pvlib 0.11.2__py3-none-any.whl → 0.12.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pvlib/__init__.py +1 -0
- pvlib/atmosphere.py +0 -9
- pvlib/bifacial/infinite_sheds.py +4 -3
- pvlib/bifacial/utils.py +2 -1
- pvlib/iotools/psm3.py +1 -1
- pvlib/iotools/pvgis.py +10 -2
- pvlib/iotools/tmy.py +3 -69
- pvlib/irradiance.py +14 -0
- pvlib/location.py +73 -33
- pvlib/modelchain.py +18 -35
- pvlib/pvsystem.py +7 -10
- pvlib/snow.py +64 -28
- pvlib/spectrum/__init__.py +0 -1
- pvlib/spectrum/irradiance.py +0 -63
- pvlib/spectrum/mismatch.py +3 -3
- pvlib/tools.py +6 -5
- {pvlib-0.11.2.dist-info → pvlib-0.12.0.dist-info}/METADATA +5 -3
- pvlib-0.12.0.dist-info/RECORD +75 -0
- {pvlib-0.11.2.dist-info → pvlib-0.12.0.dist-info}/WHEEL +1 -1
- pvlib/data/BIRD_08_16_2012.csv +0 -8761
- pvlib/data/BIRD_08_16_2012_patm.csv +0 -8761
- pvlib/data/Burlington, United States SolarAnywhere Time Series 2021 Lat_44_465 Lon_-73_205 TMY3 format.csv +0 -8762
- pvlib/data/Burlington, United States SolarAnywhere Time Series 20210101 to 20210103 Lat_44_4675 Lon_-73_2075 SA format.csv +0 -578
- pvlib/data/Burlington, United States SolarAnywhere Typical GHI Year Lat_44_465 Lon_-73_205 SA format.csv +0 -74
- pvlib/data/CPS SCH275KTL-DO-US-800-250kW_275kVA_1.OND +0 -146
- pvlib/data/CRNS0101-05-2019-AZ_Tucson_11_W.txt +0 -4
- pvlib/data/CRN_with_problems.txt +0 -3
- pvlib/data/ET-M772BH550GL.PAN +0 -75
- pvlib/data/NLD_Amsterdam062400_IWEC.epw +0 -8768
- pvlib/data/PVsyst_demo.csv +0 -10757
- pvlib/data/PVsyst_demo_model.csv +0 -3588
- pvlib/data/SRML-day-EUPO1801.txt +0 -1441
- pvlib/data/abq19056.dat +0 -6
- pvlib/data/bishop88_numerical_precision.csv +0 -101
- pvlib/data/bsrn-lr0100-pay0616.dat +0 -86901
- pvlib/data/bsrn-pay0616.dat.gz +0 -0
- pvlib/data/cams_mcclear_1min_verbose.csv +0 -60
- pvlib/data/cams_mcclear_monthly.csv +0 -42
- pvlib/data/cams_radiation_1min_verbose.csv +0 -72
- pvlib/data/cams_radiation_monthly.csv +0 -47
- pvlib/data/detect_clearsky_data.csv +0 -35
- pvlib/data/detect_clearsky_threshold_data.csv +0 -126
- pvlib/data/greensboro_kimber_soil_manwash.dat +0 -8761
- pvlib/data/greensboro_kimber_soil_nowash.dat +0 -8761
- pvlib/data/inverter_fit_snl_meas.csv +0 -127
- pvlib/data/inverter_fit_snl_sim.csv +0 -19
- pvlib/data/ivtools_numdiff.csv +0 -52
- pvlib/data/midc_20181014.txt +0 -1441
- pvlib/data/midc_raw_20181018.txt +0 -1441
- pvlib/data/midc_raw_short_header_20191115.txt +0 -1441
- pvlib/data/msn19056.dat +0 -6
- pvlib/data/precise_iv_curves1.json +0 -10251
- pvlib/data/precise_iv_curves2.json +0 -10251
- pvlib/data/precise_iv_curves_parameter_sets1.csv +0 -33
- pvlib/data/precise_iv_curves_parameter_sets2.csv +0 -33
- pvlib/data/pvgis_hourly_Timeseries_45.000_8.000_SA2_10kWp_CIS_5_2a_2013_2014.json +0 -1
- pvlib/data/pvgis_hourly_Timeseries_45.000_8.000_SA_30deg_0deg_2016_2016.csv +0 -35
- pvlib/data/pvgis_tmy_meta.json +0 -32
- pvlib/data/pvgis_tmy_test.csv +0 -8761
- pvlib/data/pvwatts_8760_rackmount.csv +0 -8779
- pvlib/data/pvwatts_8760_roofmount.csv +0 -8779
- pvlib/data/singleaxis_tracker_wslope.csv +0 -8761
- pvlib/data/spectrl2_example_spectra.csv +0 -123
- pvlib/data/surfrad-slv16001.dat +0 -1442
- pvlib/data/test_psm3_2017.csv +0 -17521
- pvlib/data/test_psm3_2019_5min.csv +0 -289
- pvlib/data/test_psm3_tmy-2017.csv +0 -8761
- pvlib/data/test_read_psm3.csv +0 -17523
- pvlib/data/test_read_pvgis_horizon.csv +0 -49
- pvlib/data/tmy_45.000_8.000_2005_2023.csv +0 -8789
- pvlib/data/tmy_45.000_8.000_2005_2023.epw +0 -8768
- pvlib/data/tmy_45.000_8.000_2005_2023.json +0 -1
- pvlib/data/tmy_45.000_8.000_2005_2023.txt +0 -8761
- pvlib/data/tmy_45.000_8.000_userhorizon.json +0 -1
- pvlib/spa_c_files/README.md +0 -81
- pvlib/spa_c_files/cspa_py.pxd +0 -43
- pvlib/spa_c_files/spa_py.pyx +0 -30
- pvlib/tests/__init__.py +0 -0
- pvlib/tests/bifacial/__init__.py +0 -0
- pvlib/tests/bifacial/test_infinite_sheds.py +0 -317
- pvlib/tests/bifacial/test_losses_models.py +0 -54
- pvlib/tests/bifacial/test_pvfactors.py +0 -82
- pvlib/tests/bifacial/test_utils.py +0 -192
- pvlib/tests/conftest.py +0 -476
- pvlib/tests/iotools/__init__.py +0 -0
- pvlib/tests/iotools/test_acis.py +0 -213
- pvlib/tests/iotools/test_bsrn.py +0 -131
- pvlib/tests/iotools/test_crn.py +0 -95
- pvlib/tests/iotools/test_epw.py +0 -23
- pvlib/tests/iotools/test_midc.py +0 -89
- pvlib/tests/iotools/test_panond.py +0 -32
- pvlib/tests/iotools/test_psm3.py +0 -198
- pvlib/tests/iotools/test_pvgis.py +0 -644
- pvlib/tests/iotools/test_sodapro.py +0 -298
- pvlib/tests/iotools/test_solaranywhere.py +0 -287
- pvlib/tests/iotools/test_solargis.py +0 -68
- pvlib/tests/iotools/test_solcast.py +0 -324
- pvlib/tests/iotools/test_solrad.py +0 -152
- pvlib/tests/iotools/test_srml.py +0 -124
- pvlib/tests/iotools/test_surfrad.py +0 -75
- pvlib/tests/iotools/test_tmy.py +0 -133
- pvlib/tests/ivtools/__init__.py +0 -0
- pvlib/tests/ivtools/test_sde.py +0 -230
- pvlib/tests/ivtools/test_sdm.py +0 -429
- pvlib/tests/ivtools/test_utils.py +0 -173
- pvlib/tests/spectrum/__init__.py +0 -0
- pvlib/tests/spectrum/conftest.py +0 -40
- pvlib/tests/spectrum/test_irradiance.py +0 -138
- pvlib/tests/spectrum/test_mismatch.py +0 -304
- pvlib/tests/spectrum/test_response.py +0 -124
- pvlib/tests/spectrum/test_spectrl2.py +0 -72
- pvlib/tests/test__deprecation.py +0 -97
- pvlib/tests/test_albedo.py +0 -84
- pvlib/tests/test_atmosphere.py +0 -351
- pvlib/tests/test_clearsky.py +0 -884
- pvlib/tests/test_conftest.py +0 -37
- pvlib/tests/test_iam.py +0 -555
- pvlib/tests/test_inverter.py +0 -213
- pvlib/tests/test_irradiance.py +0 -1487
- pvlib/tests/test_location.py +0 -356
- pvlib/tests/test_modelchain.py +0 -2020
- pvlib/tests/test_numerical_precision.py +0 -124
- pvlib/tests/test_pvarray.py +0 -71
- pvlib/tests/test_pvsystem.py +0 -2511
- pvlib/tests/test_scaling.py +0 -207
- pvlib/tests/test_shading.py +0 -391
- pvlib/tests/test_singlediode.py +0 -608
- pvlib/tests/test_snow.py +0 -212
- pvlib/tests/test_soiling.py +0 -230
- pvlib/tests/test_solarposition.py +0 -966
- pvlib/tests/test_spa.py +0 -454
- pvlib/tests/test_temperature.py +0 -470
- pvlib/tests/test_tools.py +0 -146
- pvlib/tests/test_tracking.py +0 -474
- pvlib/tests/test_transformer.py +0 -60
- pvlib-0.11.2.dist-info/RECORD +0 -191
- {pvlib-0.11.2.dist-info → pvlib-0.12.0.dist-info/licenses}/AUTHORS.md +0 -0
- {pvlib-0.11.2.dist-info → pvlib-0.12.0.dist-info/licenses}/LICENSE +0 -0
- {pvlib-0.11.2.dist-info → pvlib-0.12.0.dist-info}/top_level.txt +0 -0
|
@@ -1,966 +0,0 @@
|
|
|
1
|
-
import calendar
|
|
2
|
-
import datetime
|
|
3
|
-
import warnings
|
|
4
|
-
|
|
5
|
-
import numpy as np
|
|
6
|
-
import pandas as pd
|
|
7
|
-
|
|
8
|
-
from .conftest import assert_frame_equal, assert_series_equal
|
|
9
|
-
from numpy.testing import assert_allclose
|
|
10
|
-
import pytest
|
|
11
|
-
import pytz
|
|
12
|
-
|
|
13
|
-
from pvlib.location import Location
|
|
14
|
-
from pvlib import solarposition, spa
|
|
15
|
-
|
|
16
|
-
from .conftest import (
|
|
17
|
-
requires_ephem, requires_spa_c, requires_numba, requires_pandas_2_0
|
|
18
|
-
)
|
|
19
|
-
|
|
20
|
-
# setup times and locations to be tested.
|
|
21
|
-
times = pd.date_range(start=datetime.datetime(2014, 6, 24),
|
|
22
|
-
end=datetime.datetime(2014, 6, 26), freq='15min')
|
|
23
|
-
|
|
24
|
-
tus = Location(32.2, -111, 'US/Arizona', 700) # no DST issues possible
|
|
25
|
-
times_localized = times.tz_localize(tus.tz)
|
|
26
|
-
|
|
27
|
-
tol = 5
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
@pytest.fixture()
|
|
31
|
-
def expected_solpos_multi():
|
|
32
|
-
return pd.DataFrame({'elevation': [39.872046, 39.505196],
|
|
33
|
-
'apparent_zenith': [50.111622, 50.478260],
|
|
34
|
-
'azimuth': [194.340241, 194.311132],
|
|
35
|
-
'apparent_elevation': [39.888378, 39.521740]},
|
|
36
|
-
index=['2003-10-17T12:30:30Z', '2003-10-18T12:30:30Z'])
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
@pytest.fixture()
|
|
40
|
-
def expected_rise_set_spa():
|
|
41
|
-
# for Golden, CO, from NREL SPA website
|
|
42
|
-
times = pd.DatetimeIndex([datetime.datetime(2015, 1, 2),
|
|
43
|
-
datetime.datetime(2015, 8, 2),
|
|
44
|
-
]).tz_localize('MST')
|
|
45
|
-
sunrise = pd.DatetimeIndex([datetime.datetime(2015, 1, 2, 7, 21, 55),
|
|
46
|
-
datetime.datetime(2015, 8, 2, 5, 0, 27)
|
|
47
|
-
]).tz_localize('MST').tolist()
|
|
48
|
-
sunset = pd.DatetimeIndex([datetime.datetime(2015, 1, 2, 16, 47, 43),
|
|
49
|
-
datetime.datetime(2015, 8, 2, 19, 13, 58)
|
|
50
|
-
]).tz_localize('MST').tolist()
|
|
51
|
-
transit = pd.DatetimeIndex([datetime.datetime(2015, 1, 2, 12, 4, 45),
|
|
52
|
-
datetime.datetime(2015, 8, 2, 12, 6, 58)
|
|
53
|
-
]).tz_localize('MST').tolist()
|
|
54
|
-
return pd.DataFrame({'sunrise': sunrise,
|
|
55
|
-
'sunset': sunset,
|
|
56
|
-
'transit': transit},
|
|
57
|
-
index=times)
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
@pytest.fixture()
|
|
61
|
-
def expected_rise_set_ephem():
|
|
62
|
-
# for Golden, CO, from USNO websites
|
|
63
|
-
times = pd.DatetimeIndex([datetime.datetime(2015, 1, 1),
|
|
64
|
-
datetime.datetime(2015, 1, 2),
|
|
65
|
-
datetime.datetime(2015, 1, 3),
|
|
66
|
-
datetime.datetime(2015, 8, 2),
|
|
67
|
-
]).tz_localize('MST')
|
|
68
|
-
sunrise = pd.DatetimeIndex([datetime.datetime(2015, 1, 1, 7, 22, 0),
|
|
69
|
-
datetime.datetime(2015, 1, 2, 7, 22, 0),
|
|
70
|
-
datetime.datetime(2015, 1, 3, 7, 22, 0),
|
|
71
|
-
datetime.datetime(2015, 8, 2, 5, 0, 0)
|
|
72
|
-
]).tz_localize('MST').tolist()
|
|
73
|
-
sunset = pd.DatetimeIndex([datetime.datetime(2015, 1, 1, 16, 47, 0),
|
|
74
|
-
datetime.datetime(2015, 1, 2, 16, 48, 0),
|
|
75
|
-
datetime.datetime(2015, 1, 3, 16, 49, 0),
|
|
76
|
-
datetime.datetime(2015, 8, 2, 19, 13, 0)
|
|
77
|
-
]).tz_localize('MST').tolist()
|
|
78
|
-
transit = pd.DatetimeIndex([datetime.datetime(2015, 1, 1, 12, 4, 0),
|
|
79
|
-
datetime.datetime(2015, 1, 2, 12, 5, 0),
|
|
80
|
-
datetime.datetime(2015, 1, 3, 12, 5, 0),
|
|
81
|
-
datetime.datetime(2015, 8, 2, 12, 7, 0)
|
|
82
|
-
]).tz_localize('MST').tolist()
|
|
83
|
-
return pd.DataFrame({'sunrise': sunrise,
|
|
84
|
-
'sunset': sunset,
|
|
85
|
-
'transit': transit},
|
|
86
|
-
index=times)
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
# the physical tests are run at the same time as the NREL SPA test.
|
|
90
|
-
# pyephem reproduces the NREL result to 2 decimal places.
|
|
91
|
-
# this doesn't mean that one code is better than the other.
|
|
92
|
-
|
|
93
|
-
@requires_spa_c
|
|
94
|
-
def test_spa_c_physical(expected_solpos, golden_mst):
|
|
95
|
-
times = pd.date_range(datetime.datetime(2003, 10, 17, 12, 30, 30),
|
|
96
|
-
periods=1, freq='D', tz=golden_mst.tz)
|
|
97
|
-
ephem_data = solarposition.spa_c(times, golden_mst.latitude,
|
|
98
|
-
golden_mst.longitude,
|
|
99
|
-
pressure=82000,
|
|
100
|
-
temperature=11)
|
|
101
|
-
expected_solpos.index = times
|
|
102
|
-
assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns])
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
@requires_spa_c
|
|
106
|
-
def test_spa_c_physical_dst(expected_solpos, golden):
|
|
107
|
-
times = pd.date_range(datetime.datetime(2003, 10, 17, 13, 30, 30),
|
|
108
|
-
periods=1, freq='D', tz=golden.tz)
|
|
109
|
-
ephem_data = solarposition.spa_c(times, golden.latitude,
|
|
110
|
-
golden.longitude,
|
|
111
|
-
pressure=82000,
|
|
112
|
-
temperature=11)
|
|
113
|
-
expected_solpos.index = times
|
|
114
|
-
assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns])
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
def test_spa_python_numpy_physical(expected_solpos, golden_mst):
|
|
118
|
-
times = pd.date_range(datetime.datetime(2003, 10, 17, 12, 30, 30),
|
|
119
|
-
periods=1, freq='D', tz=golden_mst.tz)
|
|
120
|
-
ephem_data = solarposition.spa_python(times, golden_mst.latitude,
|
|
121
|
-
golden_mst.longitude,
|
|
122
|
-
pressure=82000,
|
|
123
|
-
temperature=11, delta_t=67,
|
|
124
|
-
atmos_refract=0.5667,
|
|
125
|
-
how='numpy')
|
|
126
|
-
expected_solpos.index = times
|
|
127
|
-
assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns])
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
def test_spa_python_numpy_physical_dst(expected_solpos, golden):
|
|
131
|
-
times = pd.date_range(datetime.datetime(2003, 10, 17, 13, 30, 30),
|
|
132
|
-
periods=1, freq='D', tz=golden.tz)
|
|
133
|
-
ephem_data = solarposition.spa_python(times, golden.latitude,
|
|
134
|
-
golden.longitude,
|
|
135
|
-
pressure=82000,
|
|
136
|
-
temperature=11, delta_t=67,
|
|
137
|
-
atmos_refract=0.5667,
|
|
138
|
-
how='numpy')
|
|
139
|
-
expected_solpos.index = times
|
|
140
|
-
assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns])
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
@pytest.mark.parametrize('delta_t', [65.0, None, np.array([65, 65])])
|
|
144
|
-
def test_sun_rise_set_transit_spa(expected_rise_set_spa, golden, delta_t):
|
|
145
|
-
# solution from NREL SAP web calculator
|
|
146
|
-
south = Location(-35.0, 0.0, tz='UTC')
|
|
147
|
-
times = pd.DatetimeIndex([datetime.datetime(1996, 7, 5, 0),
|
|
148
|
-
datetime.datetime(2004, 12, 4, 0)]
|
|
149
|
-
).tz_localize('UTC')
|
|
150
|
-
sunrise = pd.DatetimeIndex([datetime.datetime(1996, 7, 5, 7, 8, 15),
|
|
151
|
-
datetime.datetime(2004, 12, 4, 4, 38, 57)]
|
|
152
|
-
).tz_localize('UTC').tolist()
|
|
153
|
-
sunset = pd.DatetimeIndex([datetime.datetime(1996, 7, 5, 17, 1, 4),
|
|
154
|
-
datetime.datetime(2004, 12, 4, 19, 2, 3)]
|
|
155
|
-
).tz_localize('UTC').tolist()
|
|
156
|
-
transit = pd.DatetimeIndex([datetime.datetime(1996, 7, 5, 12, 4, 36),
|
|
157
|
-
datetime.datetime(2004, 12, 4, 11, 50, 22)]
|
|
158
|
-
).tz_localize('UTC').tolist()
|
|
159
|
-
frame = pd.DataFrame({'sunrise': sunrise,
|
|
160
|
-
'sunset': sunset,
|
|
161
|
-
'transit': transit}, index=times)
|
|
162
|
-
|
|
163
|
-
result = solarposition.sun_rise_set_transit_spa(times, south.latitude,
|
|
164
|
-
south.longitude,
|
|
165
|
-
delta_t=delta_t)
|
|
166
|
-
result_rounded = pd.DataFrame(index=result.index)
|
|
167
|
-
# need to iterate because to_datetime does not accept 2D data
|
|
168
|
-
# the rounding fails on pandas < 0.17
|
|
169
|
-
for col, data in result.items():
|
|
170
|
-
result_rounded[col] = data.dt.round('1s')
|
|
171
|
-
|
|
172
|
-
assert_frame_equal(frame, result_rounded)
|
|
173
|
-
|
|
174
|
-
# test for Golden, CO compare to NREL SPA
|
|
175
|
-
result = solarposition.sun_rise_set_transit_spa(
|
|
176
|
-
expected_rise_set_spa.index, golden.latitude, golden.longitude,
|
|
177
|
-
delta_t=delta_t)
|
|
178
|
-
|
|
179
|
-
# round to nearest minute
|
|
180
|
-
result_rounded = pd.DataFrame(index=result.index)
|
|
181
|
-
# need to iterate because to_datetime does not accept 2D data
|
|
182
|
-
for col, data in result.items():
|
|
183
|
-
result_rounded[col] = data.dt.round('s').tz_convert('MST')
|
|
184
|
-
|
|
185
|
-
assert_frame_equal(expected_rise_set_spa, result_rounded)
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
@requires_ephem
|
|
189
|
-
def test_sun_rise_set_transit_ephem(expected_rise_set_ephem, golden):
|
|
190
|
-
# test for Golden, CO compare to USNO, using local midnight
|
|
191
|
-
result = solarposition.sun_rise_set_transit_ephem(
|
|
192
|
-
expected_rise_set_ephem.index, golden.latitude, golden.longitude,
|
|
193
|
-
next_or_previous='next', altitude=golden.altitude, pressure=0,
|
|
194
|
-
temperature=11, horizon='-0:34')
|
|
195
|
-
# round to nearest minute
|
|
196
|
-
result_rounded = pd.DataFrame(index=result.index)
|
|
197
|
-
for col, data in result.items():
|
|
198
|
-
result_rounded[col] = data.dt.round('min').tz_convert('MST')
|
|
199
|
-
assert_frame_equal(expected_rise_set_ephem, result_rounded)
|
|
200
|
-
|
|
201
|
-
# test next sunrise/sunset with times
|
|
202
|
-
times = pd.DatetimeIndex([datetime.datetime(2015, 1, 2, 3, 0, 0),
|
|
203
|
-
datetime.datetime(2015, 1, 2, 10, 15, 0),
|
|
204
|
-
datetime.datetime(2015, 1, 2, 15, 3, 0),
|
|
205
|
-
datetime.datetime(2015, 1, 2, 21, 6, 7)
|
|
206
|
-
]).tz_localize('MST')
|
|
207
|
-
expected = pd.DataFrame(index=times,
|
|
208
|
-
columns=['sunrise', 'sunset'],
|
|
209
|
-
dtype='datetime64[ns]')
|
|
210
|
-
idx_sunrise = pd.to_datetime(['2015-01-02', '2015-01-03', '2015-01-03',
|
|
211
|
-
'2015-01-03']).tz_localize('MST')
|
|
212
|
-
expected['sunrise'] = \
|
|
213
|
-
expected_rise_set_ephem.loc[idx_sunrise, 'sunrise'].tolist()
|
|
214
|
-
idx_sunset = pd.to_datetime(['2015-01-02', '2015-01-02', '2015-01-02',
|
|
215
|
-
'2015-01-03']).tz_localize('MST')
|
|
216
|
-
expected['sunset'] = \
|
|
217
|
-
expected_rise_set_ephem.loc[idx_sunset, 'sunset'].tolist()
|
|
218
|
-
idx_transit = pd.to_datetime(['2015-01-02', '2015-01-02', '2015-01-03',
|
|
219
|
-
'2015-01-03']).tz_localize('MST')
|
|
220
|
-
expected['transit'] = \
|
|
221
|
-
expected_rise_set_ephem.loc[idx_transit, 'transit'].tolist()
|
|
222
|
-
|
|
223
|
-
result = solarposition.sun_rise_set_transit_ephem(times,
|
|
224
|
-
golden.latitude,
|
|
225
|
-
golden.longitude,
|
|
226
|
-
next_or_previous='next',
|
|
227
|
-
altitude=golden.altitude,
|
|
228
|
-
pressure=0,
|
|
229
|
-
temperature=11,
|
|
230
|
-
horizon='-0:34')
|
|
231
|
-
# round to nearest minute
|
|
232
|
-
result_rounded = pd.DataFrame(index=result.index)
|
|
233
|
-
for col, data in result.items():
|
|
234
|
-
result_rounded[col] = data.dt.round('min').tz_convert('MST')
|
|
235
|
-
assert_frame_equal(expected, result_rounded)
|
|
236
|
-
|
|
237
|
-
# test previous sunrise/sunset with times
|
|
238
|
-
times = pd.DatetimeIndex([datetime.datetime(2015, 1, 2, 3, 0, 0),
|
|
239
|
-
datetime.datetime(2015, 1, 2, 10, 15, 0),
|
|
240
|
-
datetime.datetime(2015, 1, 3, 3, 0, 0),
|
|
241
|
-
datetime.datetime(2015, 1, 3, 13, 6, 7)
|
|
242
|
-
]).tz_localize('MST')
|
|
243
|
-
expected = pd.DataFrame(index=times,
|
|
244
|
-
columns=['sunrise', 'sunset'],
|
|
245
|
-
dtype='datetime64[ns]')
|
|
246
|
-
idx_sunrise = pd.to_datetime(['2015-01-01', '2015-01-02', '2015-01-02',
|
|
247
|
-
'2015-01-03']).tz_localize('MST')
|
|
248
|
-
expected['sunrise'] = \
|
|
249
|
-
expected_rise_set_ephem.loc[idx_sunrise, 'sunrise'].tolist()
|
|
250
|
-
idx_sunset = pd.to_datetime(['2015-01-01', '2015-01-01', '2015-01-02',
|
|
251
|
-
'2015-01-02']).tz_localize('MST')
|
|
252
|
-
expected['sunset'] = \
|
|
253
|
-
expected_rise_set_ephem.loc[idx_sunset, 'sunset'].tolist()
|
|
254
|
-
idx_transit = pd.to_datetime(['2015-01-01', '2015-01-01', '2015-01-02',
|
|
255
|
-
'2015-01-03']).tz_localize('MST')
|
|
256
|
-
expected['transit'] = \
|
|
257
|
-
expected_rise_set_ephem.loc[idx_transit, 'transit'].tolist()
|
|
258
|
-
|
|
259
|
-
result = solarposition.sun_rise_set_transit_ephem(
|
|
260
|
-
times,
|
|
261
|
-
golden.latitude, golden.longitude, next_or_previous='previous',
|
|
262
|
-
altitude=golden.altitude, pressure=0, temperature=11, horizon='-0:34')
|
|
263
|
-
# round to nearest minute
|
|
264
|
-
result_rounded = pd.DataFrame(index=result.index)
|
|
265
|
-
for col, data in result.items():
|
|
266
|
-
result_rounded[col] = data.dt.round('min').tz_convert('MST')
|
|
267
|
-
assert_frame_equal(expected, result_rounded)
|
|
268
|
-
|
|
269
|
-
# test with different timezone
|
|
270
|
-
times = times.tz_convert('UTC')
|
|
271
|
-
expected = expected.tz_convert('UTC') # resuse result from previous
|
|
272
|
-
for col, data in expected.items():
|
|
273
|
-
expected[col] = data.dt.tz_convert('UTC')
|
|
274
|
-
result = solarposition.sun_rise_set_transit_ephem(
|
|
275
|
-
times,
|
|
276
|
-
golden.latitude, golden.longitude, next_or_previous='previous',
|
|
277
|
-
altitude=golden.altitude, pressure=0, temperature=11, horizon='-0:34')
|
|
278
|
-
# round to nearest minute
|
|
279
|
-
result_rounded = pd.DataFrame(index=result.index)
|
|
280
|
-
for col, data in result.items():
|
|
281
|
-
result_rounded[col] = data.dt.round('min').tz_convert(times.tz)
|
|
282
|
-
assert_frame_equal(expected, result_rounded)
|
|
283
|
-
|
|
284
|
-
|
|
285
|
-
@requires_ephem
|
|
286
|
-
def test_sun_rise_set_transit_ephem_error(expected_rise_set_ephem, golden):
|
|
287
|
-
with pytest.raises(ValueError):
|
|
288
|
-
solarposition.sun_rise_set_transit_ephem(expected_rise_set_ephem.index,
|
|
289
|
-
golden.latitude,
|
|
290
|
-
golden.longitude,
|
|
291
|
-
next_or_previous='other')
|
|
292
|
-
tz_naive = pd.DatetimeIndex([datetime.datetime(2015, 1, 2, 3, 0, 0)])
|
|
293
|
-
with pytest.raises(ValueError):
|
|
294
|
-
solarposition.sun_rise_set_transit_ephem(tz_naive,
|
|
295
|
-
golden.latitude,
|
|
296
|
-
golden.longitude,
|
|
297
|
-
next_or_previous='next')
|
|
298
|
-
|
|
299
|
-
|
|
300
|
-
@requires_ephem
|
|
301
|
-
def test_sun_rise_set_transit_ephem_horizon(golden):
|
|
302
|
-
times = pd.DatetimeIndex([datetime.datetime(2016, 1, 3, 0, 0, 0)
|
|
303
|
-
]).tz_localize('MST')
|
|
304
|
-
# center of sun disk
|
|
305
|
-
center = solarposition.sun_rise_set_transit_ephem(
|
|
306
|
-
times,
|
|
307
|
-
latitude=golden.latitude, longitude=golden.longitude)
|
|
308
|
-
edge = solarposition.sun_rise_set_transit_ephem(
|
|
309
|
-
times,
|
|
310
|
-
latitude=golden.latitude, longitude=golden.longitude, horizon='-0:34')
|
|
311
|
-
result_rounded = (edge['sunrise'] - center['sunrise']).dt.round('min')
|
|
312
|
-
|
|
313
|
-
sunrise_delta = datetime.datetime(2016, 1, 3, 7, 17, 11) - \
|
|
314
|
-
datetime.datetime(2016, 1, 3, 7, 21, 33)
|
|
315
|
-
expected = pd.Series(index=times,
|
|
316
|
-
data=[sunrise_delta],
|
|
317
|
-
name='sunrise').dt.round('min')
|
|
318
|
-
assert_series_equal(expected, result_rounded)
|
|
319
|
-
|
|
320
|
-
|
|
321
|
-
@requires_ephem
|
|
322
|
-
def test_pyephem_physical(expected_solpos, golden_mst):
|
|
323
|
-
times = pd.date_range(datetime.datetime(2003, 10, 17, 12, 30, 30),
|
|
324
|
-
periods=1, freq='D', tz=golden_mst.tz)
|
|
325
|
-
ephem_data = solarposition.pyephem(times, golden_mst.latitude,
|
|
326
|
-
golden_mst.longitude, pressure=82000,
|
|
327
|
-
temperature=11)
|
|
328
|
-
expected_solpos.index = times
|
|
329
|
-
assert_frame_equal(expected_solpos.round(2),
|
|
330
|
-
ephem_data[expected_solpos.columns].round(2))
|
|
331
|
-
|
|
332
|
-
|
|
333
|
-
@requires_ephem
|
|
334
|
-
def test_pyephem_physical_dst(expected_solpos, golden):
|
|
335
|
-
times = pd.date_range(datetime.datetime(2003, 10, 17, 13, 30, 30),
|
|
336
|
-
periods=1, freq='D', tz=golden.tz)
|
|
337
|
-
ephem_data = solarposition.pyephem(times, golden.latitude,
|
|
338
|
-
golden.longitude, pressure=82000,
|
|
339
|
-
temperature=11)
|
|
340
|
-
expected_solpos.index = times
|
|
341
|
-
assert_frame_equal(expected_solpos.round(2),
|
|
342
|
-
ephem_data[expected_solpos.columns].round(2))
|
|
343
|
-
|
|
344
|
-
|
|
345
|
-
@requires_ephem
|
|
346
|
-
def test_calc_time():
|
|
347
|
-
import pytz
|
|
348
|
-
import math
|
|
349
|
-
# validation from USNO solar position calculator online
|
|
350
|
-
|
|
351
|
-
epoch = datetime.datetime(1970, 1, 1)
|
|
352
|
-
epoch_dt = pytz.utc.localize(epoch)
|
|
353
|
-
|
|
354
|
-
loc = tus
|
|
355
|
-
loc.pressure = 0
|
|
356
|
-
actual_time = pytz.timezone(loc.tz).localize(
|
|
357
|
-
datetime.datetime(2014, 10, 10, 8, 30))
|
|
358
|
-
lb = pytz.timezone(loc.tz).localize(datetime.datetime(2014, 10, 10, tol))
|
|
359
|
-
ub = pytz.timezone(loc.tz).localize(datetime.datetime(2014, 10, 10, 10))
|
|
360
|
-
alt = solarposition.calc_time(lb, ub, loc.latitude, loc.longitude,
|
|
361
|
-
'alt', math.radians(24.7))
|
|
362
|
-
az = solarposition.calc_time(lb, ub, loc.latitude, loc.longitude,
|
|
363
|
-
'az', math.radians(116.3))
|
|
364
|
-
actual_timestamp = (actual_time - epoch_dt).total_seconds()
|
|
365
|
-
|
|
366
|
-
assert_allclose((alt.replace(second=0, microsecond=0) -
|
|
367
|
-
epoch_dt).total_seconds(), actual_timestamp)
|
|
368
|
-
assert_allclose((az.replace(second=0, microsecond=0) -
|
|
369
|
-
epoch_dt).total_seconds(), actual_timestamp)
|
|
370
|
-
|
|
371
|
-
|
|
372
|
-
@requires_ephem
|
|
373
|
-
def test_earthsun_distance():
|
|
374
|
-
times = pd.date_range(datetime.datetime(2003, 10, 17, 13, 30, 30),
|
|
375
|
-
periods=1, freq='D')
|
|
376
|
-
distance = solarposition.pyephem_earthsun_distance(times).values[0]
|
|
377
|
-
assert_allclose(1, distance, atol=0.1)
|
|
378
|
-
|
|
379
|
-
|
|
380
|
-
def test_ephemeris_physical(expected_solpos, golden_mst):
|
|
381
|
-
times = pd.date_range(datetime.datetime(2003, 10, 17, 12, 30, 30),
|
|
382
|
-
periods=1, freq='D', tz=golden_mst.tz)
|
|
383
|
-
ephem_data = solarposition.ephemeris(times, golden_mst.latitude,
|
|
384
|
-
golden_mst.longitude,
|
|
385
|
-
pressure=82000,
|
|
386
|
-
temperature=11)
|
|
387
|
-
expected_solpos.index = times
|
|
388
|
-
expected_solpos = np.round(expected_solpos, 2)
|
|
389
|
-
ephem_data = np.round(ephem_data, 2)
|
|
390
|
-
assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns])
|
|
391
|
-
|
|
392
|
-
|
|
393
|
-
def test_ephemeris_physical_dst(expected_solpos, golden):
|
|
394
|
-
times = pd.date_range(datetime.datetime(2003, 10, 17, 13, 30, 30),
|
|
395
|
-
periods=1, freq='D', tz=golden.tz)
|
|
396
|
-
ephem_data = solarposition.ephemeris(times, golden.latitude,
|
|
397
|
-
golden.longitude, pressure=82000,
|
|
398
|
-
temperature=11)
|
|
399
|
-
expected_solpos.index = times
|
|
400
|
-
expected_solpos = np.round(expected_solpos, 2)
|
|
401
|
-
ephem_data = np.round(ephem_data, 2)
|
|
402
|
-
assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns])
|
|
403
|
-
|
|
404
|
-
|
|
405
|
-
def test_ephemeris_physical_no_tz(expected_solpos, golden_mst):
|
|
406
|
-
times = pd.date_range(datetime.datetime(2003, 10, 17, 19, 30, 30),
|
|
407
|
-
periods=1, freq='D')
|
|
408
|
-
ephem_data = solarposition.ephemeris(times, golden_mst.latitude,
|
|
409
|
-
golden_mst.longitude,
|
|
410
|
-
pressure=82000,
|
|
411
|
-
temperature=11)
|
|
412
|
-
expected_solpos.index = times
|
|
413
|
-
expected_solpos = np.round(expected_solpos, 2)
|
|
414
|
-
ephem_data = np.round(ephem_data, 2)
|
|
415
|
-
assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns])
|
|
416
|
-
|
|
417
|
-
|
|
418
|
-
def test_get_solarposition_error(golden):
|
|
419
|
-
times = pd.date_range(datetime.datetime(2003, 10, 17, 13, 30, 30),
|
|
420
|
-
periods=1, freq='D', tz=golden.tz)
|
|
421
|
-
with pytest.raises(ValueError):
|
|
422
|
-
solarposition.get_solarposition(times, golden.latitude,
|
|
423
|
-
golden.longitude,
|
|
424
|
-
pressure=82000,
|
|
425
|
-
temperature=11,
|
|
426
|
-
method='error this')
|
|
427
|
-
|
|
428
|
-
|
|
429
|
-
@pytest.mark.parametrize("pressure, expected", [
|
|
430
|
-
(82000, 'expected_solpos'),
|
|
431
|
-
(90000, pd.DataFrame(
|
|
432
|
-
np.array([[39.88997, 50.11003, 194.34024, 39.87205, 14.64151,
|
|
433
|
-
50.12795]]),
|
|
434
|
-
columns=['apparent_elevation', 'apparent_zenith', 'azimuth',
|
|
435
|
-
'elevation', 'equation_of_time', 'zenith'],
|
|
436
|
-
index=['2003-10-17T12:30:30Z']))
|
|
437
|
-
])
|
|
438
|
-
def test_get_solarposition_pressure(
|
|
439
|
-
pressure, expected, golden, expected_solpos):
|
|
440
|
-
times = pd.date_range(datetime.datetime(2003, 10, 17, 13, 30, 30),
|
|
441
|
-
periods=1, freq='D', tz=golden.tz)
|
|
442
|
-
ephem_data = solarposition.get_solarposition(times, golden.latitude,
|
|
443
|
-
golden.longitude,
|
|
444
|
-
pressure=pressure,
|
|
445
|
-
temperature=11)
|
|
446
|
-
if isinstance(expected, str) and expected == 'expected_solpos':
|
|
447
|
-
expected = expected_solpos
|
|
448
|
-
this_expected = expected.copy()
|
|
449
|
-
this_expected.index = times
|
|
450
|
-
this_expected = np.round(this_expected, 5)
|
|
451
|
-
ephem_data = np.round(ephem_data, 5)
|
|
452
|
-
assert_frame_equal(this_expected, ephem_data[this_expected.columns])
|
|
453
|
-
|
|
454
|
-
|
|
455
|
-
@pytest.mark.parametrize("altitude, expected", [
|
|
456
|
-
(1830.14, 'expected_solpos'),
|
|
457
|
-
(2000, pd.DataFrame(
|
|
458
|
-
np.array([[39.88788, 50.11212, 194.34024, 39.87205, 14.64151,
|
|
459
|
-
50.12795]]),
|
|
460
|
-
columns=['apparent_elevation', 'apparent_zenith', 'azimuth',
|
|
461
|
-
'elevation', 'equation_of_time', 'zenith'],
|
|
462
|
-
index=['2003-10-17T12:30:30Z']))
|
|
463
|
-
])
|
|
464
|
-
def test_get_solarposition_altitude(
|
|
465
|
-
altitude, expected, golden, expected_solpos):
|
|
466
|
-
times = pd.date_range(datetime.datetime(2003, 10, 17, 13, 30, 30),
|
|
467
|
-
periods=1, freq='D', tz=golden.tz)
|
|
468
|
-
ephem_data = solarposition.get_solarposition(times, golden.latitude,
|
|
469
|
-
golden.longitude,
|
|
470
|
-
altitude=altitude,
|
|
471
|
-
temperature=11)
|
|
472
|
-
if isinstance(expected, str) and expected == 'expected_solpos':
|
|
473
|
-
expected = expected_solpos
|
|
474
|
-
this_expected = expected.copy()
|
|
475
|
-
this_expected.index = times
|
|
476
|
-
this_expected = np.round(this_expected, 5)
|
|
477
|
-
ephem_data = np.round(ephem_data, 5)
|
|
478
|
-
assert_frame_equal(this_expected, ephem_data[this_expected.columns])
|
|
479
|
-
|
|
480
|
-
|
|
481
|
-
@pytest.mark.parametrize("delta_t, method", [
|
|
482
|
-
(None, 'nrel_numba'),
|
|
483
|
-
(67.0, 'nrel_numba'),
|
|
484
|
-
(np.array([67.0, 67.0]), 'nrel_numba'),
|
|
485
|
-
# minimize reloads, with numpy being last
|
|
486
|
-
(None, 'nrel_numpy'),
|
|
487
|
-
(67.0, 'nrel_numpy'),
|
|
488
|
-
(np.array([67.0, 67.0]), 'nrel_numpy'),
|
|
489
|
-
])
|
|
490
|
-
def test_get_solarposition_deltat(delta_t, method, expected_solpos_multi,
|
|
491
|
-
golden):
|
|
492
|
-
times = pd.date_range(datetime.datetime(2003, 10, 17, 13, 30, 30),
|
|
493
|
-
periods=2, freq='D', tz=golden.tz)
|
|
494
|
-
with warnings.catch_warnings():
|
|
495
|
-
# don't warn on method reload
|
|
496
|
-
warnings.simplefilter("ignore")
|
|
497
|
-
ephem_data = solarposition.get_solarposition(times, golden.latitude,
|
|
498
|
-
golden.longitude,
|
|
499
|
-
pressure=82000,
|
|
500
|
-
delta_t=delta_t,
|
|
501
|
-
temperature=11,
|
|
502
|
-
method=method)
|
|
503
|
-
this_expected = expected_solpos_multi
|
|
504
|
-
this_expected.index = times
|
|
505
|
-
this_expected = np.round(this_expected, 5)
|
|
506
|
-
ephem_data = np.round(ephem_data, 5)
|
|
507
|
-
assert_frame_equal(this_expected, ephem_data[this_expected.columns])
|
|
508
|
-
|
|
509
|
-
|
|
510
|
-
@pytest.mark.parametrize("method", ['nrel_numba', 'nrel_numpy'])
|
|
511
|
-
def test_spa_array_delta_t(method):
|
|
512
|
-
# make sure that time-varying delta_t produces different answers
|
|
513
|
-
times = pd.to_datetime(["2019-01-01", "2019-01-01"]).tz_localize("UTC")
|
|
514
|
-
expected = pd.Series([257.26969492, 257.2701359], index=times)
|
|
515
|
-
with warnings.catch_warnings():
|
|
516
|
-
# don't warn on method reload
|
|
517
|
-
warnings.simplefilter("ignore")
|
|
518
|
-
ephem_data = solarposition.get_solarposition(times, 40, -80,
|
|
519
|
-
delta_t=np.array([67, 0]),
|
|
520
|
-
method=method)
|
|
521
|
-
|
|
522
|
-
assert_series_equal(ephem_data['azimuth'], expected, check_names=False)
|
|
523
|
-
|
|
524
|
-
|
|
525
|
-
def test_get_solarposition_no_kwargs(expected_solpos, golden):
|
|
526
|
-
times = pd.date_range(datetime.datetime(2003, 10, 17, 13, 30, 30),
|
|
527
|
-
periods=1, freq='D', tz=golden.tz)
|
|
528
|
-
ephem_data = solarposition.get_solarposition(times, golden.latitude,
|
|
529
|
-
golden.longitude)
|
|
530
|
-
expected_solpos.index = times
|
|
531
|
-
expected_solpos = np.round(expected_solpos, 2)
|
|
532
|
-
ephem_data = np.round(ephem_data, 2)
|
|
533
|
-
assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns])
|
|
534
|
-
|
|
535
|
-
|
|
536
|
-
@requires_ephem
|
|
537
|
-
def test_get_solarposition_method_pyephem(expected_solpos, golden):
|
|
538
|
-
times = pd.date_range(datetime.datetime(2003, 10, 17, 13, 30, 30),
|
|
539
|
-
periods=1, freq='D', tz=golden.tz)
|
|
540
|
-
ephem_data = solarposition.get_solarposition(times, golden.latitude,
|
|
541
|
-
golden.longitude,
|
|
542
|
-
method='pyephem')
|
|
543
|
-
expected_solpos.index = times
|
|
544
|
-
expected_solpos = np.round(expected_solpos, 2)
|
|
545
|
-
ephem_data = np.round(ephem_data, 2)
|
|
546
|
-
assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns])
|
|
547
|
-
|
|
548
|
-
|
|
549
|
-
@pytest.mark.parametrize('delta_t', [64.0, None, np.array([64, 64])])
|
|
550
|
-
def test_nrel_earthsun_distance(delta_t):
|
|
551
|
-
times = pd.DatetimeIndex([datetime.datetime(2015, 1, 2),
|
|
552
|
-
datetime.datetime(2015, 8, 2)]
|
|
553
|
-
).tz_localize('MST')
|
|
554
|
-
result = solarposition.nrel_earthsun_distance(times, delta_t=delta_t)
|
|
555
|
-
expected = pd.Series(np.array([0.983289204601, 1.01486146446]),
|
|
556
|
-
index=times)
|
|
557
|
-
assert_series_equal(expected, result)
|
|
558
|
-
|
|
559
|
-
if np.size(delta_t) == 1: # skip the array delta_t
|
|
560
|
-
times = datetime.datetime(2015, 1, 2)
|
|
561
|
-
result = solarposition.nrel_earthsun_distance(times, delta_t=delta_t)
|
|
562
|
-
expected = pd.Series(np.array([0.983289204601]),
|
|
563
|
-
index=pd.DatetimeIndex([times, ]))
|
|
564
|
-
assert_series_equal(expected, result)
|
|
565
|
-
|
|
566
|
-
|
|
567
|
-
def test_equation_of_time():
|
|
568
|
-
times = pd.date_range(start="1/1/2015 0:00", end="12/31/2015 23:00",
|
|
569
|
-
freq="h")
|
|
570
|
-
output = solarposition.spa_python(times, 37.8, -122.25, 100)
|
|
571
|
-
eot = output['equation_of_time']
|
|
572
|
-
eot_rng = eot.max() - eot.min() # range of values, around 30 minutes
|
|
573
|
-
eot_1 = solarposition.equation_of_time_spencer71(times.dayofyear)
|
|
574
|
-
eot_2 = solarposition.equation_of_time_pvcdrom(times.dayofyear)
|
|
575
|
-
assert np.allclose(eot_1 / eot_rng, eot / eot_rng, atol=0.3) # spencer
|
|
576
|
-
assert np.allclose(eot_2 / eot_rng, eot / eot_rng, atol=0.4) # pvcdrom
|
|
577
|
-
|
|
578
|
-
|
|
579
|
-
def test_declination():
|
|
580
|
-
times = pd.date_range(start="1/1/2015 0:00", end="12/31/2015 23:00",
|
|
581
|
-
freq="h")
|
|
582
|
-
atmos_refract = 0.5667
|
|
583
|
-
delta_t = spa.calculate_deltat(times.year, times.month)
|
|
584
|
-
unixtime = np.array([calendar.timegm(t.timetuple()) for t in times])
|
|
585
|
-
_, _, declination = spa.solar_position(unixtime, 37.8, -122.25, 100,
|
|
586
|
-
1013.25, 25, delta_t, atmos_refract,
|
|
587
|
-
sst=True)
|
|
588
|
-
declination = np.deg2rad(declination)
|
|
589
|
-
declination_rng = declination.max() - declination.min()
|
|
590
|
-
declination_1 = solarposition.declination_cooper69(times.dayofyear)
|
|
591
|
-
declination_2 = solarposition.declination_spencer71(times.dayofyear)
|
|
592
|
-
a, b = declination_1 / declination_rng, declination / declination_rng
|
|
593
|
-
assert np.allclose(a, b, atol=0.03) # cooper
|
|
594
|
-
a, b = declination_2 / declination_rng, declination / declination_rng
|
|
595
|
-
assert np.allclose(a, b, atol=0.02) # spencer
|
|
596
|
-
|
|
597
|
-
|
|
598
|
-
def test_analytical_zenith():
|
|
599
|
-
times = pd.date_range(start="1/1/2015 0:00", end="12/31/2015 23:00",
|
|
600
|
-
freq="h").tz_localize('Etc/GMT+8')
|
|
601
|
-
times_utc = times.tz_convert('UTC')
|
|
602
|
-
lat, lon = 37.8, -122.25
|
|
603
|
-
lat_rad = np.deg2rad(lat)
|
|
604
|
-
output = solarposition.spa_python(times, lat, lon, 100)
|
|
605
|
-
solar_zenith = np.deg2rad(output['zenith']) # spa
|
|
606
|
-
# spencer
|
|
607
|
-
eot = solarposition.equation_of_time_spencer71(times_utc.dayofyear)
|
|
608
|
-
hour_angle = np.deg2rad(solarposition.hour_angle(times, lon, eot))
|
|
609
|
-
decl = solarposition.declination_spencer71(times_utc.dayofyear)
|
|
610
|
-
zenith_1 = solarposition.solar_zenith_analytical(lat_rad, hour_angle, decl)
|
|
611
|
-
# pvcdrom and cooper
|
|
612
|
-
eot = solarposition.equation_of_time_pvcdrom(times_utc.dayofyear)
|
|
613
|
-
hour_angle = np.deg2rad(solarposition.hour_angle(times, lon, eot))
|
|
614
|
-
decl = solarposition.declination_cooper69(times_utc.dayofyear)
|
|
615
|
-
zenith_2 = solarposition.solar_zenith_analytical(lat_rad, hour_angle, decl)
|
|
616
|
-
assert np.allclose(zenith_1, solar_zenith, atol=0.015)
|
|
617
|
-
assert np.allclose(zenith_2, solar_zenith, atol=0.025)
|
|
618
|
-
|
|
619
|
-
|
|
620
|
-
def test_analytical_azimuth():
|
|
621
|
-
times = pd.date_range(start="1/1/2015 0:00", end="12/31/2015 23:00",
|
|
622
|
-
freq="h").tz_localize('Etc/GMT+8')
|
|
623
|
-
times_utc = times.tz_convert('UTC')
|
|
624
|
-
lat, lon = 37.8, -122.25
|
|
625
|
-
lat_rad = np.deg2rad(lat)
|
|
626
|
-
output = solarposition.spa_python(times, lat, lon, 100)
|
|
627
|
-
solar_azimuth = np.deg2rad(output['azimuth']) # spa
|
|
628
|
-
solar_zenith = np.deg2rad(output['zenith'])
|
|
629
|
-
# spencer
|
|
630
|
-
eot = solarposition.equation_of_time_spencer71(times_utc.dayofyear)
|
|
631
|
-
hour_angle = np.deg2rad(solarposition.hour_angle(times, lon, eot))
|
|
632
|
-
decl = solarposition.declination_spencer71(times_utc.dayofyear)
|
|
633
|
-
zenith = solarposition.solar_zenith_analytical(lat_rad, hour_angle, decl)
|
|
634
|
-
azimuth_1 = solarposition.solar_azimuth_analytical(lat_rad, hour_angle,
|
|
635
|
-
decl, zenith)
|
|
636
|
-
# pvcdrom and cooper
|
|
637
|
-
eot = solarposition.equation_of_time_pvcdrom(times_utc.dayofyear)
|
|
638
|
-
hour_angle = np.deg2rad(solarposition.hour_angle(times, lon, eot))
|
|
639
|
-
decl = solarposition.declination_cooper69(times_utc.dayofyear)
|
|
640
|
-
zenith = solarposition.solar_zenith_analytical(lat_rad, hour_angle, decl)
|
|
641
|
-
azimuth_2 = solarposition.solar_azimuth_analytical(lat_rad, hour_angle,
|
|
642
|
-
decl, zenith)
|
|
643
|
-
|
|
644
|
-
idx = np.where(solar_zenith < np.pi/2)
|
|
645
|
-
assert np.allclose(azimuth_1[idx], solar_azimuth.values[idx], atol=0.01)
|
|
646
|
-
assert np.allclose(azimuth_2[idx], solar_azimuth.values[idx], atol=0.017)
|
|
647
|
-
|
|
648
|
-
# test for NaN values at boundary conditions (PR #431)
|
|
649
|
-
test_angles = np.radians(np.array(
|
|
650
|
-
[[ 0., -180., -20.],
|
|
651
|
-
[ 0., 0., -5.],
|
|
652
|
-
[ 0., 0., 0.],
|
|
653
|
-
[ 0., 0., 15.],
|
|
654
|
-
[ 0., 180., 20.],
|
|
655
|
-
[ 30., 0., -20.],
|
|
656
|
-
[ 30., 0., -5.],
|
|
657
|
-
[ 30., 0., 0.],
|
|
658
|
-
[ 30., 180., 5.],
|
|
659
|
-
[ 30., 0., 10.],
|
|
660
|
-
[ -30., 0., -20.],
|
|
661
|
-
[ -30., 0., -15.],
|
|
662
|
-
[ -30., 0., 0.],
|
|
663
|
-
[ -30., -180., 5.],
|
|
664
|
-
[ -30., 180., 10.]]))
|
|
665
|
-
|
|
666
|
-
zeniths = solarposition.solar_zenith_analytical(*test_angles.T)
|
|
667
|
-
azimuths = solarposition.solar_azimuth_analytical(*test_angles.T,
|
|
668
|
-
zenith=zeniths)
|
|
669
|
-
|
|
670
|
-
assert not np.isnan(azimuths).any()
|
|
671
|
-
|
|
672
|
-
|
|
673
|
-
def test_hour_angle():
|
|
674
|
-
"""
|
|
675
|
-
Test conversion from hours to hour angles in degrees given the following
|
|
676
|
-
inputs from NREL SPA calculator at Golden, CO
|
|
677
|
-
date,times,eot,sunrise,sunset
|
|
678
|
-
1/2/2015,7:21:55,-3.935172,-70.699400,70.512721
|
|
679
|
-
1/2/2015,16:47:43,-4.117227,-70.699400,70.512721
|
|
680
|
-
1/2/2015,12:04:45,-4.026295,-70.699400,70.512721
|
|
681
|
-
"""
|
|
682
|
-
longitude = -105.1786 # degrees
|
|
683
|
-
times = pd.DatetimeIndex([
|
|
684
|
-
'2015-01-02 07:21:55.2132',
|
|
685
|
-
'2015-01-02 16:47:42.9828',
|
|
686
|
-
'2015-01-02 12:04:44.6340'
|
|
687
|
-
]).tz_localize('Etc/GMT+7')
|
|
688
|
-
eot = np.array([-3.935172, -4.117227, -4.026295])
|
|
689
|
-
hourangle = solarposition.hour_angle(times, longitude, eot)
|
|
690
|
-
expected = (-70.682338, 70.72118825000001, 0.000801250)
|
|
691
|
-
# FIXME: there are differences from expected NREL SPA calculator values
|
|
692
|
-
# sunrise: 4 seconds, sunset: 48 seconds, transit: 0.2 seconds
|
|
693
|
-
# but the differences may be due to other SPA input parameters
|
|
694
|
-
assert np.allclose(hourangle, expected)
|
|
695
|
-
|
|
696
|
-
hours = solarposition._hour_angle_to_hours(
|
|
697
|
-
times, hourangle, longitude, eot)
|
|
698
|
-
result = solarposition._times_to_hours_after_local_midnight(times)
|
|
699
|
-
assert np.allclose(result, hours)
|
|
700
|
-
|
|
701
|
-
result = solarposition._local_times_from_hours_since_midnight(times, hours)
|
|
702
|
-
assert result.equals(times)
|
|
703
|
-
|
|
704
|
-
times = times.tz_convert(None)
|
|
705
|
-
with pytest.raises(ValueError):
|
|
706
|
-
solarposition.hour_angle(times, longitude, eot)
|
|
707
|
-
with pytest.raises(ValueError):
|
|
708
|
-
solarposition._hour_angle_to_hours(times, hourangle, longitude, eot)
|
|
709
|
-
with pytest.raises(ValueError):
|
|
710
|
-
solarposition._times_to_hours_after_local_midnight(times)
|
|
711
|
-
with pytest.raises(ValueError):
|
|
712
|
-
solarposition._local_times_from_hours_since_midnight(times, hours)
|
|
713
|
-
|
|
714
|
-
|
|
715
|
-
def test_hour_angle_with_tricky_timezones():
|
|
716
|
-
# GH 2132
|
|
717
|
-
# tests timezones that have a DST shift at midnight
|
|
718
|
-
|
|
719
|
-
eot = np.array([-3.935172, -4.117227, -4.026295, -4.026295])
|
|
720
|
-
|
|
721
|
-
longitude = 70.6693
|
|
722
|
-
times = pd.DatetimeIndex([
|
|
723
|
-
'2014-09-06 23:00:00',
|
|
724
|
-
'2014-09-07 00:00:00',
|
|
725
|
-
'2014-09-07 01:00:00',
|
|
726
|
-
'2014-09-07 02:00:00',
|
|
727
|
-
]).tz_localize('America/Santiago', nonexistent='shift_forward')
|
|
728
|
-
|
|
729
|
-
with pytest.raises(pytz.exceptions.NonExistentTimeError):
|
|
730
|
-
times.normalize()
|
|
731
|
-
|
|
732
|
-
# should not raise `pytz.exceptions.NonExistentTimeError`
|
|
733
|
-
solarposition.hour_angle(times, longitude, eot)
|
|
734
|
-
|
|
735
|
-
longitude = 82.3666
|
|
736
|
-
times = pd.DatetimeIndex([
|
|
737
|
-
'2014-11-01 23:00:00',
|
|
738
|
-
'2014-11-02 00:00:00',
|
|
739
|
-
'2014-11-02 01:00:00',
|
|
740
|
-
'2014-11-02 02:00:00',
|
|
741
|
-
]).tz_localize('America/Havana', ambiguous=[True, True, False, False])
|
|
742
|
-
|
|
743
|
-
with pytest.raises(pytz.exceptions.AmbiguousTimeError):
|
|
744
|
-
solarposition.hour_angle(times, longitude, eot)
|
|
745
|
-
|
|
746
|
-
|
|
747
|
-
def test_sun_rise_set_transit_geometric(expected_rise_set_spa, golden_mst):
|
|
748
|
-
"""Test geometric calculations for sunrise, sunset, and transit times"""
|
|
749
|
-
times = expected_rise_set_spa.index
|
|
750
|
-
times_utc = times.tz_convert('UTC')
|
|
751
|
-
latitude = golden_mst.latitude
|
|
752
|
-
longitude = golden_mst.longitude
|
|
753
|
-
eot = solarposition.equation_of_time_spencer71(
|
|
754
|
-
times_utc.dayofyear) # minutes
|
|
755
|
-
decl = solarposition.declination_spencer71(times_utc.dayofyear) # radians
|
|
756
|
-
with pytest.raises(ValueError):
|
|
757
|
-
solarposition.sun_rise_set_transit_geometric(
|
|
758
|
-
times.tz_convert(None), latitude=latitude, longitude=longitude,
|
|
759
|
-
declination=decl, equation_of_time=eot)
|
|
760
|
-
sr, ss, st = solarposition.sun_rise_set_transit_geometric(
|
|
761
|
-
times, latitude=latitude, longitude=longitude, declination=decl,
|
|
762
|
-
equation_of_time=eot)
|
|
763
|
-
# sunrise: 2015-01-02 07:26:39.763224487, 2015-08-02 05:04:35.688533801
|
|
764
|
-
# sunset: 2015-01-02 16:41:29.951096777, 2015-08-02 19:09:46.597355085
|
|
765
|
-
# transit: 2015-01-02 12:04:04.857160632, 2015-08-02 12:07:11.142944443
|
|
766
|
-
test_sunrise = solarposition._times_to_hours_after_local_midnight(sr)
|
|
767
|
-
test_sunset = solarposition._times_to_hours_after_local_midnight(ss)
|
|
768
|
-
test_transit = solarposition._times_to_hours_after_local_midnight(st)
|
|
769
|
-
# convert expected SPA sunrise, sunset, transit to local datetime indices
|
|
770
|
-
expected_sunrise = pd.DatetimeIndex(expected_rise_set_spa.sunrise.values,
|
|
771
|
-
tz='UTC').tz_convert(golden_mst.tz)
|
|
772
|
-
expected_sunset = pd.DatetimeIndex(expected_rise_set_spa.sunset.values,
|
|
773
|
-
tz='UTC').tz_convert(golden_mst.tz)
|
|
774
|
-
expected_transit = pd.DatetimeIndex(expected_rise_set_spa.transit.values,
|
|
775
|
-
tz='UTC').tz_convert(golden_mst.tz)
|
|
776
|
-
# convert expected times to hours since midnight as arrays of floats
|
|
777
|
-
expected_sunrise = solarposition._times_to_hours_after_local_midnight(
|
|
778
|
-
expected_sunrise)
|
|
779
|
-
expected_sunset = solarposition._times_to_hours_after_local_midnight(
|
|
780
|
-
expected_sunset)
|
|
781
|
-
expected_transit = solarposition._times_to_hours_after_local_midnight(
|
|
782
|
-
expected_transit)
|
|
783
|
-
# geometric time has about 4-6 minute error compared to SPA sunset/sunrise
|
|
784
|
-
expected_sunrise_error = np.array(
|
|
785
|
-
[0.07910089555555544, 0.06908014805555496]) # 4.8[min], 4.2[min]
|
|
786
|
-
expected_sunset_error = np.array(
|
|
787
|
-
[-0.1036246955555562, -0.06983406805555603]) # -6.2[min], -4.2[min]
|
|
788
|
-
expected_transit_error = np.array(
|
|
789
|
-
[-0.011150788888889096, 0.0036508177777765383]) # -40[sec], 13.3[sec]
|
|
790
|
-
assert np.allclose(test_sunrise, expected_sunrise,
|
|
791
|
-
atol=np.abs(expected_sunrise_error).max())
|
|
792
|
-
assert np.allclose(test_sunset, expected_sunset,
|
|
793
|
-
atol=np.abs(expected_sunset_error).max())
|
|
794
|
-
assert np.allclose(test_transit, expected_transit,
|
|
795
|
-
atol=np.abs(expected_transit_error).max())
|
|
796
|
-
|
|
797
|
-
|
|
798
|
-
@pytest.mark.parametrize('tz', [None, 'utc', 'US/Eastern'])
|
|
799
|
-
def test__datetime_to_unixtime(tz):
|
|
800
|
-
# for pandas < 2.0 where "unit" doesn't exist in pd.date_range. note that
|
|
801
|
-
# unit of ns is the only option in pandas<2, and the default in pandas 2.x
|
|
802
|
-
times = pd.date_range(start='2019-01-01', freq='h', periods=3, tz=tz)
|
|
803
|
-
expected = times.view(np.int64)/10**9
|
|
804
|
-
actual = solarposition._datetime_to_unixtime(times)
|
|
805
|
-
np.testing.assert_equal(expected, actual)
|
|
806
|
-
|
|
807
|
-
|
|
808
|
-
@requires_pandas_2_0
|
|
809
|
-
@pytest.mark.parametrize('unit', ['ns', 'us', 's'])
|
|
810
|
-
@pytest.mark.parametrize('tz', [None, 'utc', 'US/Eastern'])
|
|
811
|
-
def test__datetime_to_unixtime_units(unit, tz):
|
|
812
|
-
kwargs = dict(start='2019-01-01', freq='h', periods=3)
|
|
813
|
-
times = pd.date_range(**kwargs, unit='ns', tz='UTC')
|
|
814
|
-
expected = times.view(np.int64)/10**9
|
|
815
|
-
|
|
816
|
-
times = pd.date_range(**kwargs, unit=unit, tz='UTC').tz_convert(tz)
|
|
817
|
-
actual = solarposition._datetime_to_unixtime(times)
|
|
818
|
-
np.testing.assert_equal(expected, actual)
|
|
819
|
-
|
|
820
|
-
|
|
821
|
-
@requires_pandas_2_0
|
|
822
|
-
@pytest.mark.parametrize('tz', [None, 'utc', 'US/Eastern'])
|
|
823
|
-
@pytest.mark.parametrize('method', [
|
|
824
|
-
'nrel_numpy',
|
|
825
|
-
'ephemeris',
|
|
826
|
-
pytest.param('pyephem', marks=requires_ephem),
|
|
827
|
-
pytest.param('nrel_numba', marks=requires_numba),
|
|
828
|
-
pytest.param('nrel_c', marks=requires_spa_c),
|
|
829
|
-
])
|
|
830
|
-
def test_get_solarposition_microsecond_index(method, tz):
|
|
831
|
-
# https://github.com/pvlib/pvlib-python/issues/1932
|
|
832
|
-
|
|
833
|
-
kwargs = dict(start='2019-01-01', freq='h', periods=24, tz=tz)
|
|
834
|
-
|
|
835
|
-
index_ns = pd.date_range(unit='ns', **kwargs)
|
|
836
|
-
index_us = pd.date_range(unit='us', **kwargs)
|
|
837
|
-
|
|
838
|
-
with warnings.catch_warnings():
|
|
839
|
-
# don't warn on method reload
|
|
840
|
-
warnings.simplefilter("ignore")
|
|
841
|
-
|
|
842
|
-
sp_ns = solarposition.get_solarposition(index_ns, 0, 0, method=method)
|
|
843
|
-
sp_us = solarposition.get_solarposition(index_us, 0, 0, method=method)
|
|
844
|
-
|
|
845
|
-
assert_frame_equal(sp_ns, sp_us, check_index_type=False)
|
|
846
|
-
|
|
847
|
-
|
|
848
|
-
@requires_pandas_2_0
|
|
849
|
-
@pytest.mark.parametrize('tz', [None, 'utc', 'US/Eastern'])
|
|
850
|
-
def test_nrel_earthsun_distance_microsecond_index(tz):
|
|
851
|
-
# https://github.com/pvlib/pvlib-python/issues/1932
|
|
852
|
-
|
|
853
|
-
kwargs = dict(start='2019-01-01', freq='h', periods=24, tz=tz)
|
|
854
|
-
|
|
855
|
-
index_ns = pd.date_range(unit='ns', **kwargs)
|
|
856
|
-
index_us = pd.date_range(unit='us', **kwargs)
|
|
857
|
-
|
|
858
|
-
esd_ns = solarposition.nrel_earthsun_distance(index_ns)
|
|
859
|
-
esd_us = solarposition.nrel_earthsun_distance(index_us)
|
|
860
|
-
|
|
861
|
-
assert_series_equal(esd_ns, esd_us, check_index_type=False)
|
|
862
|
-
|
|
863
|
-
|
|
864
|
-
@requires_pandas_2_0
|
|
865
|
-
@pytest.mark.parametrize('tz', ['utc', 'US/Eastern'])
|
|
866
|
-
def test_hour_angle_microsecond_index(tz):
|
|
867
|
-
# https://github.com/pvlib/pvlib-python/issues/1932
|
|
868
|
-
|
|
869
|
-
kwargs = dict(start='2019-01-01', freq='h', periods=24, tz=tz)
|
|
870
|
-
|
|
871
|
-
index_ns = pd.date_range(unit='ns', **kwargs)
|
|
872
|
-
index_us = pd.date_range(unit='us', **kwargs)
|
|
873
|
-
|
|
874
|
-
ha_ns = solarposition.hour_angle(index_ns, -80, 0)
|
|
875
|
-
ha_us = solarposition.hour_angle(index_us, -80, 0)
|
|
876
|
-
|
|
877
|
-
np.testing.assert_equal(ha_ns, ha_us)
|
|
878
|
-
|
|
879
|
-
|
|
880
|
-
@requires_pandas_2_0
|
|
881
|
-
@pytest.mark.parametrize('tz', ['utc', 'US/Eastern'])
|
|
882
|
-
def test_rise_set_transit_spa_microsecond_index(tz):
|
|
883
|
-
# https://github.com/pvlib/pvlib-python/issues/1932
|
|
884
|
-
|
|
885
|
-
kwargs = dict(start='2019-01-01', freq='h', periods=24, tz=tz)
|
|
886
|
-
|
|
887
|
-
index_ns = pd.date_range(unit='ns', **kwargs)
|
|
888
|
-
index_us = pd.date_range(unit='us', **kwargs)
|
|
889
|
-
|
|
890
|
-
rst_ns = solarposition.sun_rise_set_transit_spa(index_ns, 40, -80)
|
|
891
|
-
rst_us = solarposition.sun_rise_set_transit_spa(index_us, 40, -80)
|
|
892
|
-
|
|
893
|
-
assert_frame_equal(rst_ns, rst_us, check_index_type=False)
|
|
894
|
-
|
|
895
|
-
|
|
896
|
-
@requires_pandas_2_0
|
|
897
|
-
@pytest.mark.parametrize('tz', ['utc', 'US/Eastern'])
|
|
898
|
-
def test_rise_set_transit_geometric_microsecond_index(tz):
|
|
899
|
-
# https://github.com/pvlib/pvlib-python/issues/1932
|
|
900
|
-
|
|
901
|
-
kwargs = dict(start='2019-01-01', freq='h', periods=24, tz=tz)
|
|
902
|
-
|
|
903
|
-
index_ns = pd.date_range(unit='ns', **kwargs)
|
|
904
|
-
index_us = pd.date_range(unit='us', **kwargs)
|
|
905
|
-
|
|
906
|
-
args = (40, -80, 0, 0)
|
|
907
|
-
rst_ns = solarposition.sun_rise_set_transit_geometric(index_ns, *args)
|
|
908
|
-
rst_us = solarposition.sun_rise_set_transit_geometric(index_us, *args)
|
|
909
|
-
|
|
910
|
-
for times_ns, times_us in zip(rst_ns, rst_us):
|
|
911
|
-
# can't use a fancy assert function here since the units are different
|
|
912
|
-
assert all(times_ns == times_us)
|
|
913
|
-
|
|
914
|
-
|
|
915
|
-
# put numba tests at end of file to minimize reloading
|
|
916
|
-
|
|
917
|
-
@requires_numba
|
|
918
|
-
def test_spa_python_numba_physical(expected_solpos, golden_mst):
|
|
919
|
-
times = pd.date_range(datetime.datetime(2003, 10, 17, 12, 30, 30),
|
|
920
|
-
periods=1, freq='D', tz=golden_mst.tz)
|
|
921
|
-
with warnings.catch_warnings():
|
|
922
|
-
# don't warn on method reload
|
|
923
|
-
# ensure that numpy is the most recently used method so that
|
|
924
|
-
# we can use the warns filter below
|
|
925
|
-
warnings.simplefilter("ignore")
|
|
926
|
-
ephem_data = solarposition.spa_python(times, golden_mst.latitude,
|
|
927
|
-
golden_mst.longitude,
|
|
928
|
-
pressure=82000,
|
|
929
|
-
temperature=11, delta_t=67,
|
|
930
|
-
atmos_refract=0.5667,
|
|
931
|
-
how='numpy', numthreads=1)
|
|
932
|
-
with pytest.warns(UserWarning):
|
|
933
|
-
ephem_data = solarposition.spa_python(times, golden_mst.latitude,
|
|
934
|
-
golden_mst.longitude,
|
|
935
|
-
pressure=82000,
|
|
936
|
-
temperature=11, delta_t=67,
|
|
937
|
-
atmos_refract=0.5667,
|
|
938
|
-
how='numba', numthreads=1)
|
|
939
|
-
expected_solpos.index = times
|
|
940
|
-
assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns])
|
|
941
|
-
|
|
942
|
-
|
|
943
|
-
@requires_numba
|
|
944
|
-
def test_spa_python_numba_physical_dst(expected_solpos, golden):
|
|
945
|
-
times = pd.date_range(datetime.datetime(2003, 10, 17, 13, 30, 30),
|
|
946
|
-
periods=1, freq='D', tz=golden.tz)
|
|
947
|
-
|
|
948
|
-
with warnings.catch_warnings():
|
|
949
|
-
# don't warn on method reload
|
|
950
|
-
warnings.simplefilter("ignore")
|
|
951
|
-
ephem_data = solarposition.spa_python(times, golden.latitude,
|
|
952
|
-
golden.longitude, pressure=82000,
|
|
953
|
-
temperature=11, delta_t=67,
|
|
954
|
-
atmos_refract=0.5667,
|
|
955
|
-
how='numba', numthreads=1)
|
|
956
|
-
expected_solpos.index = times
|
|
957
|
-
assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns])
|
|
958
|
-
|
|
959
|
-
with pytest.warns(UserWarning):
|
|
960
|
-
# test that we get a warning when reloading to use numpy only
|
|
961
|
-
ephem_data = solarposition.spa_python(times, golden.latitude,
|
|
962
|
-
golden.longitude,
|
|
963
|
-
pressure=82000,
|
|
964
|
-
temperature=11, delta_t=67,
|
|
965
|
-
atmos_refract=0.5667,
|
|
966
|
-
how='numpy', numthreads=1)
|