 -0
  22. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.vmrk +13 -0
  23. py_neuromodulation/data/sub-testsub/ses-EphysMedOff/sub-testsub_ses-EphysMedOff_scans.tsv +2 -0
  24. py_neuromodulation/grid_cortex.tsv +40 -0
  25. py_neuromodulation/grid_subcortex.tsv +1429 -0
  26. py_neuromodulation/liblsl/libpugixml.so.1.12 +0 -0
  27. py_neuromodulation/liblsl/linux/bionic_amd64/liblsl.1.16.2.so +0 -0
  28. py_neuromodulation/liblsl/linux/bookworm_amd64/liblsl.1.16.2.so +0 -0
  29. py_neuromodulation/liblsl/linux/focal_amd46/liblsl.1.16.2.so +0 -0
  30. py_neuromodulation/liblsl/linux/jammy_amd64/liblsl.1.16.2.so +0 -0
  31. py_neuromodulation/liblsl/linux/jammy_x86/liblsl.1.16.2.so +0 -0
  32. py_neuromodulation/liblsl/linux/noble_amd64/liblsl.1.16.2.so +0 -0
  33. py_neuromodulation/liblsl/macos/amd64/liblsl.1.16.2.dylib +0 -0
  34. py_neuromodulation/liblsl/macos/arm64/liblsl.1.16.0.dylib +0 -0
  35. py_neuromodulation/liblsl/windows/amd64/liblsl.1.16.2.dll +0 -0
  36. py_neuromodulation/liblsl/windows/x86/liblsl.1.16.2.dll +0 -0
  37. py_neuromodulation/nm_IO.py +413 -417
  38. py_neuromodulation/nm_RMAP.py +496 -531
  39. py_neuromodulation/nm_analysis.py +993 -1074
  40. py_neuromodulation/nm_artifacts.py +30 -25
  41. py_neuromodulation/nm_bispectra.py +154 -168
  42. py_neuromodulation/nm_bursts.py +292 -198
  43. py_neuromodulation/nm_coherence.py +251 -205
  44. py_neuromodulation/nm_database.py +149 -0
  45. py_neuromodulation/nm_decode.py +918 -992
  46. py_neuromodulation/nm_define_nmchannels.py +300 -302
  47. py_neuromodulation/nm_features.py +144 -116
  48. py_neuromodulation/nm_filter.py +219 -219
  49. py_neuromodulation/nm_filter_preprocessing.py +79 -91
  50. py_neuromodulation/nm_fooof.py +139 -159
  51. py_neuromodulation/nm_generator.py +45 -37
  52. py_neuromodulation/nm_hjorth_raw.py +52 -73
  53. py_neuromodulation/nm_kalmanfilter.py +71 -58
  54. py_neuromodulation/nm_linelength.py +21 -33
  55. py_neuromodulation/nm_logger.py +66 -0
  56. py_neuromodulation/nm_mne_connectivity.py +149 -112
  57. py_neuromodulation/nm_mnelsl_generator.py +90 -0
  58. py_neuromodulation/nm_mnelsl_stream.py +116 -0
  59. py_neuromodulation/nm_nolds.py +96 -93
  60. py_neuromodulation/nm_normalization.py +173 -214
  61. py_neuromodulation/nm_oscillatory.py +423 -448
  62. py_neuromodulation/nm_plots.py +585 -612
  63. py_neuromodulation/nm_preprocessing.py +83 -0
  64. py_neuromodulation/nm_projection.py +370 -394
  65. py_neuromodulation/nm_rereference.py +97 -95
  66. py_neuromodulation/nm_resample.py +59 -50
  67. py_neuromodulation/nm_run_analysis.py +325 -435
  68. py_neuromodulation/nm_settings.py +289 -68
  69. py_neuromodulation/nm_settings.yaml +244 -0
  70. py_neuromodulation/nm_sharpwaves.py +423 -401
  71. py_neuromodulation/nm_stats.py +464 -480
  72. py_neuromodulation/nm_stream.py +398 -0
  73. py_neuromodulation/nm_stream_abc.py +166 -218
  74. py_neuromodulation/nm_types.py +193 -0
  75. py_neuromodulation/plots/STN_surf.mat +0 -0
  76. py_neuromodulation/plots/Vertices.mat +0 -0
  77. py_neuromodulation/plots/faces.mat +0 -0
  78. py_neuromodulation/plots/grid.mat +0 -0
  79. {py_neuromodulation-0.0.3.dist-info → py_neuromodulation-0.0.5.dist-info}/METADATA +185 -182
  80. py_neuromodulation-0.0.5.dist-info/RECORD +83 -0
  81. {py_neuromodulation-0.0.3.dist-info → py_neuromodulation-0.0.5.dist-info}/WHEEL +1 -2
  82. {py_neuromodulation-0.0.3.dist-info → py_neuromodulation-0.0.5.dist-info/licenses}/LICENSE +21 -21
  83. docs/build/_downloads/09df217f95985497f45d69e2d4bdc5b1/plot_2_example_add_feature.py +0 -68
  84. docs/build/_downloads/3b4900a2b2818ff30362215b76f7d5eb/plot_1_example_BIDS.py +0 -233
  85. docs/build/_downloads/7e92dd2e6cc86b239d14cafad972ae4f/plot_3_example_sharpwave_analysis.py +0 -219
  86. docs/build/_downloads/c2db0bf2b334d541b00662b991682256/plot_6_real_time_demo.py +0 -97
  87. docs/build/_downloads/ce3914826f782cbd1ea8fd024eaf0ac3/plot_5_example_rmap_computing.py +0 -64
  88. docs/build/_downloads/da36848a41e6a3235d91fb7cfb6d59b4/plot_0_first_demo.py +0 -192
  89. docs/build/_downloads/eaa4305c75b19a1e2eea941f742a6331/plot_4_example_gridPointProjection.py +0 -210
  90. docs/build/html/_downloads/09df217f95985497f45d69e2d4bdc5b1/plot_2_example_add_feature.py +0 -68
  91. docs/build/html/_downloads/3b4900a2b2818ff30362215b76f7d5eb/plot_1_example_BIDS.py +0 -239
  92. docs/build/html/_downloads/7e92dd2e6cc86b239d14cafad972ae4f/plot_3_example_sharpwave_analysis.py +0 -219
  93. docs/build/html/_downloads/c2db0bf2b334d541b00662b991682256/plot_6_real_time_demo.py +0 -97
  94. docs/build/html/_downloads/ce3914826f782cbd1ea8fd024eaf0ac3/plot_5_example_rmap_computing.py +0 -64
  95. docs/build/html/_downloads/da36848a41e6a3235d91fb7cfb6d59b4/plot_0_first_demo.py +0 -192
  96. docs/build/html/_downloads/eaa4305c75b19a1e2eea941f742a6331/plot_4_example_gridPointProjection.py +0 -210
  97. docs/source/_build/html/_downloads/09df217f95985497f45d69e2d4bdc5b1/plot_2_example_add_feature.py +0 -76
  98. docs/source/_build/html/_downloads/0d0d0a76e8f648d5d3cbc47da6351932/plot_real_time_demo.py +0 -97
  99. docs/source/_build/html/_downloads/3b4900a2b2818ff30362215b76f7d5eb/plot_1_example_BIDS.py +0 -240
  100. docs/source/_build/html/_downloads/5d73cadc59a8805c47e3b84063afc157/plot_example_BIDS.py +0 -233
  101. docs/source/_build/html/_downloads/7660317fa5a6bfbd12fcca9961457fc4/plot_example_rmap_computing.py +0 -63
  102. docs/source/_build/html/_downloads/7e92dd2e6cc86b239d14cafad972ae4f/plot_3_example_sharpwave_analysis.py +0 -219
  103. docs/source/_build/html/_downloads/839e5b319379f7fd9e867deb00fd797f/plot_example_gridPointProjection.py +0 -210
  104. docs/source/_build/html/_downloads/ae8be19afe5e559f011fc9b138968ba0/plot_first_demo.py +0 -192
  105. docs/source/_build/html/_downloads/b8b06cacc17969d3725a0b6f1d7741c5/plot_example_sharpwave_analysis.py +0 -219
  106. docs/source/_build/html/_downloads/c2db0bf2b334d541b00662b991682256/plot_6_real_time_demo.py +0 -121
  107. docs/source/_build/html/_downloads/c31a86c0b68cb4167d968091ace8080d/plot_example_add_feature.py +0 -68
  108. docs/source/_build/html/_downloads/ce3914826f782cbd1ea8fd024eaf0ac3/plot_5_example_rmap_computing.py +0 -64
  109. docs/source/_build/html/_downloads/da36848a41e6a3235d91fb7cfb6d59b4/plot_0_first_demo.py +0 -189
  110. docs/source/_build/html/_downloads/eaa4305c75b19a1e2eea941f742a6331/plot_4_example_gridPointProjection.py +0 -210
  111. docs/source/auto_examples/plot_0_first_demo.py +0 -189
  112. docs/source/auto_examples/plot_1_example_BIDS.py +0 -240
  113. docs/source/auto_examples/plot_2_example_add_feature.py +0 -76
  114. docs/source/auto_examples/plot_3_example_sharpwave_analysis.py +0 -219
  115. docs/source/auto_examples/plot_4_example_gridPointProjection.py +0 -210
  116. docs/source/auto_examples/plot_5_example_rmap_computing.py +0 -64
  117. docs/source/auto_examples/plot_6_real_time_demo.py +0 -121
  118. docs/source/conf.py +0 -105
  119. examples/plot_0_first_demo.py +0 -189
  120. examples/plot_1_example_BIDS.py +0 -240
  121. examples/plot_2_example_add_feature.py +0 -76
  122. examples/plot_3_example_sharpwave_analysis.py +0 -219
  123. examples/plot_4_example_gridPointProjection.py +0 -210
  124. examples/plot_5_example_rmap_computing.py +0 -64
  125. examples/plot_6_real_time_demo.py +0 -121
  126. packages/realtime_decoding/build/lib/realtime_decoding/__init__.py +0 -4
  127. packages/realtime_decoding/build/lib/realtime_decoding/decoder.py +0 -104
  128. packages/realtime_decoding/build/lib/realtime_decoding/features.py +0 -163
  129. packages/realtime_decoding/build/lib/realtime_decoding/helpers.py +0 -15
  130. packages/realtime_decoding/build/lib/realtime_decoding/run_decoding.py +0 -345
  131. packages/realtime_decoding/build/lib/realtime_decoding/trainer.py +0 -54
  132. packages/tmsi/build/lib/TMSiFileFormats/__init__.py +0 -37
  133. packages/tmsi/build/lib/TMSiFileFormats/file_formats/__init__.py +0 -36
  134. packages/tmsi/build/lib/TMSiFileFormats/file_formats/lsl_stream_writer.py +0 -200
  135. packages/tmsi/build/lib/TMSiFileFormats/file_formats/poly5_file_writer.py +0 -496
  136. packages/tmsi/build/lib/TMSiFileFormats/file_formats/poly5_to_edf_converter.py +0 -236
  137. packages/tmsi/build/lib/TMSiFileFormats/file_formats/xdf_file_writer.py +0 -977
  138. packages/tmsi/build/lib/TMSiFileFormats/file_readers/__init__.py +0 -35
  139. packages/tmsi/build/lib/TMSiFileFormats/file_readers/edf_reader.py +0 -116
  140. packages/tmsi/build/lib/TMSiFileFormats/file_readers/poly5reader.py +0 -294
  141. packages/tmsi/build/lib/TMSiFileFormats/file_readers/xdf_reader.py +0 -229
  142. packages/tmsi/build/lib/TMSiFileFormats/file_writer.py +0 -102
  143. packages/tmsi/build/lib/TMSiPlotters/__init__.py +0 -2
  144. packages/tmsi/build/lib/TMSiPlotters/gui/__init__.py +0 -39
  145. packages/tmsi/build/lib/TMSiPlotters/gui/_plotter_gui.py +0 -234
  146. packages/tmsi/build/lib/TMSiPlotters/gui/plotting_gui.py +0 -440
  147. packages/tmsi/build/lib/TMSiPlotters/plotters/__init__.py +0 -44
  148. packages/tmsi/build/lib/TMSiPlotters/plotters/hd_emg_plotter.py +0 -446
  149. packages/tmsi/build/lib/TMSiPlotters/plotters/impedance_plotter.py +0 -589
  150. packages/tmsi/build/lib/TMSiPlotters/plotters/signal_plotter.py +0 -1326
  151. packages/tmsi/build/lib/TMSiSDK/__init__.py +0 -54
  152. packages/tmsi/build/lib/TMSiSDK/device.py +0 -588
  153. packages/tmsi/build/lib/TMSiSDK/devices/__init__.py +0 -34
  154. packages/tmsi/build/lib/TMSiSDK/devices/saga/TMSi_Device_API.py +0 -1764
  155. packages/tmsi/build/lib/TMSiSDK/devices/saga/__init__.py +0 -34
  156. packages/tmsi/build/lib/TMSiSDK/devices/saga/saga_device.py +0 -1366
  157. packages/tmsi/build/lib/TMSiSDK/devices/saga/saga_types.py +0 -520
  158. packages/tmsi/build/lib/TMSiSDK/devices/saga/xml_saga_config.py +0 -165
  159. packages/tmsi/build/lib/TMSiSDK/error.py +0 -95
  160. packages/tmsi/build/lib/TMSiSDK/sample_data.py +0 -63
  161. packages/tmsi/build/lib/TMSiSDK/sample_data_server.py +0 -99
  162. packages/tmsi/build/lib/TMSiSDK/settings.py +0 -45
  163. packages/tmsi/build/lib/TMSiSDK/tmsi_device.py +0 -111
  164. packages/tmsi/build/lib/__init__.py +0 -4
  165. packages/tmsi/build/lib/apex_sdk/__init__.py +0 -34
  166. packages/tmsi/build/lib/apex_sdk/device/__init__.py +0 -41
  167. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_API.py +0 -1009
  168. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_API_enums.py +0 -239
  169. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_API_structures.py +0 -668
  170. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_device.py +0 -1611
  171. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_dongle.py +0 -38
  172. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_event_reader.py +0 -57
  173. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_channel.py +0 -44
  174. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_config.py +0 -150
  175. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_const.py +0 -36
  176. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_impedance_channel.py +0 -48
  177. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/apex_info.py +0 -108
  178. packages/tmsi/build/lib/apex_sdk/device/devices/apex/apex_structures/dongle_info.py +0 -39
  179. packages/tmsi/build/lib/apex_sdk/device/devices/apex/measurements/download_measurement.py +0 -77
  180. packages/tmsi/build/lib/apex_sdk/device/devices/apex/measurements/eeg_measurement.py +0 -150
  181. packages/tmsi/build/lib/apex_sdk/device/devices/apex/measurements/impedance_measurement.py +0 -129
  182. packages/tmsi/build/lib/apex_sdk/device/threads/conversion_thread.py +0 -59
  183. packages/tmsi/build/lib/apex_sdk/device/threads/sampling_thread.py +0 -57
  184. packages/tmsi/build/lib/apex_sdk/device/tmsi_channel.py +0 -83
  185. packages/tmsi/build/lib/apex_sdk/device/tmsi_device.py +0 -201
  186. packages/tmsi/build/lib/apex_sdk/device/tmsi_device_enums.py +0 -103
  187. packages/tmsi/build/lib/apex_sdk/device/tmsi_dongle.py +0 -43
  188. packages/tmsi/build/lib/apex_sdk/device/tmsi_event_reader.py +0 -50
  189. packages/tmsi/build/lib/apex_sdk/device/tmsi_measurement.py +0 -118
  190. packages/tmsi/build/lib/apex_sdk/sample_data_server/__init__.py +0 -33
  191. packages/tmsi/build/lib/apex_sdk/sample_data_server/event_data.py +0 -44
  192. packages/tmsi/build/lib/apex_sdk/sample_data_server/sample_data.py +0 -50
  193. packages/tmsi/build/lib/apex_sdk/sample_data_server/sample_data_server.py +0 -136
  194. packages/tmsi/build/lib/apex_sdk/tmsi_errors/error.py +0 -126
  195. packages/tmsi/build/lib/apex_sdk/tmsi_sdk.py +0 -113
  196. packages/tmsi/build/lib/apex_sdk/tmsi_utilities/apex/apex_structure_generator.py +0 -134
  197. packages/tmsi/build/lib/apex_sdk/tmsi_utilities/decorators.py +0 -60
  198. packages/tmsi/build/lib/apex_sdk/tmsi_utilities/logger_filter.py +0 -42
  199. packages/tmsi/build/lib/apex_sdk/tmsi_utilities/singleton.py +0 -42
  200. packages/tmsi/build/lib/apex_sdk/tmsi_utilities/support_functions.py +0 -72
  201. packages/tmsi/build/lib/apex_sdk/tmsi_utilities/tmsi_logger.py +0 -98
  202. py_neuromodulation/nm_EpochStream.py +0 -92
  203. py_neuromodulation/nm_across_patient_decoding.py +0 -927
  204. py_neuromodulation/nm_cohortwrapper.py +0 -435
  205. py_neuromodulation/nm_eval_timing.py +0 -239
  206. py_neuromodulation/nm_features_abc.py +0 -39
  207. py_neuromodulation/nm_stream_offline.py +0 -358
  208. py_neuromodulation/utils/_logging.py +0 -24
  209. py_neuromodulation-0.0.3.dist-info/RECORD +0 -188
  210. py_neuromodulation-0.0.3.dist-info/top_level.txt +0 -5
  211. tests/__init__.py +0 -0
  212. tests/conftest.py +0 -117
  213. tests/test_all_examples.py +0 -10
  214. tests/test_all_features.py +0 -63
  215. tests/test_bispectra.py +0 -70
  216. tests/test_bursts.py +0 -105
  217. tests/test_feature_sampling_rates.py +0 -143
  218. tests/test_fooof.py +0 -16
  219. tests/test_initalization_offline_stream.py +0 -41
  220. tests/test_multiprocessing.py +0 -58
  221. tests/test_nan_values.py +0 -29
  222. tests/test_nm_filter.py +0 -95
  223. tests/test_nm_resample.py +0 -63
  224. tests/test_normalization_settings.py +0 -146
  225. tests/test_notch_filter.py +0 -31
  226. tests/test_osc_features.py +0 -424
  227. tests/test_preprocessing_filter.py +0 -151
  228. tests/test_rereference.py +0 -171
  229. tests/test_sampling.py +0 -57
  230. tests/test_settings_change_after_init.py +0 -76
  231. tests/test_sharpwave.py +0 -165
  232. tests/test_target_channel_add.py +0 -100
  233. tests/test_timing.py +0 -80
@@ -1,239 +0,0 @@
1
- """
2
- ECoG Movement decoding example
3
- ==============================
4
-
5
- """
6
-
7
- # %%
8
- # This example notebook read openly accessible data from the publication
9
- # *Electrocorticography is superior to subthalamic local field potentials
10
- # for movement decoding in Parkinson’s disease*
11
- # (`Merk et al. 2022 <https://elifesciences.org/articles/75126>_`).
12
- # The dataset is available `here <https://doi.org/10.7910/DVN/IO2FLM>`_.
13
- #
14
- # For simplicity one example subject is automatically shipped within
15
- # this repo at the *py_neuromodulation/data* folder, stored in
16
- # `iEEG BIDS <https://www.nature.com/articles/s41597-019-0105-7>`_ format.
17
-
18
- # %%
19
- from sklearn import metrics, model_selection, linear_model
20
- import matplotlib.pyplot as plt
21
-
22
- import py_neuromodulation as nm
23
- from py_neuromodulation import (
24
- nm_analysis,
25
- nm_decode,
26
- nm_define_nmchannels,
27
- nm_IO,
28
- nm_plots,
29
- nm_settings,
30
- )
31
-
32
- # %%
33
- # Let's read the example using `mne_bids <https://mne.tools/mne-bids/stable/index.html>`_.
34
- # The resulting raw object is of type `mne.RawArray <https://mne.tools/stable/generated/mne.io.RawArray.html>`_.
35
- # We can use the properties such as sampling frequency, channel names, channel types all from the mne array and create the *nm_channels* DataFrame:
36
-
37
- (
38
- RUN_NAME,
39
- PATH_RUN,
40
- PATH_BIDS,
41
- PATH_OUT,
42
- datatype,
43
- ) = nm_IO.get_paths_example_data()
44
-
45
- (
46
- raw,
47
- data,
48
- sfreq,
49
- line_noise,
50
- coord_list,
51
- coord_names,
52
- ) = nm_IO.read_BIDS_data(
53
- PATH_RUN=PATH_RUN, BIDS_PATH=PATH_BIDS, datatype=datatype
54
- )
55
-
56
- nm_channels = nm_define_nmchannels.set_channels(
57
- ch_names=raw.ch_names,
58
- ch_types=raw.get_channel_types(),
59
- reference="default",
60
- bads=raw.info["bads"],
61
- new_names="default",
62
- used_types=("ecog", "dbs", "seeg"),
63
- target_keywords=["MOV_RIGHT"],
64
- )
65
-
66
- nm_channels
67
-
68
- # %%
69
- # This example contains the grip force movement traces, we'll use the *MOV_RIGHT* channel as a decoding target channel.
70
- # Let's check some of the raw feature and time series traces:
71
-
72
- plt.figure(figsize=(12, 4), dpi=300)
73
- plt.subplot(121)
74
- plt.plot(raw.times, data[-1, :])
75
- plt.xlabel("Time [s]")
76
- plt.ylabel("a.u.")
77
- plt.title("Movement label")
78
- plt.xlim(0, 20)
79
-
80
- plt.subplot(122)
81
- for idx, ch_name in enumerate(nm_channels.query("used == 1").name):
82
- plt.plot(raw.times, data[idx, :] + idx * 300, label=ch_name)
83
- plt.legend(bbox_to_anchor=(1, 0.5), loc="center left")
84
- plt.title("ECoG + STN-LFP time series")
85
- plt.xlabel("Time [s]")
86
- plt.ylabel("Voltage a.u.")
87
- plt.xlim(0, 20)
88
-
89
- # %%
90
- settings = nm_settings.get_default_settings()
91
- settings = nm_settings.set_settings_fast_compute(settings)
92
-
93
- settings["features"]["fft"] = True
94
- settings["features"]["bursts"] = True
95
- settings["features"]["sharpwave_analysis"] = True
96
- settings["features"]["coherence"] = True # True
97
- settings["coherence"]["channels"] = [["LFP_RIGHT_0", "ECOG_RIGHT_0"]]
98
- settings["coherence"]["frequency_bands"] = ["high beta", "low gamma"]
99
- settings["sharpwave_analysis_settings"]["estimator"]["mean"] = []
100
- for sw_feature in list(
101
- settings["sharpwave_analysis_settings"]["sharpwave_features"].keys()
102
- ):
103
- settings["sharpwave_analysis_settings"]["sharpwave_features"][
104
- sw_feature
105
- ] = True
106
- settings["sharpwave_analysis_settings"]["estimator"]["mean"].append(
107
- sw_feature
108
- )
109
-
110
- # %%
111
- stream = nm.Stream(
112
- sfreq=sfreq,
113
- nm_channels=nm_channels,
114
- settings=settings,
115
- line_noise=line_noise,
116
- coord_list=coord_list,
117
- coord_names=coord_names,
118
- verbose=True,
119
- )
120
-
121
- # %%
122
- features = stream.run(
123
- data=data,
124
- out_path_root=PATH_OUT,
125
- folder_name=RUN_NAME,
126
- )
127
-
128
- # %%
129
- # Feature Analysis Movement
130
- # -------------------------
131
- # The obtained performances can now be read and visualized using the :class:`nm_analysis.Feature_Reader`.
132
-
133
- # initialize analyzer
134
- feature_reader = nm_analysis.Feature_Reader(
135
- feature_dir=PATH_OUT,
136
- feature_file=RUN_NAME,
137
- )
138
- feature_reader.label_name = "MOV_RIGHT"
139
- feature_reader.label = feature_reader.feature_arr["MOV_RIGHT"]
140
-
141
- # %%
142
- feature_reader.feature_arr.iloc[100:108, -6:]
143
-
144
- # %%
145
- print(feature_reader.feature_arr.shape)
146
-
147
- # %%
148
- feature_reader._get_target_ch()
149
-
150
- # %%
151
- feature_reader.plot_target_averaged_channel(
152
- ch="ECOG_RIGHT_0",
153
- list_feature_keywords=None,
154
- epoch_len=4,
155
- threshold=0.5,
156
- ytick_labelsize=7,
157
- figsize_x=12,
158
- figsize_y=12,
159
- )
160
-
161
- # %%
162
- feature_reader.plot_all_features(
163
- ytick_labelsize=6,
164
- clim_low=-2,
165
- clim_high=2,
166
- ch_used="ECOG_RIGHT_0",
167
- time_limit_low_s=0,
168
- time_limit_high_s=20,
169
- normalize=True,
170
- save=True,
171
- )
172
-
173
- # %%
174
- nm_plots.plot_corr_matrix(
175
- feature=feature_reader.feature_arr.filter(regex="ECOG_RIGHT_0"),
176
- ch_name="ECOG_RIGHT_0-avgref",
177
- feature_names=feature_reader.feature_arr.filter(
178
- regex="ECOG_RIGHT_0-avgref"
179
- ).columns,
180
- feature_file=feature_reader.feature_file,
181
- show_plot=True,
182
- figsize=(15, 15),
183
- )
184
-
185
- # %%
186
- # Decoding
187
- # --------
188
- #
189
- # The main focus of the *py_neuromodulation* pipeline is feature estimation.
190
- # Nevertheless, the user can also use the pipeline for machine learning decoding.
191
- # It can be used for regression and classification problems and also dimensionality reduction such as PCA and CCA.
192
- #
193
- # Here, we show an example using the XGBOOST classifier. The used labels came from a continuous grip force movement target, named "MOV_RIGHT".
194
- #
195
- # First we initialize the :class:`~nm_decode.Decoder` class, which the specified *validation method*, here being a simple 3-fold cross validation,
196
- # the evaluation metric, used machine learning model, and the channels we want to evaluate performances for.
197
- #
198
- # There are many more implemented methods, but we will here limit it to the ones presented.
199
-
200
- model = linear_model.LinearRegression()
201
-
202
- feature_reader.decoder = nm_decode.Decoder(
203
- features=feature_reader.feature_arr,
204
- label=feature_reader.label,
205
- label_name=feature_reader.label_name,
206
- used_chs=feature_reader.used_chs,
207
- model=model,
208
- eval_method=metrics.r2_score,
209
- cv_method=model_selection.KFold(n_splits=3, shuffle=True),
210
- )
211
-
212
- # %%
213
- performances = feature_reader.run_ML_model(
214
- estimate_channels=True,
215
- estimate_gridpoints=False,
216
- estimate_all_channels_combined=True,
217
- save_results=True,
218
- )
219
-
220
- # %%
221
- # The performances are a dictionary that can be transformed into a DataFrame:
222
-
223
- df_per = feature_reader.get_dataframe_performances(performances)
224
-
225
- df_per
226
-
227
- # %%
228
- ax = nm_plots.plot_df_subjects(
229
- df_per,
230
- x_col="sub",
231
- y_col="performance_test",
232
- hue="ch_type",
233
- PATH_SAVE=PATH_OUT / RUN_NAME / (RUN_NAME + "_decoding_performance.png"),
234
- figsize_tuple=(8, 5),
235
- )
236
- ax.set_ylabel(r"$R^2$ Correlation")
237
- ax.set_xlabel("Subject 000")
238
- ax.set_title("Performance comparison Movement decoding")
239
- plt.tight_layout()
@@ -1,219 +0,0 @@
1
- """
2
- Analyzing temporal features
3
- ===========================
4
-
5
- """
6
-
7
- # %%
8
- # Time series data can be characterized using oscillatory components, but assumptions of sinusoidality are for real data rarely fulfilled.
9
- # See *"Brain Oscillations and the Importance of Waveform Shape"* `Cole et al 2017 <https://doi.org/10.1016/j.tics.2016.12.008>`_ for a great motivation.
10
- # We implemented here temporal characteristics based on individual trough and peak relations,
11
- # based on the :meth:~`scipy.signal.find_peaks` method. The function parameter *distance* can be specified in the *nm_settings.json*.
12
- # Temporal features can be calculated twice for troughs and peaks. In the settings, this can be specified by setting *estimate* to true
13
- # in *detect_troughs* and/or *detect_peaks*. A statistical measure (e.g. mean, max, median, var) can be defined as a resulting feature from the peak and
14
- # trough estimates using the *apply_estimator_between_peaks_and_troughs* setting.
15
- #
16
- # In py_neuromodulation the following characteristics are implemented:
17
- #
18
- # .. note::
19
- # The nomenclature is written here for sharpwave troughs, but detection of peak characteristics can be computed in the same way.
20
- #
21
- # - prominence:
22
- # :math:`V_{prominence} = |\frac{V_{peak-left} + V_{peak-right}}{2}| - V_{trough}`
23
- # - sharpness:
24
- # :math:`V_{sharpnesss} = \frac{(V_{trough} - V_{trough-5 ms}) + (V_{trough} - V_{trough+5 ms})}{2}`
25
- # - rise and decay rise time
26
- # - rise and decay steepness
27
- # - width (between left and right peaks)
28
- # - interval (between troughs)
29
- #
30
- # Additionally, different filter ranges can be parametrized using the *filter_ranges_hz* setting.
31
- # Filtering is necessary to remove high frequent signal fluctuations, but limits also the true estimation of sharpness and prominence due to signal smoothing.
32
-
33
- import seaborn as sb
34
- from matplotlib import pyplot as plt
35
- from scipy import signal
36
- import numpy as np
37
-
38
- import py_neuromodulation as nm
39
- from py_neuromodulation import (
40
- nm_define_nmchannels,
41
- nm_IO,
42
- nm_settings,
43
- )
44
-
45
-
46
- # %%
47
- # We will first read the example ECoG data and plot the identified features on the filtered time series.
48
-
49
- RUN_NAME, PATH_RUN, PATH_BIDS, PATH_OUT, datatype = nm_IO.get_paths_example_data()
50
-
51
- (
52
- raw,
53
- data,
54
- sfreq,
55
- line_noise,
56
- coord_list,
57
- coord_names,
58
- ) = nm_IO.read_BIDS_data(
59
- PATH_RUN=PATH_RUN,
60
- BIDS_PATH=PATH_BIDS, datatype=datatype
61
- )
62
-
63
- # %%
64
- settings = nm_settings.get_default_settings()
65
- settings = nm_settings.set_settings_fast_compute(settings)
66
-
67
- settings["features"]["fft"] = True
68
- settings["features"]["bursts"] = False
69
- settings["features"]["sharpwave_analysis"] = True
70
- settings["features"]["coherence"] = False
71
-
72
- settings["sharpwave_analysis_settings"]["estimator"]["mean"] = []
73
- for sw_feature in list(
74
- settings["sharpwave_analysis_settings"]["sharpwave_features"].keys()
75
- ):
76
- settings["sharpwave_analysis_settings"]["sharpwave_features"][sw_feature] = True
77
- settings["sharpwave_analysis_settings"]["estimator"]["mean"].append(sw_feature)
78
-
79
- nm_channels = nm_define_nmchannels.set_channels(
80
- ch_names=raw.ch_names,
81
- ch_types=raw.get_channel_types(),
82
- reference="default",
83
- bads=raw.info["bads"],
84
- new_names="default",
85
- used_types=("ecog", "dbs", "seeg"),
86
- target_keywords=["MOV_RIGHT"]
87
- )
88
-
89
- stream = nm.Stream(
90
- sfreq=sfreq,
91
- nm_channels=nm_channels,
92
- settings=settings,
93
- line_noise=line_noise,
94
- coord_list=coord_list,
95
- coord_names=coord_names,
96
- verbose=False,
97
- )
98
- sw_analyzer = stream.run_analysis.features.features[1]
99
-
100
- # %%
101
- # The plotted example time series, visualized on a short time scale, shows the relation of identified peaks, troughs, and estimated features:
102
- data_plt = data[5, 1000:4000]
103
-
104
-
105
- sw_analyzer._initialize_sw_features()
106
- filtered_dat = np.convolve(
107
- data_plt,
108
- sw_analyzer.list_filter[0][1],
109
- mode="same"
110
- )
111
- #filtered_dat = filtered_dat[500:-500]
112
-
113
- troughs = signal.find_peaks(-filtered_dat, distance=10)[0]
114
- peaks = signal.find_peaks(filtered_dat, distance=5)[0]
115
-
116
- sw_analyzer.data_process_sw = filtered_dat
117
- sw_analyzer.analyze_waveform()
118
-
119
- WIDTH = BAR_WIDTH = 4
120
- BAR_OFFSET = 50
121
- OFFSET_TIME_SERIES = -100
122
- SCALE_TIMESERIES = 1
123
-
124
- hue_colors = sb.color_palette("viridis_r", 6)
125
-
126
- plt.figure(figsize=(5, 3), dpi=300)
127
- plt.plot(OFFSET_TIME_SERIES + data_plt, color="gray", linewidth=0.5, alpha=0.5, label="original ECoG data")
128
- plt.plot(OFFSET_TIME_SERIES + filtered_dat*SCALE_TIMESERIES, linewidth=0.5, color="black", label="[5-30]Hz filtered data")
129
-
130
- plt.plot(peaks, OFFSET_TIME_SERIES + filtered_dat[peaks]*SCALE_TIMESERIES, "x", label="peaks",markersize=3, color="darkgray")
131
- plt.plot(troughs, OFFSET_TIME_SERIES + filtered_dat[troughs]*SCALE_TIMESERIES, "x", label="troughs", markersize=3, color="lightgray")
132
-
133
- plt.bar(troughs+BAR_WIDTH, np.array(sw_analyzer.prominence)*4, bottom=BAR_OFFSET, width=WIDTH, color=hue_colors[0], label="Prominence", alpha=0.5)
134
- plt.bar(troughs+BAR_WIDTH*2, -np.array(sw_analyzer.sharpness)*6, bottom=BAR_OFFSET, width=WIDTH, color=hue_colors[1], label="Sharpness", alpha=0.5)
135
- plt.bar(troughs+BAR_WIDTH*3, np.array(sw_analyzer.interval)*5, bottom=BAR_OFFSET, width=WIDTH, color=hue_colors[2], label="Interval", alpha=0.5)
136
- plt.bar(troughs+BAR_WIDTH*4, np.array(sw_analyzer.rise_time)*5, bottom=BAR_OFFSET, width=WIDTH, color=hue_colors[3], label="Rise time", alpha=0.5)
137
-
138
- plt.xticks(np.arange(0, data_plt.shape[0], 200), np.round(np.arange(0, int(data_plt.shape[0]/1000), 0.2), 2))
139
- plt.xlabel("Time [s]")
140
- plt.title("Temporal waveform shape features")
141
- plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
142
- plt.ylim(-550, 700)
143
- plt.xlim(0, 200)
144
- plt.ylabel("a.u.")
145
- plt.tight_layout()
146
-
147
- # %%
148
- # See in the following example a time series example, that is aligned to movement. With movement onset the prominence, sharpness, and interval features are reduced:
149
-
150
- plt.figure(figsize=(8, 5), dpi=300)
151
- plt.plot(OFFSET_TIME_SERIES + data_plt, color="gray", linewidth=0.5, alpha=0.5, label="original ECoG data")
152
- plt.plot(OFFSET_TIME_SERIES + filtered_dat*SCALE_TIMESERIES, linewidth=0.5, color="black", label="[5-30]Hz filtered data")
153
-
154
- plt.plot(peaks, OFFSET_TIME_SERIES + filtered_dat[peaks]*SCALE_TIMESERIES, "x", label="peaks",markersize=3, color="darkgray")
155
- plt.plot(troughs, OFFSET_TIME_SERIES + filtered_dat[troughs]*SCALE_TIMESERIES, "x", label="troughs", markersize=3, color="lightgray")
156
-
157
- plt.bar(troughs+BAR_WIDTH, np.array(sw_analyzer.prominence)*4, bottom=BAR_OFFSET, width=WIDTH, color=hue_colors[0], label="Prominence", alpha=0.5)
158
- plt.bar(troughs+BAR_WIDTH*2, -np.array(sw_analyzer.sharpness)*6, bottom=BAR_OFFSET, width=WIDTH, color=hue_colors[1], label="Sharpness", alpha=0.5)
159
- plt.bar(troughs+BAR_WIDTH*3, np.array(sw_analyzer.interval)*5, bottom=BAR_OFFSET, width=WIDTH, color=hue_colors[2], label="Interval", alpha=0.5)
160
- plt.bar(troughs+BAR_WIDTH*4, np.array(sw_analyzer.rise_time)*5, bottom=BAR_OFFSET, width=WIDTH, color=hue_colors[3], label="Rise time", alpha=0.5)
161
-
162
- plt.axvline(x=1500, label="Movement start", color="red")
163
-
164
- #plt.xticks(np.arange(0, 2000, 200), np.round(np.arange(0, 2, 0.2), 2))
165
- plt.xticks(np.arange(0, data_plt.shape[0], 200), np.round(np.arange(0, int(data_plt.shape[0]/1000), 0.2), 2))
166
- plt.xlabel("Time [s]")
167
- plt.title("Temporal waveform shape features")
168
- plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
169
- plt.ylim(-450, 400)
170
- plt.ylabel("a.u.")
171
- plt.tight_layout()
172
-
173
- # %%
174
- # In the *sharpwave_analysis_settings* the *estimator* keyword further specifies which statistic is computed based on the individual
175
- # features in one batch. The "global" setting *segment_length_features_ms* specifies the time duration for feature computation.
176
- # Since there can be a different number of identified waveform shape features for different batches (i.e. different number of peaks/troughs),
177
- # taking a statistical measure (e.g. the maximum or mean) will be necessary for feature comparison.
178
-
179
- # %%
180
- # Example time series computation for movement decoding
181
- # -----------------------------------------------------
182
- # We will now read the ECoG example/data and investigate if samples differ across movement states. Therefore we compute features and enable the default *sharpwave* features.
183
-
184
- settings = nm_settings.get_default_settings()
185
- settings = nm_settings.reset_settings(settings)
186
- settings["features"]["sharpwave_analysis"] = True
187
- settings["sharpwave_analysis_settings"]["interval"] = False
188
- settings["sharpwave_analysis_settings"]["filter_ranges"] = [[5, 80]]
189
-
190
- nm_channels["used"] = 0 # set only two ECoG channels for faster computation to true
191
- nm_channels.loc[[3, 8], "used"] = 1
192
-
193
- stream = nm.Stream(
194
- sfreq=sfreq,
195
- nm_channels=nm_channels,
196
- settings=settings,
197
- line_noise=line_noise,
198
- coord_list=coord_list,
199
- coord_names=coord_names,
200
- verbose=True,
201
- )
202
-
203
- df_features = stream.run(data=data[:, :30000])
204
-
205
- # %%
206
- # We can then plot two exemplary features, prominence and interval, and see that the movement amplitude can be clustered with those two features alone:
207
-
208
- plt.figure(figsize=(5, 3), dpi=300)
209
- plt.scatter(
210
- df_features["ECOG_RIGHT_0-avgref_Sharpwave_Max_prominence_range_5_80"],
211
- df_features["ECOG_RIGHT_5-avgref_Sharpwave_Mean_interval_range_5_80"],
212
- c=df_features["MOV_RIGHT"], alpha=0.8, s=30
213
- )
214
- cbar = plt.colorbar()
215
- cbar.set_label("Movement amplitude")
216
- plt.xlabel("Prominence a.u.")
217
- plt.ylabel("Interval a.u.")
218
- plt.title("Temporal features predict movement amplitude")
219
- plt.tight_layout()
@@ -1,97 +0,0 @@
1
- """
2
- Real-time feature estimation
3
- ============================
4
-
5
- """
6
-
7
- # %%
8
- # Implementation of individual nm_streams
9
- # ---------------------------------------
10
- #
11
- # *py_neuromodulation* was optimized for computation of real-time data streams.
12
- # There are however center -and lab specific hardware acquisition systems. Therefore, each experiment requires modules to interact with hardware platforms
13
- # which periodically acquire data.
14
- #
15
- # Given the raw data, data can be analyzed using *py_neuromodulation*. Preprocessing methods, such as re-referencing and normalization,
16
- # feature computation and decoding can be performed then in real-time.
17
- #
18
- # For online as well as as offline analysis, the :class:`~nm_stream_abc` class needs to be instantiated.
19
- # Here the `nm_settings` and `nm_channels` are required to be defined.
20
- # Previously for the offline analysis, an offline :class:`~nm_generator` object was defined that periodically yielded data.
21
- # For online data, the :meth:`~nm_stream_abc.run` function therefore needs to be overwritten, which first acquires data and then calls
22
- # the :meth:`~nm_run_analysis.process` function.
23
- #
24
- # The following illustrates in pseudo-code how such a stream could be initialized:
25
- #
26
- # .. code-block:: python
27
- #
28
- # from py_neuromodulation import nm_stream_abc
29
- #
30
- # class MyStream(nm_stream_abc):
31
- # def __init__(self, settings, channels):
32
- # super().__init__(settings, channels)
33
- #
34
- # def run(self):
35
- # features_ = []
36
- # while True:
37
- # data = self.acquire_data()
38
- # features_.append(self.run_analysis.process(data))
39
- # # potentially use machine learning model for decoding
40
- #
41
- #
42
- # Computation time examples
43
- # -------------------------
44
- #
45
- # The following example calculates for six channels, CAR re-referencing, z-score normalization and FFT features results the following computation time:
46
-
47
- # %%
48
- import py_neuromodulation as pn
49
- import numpy as np
50
- import timeit
51
-
52
- def get_fast_compute_settings():
53
- settings = pn.nm_settings.get_default_settings()
54
- settings = pn.nm_settings.reset_settings(settings)
55
- settings = pn.nm_settings.set_settings_fast_compute(settings)
56
- settings["preprocessing"] = ["re_referencing", "notch_filter"]
57
- settings["features"]["fft"] = True
58
- settings["postprocessing"]["feature_normalization"] = True
59
- return settings
60
-
61
- data = np.random.random([1, 1000])
62
-
63
- print("FFT Features, CAR re-referencing, z-score normalization")
64
- print()
65
- print("Computation time for single ECoG channel: ")
66
- stream = pn.Stream(sfreq=1000, data=data, sampling_rate_features_hz=10, verbose=False, settings=get_fast_compute_settings())
67
- print(f"{np.round(timeit.timeit(lambda: stream.run_analysis.process(data), number=100)/100, 3)} s")
68
-
69
- print("Computation time for 6 ECoG channels: ")
70
- data = np.random.random([6, 1000])
71
- stream = pn.Stream(sfreq=500, data=data, sampling_rate_features_hz=10, verbose=False, settings=get_fast_compute_settings())
72
- print(f"{np.round(timeit.timeit(lambda: stream.run_analysis.process(data), number=100)/100, 3)} s")
73
-
74
- print("\nFFT Features & Temporal Waveform Shape & Hjorth & Bursts, CAR re-referencing, z-score normalization")
75
- print("Computation time for single ECoG channel: ")
76
- data = np.random.random([1, 1000])
77
- stream = pn.Stream(sfreq=1000, data=data, sampling_rate_features_hz=10, verbose=False)
78
- print(f"{np.round(timeit.timeit(lambda: stream.run_analysis.process(data), number=10)/10, 3)} s")
79
-
80
-
81
- # %%
82
- # Those results show that the computation time for a typical pipeline (FFT, re-referencing, notch-filtering, feature normalization)
83
- # is well below 10 ms, which is fast enough for real-time analysis with feature sampling rates below 100 Hz.
84
- # Computation of more complex features could still result in feature sampling rates of more than 30 Hz.
85
- #
86
- # Real-time movement decoding using the TMSi-SAGA amplifier
87
- # ---------------------------------------------------------
88
- #
89
- # In the following example, we will show how we setup a real-time movement decoding experiment using the TMSi-SAGA amplifier.
90
- # First, we relied on different software modules for data streaming and visualization.
91
- # `LabStreamingLayer <https://labstreaminglayer.org>`_ allows for real-time data streaming and synchronization across multiple devices.
92
- # We used `timeflux <https://timeflux.io>`_ for real-time data visualization of features, decoded output.
93
- # For raw data visualization we used `Brain Streaming Layer <https://fcbg-hnp-meeg.github.io/bsl/dev/index.html>`_.
94
- #
95
- # The code for real-time movement decoding is added in the GitHub branch `realtime_decoding <https://github.com/neuromodulation/py_neuromodulation/tree/realtime_decoding>`_.
96
- # Here we relied on the `TMSI SAGA Python interface <https://gitlab.com/tmsi/tmsi-python-interface>`_.
97
- #
@@ -1,64 +0,0 @@
1
- """
2
- R-Map computation
3
- =================
4
-
5
- """
6
- # %%
7
- # sphinx_gallery_thumbnail_path = '_static/RMAP_figure.png'
8
-
9
- # %%
10
- # Across patient decoding using R-Map optimal connectivity
11
- # --------------------------------------------------------
12
- #
13
- # ECoG electrode placement is commonly very heterogeneous across patients and cohorts.
14
- # To still facilitate approaches that are able to perform decoding applications without patient individual training,
15
- # two across-patient decoding approaches were previously investigated for movement decoding:
16
- #
17
- #
18
- # * grid-point decoding
19
- # * optimal connectivity channel decoding
20
- #
21
- #
22
- # First, the grid-point decoding approach relies on definition of a cortical or subcortical grid.
23
- # Data from individual grid points is then interpolated onto those common grid points.
24
- # The approach was also explained in the :doc:`plot_4_example_gridPointProjection` notebook.
25
- #
26
- # .. image:: ../_static/RMAP_figure.png
27
- # :alt: R-Map and grid point approach for decoding without patient-individual training
28
- #
29
- # The R-Map decoding approach relies on the other hand on computation of whole brain connectivity. The electrode MNI space locations need to be known,
30
- # then the following steps can be performed for decoding without patient individual training:
31
- #
32
- # #. Using the `wjn_toolbox <https://github.com/neuromodulation/wjn_toolbox>`_ *wjn_specrical_roi* function, the MNI coordinates can be transformed into NIFTI (.nii) files, containing the electrode contact region of interest (ROI):
33
- #
34
- # .. code-block:: python
35
- #
36
- # wjn_spherical_roi(roiname, mni, 4)
37
- #
38
- # #. For the given *ROI.nii* files, the LeadDBS `LeadMapper <https://netstim.gitbook.io/leaddbs/connectomics/lead-mapper>`_ tool can be used for functional or structural connectivity estimation.
39
- #
40
- # #. The py_neuromodulation :class:`~nm_RMAP.py` module can then compute the R-Map given the contact-individual connectivity fingerprints:
41
- #
42
- # .. code-block:: python
43
- #
44
- # nm_RMAP.calculate_RMap_numba(fingerprints, performances)
45
- #
46
- # #. The fingerprints from test-set patients can then be correlated with the calculated R-Map:
47
- #
48
- # .. code-block:: python
49
- #
50
- # nm_RMAP.get_corr_numba(fp, fp_test)
51
- #
52
- # #. The channel with highest correlation can then be selected for decoding without individual training. :class:`~nm_RMAP.py` contain already leave one channel and leave one patient out cross validation functions:
53
- #
54
- # .. code-block:: python
55
- #
56
- # nm_RMAP.leave_one_sub_out_cv(l_fps_names, l_fps_dat, l_per, sub_list)
57
- #
58
- # #. The obtained R-Map correlations can then be estimated statistically and plotted against true correlates:
59
- #
60
- # .. code-block:: python
61
- #
62
- # nm_RMAP.plot_performance_prediction_correlation(per_left_out, per_predict, out_path_save)
63
- #
64
- #