pvlib 0.11.2__py3-none-any.whl → 0.12.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (139) hide show
  1. pvlib/__init__.py +1 -0
  2. pvlib/atmosphere.py +0 -9
  3. pvlib/bifacial/infinite_sheds.py +4 -3
  4. pvlib/bifacial/utils.py +2 -1
  5. pvlib/iotools/psm3.py +1 -1
  6. pvlib/iotools/pvgis.py +10 -2
  7. pvlib/iotools/tmy.py +3 -69
  8. pvlib/irradiance.py +14 -0
  9. pvlib/location.py +73 -33
  10. pvlib/modelchain.py +18 -35
  11. pvlib/pvsystem.py +7 -10
  12. pvlib/snow.py +64 -28
  13. pvlib/spectrum/__init__.py +0 -1
  14. pvlib/spectrum/irradiance.py +0 -63
  15. pvlib/spectrum/mismatch.py +3 -3
  16. pvlib/tools.py +6 -5
  17. {pvlib-0.11.2.dist-info → pvlib-0.12.0.dist-info}/METADATA +5 -3
  18. pvlib-0.12.0.dist-info/RECORD +75 -0
  19. {pvlib-0.11.2.dist-info → pvlib-0.12.0.dist-info}/WHEEL +1 -1
  20. pvlib/data/BIRD_08_16_2012.csv +0 -8761
  21. pvlib/data/BIRD_08_16_2012_patm.csv +0 -8761
  22. pvlib/data/Burlington, United States SolarAnywhere Time Series 2021 Lat_44_465 Lon_-73_205 TMY3 format.csv +0 -8762
  23. pvlib/data/Burlington, United States SolarAnywhere Time Series 20210101 to 20210103 Lat_44_4675 Lon_-73_2075 SA format.csv +0 -578
  24. pvlib/data/Burlington, United States SolarAnywhere Typical GHI Year Lat_44_465 Lon_-73_205 SA format.csv +0 -74
  25. pvlib/data/CPS SCH275KTL-DO-US-800-250kW_275kVA_1.OND +0 -146
  26. pvlib/data/CRNS0101-05-2019-AZ_Tucson_11_W.txt +0 -4
  27. pvlib/data/CRN_with_problems.txt +0 -3
  28. pvlib/data/ET-M772BH550GL.PAN +0 -75
  29. pvlib/data/NLD_Amsterdam062400_IWEC.epw +0 -8768
  30. pvlib/data/PVsyst_demo.csv +0 -10757
  31. pvlib/data/PVsyst_demo_model.csv +0 -3588
  32. pvlib/data/SRML-day-EUPO1801.txt +0 -1441
  33. pvlib/data/abq19056.dat +0 -6
  34. pvlib/data/bishop88_numerical_precision.csv +0 -101
  35. pvlib/data/bsrn-lr0100-pay0616.dat +0 -86901
  36. pvlib/data/bsrn-pay0616.dat.gz +0 -0
  37. pvlib/data/cams_mcclear_1min_verbose.csv +0 -60
  38. pvlib/data/cams_mcclear_monthly.csv +0 -42
  39. pvlib/data/cams_radiation_1min_verbose.csv +0 -72
  40. pvlib/data/cams_radiation_monthly.csv +0 -47
  41. pvlib/data/detect_clearsky_data.csv +0 -35
  42. pvlib/data/detect_clearsky_threshold_data.csv +0 -126
  43. pvlib/data/greensboro_kimber_soil_manwash.dat +0 -8761
  44. pvlib/data/greensboro_kimber_soil_nowash.dat +0 -8761
  45. pvlib/data/inverter_fit_snl_meas.csv +0 -127
  46. pvlib/data/inverter_fit_snl_sim.csv +0 -19
  47. pvlib/data/ivtools_numdiff.csv +0 -52
  48. pvlib/data/midc_20181014.txt +0 -1441
  49. pvlib/data/midc_raw_20181018.txt +0 -1441
  50. pvlib/data/midc_raw_short_header_20191115.txt +0 -1441
  51. pvlib/data/msn19056.dat +0 -6
  52. pvlib/data/precise_iv_curves1.json +0 -10251
  53. pvlib/data/precise_iv_curves2.json +0 -10251
  54. pvlib/data/precise_iv_curves_parameter_sets1.csv +0 -33
  55. pvlib/data/precise_iv_curves_parameter_sets2.csv +0 -33
  56. pvlib/data/pvgis_hourly_Timeseries_45.000_8.000_SA2_10kWp_CIS_5_2a_2013_2014.json +0 -1
  57. pvlib/data/pvgis_hourly_Timeseries_45.000_8.000_SA_30deg_0deg_2016_2016.csv +0 -35
  58. pvlib/data/pvgis_tmy_meta.json +0 -32
  59. pvlib/data/pvgis_tmy_test.csv +0 -8761
  60. pvlib/data/pvwatts_8760_rackmount.csv +0 -8779
  61. pvlib/data/pvwatts_8760_roofmount.csv +0 -8779
  62. pvlib/data/singleaxis_tracker_wslope.csv +0 -8761
  63. pvlib/data/spectrl2_example_spectra.csv +0 -123
  64. pvlib/data/surfrad-slv16001.dat +0 -1442
  65. pvlib/data/test_psm3_2017.csv +0 -17521
  66. pvlib/data/test_psm3_2019_5min.csv +0 -289
  67. pvlib/data/test_psm3_tmy-2017.csv +0 -8761
  68. pvlib/data/test_read_psm3.csv +0 -17523
  69. pvlib/data/test_read_pvgis_horizon.csv +0 -49
  70. pvlib/data/tmy_45.000_8.000_2005_2023.csv +0 -8789
  71. pvlib/data/tmy_45.000_8.000_2005_2023.epw +0 -8768
  72. pvlib/data/tmy_45.000_8.000_2005_2023.json +0 -1
  73. pvlib/data/tmy_45.000_8.000_2005_2023.txt +0 -8761
  74. pvlib/data/tmy_45.000_8.000_userhorizon.json +0 -1
  75. pvlib/spa_c_files/README.md +0 -81
  76. pvlib/spa_c_files/cspa_py.pxd +0 -43
  77. pvlib/spa_c_files/spa_py.pyx +0 -30
  78. pvlib/tests/__init__.py +0 -0
  79. pvlib/tests/bifacial/__init__.py +0 -0
  80. pvlib/tests/bifacial/test_infinite_sheds.py +0 -317
  81. pvlib/tests/bifacial/test_losses_models.py +0 -54
  82. pvlib/tests/bifacial/test_pvfactors.py +0 -82
  83. pvlib/tests/bifacial/test_utils.py +0 -192
  84. pvlib/tests/conftest.py +0 -476
  85. pvlib/tests/iotools/__init__.py +0 -0
  86. pvlib/tests/iotools/test_acis.py +0 -213
  87. pvlib/tests/iotools/test_bsrn.py +0 -131
  88. pvlib/tests/iotools/test_crn.py +0 -95
  89. pvlib/tests/iotools/test_epw.py +0 -23
  90. pvlib/tests/iotools/test_midc.py +0 -89
  91. pvlib/tests/iotools/test_panond.py +0 -32
  92. pvlib/tests/iotools/test_psm3.py +0 -198
  93. pvlib/tests/iotools/test_pvgis.py +0 -644
  94. pvlib/tests/iotools/test_sodapro.py +0 -298
  95. pvlib/tests/iotools/test_solaranywhere.py +0 -287
  96. pvlib/tests/iotools/test_solargis.py +0 -68
  97. pvlib/tests/iotools/test_solcast.py +0 -324
  98. pvlib/tests/iotools/test_solrad.py +0 -152
  99. pvlib/tests/iotools/test_srml.py +0 -124
  100. pvlib/tests/iotools/test_surfrad.py +0 -75
  101. pvlib/tests/iotools/test_tmy.py +0 -133
  102. pvlib/tests/ivtools/__init__.py +0 -0
  103. pvlib/tests/ivtools/test_sde.py +0 -230
  104. pvlib/tests/ivtools/test_sdm.py +0 -429
  105. pvlib/tests/ivtools/test_utils.py +0 -173
  106. pvlib/tests/spectrum/__init__.py +0 -0
  107. pvlib/tests/spectrum/conftest.py +0 -40
  108. pvlib/tests/spectrum/test_irradiance.py +0 -138
  109. pvlib/tests/spectrum/test_mismatch.py +0 -304
  110. pvlib/tests/spectrum/test_response.py +0 -124
  111. pvlib/tests/spectrum/test_spectrl2.py +0 -72
  112. pvlib/tests/test__deprecation.py +0 -97
  113. pvlib/tests/test_albedo.py +0 -84
  114. pvlib/tests/test_atmosphere.py +0 -351
  115. pvlib/tests/test_clearsky.py +0 -884
  116. pvlib/tests/test_conftest.py +0 -37
  117. pvlib/tests/test_iam.py +0 -555
  118. pvlib/tests/test_inverter.py +0 -213
  119. pvlib/tests/test_irradiance.py +0 -1487
  120. pvlib/tests/test_location.py +0 -356
  121. pvlib/tests/test_modelchain.py +0 -2020
  122. pvlib/tests/test_numerical_precision.py +0 -124
  123. pvlib/tests/test_pvarray.py +0 -71
  124. pvlib/tests/test_pvsystem.py +0 -2511
  125. pvlib/tests/test_scaling.py +0 -207
  126. pvlib/tests/test_shading.py +0 -391
  127. pvlib/tests/test_singlediode.py +0 -608
  128. pvlib/tests/test_snow.py +0 -212
  129. pvlib/tests/test_soiling.py +0 -230
  130. pvlib/tests/test_solarposition.py +0 -966
  131. pvlib/tests/test_spa.py +0 -454
  132. pvlib/tests/test_temperature.py +0 -470
  133. pvlib/tests/test_tools.py +0 -146
  134. pvlib/tests/test_tracking.py +0 -474
  135. pvlib/tests/test_transformer.py +0 -60
  136. pvlib-0.11.2.dist-info/RECORD +0 -191
  137. {pvlib-0.11.2.dist-info → pvlib-0.12.0.dist-info/licenses}/AUTHORS.md +0 -0
  138. {pvlib-0.11.2.dist-info → pvlib-0.12.0.dist-info/licenses}/LICENSE +0 -0
  139. {pvlib-0.11.2.dist-info → pvlib-0.12.0.dist-info}/top_level.txt +0 -0
@@ -1,474 +0,0 @@
1
- import numpy as np
2
- from numpy import nan
3
- import pandas as pd
4
-
5
- import pytest
6
- from numpy.testing import assert_allclose
7
-
8
- import pvlib
9
- from pvlib import tracking
10
- from .conftest import DATA_DIR, assert_frame_equal, assert_series_equal
11
- from pvlib._deprecation import pvlibDeprecationWarning
12
-
13
- SINGLEAXIS_COL_ORDER = ['tracker_theta', 'aoi',
14
- 'surface_azimuth', 'surface_tilt']
15
-
16
-
17
- def test_solar_noon():
18
- index = pd.date_range(start='20180701T1200', freq='1s', periods=1)
19
- apparent_zenith = pd.Series([10], index=index)
20
- apparent_azimuth = pd.Series([180], index=index)
21
- tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth,
22
- axis_tilt=0, axis_azimuth=0,
23
- max_angle=90, backtrack=True,
24
- gcr=2.0/7.0)
25
-
26
- expect = pd.DataFrame({'tracker_theta': 0, 'aoi': 10,
27
- 'surface_azimuth': 90, 'surface_tilt': 0},
28
- index=index, dtype=np.float64)
29
- expect = expect[SINGLEAXIS_COL_ORDER]
30
-
31
- assert_frame_equal(expect, tracker_data)
32
-
33
-
34
- def test_scalars():
35
- apparent_zenith = 10
36
- apparent_azimuth = 180
37
- tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth,
38
- axis_tilt=0, axis_azimuth=0,
39
- max_angle=90, backtrack=True,
40
- gcr=2.0/7.0)
41
- assert isinstance(tracker_data, dict)
42
- expect = {'tracker_theta': 0, 'aoi': 10, 'surface_azimuth': 90,
43
- 'surface_tilt': 0}
44
- for k, v in expect.items():
45
- assert np.isclose(tracker_data[k], v)
46
-
47
-
48
- def test_arrays():
49
- apparent_zenith = np.array([10])
50
- apparent_azimuth = np.array([180])
51
- tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth,
52
- axis_tilt=0, axis_azimuth=0,
53
- max_angle=90, backtrack=True,
54
- gcr=2.0/7.0)
55
- assert isinstance(tracker_data, dict)
56
- expect = {'tracker_theta': 0, 'aoi': 10, 'surface_azimuth': 90,
57
- 'surface_tilt': 0}
58
- for k, v in expect.items():
59
- assert_allclose(tracker_data[k], v, atol=1e-7)
60
-
61
-
62
- def test_nans():
63
- apparent_zenith = np.array([10, np.nan, 10])
64
- apparent_azimuth = np.array([180, 180, np.nan])
65
- with np.errstate(invalid='ignore'):
66
- tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth,
67
- axis_tilt=0, axis_azimuth=0,
68
- max_angle=90, backtrack=True,
69
- gcr=2.0/7.0)
70
- expect = {'tracker_theta': np.array([0, nan, nan]),
71
- 'aoi': np.array([10, nan, nan]),
72
- 'surface_azimuth': np.array([90, nan, nan]),
73
- 'surface_tilt': np.array([0, nan, nan])}
74
- for k, v in expect.items():
75
- assert_allclose(tracker_data[k], v, atol=1e-7)
76
-
77
- # repeat with Series because nans can differ
78
- apparent_zenith = pd.Series(apparent_zenith)
79
- apparent_azimuth = pd.Series(apparent_azimuth)
80
- with np.errstate(invalid='ignore'):
81
- tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth,
82
- axis_tilt=0, axis_azimuth=0,
83
- max_angle=90, backtrack=True,
84
- gcr=2.0/7.0)
85
- expect = pd.DataFrame(np.array(
86
- [[ 0., 10., 90., 0.],
87
- [nan, nan, nan, nan],
88
- [nan, nan, nan, nan]]),
89
- columns=['tracker_theta', 'aoi', 'surface_azimuth', 'surface_tilt'])
90
- assert_frame_equal(tracker_data, expect)
91
-
92
-
93
- def test_arrays_multi():
94
- apparent_zenith = np.array([[10, 10], [10, 10]])
95
- apparent_azimuth = np.array([[180, 180], [180, 180]])
96
- # singleaxis should fail for num dim > 1
97
- with pytest.raises(ValueError):
98
- tracking.singleaxis(apparent_zenith, apparent_azimuth,
99
- axis_tilt=0, axis_azimuth=0,
100
- max_angle=90, backtrack=True,
101
- gcr=2.0/7.0)
102
- # uncomment if we ever get singleaxis to support num dim > 1 arrays
103
- # assert isinstance(tracker_data, dict)
104
- # expect = {'tracker_theta': np.full_like(apparent_zenith, 0),
105
- # 'aoi': np.full_like(apparent_zenith, 10),
106
- # 'surface_azimuth': np.full_like(apparent_zenith, 90),
107
- # 'surface_tilt': np.full_like(apparent_zenith, 0)}
108
- # for k, v in expect.items():
109
- # assert_allclose(tracker_data[k], v)
110
-
111
-
112
- def test_azimuth_north_south():
113
- apparent_zenith = pd.Series([60])
114
- apparent_azimuth = pd.Series([90])
115
-
116
- tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth,
117
- axis_tilt=0, axis_azimuth=180,
118
- max_angle=90, backtrack=True,
119
- gcr=2.0/7.0)
120
-
121
- expect = pd.DataFrame({'tracker_theta': -60, 'aoi': 0,
122
- 'surface_azimuth': 90, 'surface_tilt': 60},
123
- index=[0], dtype=np.float64)
124
- expect = expect[SINGLEAXIS_COL_ORDER]
125
-
126
- assert_frame_equal(expect, tracker_data)
127
-
128
- tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth,
129
- axis_tilt=0, axis_azimuth=0,
130
- max_angle=90, backtrack=True,
131
- gcr=2.0/7.0)
132
-
133
- expect['tracker_theta'] *= -1
134
-
135
- assert_frame_equal(expect, tracker_data)
136
-
137
-
138
- def test_max_angle():
139
- apparent_zenith = pd.Series([60])
140
- apparent_azimuth = pd.Series([90])
141
- tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth,
142
- axis_tilt=0, axis_azimuth=0,
143
- max_angle=45, backtrack=True,
144
- gcr=2.0/7.0)
145
-
146
- expect = pd.DataFrame({'aoi': 15, 'surface_azimuth': 90,
147
- 'surface_tilt': 45, 'tracker_theta': 45},
148
- index=[0], dtype=np.float64)
149
- expect = expect[SINGLEAXIS_COL_ORDER]
150
-
151
- assert_frame_equal(expect, tracker_data)
152
-
153
-
154
- def test_min_angle():
155
- apparent_zenith = pd.Series([60])
156
- apparent_azimuth = pd.Series([270])
157
- tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth,
158
- axis_tilt=0, axis_azimuth=0,
159
- max_angle=(-45, 50), backtrack=True,
160
- gcr=2.0/7.0)
161
-
162
- expect = pd.DataFrame({'aoi': 15, 'surface_azimuth': 270,
163
- 'surface_tilt': 45, 'tracker_theta': -45},
164
- index=[0], dtype=np.float64)
165
- expect = expect[SINGLEAXIS_COL_ORDER]
166
-
167
- assert_frame_equal(expect, tracker_data)
168
-
169
-
170
- def test_backtrack():
171
- apparent_zenith = pd.Series([80])
172
- apparent_azimuth = pd.Series([90])
173
-
174
- tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth,
175
- axis_tilt=0, axis_azimuth=0,
176
- max_angle=90, backtrack=False,
177
- gcr=2.0/7.0)
178
-
179
- expect = pd.DataFrame({'aoi': 0, 'surface_azimuth': 90,
180
- 'surface_tilt': 80, 'tracker_theta': 80},
181
- index=[0], dtype=np.float64)
182
- expect = expect[SINGLEAXIS_COL_ORDER]
183
-
184
- assert_frame_equal(expect, tracker_data)
185
-
186
- tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth,
187
- axis_tilt=0, axis_azimuth=0,
188
- max_angle=90, backtrack=True,
189
- gcr=2.0/7.0)
190
-
191
- expect = pd.DataFrame({'aoi': 52.5716, 'surface_azimuth': 90,
192
- 'surface_tilt': 27.42833, 'tracker_theta': 27.4283},
193
- index=[0], dtype=np.float64)
194
- expect = expect[SINGLEAXIS_COL_ORDER]
195
-
196
- assert_frame_equal(expect, tracker_data)
197
-
198
-
199
- def test_axis_tilt():
200
- apparent_zenith = pd.Series([30])
201
- apparent_azimuth = pd.Series([135])
202
-
203
- tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth,
204
- axis_tilt=30, axis_azimuth=180,
205
- max_angle=90, backtrack=True,
206
- gcr=2.0/7.0)
207
-
208
- expect = pd.DataFrame({'aoi': 7.286245, 'surface_azimuth': 142.65730,
209
- 'surface_tilt': 35.98741,
210
- 'tracker_theta': -20.88121},
211
- index=[0], dtype=np.float64)
212
- expect = expect[SINGLEAXIS_COL_ORDER]
213
-
214
- assert_frame_equal(expect, tracker_data)
215
-
216
- tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth,
217
- axis_tilt=30, axis_azimuth=0,
218
- max_angle=90, backtrack=True,
219
- gcr=2.0/7.0)
220
-
221
- expect = pd.DataFrame({'aoi': 47.6632, 'surface_azimuth': 50.96969,
222
- 'surface_tilt': 42.5152, 'tracker_theta': 31.6655},
223
- index=[0], dtype=np.float64)
224
- expect = expect[SINGLEAXIS_COL_ORDER]
225
-
226
- assert_frame_equal(expect, tracker_data)
227
-
228
-
229
- def test_axis_azimuth():
230
- apparent_zenith = pd.Series([30])
231
- apparent_azimuth = pd.Series([90])
232
-
233
- tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth,
234
- axis_tilt=0, axis_azimuth=90,
235
- max_angle=90, backtrack=True,
236
- gcr=2.0/7.0)
237
-
238
- expect = pd.DataFrame({'aoi': 30, 'surface_azimuth': 180,
239
- 'surface_tilt': 0, 'tracker_theta': 0},
240
- index=[0], dtype=np.float64)
241
- expect = expect[SINGLEAXIS_COL_ORDER]
242
-
243
- assert_frame_equal(expect, tracker_data)
244
-
245
- apparent_zenith = pd.Series([30])
246
- apparent_azimuth = pd.Series([180])
247
-
248
- tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth,
249
- axis_tilt=0, axis_azimuth=90,
250
- max_angle=90, backtrack=True,
251
- gcr=2.0/7.0)
252
-
253
- expect = pd.DataFrame({'aoi': 0, 'surface_azimuth': 180,
254
- 'surface_tilt': 30, 'tracker_theta': 30},
255
- index=[0], dtype=np.float64)
256
- expect = expect[SINGLEAXIS_COL_ORDER]
257
-
258
- assert_frame_equal(expect, tracker_data)
259
-
260
-
261
- def test_horizon_flat():
262
- # GH 569
263
- solar_azimuth = np.array([0, 180, 359])
264
- solar_zenith = np.array([100, 45, 100])
265
- solar_azimuth = pd.Series(solar_azimuth)
266
- solar_zenith = pd.Series(solar_zenith)
267
- # depending on platform and numpy versions this will generate
268
- # RuntimeWarning: invalid value encountered in > < >=
269
- out = tracking.singleaxis(solar_zenith, solar_azimuth, axis_tilt=0,
270
- axis_azimuth=180, backtrack=False, max_angle=180)
271
- expected = pd.DataFrame(np.array(
272
- [[ nan, nan, nan, nan],
273
- [ 0., 45., 270., 0.],
274
- [ nan, nan, nan, nan]]),
275
- columns=['tracker_theta', 'aoi', 'surface_azimuth', 'surface_tilt'])
276
- assert_frame_equal(out, expected)
277
-
278
-
279
- def test_horizon_tilted():
280
- # GH 569
281
- solar_azimuth = np.array([0, 180, 359])
282
- solar_zenith = np.full_like(solar_azimuth, 45)
283
- solar_azimuth = pd.Series(solar_azimuth)
284
- solar_zenith = pd.Series(solar_zenith)
285
- out = tracking.singleaxis(solar_zenith, solar_azimuth, axis_tilt=90,
286
- axis_azimuth=180, backtrack=False, max_angle=180)
287
- expected = pd.DataFrame(np.array(
288
- [[-180., 45., 0., 90.],
289
- [ 0., 45., 180., 90.],
290
- [ 179., 45., 359., 90.]]),
291
- columns=['tracker_theta', 'aoi', 'surface_azimuth', 'surface_tilt'])
292
- assert_frame_equal(out, expected)
293
-
294
-
295
- def test_low_sun_angles():
296
- # GH 656, 824
297
- result = tracking.singleaxis(
298
- apparent_zenith=80, apparent_azimuth=338, axis_tilt=30,
299
- axis_azimuth=180, max_angle=60, backtrack=True, gcr=0.35)
300
- expected = {
301
- 'tracker_theta': np.array([60.0]),
302
- 'aoi': np.array([80.420987]),
303
- 'surface_azimuth': np.array([253.897886]),
304
- 'surface_tilt': np.array([64.341094])}
305
- for k, v in result.items():
306
- assert_allclose(expected[k], v)
307
-
308
-
309
- def test_calc_axis_tilt():
310
- # expected values
311
- expected_axis_tilt = 2.239 # [degrees]
312
- expected_side_slope = 9.86649274360294 # [degrees]
313
- expected = DATA_DIR / 'singleaxis_tracker_wslope.csv'
314
- expected = pd.read_csv(expected, index_col='timestamp', parse_dates=True)
315
- # solar positions
316
- starttime = '2017-01-01T00:30:00-0300'
317
- stoptime = '2017-12-31T23:59:59-0300'
318
- lat, lon = -27.597300, -48.549610
319
- times = pd.DatetimeIndex(pd.date_range(starttime, stoptime, freq='h'))
320
- solpos = pvlib.solarposition.get_solarposition(times, lat, lon)
321
- # singleaxis tracker w/slope data
322
- slope_azimuth, slope_tilt = 77.34, 10.1149
323
- axis_azimuth = 0.0
324
- max_angle = 75.0
325
- # Note: GCR is relative to horizontal distance between rows
326
- gcr = 0.33292759 # GCR = length / horizontal_pitch = 1.64 / 5 / cos(9.86)
327
- # calculate tracker axis zenith
328
- axis_tilt = tracking.calc_axis_tilt(
329
- slope_azimuth, slope_tilt, axis_azimuth=axis_azimuth)
330
- assert np.isclose(axis_tilt, expected_axis_tilt)
331
- # calculate cross-axis tilt and relative rotation
332
- cross_axis_tilt = tracking.calc_cross_axis_tilt(
333
- slope_azimuth, slope_tilt, axis_azimuth, axis_tilt)
334
- assert np.isclose(cross_axis_tilt, expected_side_slope)
335
- sat = tracking.singleaxis(
336
- solpos.apparent_zenith, solpos.azimuth, axis_tilt, axis_azimuth,
337
- max_angle, backtrack=True, gcr=gcr, cross_axis_tilt=cross_axis_tilt)
338
- np.testing.assert_allclose(
339
- sat['tracker_theta'], expected['tracker_theta'], atol=1e-7)
340
- np.testing.assert_allclose(sat['aoi'], expected['aoi'], atol=1e-7)
341
- np.testing.assert_allclose(
342
- sat['surface_azimuth'], expected['surface_azimuth'], atol=1e-7)
343
- np.testing.assert_allclose(
344
- sat['surface_tilt'], expected['surface_tilt'], atol=1e-7)
345
-
346
-
347
- def test_slope_aware_backtracking():
348
- """
349
- Test validation data set from https://www.nrel.gov/docs/fy20osti/76626.pdf
350
- """
351
- index = pd.date_range('2019-01-01T08:00', '2019-01-01T17:00', freq='h')
352
- index = index.tz_localize('Etc/GMT+5')
353
- expected_data = pd.DataFrame(index=index, data=[
354
- ( 2.404287, 122.79177, -84.440, -10.899),
355
- (11.263058, 133.288729, -72.604, -25.747),
356
- (18.733558, 145.285552, -59.861, -59.861),
357
- (24.109076, 158.939435, -45.578, -45.578),
358
- (26.810735, 173.931802, -28.764, -28.764),
359
- (26.482495, 189.371536, -8.475, -8.475),
360
- (23.170447, 204.13681, 15.120, 15.120),
361
- (17.296785, 217.446538, 39.562, 39.562),
362
- ( 9.461862, 229.102218, 61.587, 32.339),
363
- ( 0.524817, 239.330401, 79.530, 5.490),
364
- ], columns=['ApparentElevation', 'SolarAzimuth',
365
- 'TrueTracking', 'Backtracking'])
366
- expected_axis_tilt = 9.666
367
- expected_slope_angle = -2.576
368
- slope_azimuth, slope_tilt = 180.0, 10.0
369
- axis_azimuth = 195.0
370
- axis_tilt = tracking.calc_axis_tilt(
371
- slope_azimuth, slope_tilt, axis_azimuth)
372
- assert np.isclose(axis_tilt, expected_axis_tilt, rtol=1e-3, atol=1e-3)
373
- cross_axis_tilt = tracking.calc_cross_axis_tilt(
374
- slope_azimuth, slope_tilt, axis_azimuth, axis_tilt)
375
- assert np.isclose(
376
- cross_axis_tilt, expected_slope_angle, rtol=1e-3, atol=1e-3)
377
- sat = tracking.singleaxis(
378
- 90.0-expected_data['ApparentElevation'], expected_data['SolarAzimuth'],
379
- axis_tilt, axis_azimuth, max_angle=90.0, backtrack=True, gcr=0.5,
380
- cross_axis_tilt=cross_axis_tilt)
381
- assert_series_equal(sat['tracker_theta'],
382
- expected_data['Backtracking'].rename('tracker_theta'),
383
- check_less_precise=True)
384
- truetracking = tracking.singleaxis(
385
- 90.0-expected_data['ApparentElevation'], expected_data['SolarAzimuth'],
386
- axis_tilt, axis_azimuth, max_angle=90.0, backtrack=False, gcr=0.5,
387
- cross_axis_tilt=cross_axis_tilt)
388
- assert_series_equal(truetracking['tracker_theta'],
389
- expected_data['TrueTracking'].rename('tracker_theta'),
390
- check_less_precise=True)
391
-
392
-
393
- def test_singleaxis_aoi_gh1221():
394
- # vertical tracker
395
- loc = pvlib.location.Location(40.1134, -88.3695)
396
- dr = pd.date_range(
397
- start='02-Jun-1998 00:00:00', end='02-Jun-1998 23:55:00', freq='5min',
398
- tz='Etc/GMT+6')
399
- sp = loc.get_solarposition(dr)
400
- tr = pvlib.tracking.singleaxis(
401
- sp['apparent_zenith'], sp['azimuth'], axis_tilt=90, axis_azimuth=180,
402
- max_angle=0.001, backtrack=False)
403
- fixed = pvlib.irradiance.aoi(90, 180, sp['apparent_zenith'], sp['azimuth'])
404
- fixed[np.isnan(tr['aoi'])] = np.nan
405
- assert np.allclose(tr['aoi'], fixed, equal_nan=True)
406
-
407
-
408
- def test_calc_surface_orientation_types():
409
- # numpy arrays
410
- rotations = np.array([-10, 0, 10])
411
- expected_tilts = np.array([10, 0, 10], dtype=float)
412
- expected_azimuths = np.array([270, 90, 90], dtype=float)
413
- out = tracking.calc_surface_orientation(tracker_theta=rotations)
414
- np.testing.assert_allclose(expected_tilts, out['surface_tilt'])
415
- np.testing.assert_allclose(expected_azimuths, out['surface_azimuth'])
416
-
417
- # pandas Series
418
- rotations = pd.Series(rotations)
419
- expected_tilts = pd.Series(expected_tilts).rename('surface_tilt')
420
- expected_azimuths = pd.Series(expected_azimuths).rename('surface_azimuth')
421
- out = tracking.calc_surface_orientation(tracker_theta=rotations)
422
- assert_series_equal(expected_tilts, out['surface_tilt'])
423
- assert_series_equal(expected_azimuths, out['surface_azimuth'])
424
-
425
- # float
426
- for rotation, expected_tilt, expected_azimuth in zip(
427
- rotations, expected_tilts, expected_azimuths):
428
- out = tracking.calc_surface_orientation(rotation)
429
- assert out['surface_tilt'] == pytest.approx(expected_tilt)
430
- assert out['surface_azimuth'] == pytest.approx(expected_azimuth)
431
-
432
-
433
- def test_calc_surface_orientation_kwargs():
434
- # non-default axis tilt & azimuth
435
- rotations = np.array([-10, 0, 10])
436
- expected_tilts = np.array([22.2687445, 20.0, 22.2687445])
437
- expected_azimuths = np.array([152.72683041, 180.0, 207.27316959])
438
- out = tracking.calc_surface_orientation(rotations,
439
- axis_tilt=20,
440
- axis_azimuth=180)
441
- np.testing.assert_allclose(out['surface_tilt'], expected_tilts)
442
- np.testing.assert_allclose(out['surface_azimuth'], expected_azimuths)
443
-
444
-
445
- def test_calc_surface_orientation_special():
446
- # special cases for rotations
447
- rotations = np.array([-180, -90, -0, 0, 90, 180])
448
- expected_tilts = np.array([180, 90, 0, 0, 90, 180], dtype=float)
449
- expected_azimuths = [270, 270, 90, 90, 90, 90]
450
- out = tracking.calc_surface_orientation(rotations)
451
- np.testing.assert_allclose(out['surface_tilt'], expected_tilts)
452
- np.testing.assert_allclose(out['surface_azimuth'], expected_azimuths)
453
-
454
- # special case for axis_tilt
455
- rotations = np.array([-10, 0, 10])
456
- expected_tilts = np.array([90, 90, 90], dtype=float)
457
- expected_azimuths = np.array([350, 0, 10], dtype=float)
458
- out = tracking.calc_surface_orientation(rotations, axis_tilt=90)
459
- np.testing.assert_allclose(out['surface_tilt'], expected_tilts)
460
- np.testing.assert_allclose(out['surface_azimuth'], expected_azimuths)
461
-
462
- # special cases for axis_azimuth
463
- rotations = np.array([-10, 0, 10])
464
- expected_tilts = np.array([10, 0, 10], dtype=float)
465
- expected_azimuth_offsets = np.array([-90, 90, 90], dtype=float)
466
- for axis_azimuth in [0, 90, 180, 270, 360]:
467
- expected_azimuths = (axis_azimuth + expected_azimuth_offsets) % 360
468
- out = tracking.calc_surface_orientation(rotations,
469
- axis_azimuth=axis_azimuth)
470
- np.testing.assert_allclose(out['surface_tilt'], expected_tilts)
471
- # the rounding is a bit ugly, but necessary to test approximately equal
472
- # in a modulo-360 sense.
473
- np.testing.assert_allclose(np.round(out['surface_azimuth'], 4) % 360,
474
- expected_azimuths, rtol=1e-5, atol=1e-5)
@@ -1,60 +0,0 @@
1
- import pandas as pd
2
-
3
- from numpy.testing import assert_allclose
4
-
5
- from pvlib import transformer
6
-
7
-
8
- def test_simple_efficiency():
9
-
10
- # define test inputs
11
- input_power = pd.Series([
12
- -800.0,
13
- 436016.609823837,
14
- 1511820.16603752,
15
- 1580687.44677249,
16
- 1616441.79660171
17
- ])
18
- no_load_loss = 0.002
19
- load_loss = 0.007
20
- transformer_rating = 2750000
21
-
22
- # define expected test results
23
- expected_output_power = pd.Series([
24
- -6300.10103234071,
25
- 430045.854892526,
26
- 1500588.39919874,
27
- 1568921.77089526,
28
- 1604389.62839879
29
- ])
30
-
31
- # run test function with test inputs
32
- calculated_output_power = transformer.simple_efficiency(
33
- input_power=input_power,
34
- no_load_loss=no_load_loss,
35
- load_loss=load_loss,
36
- transformer_rating=transformer_rating
37
- )
38
-
39
- # determine if expected results are obtained
40
- assert_allclose(calculated_output_power, expected_output_power)
41
-
42
-
43
- def test_simple_efficiency_known_values():
44
- no_load_loss = 0.005
45
- load_loss = 0.01
46
- rating = 1000
47
- args = (no_load_loss, load_loss, rating)
48
-
49
- # verify correct behavior at no-load condition
50
- assert_allclose(
51
- transformer.simple_efficiency(no_load_loss*rating, *args),
52
- 0.0
53
- )
54
-
55
- # verify correct behavior at rated condition
56
- assert_allclose(
57
- transformer.simple_efficiency(rating*(1 + no_load_loss + load_loss),
58
- *args),
59
- rating,
60
- )