pvlib 0.11.2__py3-none-any.whl → 0.12.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (139) hide show
  1. pvlib/__init__.py +1 -0
  2. pvlib/atmosphere.py +0 -9
  3. pvlib/bifacial/infinite_sheds.py +4 -3
  4. pvlib/bifacial/utils.py +2 -1
  5. pvlib/iotools/psm3.py +1 -1
  6. pvlib/iotools/pvgis.py +10 -2
  7. pvlib/iotools/tmy.py +3 -69
  8. pvlib/irradiance.py +14 -0
  9. pvlib/location.py +73 -33
  10. pvlib/modelchain.py +18 -35
  11. pvlib/pvsystem.py +7 -10
  12. pvlib/snow.py +64 -28
  13. pvlib/spectrum/__init__.py +0 -1
  14. pvlib/spectrum/irradiance.py +0 -63
  15. pvlib/spectrum/mismatch.py +3 -3
  16. pvlib/tools.py +6 -5
  17. {pvlib-0.11.2.dist-info → pvlib-0.12.0.dist-info}/METADATA +5 -3
  18. pvlib-0.12.0.dist-info/RECORD +75 -0
  19. {pvlib-0.11.2.dist-info → pvlib-0.12.0.dist-info}/WHEEL +1 -1
  20. pvlib/data/BIRD_08_16_2012.csv +0 -8761
  21. pvlib/data/BIRD_08_16_2012_patm.csv +0 -8761
  22. pvlib/data/Burlington, United States SolarAnywhere Time Series 2021 Lat_44_465 Lon_-73_205 TMY3 format.csv +0 -8762
  23. pvlib/data/Burlington, United States SolarAnywhere Time Series 20210101 to 20210103 Lat_44_4675 Lon_-73_2075 SA format.csv +0 -578
  24. pvlib/data/Burlington, United States SolarAnywhere Typical GHI Year Lat_44_465 Lon_-73_205 SA format.csv +0 -74
  25. pvlib/data/CPS SCH275KTL-DO-US-800-250kW_275kVA_1.OND +0 -146
  26. pvlib/data/CRNS0101-05-2019-AZ_Tucson_11_W.txt +0 -4
  27. pvlib/data/CRN_with_problems.txt +0 -3
  28. pvlib/data/ET-M772BH550GL.PAN +0 -75
  29. pvlib/data/NLD_Amsterdam062400_IWEC.epw +0 -8768
  30. pvlib/data/PVsyst_demo.csv +0 -10757
  31. pvlib/data/PVsyst_demo_model.csv +0 -3588
  32. pvlib/data/SRML-day-EUPO1801.txt +0 -1441
  33. pvlib/data/abq19056.dat +0 -6
  34. pvlib/data/bishop88_numerical_precision.csv +0 -101
  35. pvlib/data/bsrn-lr0100-pay0616.dat +0 -86901
  36. pvlib/data/bsrn-pay0616.dat.gz +0 -0
  37. pvlib/data/cams_mcclear_1min_verbose.csv +0 -60
  38. pvlib/data/cams_mcclear_monthly.csv +0 -42
  39. pvlib/data/cams_radiation_1min_verbose.csv +0 -72
  40. pvlib/data/cams_radiation_monthly.csv +0 -47
  41. pvlib/data/detect_clearsky_data.csv +0 -35
  42. pvlib/data/detect_clearsky_threshold_data.csv +0 -126
  43. pvlib/data/greensboro_kimber_soil_manwash.dat +0 -8761
  44. pvlib/data/greensboro_kimber_soil_nowash.dat +0 -8761
  45. pvlib/data/inverter_fit_snl_meas.csv +0 -127
  46. pvlib/data/inverter_fit_snl_sim.csv +0 -19
  47. pvlib/data/ivtools_numdiff.csv +0 -52
  48. pvlib/data/midc_20181014.txt +0 -1441
  49. pvlib/data/midc_raw_20181018.txt +0 -1441
  50. pvlib/data/midc_raw_short_header_20191115.txt +0 -1441
  51. pvlib/data/msn19056.dat +0 -6
  52. pvlib/data/precise_iv_curves1.json +0 -10251
  53. pvlib/data/precise_iv_curves2.json +0 -10251
  54. pvlib/data/precise_iv_curves_parameter_sets1.csv +0 -33
  55. pvlib/data/precise_iv_curves_parameter_sets2.csv +0 -33
  56. pvlib/data/pvgis_hourly_Timeseries_45.000_8.000_SA2_10kWp_CIS_5_2a_2013_2014.json +0 -1
  57. pvlib/data/pvgis_hourly_Timeseries_45.000_8.000_SA_30deg_0deg_2016_2016.csv +0 -35
  58. pvlib/data/pvgis_tmy_meta.json +0 -32
  59. pvlib/data/pvgis_tmy_test.csv +0 -8761
  60. pvlib/data/pvwatts_8760_rackmount.csv +0 -8779
  61. pvlib/data/pvwatts_8760_roofmount.csv +0 -8779
  62. pvlib/data/singleaxis_tracker_wslope.csv +0 -8761
  63. pvlib/data/spectrl2_example_spectra.csv +0 -123
  64. pvlib/data/surfrad-slv16001.dat +0 -1442
  65. pvlib/data/test_psm3_2017.csv +0 -17521
  66. pvlib/data/test_psm3_2019_5min.csv +0 -289
  67. pvlib/data/test_psm3_tmy-2017.csv +0 -8761
  68. pvlib/data/test_read_psm3.csv +0 -17523
  69. pvlib/data/test_read_pvgis_horizon.csv +0 -49
  70. pvlib/data/tmy_45.000_8.000_2005_2023.csv +0 -8789
  71. pvlib/data/tmy_45.000_8.000_2005_2023.epw +0 -8768
  72. pvlib/data/tmy_45.000_8.000_2005_2023.json +0 -1
  73. pvlib/data/tmy_45.000_8.000_2005_2023.txt +0 -8761
  74. pvlib/data/tmy_45.000_8.000_userhorizon.json +0 -1
  75. pvlib/spa_c_files/README.md +0 -81
  76. pvlib/spa_c_files/cspa_py.pxd +0 -43
  77. pvlib/spa_c_files/spa_py.pyx +0 -30
  78. pvlib/tests/__init__.py +0 -0
  79. pvlib/tests/bifacial/__init__.py +0 -0
  80. pvlib/tests/bifacial/test_infinite_sheds.py +0 -317
  81. pvlib/tests/bifacial/test_losses_models.py +0 -54
  82. pvlib/tests/bifacial/test_pvfactors.py +0 -82
  83. pvlib/tests/bifacial/test_utils.py +0 -192
  84. pvlib/tests/conftest.py +0 -476
  85. pvlib/tests/iotools/__init__.py +0 -0
  86. pvlib/tests/iotools/test_acis.py +0 -213
  87. pvlib/tests/iotools/test_bsrn.py +0 -131
  88. pvlib/tests/iotools/test_crn.py +0 -95
  89. pvlib/tests/iotools/test_epw.py +0 -23
  90. pvlib/tests/iotools/test_midc.py +0 -89
  91. pvlib/tests/iotools/test_panond.py +0 -32
  92. pvlib/tests/iotools/test_psm3.py +0 -198
  93. pvlib/tests/iotools/test_pvgis.py +0 -644
  94. pvlib/tests/iotools/test_sodapro.py +0 -298
  95. pvlib/tests/iotools/test_solaranywhere.py +0 -287
  96. pvlib/tests/iotools/test_solargis.py +0 -68
  97. pvlib/tests/iotools/test_solcast.py +0 -324
  98. pvlib/tests/iotools/test_solrad.py +0 -152
  99. pvlib/tests/iotools/test_srml.py +0 -124
  100. pvlib/tests/iotools/test_surfrad.py +0 -75
  101. pvlib/tests/iotools/test_tmy.py +0 -133
  102. pvlib/tests/ivtools/__init__.py +0 -0
  103. pvlib/tests/ivtools/test_sde.py +0 -230
  104. pvlib/tests/ivtools/test_sdm.py +0 -429
  105. pvlib/tests/ivtools/test_utils.py +0 -173
  106. pvlib/tests/spectrum/__init__.py +0 -0
  107. pvlib/tests/spectrum/conftest.py +0 -40
  108. pvlib/tests/spectrum/test_irradiance.py +0 -138
  109. pvlib/tests/spectrum/test_mismatch.py +0 -304
  110. pvlib/tests/spectrum/test_response.py +0 -124
  111. pvlib/tests/spectrum/test_spectrl2.py +0 -72
  112. pvlib/tests/test__deprecation.py +0 -97
  113. pvlib/tests/test_albedo.py +0 -84
  114. pvlib/tests/test_atmosphere.py +0 -351
  115. pvlib/tests/test_clearsky.py +0 -884
  116. pvlib/tests/test_conftest.py +0 -37
  117. pvlib/tests/test_iam.py +0 -555
  118. pvlib/tests/test_inverter.py +0 -213
  119. pvlib/tests/test_irradiance.py +0 -1487
  120. pvlib/tests/test_location.py +0 -356
  121. pvlib/tests/test_modelchain.py +0 -2020
  122. pvlib/tests/test_numerical_precision.py +0 -124
  123. pvlib/tests/test_pvarray.py +0 -71
  124. pvlib/tests/test_pvsystem.py +0 -2511
  125. pvlib/tests/test_scaling.py +0 -207
  126. pvlib/tests/test_shading.py +0 -391
  127. pvlib/tests/test_singlediode.py +0 -608
  128. pvlib/tests/test_snow.py +0 -212
  129. pvlib/tests/test_soiling.py +0 -230
  130. pvlib/tests/test_solarposition.py +0 -966
  131. pvlib/tests/test_spa.py +0 -454
  132. pvlib/tests/test_temperature.py +0 -470
  133. pvlib/tests/test_tools.py +0 -146
  134. pvlib/tests/test_tracking.py +0 -474
  135. pvlib/tests/test_transformer.py +0 -60
  136. pvlib-0.11.2.dist-info/RECORD +0 -191
  137. {pvlib-0.11.2.dist-info → pvlib-0.12.0.dist-info/licenses}/AUTHORS.md +0 -0
  138. {pvlib-0.11.2.dist-info → pvlib-0.12.0.dist-info/licenses}/LICENSE +0 -0
  139. {pvlib-0.11.2.dist-info → pvlib-0.12.0.dist-info}/top_level.txt +0 -0
@@ -1,324 +0,0 @@
1
- from unittest.mock import patch
2
- import pandas as pd
3
- import pvlib
4
- import pytest
5
-
6
-
7
- @pytest.mark.parametrize("endpoint,params,api_key,json_response", [
8
- (
9
- "live/radiation_and_weather",
10
- dict(
11
- latitude=-33.856784,
12
- longitude=151.215297,
13
- output_parameters='dni,ghi'
14
- ),
15
- "1234",
16
- {'estimated_actuals':
17
- [{'dni': 836, 'ghi': 561,
18
- 'period_end': '2023-09-18T05:00:00.0000000Z', 'period': 'PT30M'},
19
- {'dni': 866, 'ghi': 643,
20
- 'period_end': '2023-09-18T04:30:00.0000000Z', 'period': 'PT30M'},
21
- {'dni': 890, 'ghi': 713,
22
- 'period_end': '2023-09-18T04:00:00.0000000Z', 'period': 'PT30M'},
23
- {'dni': 909, 'ghi': 768,
24
- 'period_end': '2023-09-18T03:30:00.0000000Z', 'period': 'PT30M'}]
25
- }
26
- ),
27
- ])
28
- def test__get_solcast(requests_mock, endpoint, params, api_key, json_response):
29
- mock_url = f"https://api.solcast.com.au/data/{endpoint}?" \
30
- f"latitude={params['latitude']}&" \
31
- f"longitude={params['longitude']}&" \
32
- f"output_parameters={params['output_parameters']}"
33
-
34
- requests_mock.get(mock_url, json=json_response)
35
-
36
- # with variables remapping
37
- pd.testing.assert_frame_equal(
38
- pvlib.iotools.solcast._get_solcast(
39
- endpoint, params, api_key, True
40
- ),
41
- pvlib.iotools.solcast._solcast2pvlib(
42
- pd.DataFrame.from_dict(
43
- json_response[list(json_response.keys())[0]])
44
- )
45
- )
46
-
47
- # no remapping of variables
48
- pd.testing.assert_frame_equal(
49
- pvlib.iotools.solcast._get_solcast(
50
- endpoint, params, api_key, False
51
- ),
52
- pd.DataFrame.from_dict(
53
- json_response[list(json_response.keys())[0]])
54
- )
55
-
56
-
57
- @pytest.mark.parametrize("map_variables", [True, False])
58
- @pytest.mark.parametrize("endpoint,function,params,json_response", [
59
- (
60
- "live/radiation_and_weather",
61
- pvlib.iotools.get_solcast_live,
62
- dict(
63
- api_key="1234",
64
- latitude=-33.856784,
65
- longitude=151.215297,
66
- output_parameters='dni,ghi'
67
- ),
68
- {'estimated_actuals':
69
- [{'dni': 836, 'ghi': 561,
70
- 'period_end': '2023-09-18T05:00:00.0000000Z', 'period': 'PT30M'},
71
- {'dni': 866, 'ghi': 643,
72
- 'period_end': '2023-09-18T04:30:00.0000000Z', 'period': 'PT30M'},
73
- {'dni': 890, 'ghi': 713,
74
- 'period_end': '2023-09-18T04:00:00.0000000Z', 'period': 'PT30M'},
75
- {'dni': 909, 'ghi': 768,
76
- 'period_end': '2023-09-18T03:30:00.0000000Z', 'period': 'PT30M'}]
77
- }
78
- ),
79
- ])
80
- def test_get_solcast_live(
81
- requests_mock, endpoint, function, params, json_response, map_variables
82
- ):
83
- mock_url = (
84
- f"https://api.solcast.com.au/data/{endpoint}?"
85
- f"&latitude={params['latitude']}&"
86
- f"longitude={params['longitude']}&"
87
- f"output_parameters={params['output_parameters']}&format=json"
88
- )
89
-
90
- requests_mock.get(mock_url, json=json_response)
91
-
92
- if map_variables:
93
- pd.testing.assert_frame_equal(
94
- function(**params, map_variables=map_variables)[0],
95
- pvlib.iotools.solcast._solcast2pvlib(
96
- pd.DataFrame.from_dict(
97
- json_response[list(json_response.keys())[0]]
98
- )
99
- ),
100
- )
101
- else:
102
- pd.testing.assert_frame_equal(
103
- function(**params, map_variables=map_variables)[0],
104
- pd.DataFrame.from_dict(
105
- json_response[list(json_response.keys())[0]]
106
- ),
107
- )
108
-
109
-
110
- @pytest.mark.parametrize("map_variables", [True, False])
111
- @pytest.mark.parametrize("endpoint,function,params,json_response", [
112
- (
113
- "tmy/radiation_and_weather",
114
- pvlib.iotools.get_solcast_tmy,
115
- dict(
116
- api_key="1234",
117
- latitude=-33.856784,
118
- longitude=51.215297
119
- ),
120
- {'estimated_actuals': [
121
- {'dni': 151, 'ghi': 609,
122
- 'period_end': '2059-01-01T01:00:00.0000000Z', 'period': 'PT60M'},
123
- {'dni': 0, 'ghi': 404,
124
- 'period_end': '2059-01-01T02:00:00.0000000Z', 'period': 'PT60M'},
125
- {'dni': 0, 'ghi': 304,
126
- 'period_end': '2059-01-01T03:00:00.0000000Z', 'period': 'PT60M'},
127
- {'dni': 0, 'ghi': 174,
128
- 'period_end': '2059-01-01T04:00:00.0000000Z', 'period': 'PT60M'},
129
- {'dni': 0, 'ghi': 111,
130
- 'period_end': '2059-01-01T05:00:00.0000000Z', 'period': 'PT60M'}]
131
- }
132
- ),
133
- ])
134
- def test_get_solcast_tmy(
135
- requests_mock, endpoint, function, params, json_response, map_variables
136
- ):
137
-
138
- mock_url = f"https://api.solcast.com.au/data/{endpoint}?" \
139
- f"&latitude={params['latitude']}&" \
140
- f"longitude={params['longitude']}&format=json"
141
-
142
- requests_mock.get(mock_url, json=json_response)
143
-
144
- if map_variables:
145
- pd.testing.assert_frame_equal(
146
- function(**params, map_variables=map_variables)[0],
147
- pvlib.iotools.solcast._solcast2pvlib(
148
- pd.DataFrame.from_dict(
149
- json_response[list(json_response.keys())[0]]
150
- )
151
- ),
152
- )
153
- else:
154
- pd.testing.assert_frame_equal(
155
- function(**params, map_variables=map_variables)[0],
156
- pd.DataFrame.from_dict(
157
- json_response[list(json_response.keys())[0]]
158
- ),
159
- )
160
-
161
-
162
- @pytest.mark.parametrize("in_df,out_df", [
163
- (
164
- pd.DataFrame(
165
- [[942, 843, 1017.4, 30, 7.8, 316, 1010, -2, 4.6, 16.4,
166
- '2023-09-20T02:00:00.0000000Z', 'PT30M', 90],
167
- [936, 832, 1017.9, 30, 7.9, 316, 996, -14, 4.5, 16.3,
168
- '2023-09-20T01:30:00.0000000Z', 'PT30M', 0]],
169
- columns=[
170
- 'dni', 'ghi', 'surface_pressure', 'air_temp', 'wind_speed_10m',
171
- 'wind_direction_10m', 'gti', 'azimuth', 'dewpoint_temp',
172
- 'precipitable_water', 'period_end', 'period', 'zenith'],
173
- index=pd.RangeIndex(start=0, stop=2, step=1)
174
- ),
175
- pd.DataFrame(
176
- [[9.4200e+02, 8.4300e+02, 1.0174e+05, 3.0000e+01, 7.8000e+00,
177
- 3.1600e+02, 1.0100e+03, 2.0000e+00, 4.6000e+00, 1.6400e+00, 90],
178
- [9.3600e+02, 8.3200e+02, 1.0179e+05, 3.0000e+01, 7.9000e+00,
179
- 3.1600e+02, 9.9600e+02, 1.4000e+01, 4.5000e+00, 1.6300e+00, 0]],
180
- columns=[
181
- 'dni', 'ghi', 'pressure', 'temp_air', 'wind_speed',
182
- 'wind_direction', 'poa_global', 'solar_azimuth',
183
- 'temp_dew', 'precipitable_water', 'solar_zenith'],
184
- index=pd.DatetimeIndex(
185
- ['2023-09-20 01:45:00+00:00', '2023-09-20 01:15:00+00:00'],
186
- dtype='datetime64[ns, UTC]', name='period_mid', freq=None)
187
- )
188
- )
189
- ])
190
- def test_solcast2pvlib(in_df, out_df):
191
- df = pvlib.iotools.solcast._solcast2pvlib(in_df)
192
- pd.testing.assert_frame_equal(df.astype(float), out_df.astype(float))
193
-
194
-
195
- @pytest.mark.parametrize("map_variables", [True, False])
196
- @pytest.mark.parametrize("endpoint,function,params,json_response", [
197
- (
198
- "historic/radiation_and_weather",
199
- pvlib.iotools.get_solcast_historic,
200
- dict(
201
- api_key="1234",
202
- latitude=-33.856784,
203
- longitude=51.215297,
204
- start="2023-01-01T08:00",
205
- duration="P1D",
206
- period="PT1H",
207
- output_parameters='dni'
208
- ), {'estimated_actuals': [
209
- {'dni': 822, 'period_end': '2023-01-01T09:00:00.0000000Z',
210
- 'period': 'PT60M'},
211
- {'dni': 918, 'period_end': '2023-01-01T10:00:00.0000000Z',
212
- 'period': 'PT60M'},
213
- {'dni': 772, 'period_end': '2023-01-01T11:00:00.0000000Z',
214
- 'period': 'PT60M'},
215
- {'dni': 574, 'period_end': '2023-01-01T12:00:00.0000000Z',
216
- 'period': 'PT60M'},
217
- {'dni': 494, 'period_end': '2023-01-01T13:00:00.0000000Z',
218
- 'period': 'PT60M'}
219
- ]}
220
- ),
221
- ])
222
- def test_get_solcast_historic(
223
- requests_mock, endpoint, function, params, json_response, map_variables
224
- ):
225
- mock_url = f"https://api.solcast.com.au/data/{endpoint}?" \
226
- f"&latitude={params['latitude']}&" \
227
- f"longitude={params['longitude']}&format=json"
228
-
229
- requests_mock.get(mock_url, json=json_response)
230
-
231
- if map_variables:
232
- pd.testing.assert_frame_equal(
233
- function(**params, map_variables=map_variables)[0],
234
- pvlib.iotools.solcast._solcast2pvlib(
235
- pd.DataFrame.from_dict(
236
- json_response[list(json_response.keys())[0]]
237
- )
238
- ),
239
- )
240
- else:
241
- pd.testing.assert_frame_equal(
242
- function(**params, map_variables=map_variables)[0],
243
- pd.DataFrame.from_dict(
244
- json_response[list(json_response.keys())[0]]
245
- ),
246
- )
247
-
248
-
249
- @pytest.mark.parametrize("map_variables", [True, False])
250
- @pytest.mark.parametrize("endpoint,function,params,json_response", [
251
- (
252
- "forecast/radiation_and_weather",
253
- pvlib.iotools.get_solcast_forecast,
254
- dict(
255
- api_key="1234",
256
- latitude=-33.856784,
257
- longitude=51.215297,
258
- hours="5",
259
- period="PT1H",
260
- output_parameters='dni'
261
- ), {
262
- 'forecast': [
263
- {'dni': 0, 'period_end': '2023-12-13T01:00:00.0000000Z',
264
- 'period': 'PT1H'},
265
- {'dni': 1, 'period_end': '2023-12-13T02:00:00.0000000Z',
266
- 'period': 'PT1H'},
267
- {'dni': 2, 'period_end': '2023-12-13T03:00:00.0000000Z',
268
- 'period': 'PT1H'},
269
- {'dni': 3, 'period_end': '2023-12-13T04:00:00.0000000Z',
270
- 'period': 'PT1H'},
271
- {'dni': 4, 'period_end': '2023-12-13T05:00:00.0000000Z',
272
- 'period': 'PT1H'},
273
- {'dni': 5, 'period_end': '2023-12-13T06:00:00.0000000Z',
274
- 'period': 'PT1H'}
275
- ]}
276
- ),
277
- ])
278
- def test_get_solcast_forecast(
279
- requests_mock, endpoint, function, params, json_response, map_variables
280
- ):
281
- mock_url = f"https://api.solcast.com.au/data/{endpoint}?" \
282
- f"&latitude={params['latitude']}&" \
283
- f"longitude={params['longitude']}&format=json"
284
-
285
- requests_mock.get(mock_url, json=json_response)
286
-
287
- if map_variables:
288
- pd.testing.assert_frame_equal(
289
- function(**params, map_variables=map_variables)[0],
290
- pvlib.iotools.solcast._solcast2pvlib(
291
- pd.DataFrame.from_dict(
292
- json_response[list(json_response.keys())[0]]
293
- )
294
- ),
295
- )
296
- else:
297
- pd.testing.assert_frame_equal(
298
- function(**params, map_variables=map_variables)[0],
299
- pd.DataFrame.from_dict(
300
- json_response[list(json_response.keys())[0]]
301
- ),
302
- )
303
-
304
-
305
- @pytest.mark.parametrize(
306
- "function",
307
- [
308
- pvlib.iotools.get_solcast_forecast,
309
- pvlib.iotools.get_solcast_live,
310
- pvlib.iotools.get_solcast_tmy,
311
- pvlib.iotools.get_solcast_historic,
312
- ],
313
- )
314
- @patch("requests.api.request")
315
- def test_raises_exception(mock_response, function):
316
- dummy_args = {
317
- "latitude": 0,
318
- "longitude": 0,
319
- "api_key": "",
320
- }
321
- with patch.object(mock_response, "status_code", return_value=404):
322
- with pytest.raises(Exception):
323
- function(**dummy_args)
324
- mock_response.json.assert_called_once()
@@ -1,152 +0,0 @@
1
- import pandas as pd
2
- import numpy as np
3
- from numpy import nan
4
-
5
- import pytest
6
-
7
- from pvlib.iotools import solrad
8
- from ..conftest import DATA_DIR, assert_frame_equal, RERUNS, RERUNS_DELAY
9
-
10
-
11
- testfile = DATA_DIR / 'abq19056.dat'
12
- testfile_mad = DATA_DIR / 'msn19056.dat'
13
- https_testfile = ('https://gml.noaa.gov/aftp/data/radiation/solrad/msn/'
14
- '2019/msn19056.dat')
15
-
16
- columns = [
17
- 'year', 'julian_day', 'month', 'day', 'hour', 'minute', 'decimal_time',
18
- 'solar_zenith', 'ghi', 'ghi_flag', 'dni', 'dni_flag', 'dhi', 'dhi_flag',
19
- 'uvb', 'uvb_flag', 'uvb_temp', 'uvb_temp_flag', 'std_dw_psp', 'std_direct',
20
- 'std_diffuse', 'std_uvb']
21
- index = pd.DatetimeIndex(['2019-02-25 00:00:00',
22
- '2019-02-25 00:01:00',
23
- '2019-02-25 00:02:00',
24
- '2019-02-25 00:03:00'],
25
- freq=None).tz_localize('UTC')
26
- values = np.array([
27
- [2.019e+03, 5.600e+01, 2.000e+00, 2.500e+01, 0.000e+00, 0.000e+00,
28
- 0.000e+00, 7.930e+01, 1.045e+02, 0.000e+00, 6.050e+01, 0.000e+00,
29
- 9.780e+01, 0.000e+00, 5.900e+00, 0.000e+00, 4.360e+01, 0.000e+00,
30
- 3.820e-01, 2.280e+00, 4.310e-01, 6.000e-02],
31
- [2.019e+03, 5.600e+01, 2.000e+00, 2.500e+01, 0.000e+00, 1.000e+00,
32
- 1.700e-02, 7.949e+01, 1.026e+02, 0.000e+00, 5.970e+01, 0.000e+00,
33
- 9.620e+01, 0.000e+00, 5.700e+00, 0.000e+00, 4.360e+01, 0.000e+00,
34
- 7.640e-01, 1.800e+00, 4.310e-01, 6.000e-02],
35
- [2.019e+03, 5.600e+01, 2.000e+00, 2.500e+01, 0.000e+00, 2.000e+00,
36
- 3.300e-02, 7.968e+01, 1.021e+02, 0.000e+00, 6.580e+01, 0.000e+00,
37
- 9.480e+01, 0.000e+00, 5.500e+00, 0.000e+00, 4.360e+01, 0.000e+00,
38
- 3.820e-01, 4.079e+00, 3.230e-01, 6.000e-02],
39
- [2.019e+03, 5.600e+01, 2.000e+00, 2.500e+01, 0.000e+00, 3.000e+00,
40
- 5.000e-02, 7.987e+01, 1.026e+02, 0.000e+00, 7.630e+01, 0.000e+00,
41
- nan, 0.000e+00, 5.300e+00, 0.000e+00, 4.360e+01, 0.000e+00,
42
- 5.090e-01, 1.920e+00, 2.150e-01, 5.000e-02]])
43
- dtypes = [
44
- 'int64', 'int64', 'int64', 'int64', 'int64', 'int64', 'float64',
45
- 'float64', 'float64', 'int64', 'float64', 'int64', 'float64', 'int64',
46
- 'float64', 'int64', 'float64', 'int64', 'float64', 'float64',
47
- 'float64', 'float64']
48
-
49
- columns_mad = [
50
- 'year', 'julian_day', 'month', 'day', 'hour', 'minute', 'decimal_time',
51
- 'solar_zenith', 'ghi', 'ghi_flag', 'dni', 'dni_flag', 'dhi', 'dhi_flag',
52
- 'uvb', 'uvb_flag', 'uvb_temp', 'uvb_temp_flag', 'dpir', 'dpir_flag',
53
- 'dpirc', 'dpirc_flag', 'dpird', 'dpird_flag', 'std_dw_psp',
54
- 'std_direct', 'std_diffuse', 'std_uvb', 'std_dpir', 'std_dpirc',
55
- 'std_dpird']
56
- values_mad = np.array([
57
- [ 2.019e+03, 5.600e+01, 2.000e+00, 2.500e+01, 0.000e+00,
58
- 0.000e+00, 0.000e+00, 9.428e+01, -2.300e+00, 0.000e+00,
59
- 0.000e+00, 0.000e+00, 4.000e-01, 0.000e+00, nan,
60
- 1.000e+00, nan, 1.000e+00, 1.872e+02, 0.000e+00,
61
- 2.656e+02, 0.000e+00, 2.653e+02, 0.000e+00, 0.000e+00,
62
- 0.000e+00, 0.000e+00, nan, 2.000e-03, 2.600e+01,
63
- 2.700e+01],
64
- [ 2.019e+03, 5.600e+01, 2.000e+00, 2.500e+01, 0.000e+00,
65
- 1.000e+00, 1.700e-02, 9.446e+01, -2.300e+00, 0.000e+00,
66
- 0.000e+00, 0.000e+00, 1.000e-01, 0.000e+00, nan,
67
- 1.000e+00, nan, 1.000e+00, 1.882e+02, 0.000e+00,
68
- 2.656e+02, 0.000e+00, 2.653e+02, 0.000e+00, 1.330e-01,
69
- 1.280e-01, 2.230e-01, nan, 1.000e-03, 2.600e+01,
70
- 7.200e+01],
71
- [ 2.019e+03, 5.600e+01, 2.000e+00, 2.500e+01, 0.000e+00,
72
- 2.000e+00, 3.300e-02, 9.464e+01, -2.700e+00, 0.000e+00,
73
- -2.000e-01, 0.000e+00, 0.000e+00, 0.000e+00, nan,
74
- 1.000e+00, nan, 1.000e+00, 1.876e+02, 0.000e+00,
75
- 2.656e+02, 0.000e+00, 2.653e+02, 0.000e+00, 0.000e+00,
76
- 2.570e-01, 0.000e+00, nan, 1.000e-03, 2.400e+01,
77
- 4.200e+01],
78
- [ 2.019e+03, 5.600e+01, 2.000e+00, 2.500e+01, 0.000e+00,
79
- 3.000e+00, 5.000e-02, 9.482e+01, -2.500e+00, 0.000e+00,
80
- 4.000e-01, 0.000e+00, 0.000e+00, 0.000e+00, nan,
81
- 1.000e+00, nan, 1.000e+00, 1.873e+02, 0.000e+00,
82
- 2.656e+02, 0.000e+00, 2.653e+02, 0.000e+00, 2.660e-01,
83
- 3.850e-01, 0.000e+00, nan, 1.000e-03, 2.600e+01,
84
- 4.800e+01]])
85
- dtypes_mad = [
86
- 'int64', 'int64', 'int64', 'int64', 'int64', 'int64', 'float64', 'float64',
87
- 'float64', 'int64', 'float64', 'int64', 'float64', 'int64', 'float64',
88
- 'int64', 'float64', 'int64', 'float64', 'int64', 'float64', 'int64',
89
- 'float64', 'int64', 'float64', 'float64', 'float64', 'float64', 'float64',
90
- 'float64', 'float64']
91
- meta = {'station_name': 'Albuquerque', 'latitude': 35.03796,
92
- 'longitude': -106.62211, 'altitude': 1617, 'TZ': -7}
93
- meta_mad = {'station_name': 'Madison', 'latitude': 43.07250,
94
- 'longitude': -89.41133, 'altitude': 271, 'TZ': -6}
95
-
96
-
97
- @pytest.mark.parametrize('testfile,index,columns,values,dtypes,meta', [
98
- (testfile, index, columns, values, dtypes, meta),
99
- (testfile_mad, index, columns_mad, values_mad, dtypes_mad, meta_mad)
100
- ])
101
- def test_read_solrad(testfile, index, columns, values, dtypes, meta):
102
- expected = pd.DataFrame(values, columns=columns, index=index)
103
- for (col, _dtype) in zip(expected.columns, dtypes):
104
- expected[col] = expected[col].astype(_dtype)
105
- out, m = solrad.read_solrad(testfile)
106
- assert_frame_equal(out, expected)
107
- assert m == meta
108
-
109
-
110
- @pytest.mark.remote_data
111
- @pytest.mark.flaky(reruns=RERUNS, reruns_delay=RERUNS_DELAY)
112
- def test_read_solrad_https():
113
- # Test reading of https files.
114
- # If this test begins failing, SOLRAD's data structure or data
115
- # archive may have changed.
116
- local_data, _ = solrad.read_solrad(testfile_mad)
117
- remote_data, _ = solrad.read_solrad(https_testfile)
118
- # local file only contains four rows to save space
119
- assert_frame_equal(local_data, remote_data.iloc[:4])
120
-
121
-
122
- @pytest.mark.remote_data
123
- @pytest.mark.parametrize('testfile, station', [
124
- (testfile, 'abq'),
125
- (testfile_mad, 'msn'),
126
- ])
127
- def test_get_solrad(testfile, station):
128
- df, meta = solrad.get_solrad(station, "2019-02-25", "2019-02-25")
129
-
130
- assert meta['station'] == station
131
- assert isinstance(meta['filenames'], list)
132
-
133
- assert len(df) == 1440
134
- assert df.index[0] == pd.to_datetime('2019-02-25 00:00+00:00')
135
- assert df.index[-1] == pd.to_datetime('2019-02-25 23:59+00:00')
136
-
137
- expected, _ = solrad.read_solrad(testfile)
138
- actual = df.reindex(expected.index)
139
- # ABQ test file has an unexplained NaN in row 4; just verify first 3 rows
140
- assert_frame_equal(actual.iloc[:3], expected.iloc[:3])
141
-
142
-
143
- @pytest.mark.remote_data
144
- def test_get_solrad_missing_day():
145
- # data availability begins for ABQ on 2002-02-01 (DOY 32), so requesting
146
- # data before that will raise a warning
147
- message = 'The following file was not found: abq/2002/abq02031.dat'
148
- with pytest.warns(UserWarning, match=message):
149
- df, meta = solrad.get_solrad('abq', '2002-01-31', '2002-02-01')
150
-
151
- # but the data for 2022-02-01 is still returned
152
- assert not df.empty
@@ -1,124 +0,0 @@
1
- from numpy import isnan
2
- import pandas as pd
3
- import pytest
4
-
5
- from pvlib.iotools import srml
6
- from ..conftest import (DATA_DIR, RERUNS, RERUNS_DELAY, assert_index_equal,
7
- assert_frame_equal)
8
-
9
- srml_testfile = DATA_DIR / 'SRML-day-EUPO1801.txt'
10
-
11
-
12
- def test_read_srml():
13
- srml.read_srml(srml_testfile)
14
-
15
-
16
- @pytest.mark.remote_data
17
- @pytest.mark.flaky(reruns=RERUNS, reruns_delay=RERUNS_DELAY)
18
- def test_read_srml_remote():
19
- srml.read_srml(
20
- 'http://solardata.uoregon.edu/download/Archive/EUPO1801.txt'
21
- )
22
-
23
-
24
- def test_read_srml_columns_exist():
25
- data = srml.read_srml(srml_testfile)
26
- assert 'ghi_0' in data.columns
27
- assert 'ghi_0_flag' in data.columns
28
- assert 'dni_1' in data.columns
29
- assert 'dni_1_flag' in data.columns
30
- assert '7008' in data.columns
31
- assert '7008_flag' in data.columns
32
-
33
-
34
- def test_read_srml_map_variables_false():
35
- data = srml.read_srml(srml_testfile, map_variables=False)
36
- assert '1000' in data.columns
37
- assert '1000_flag' in data.columns
38
- assert '2010' in data.columns
39
- assert '2010_flag' in data.columns
40
- assert '7008' in data.columns
41
- assert '7008_flag' in data.columns
42
-
43
-
44
- def test_read_srml_nans_exist():
45
- data = srml.read_srml(srml_testfile)
46
- assert isnan(data['dni_0'].iloc[1119])
47
- assert data['dni_0_flag'].iloc[1119] == 99
48
-
49
-
50
- @pytest.mark.parametrize('url,year,month', [
51
- ('http://solardata.uoregon.edu/download/Archive/EUPO1801.txt',
52
- 2018, 1),
53
- ('http://solardata.uoregon.edu/download/Archive/EUPO1612.txt',
54
- 2016, 12),
55
- ])
56
- @pytest.mark.remote_data
57
- @pytest.mark.flaky(reruns=RERUNS, reruns_delay=RERUNS_DELAY)
58
- def test_read_srml_dt_index(url, year, month):
59
- data = srml.read_srml(url)
60
- start = pd.Timestamp(f'{year:04d}{month:02d}01 00:00')
61
- start = start.tz_localize('Etc/GMT+8')
62
- end = pd.Timestamp(f'{year:04d}{month:02d}31 23:59')
63
- end = end.tz_localize('Etc/GMT+8')
64
- assert data.index[0] == start
65
- assert data.index[-1] == end
66
- assert (data.index[59::60].minute == 59).all()
67
- assert str(year) not in data.columns
68
-
69
-
70
- @pytest.mark.parametrize('column,expected', [
71
- ('1001', 'ghi_1'),
72
- ('7324', '7324'),
73
- ('2001', '2001'),
74
- ('2017', 'dni_7')
75
- ])
76
- def test__map_columns(column, expected):
77
- assert srml._map_columns(column) == expected
78
-
79
-
80
- @pytest.mark.remote_data
81
- @pytest.mark.flaky(reruns=RERUNS, reruns_delay=RERUNS_DELAY)
82
- def test_get_srml():
83
- url = 'http://solardata.uoregon.edu/download/Archive/EUPO1801.txt'
84
- file_data = srml.read_srml(url)
85
- requested, _ = srml.get_srml(station='EU', start='2018-01-01',
86
- end='2018-01-31')
87
- assert_frame_equal(file_data, requested)
88
-
89
-
90
- @pytest.mark.remote_data
91
- @pytest.mark.flaky(reruns=RERUNS, reruns_delay=RERUNS_DELAY)
92
- def test_get_srml_hourly():
93
- data, meta = data, meta = srml.get_srml(station='CD', start='1986-04-01',
94
- end='1986-05-31', filetype='PH')
95
- expected_index = pd.date_range(start='1986-04-01', end='1986-05-31 23:59',
96
- freq='1h', tz='Etc/GMT+8')
97
- assert_index_equal(data.index, expected_index)
98
-
99
-
100
- @pytest.mark.remote_data
101
- @pytest.mark.flaky(reruns=RERUNS, reruns_delay=RERUNS_DELAY)
102
- def test_get_srml_minute():
103
- data_read = srml.read_srml(srml_testfile)
104
- data_get, meta = srml.get_srml(station='EU', start='2018-01-01',
105
- end='2018-01-31', filetype='PO')
106
- expected_index = pd.date_range(start='2018-01-01', end='2018-01-31 23:59',
107
- freq='1min', tz='Etc/GMT+8')
108
- assert_index_equal(data_get.index, expected_index)
109
- assert all(c in data_get.columns for c in data_read.columns)
110
- # Check that all indices in example file are present in remote file
111
- assert data_read.index.isin(data_get.index).all()
112
- assert meta['station'] == 'EU'
113
- assert meta['filetype'] == 'PO'
114
- assert meta['filenames'] == ['EUPO1801.txt']
115
-
116
-
117
- @pytest.mark.remote_data
118
- @pytest.mark.flaky(reruns=RERUNS, reruns_delay=RERUNS_DELAY)
119
- def test_get_srml_nonexisting_month_warning():
120
- with pytest.warns(UserWarning, match='file was not found: EUPO0912.txt'):
121
- # Request data for a period where not all files exist
122
- # Eugene (EU) station started reporting 1-minute data in January 2010
123
- data, meta = data, meta = srml.get_srml(
124
- station='EU', start='2009-12-01', end='2010-01-31', filetype='PO')
@@ -1,75 +0,0 @@
1
- import pandas as pd
2
- import pytest
3
-
4
- from pvlib.iotools import surfrad
5
- from ..conftest import DATA_DIR, RERUNS, RERUNS_DELAY
6
-
7
- testfile = DATA_DIR / 'surfrad-slv16001.dat'
8
- network_testfile = ('ftp://aftp.cmdl.noaa.gov/data/radiation/surfrad/'
9
- 'Alamosa_CO/2016/slv16001.dat')
10
- https_testfile = ('https://gml.noaa.gov/aftp/data/radiation/surfrad/'
11
- 'Alamosa_CO/2016/slv16001.dat')
12
-
13
-
14
- @pytest.mark.remote_data
15
- @pytest.mark.flaky(reruns=RERUNS, reruns_delay=RERUNS_DELAY)
16
- def test_read_surfrad_network():
17
- # If this test begins failing, SURFRAD's data structure or data
18
- # archive may have changed.
19
- local_data, _ = surfrad.read_surfrad(testfile)
20
- network_data, _ = surfrad.read_surfrad(network_testfile)
21
- assert local_data.equals(network_data)
22
-
23
-
24
- @pytest.mark.remote_data
25
- @pytest.mark.flaky(reruns=RERUNS, reruns_delay=RERUNS_DELAY)
26
- def test_read_surfrad_https():
27
- # Test reading of https files.
28
- # If this test begins failing, SURFRAD's data structure or data
29
- # archive may have changed.
30
- local_data, _ = surfrad.read_surfrad(testfile)
31
- network_data, _ = surfrad.read_surfrad(https_testfile)
32
- assert local_data.equals(network_data)
33
-
34
-
35
- def test_read_surfrad_columns_no_map():
36
- data, _ = surfrad.read_surfrad(testfile, map_variables=False)
37
- assert 'zen' in data.columns
38
- assert 'temp' in data.columns
39
- assert 'par' in data.columns
40
- assert 'pressure' in data.columns
41
-
42
-
43
- def test_read_surfrad_columns_map():
44
- data, _ = surfrad.read_surfrad(testfile)
45
- assert 'solar_zenith' in data.columns
46
- assert 'ghi' in data.columns
47
- assert 'ghi_flag' in data.columns
48
- assert 'dni' in data.columns
49
- assert 'dni_flag' in data.columns
50
- assert 'dhi' in data.columns
51
- assert 'dhi_flag' in data.columns
52
- assert 'wind_direction' in data.columns
53
- assert 'wind_direction_flag' in data.columns
54
- assert 'wind_speed' in data.columns
55
- assert 'wind_speed_flag' in data.columns
56
- assert 'temp_air' in data.columns
57
- assert 'temp_air_flag' in data.columns
58
-
59
-
60
- def test_format_index():
61
- start = pd.Timestamp('20160101 00:00')
62
- expected = pd.date_range(start=start, periods=1440, freq='1min', tz='UTC')
63
- actual, _ = surfrad.read_surfrad(testfile)
64
- assert actual.index.equals(expected)
65
-
66
-
67
- def test_read_surfrad_metadata():
68
- expected = {'name': 'Alamosa',
69
- 'latitude': 37.70,
70
- 'longitude': 105.92,
71
- 'elevation': 2317,
72
- 'surfrad_version': 1,
73
- 'tz': 'UTC'}
74
- _, metadata = surfrad.read_surfrad(testfile)
75
- assert metadata == expected