pvlib 0.11.2__py3-none-any.whl → 0.12.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (139) hide show
  1. pvlib/__init__.py +1 -0
  2. pvlib/atmosphere.py +0 -9
  3. pvlib/bifacial/infinite_sheds.py +4 -3
  4. pvlib/bifacial/utils.py +2 -1
  5. pvlib/iotools/psm3.py +1 -1
  6. pvlib/iotools/pvgis.py +10 -2
  7. pvlib/iotools/tmy.py +3 -69
  8. pvlib/irradiance.py +14 -0
  9. pvlib/location.py +73 -33
  10. pvlib/modelchain.py +18 -35
  11. pvlib/pvsystem.py +7 -10
  12. pvlib/snow.py +64 -28
  13. pvlib/spectrum/__init__.py +0 -1
  14. pvlib/spectrum/irradiance.py +0 -63
  15. pvlib/spectrum/mismatch.py +3 -3
  16. pvlib/tools.py +6 -5
  17. {pvlib-0.11.2.dist-info → pvlib-0.12.0.dist-info}/METADATA +5 -3
  18. pvlib-0.12.0.dist-info/RECORD +75 -0
  19. {pvlib-0.11.2.dist-info → pvlib-0.12.0.dist-info}/WHEEL +1 -1
  20. pvlib/data/BIRD_08_16_2012.csv +0 -8761
  21. pvlib/data/BIRD_08_16_2012_patm.csv +0 -8761
  22. pvlib/data/Burlington, United States SolarAnywhere Time Series 2021 Lat_44_465 Lon_-73_205 TMY3 format.csv +0 -8762
  23. pvlib/data/Burlington, United States SolarAnywhere Time Series 20210101 to 20210103 Lat_44_4675 Lon_-73_2075 SA format.csv +0 -578
  24. pvlib/data/Burlington, United States SolarAnywhere Typical GHI Year Lat_44_465 Lon_-73_205 SA format.csv +0 -74
  25. pvlib/data/CPS SCH275KTL-DO-US-800-250kW_275kVA_1.OND +0 -146
  26. pvlib/data/CRNS0101-05-2019-AZ_Tucson_11_W.txt +0 -4
  27. pvlib/data/CRN_with_problems.txt +0 -3
  28. pvlib/data/ET-M772BH550GL.PAN +0 -75
  29. pvlib/data/NLD_Amsterdam062400_IWEC.epw +0 -8768
  30. pvlib/data/PVsyst_demo.csv +0 -10757
  31. pvlib/data/PVsyst_demo_model.csv +0 -3588
  32. pvlib/data/SRML-day-EUPO1801.txt +0 -1441
  33. pvlib/data/abq19056.dat +0 -6
  34. pvlib/data/bishop88_numerical_precision.csv +0 -101
  35. pvlib/data/bsrn-lr0100-pay0616.dat +0 -86901
  36. pvlib/data/bsrn-pay0616.dat.gz +0 -0
  37. pvlib/data/cams_mcclear_1min_verbose.csv +0 -60
  38. pvlib/data/cams_mcclear_monthly.csv +0 -42
  39. pvlib/data/cams_radiation_1min_verbose.csv +0 -72
  40. pvlib/data/cams_radiation_monthly.csv +0 -47
  41. pvlib/data/detect_clearsky_data.csv +0 -35
  42. pvlib/data/detect_clearsky_threshold_data.csv +0 -126
  43. pvlib/data/greensboro_kimber_soil_manwash.dat +0 -8761
  44. pvlib/data/greensboro_kimber_soil_nowash.dat +0 -8761
  45. pvlib/data/inverter_fit_snl_meas.csv +0 -127
  46. pvlib/data/inverter_fit_snl_sim.csv +0 -19
  47. pvlib/data/ivtools_numdiff.csv +0 -52
  48. pvlib/data/midc_20181014.txt +0 -1441
  49. pvlib/data/midc_raw_20181018.txt +0 -1441
  50. pvlib/data/midc_raw_short_header_20191115.txt +0 -1441
  51. pvlib/data/msn19056.dat +0 -6
  52. pvlib/data/precise_iv_curves1.json +0 -10251
  53. pvlib/data/precise_iv_curves2.json +0 -10251
  54. pvlib/data/precise_iv_curves_parameter_sets1.csv +0 -33
  55. pvlib/data/precise_iv_curves_parameter_sets2.csv +0 -33
  56. pvlib/data/pvgis_hourly_Timeseries_45.000_8.000_SA2_10kWp_CIS_5_2a_2013_2014.json +0 -1
  57. pvlib/data/pvgis_hourly_Timeseries_45.000_8.000_SA_30deg_0deg_2016_2016.csv +0 -35
  58. pvlib/data/pvgis_tmy_meta.json +0 -32
  59. pvlib/data/pvgis_tmy_test.csv +0 -8761
  60. pvlib/data/pvwatts_8760_rackmount.csv +0 -8779
  61. pvlib/data/pvwatts_8760_roofmount.csv +0 -8779
  62. pvlib/data/singleaxis_tracker_wslope.csv +0 -8761
  63. pvlib/data/spectrl2_example_spectra.csv +0 -123
  64. pvlib/data/surfrad-slv16001.dat +0 -1442
  65. pvlib/data/test_psm3_2017.csv +0 -17521
  66. pvlib/data/test_psm3_2019_5min.csv +0 -289
  67. pvlib/data/test_psm3_tmy-2017.csv +0 -8761
  68. pvlib/data/test_read_psm3.csv +0 -17523
  69. pvlib/data/test_read_pvgis_horizon.csv +0 -49
  70. pvlib/data/tmy_45.000_8.000_2005_2023.csv +0 -8789
  71. pvlib/data/tmy_45.000_8.000_2005_2023.epw +0 -8768
  72. pvlib/data/tmy_45.000_8.000_2005_2023.json +0 -1
  73. pvlib/data/tmy_45.000_8.000_2005_2023.txt +0 -8761
  74. pvlib/data/tmy_45.000_8.000_userhorizon.json +0 -1
  75. pvlib/spa_c_files/README.md +0 -81
  76. pvlib/spa_c_files/cspa_py.pxd +0 -43
  77. pvlib/spa_c_files/spa_py.pyx +0 -30
  78. pvlib/tests/__init__.py +0 -0
  79. pvlib/tests/bifacial/__init__.py +0 -0
  80. pvlib/tests/bifacial/test_infinite_sheds.py +0 -317
  81. pvlib/tests/bifacial/test_losses_models.py +0 -54
  82. pvlib/tests/bifacial/test_pvfactors.py +0 -82
  83. pvlib/tests/bifacial/test_utils.py +0 -192
  84. pvlib/tests/conftest.py +0 -476
  85. pvlib/tests/iotools/__init__.py +0 -0
  86. pvlib/tests/iotools/test_acis.py +0 -213
  87. pvlib/tests/iotools/test_bsrn.py +0 -131
  88. pvlib/tests/iotools/test_crn.py +0 -95
  89. pvlib/tests/iotools/test_epw.py +0 -23
  90. pvlib/tests/iotools/test_midc.py +0 -89
  91. pvlib/tests/iotools/test_panond.py +0 -32
  92. pvlib/tests/iotools/test_psm3.py +0 -198
  93. pvlib/tests/iotools/test_pvgis.py +0 -644
  94. pvlib/tests/iotools/test_sodapro.py +0 -298
  95. pvlib/tests/iotools/test_solaranywhere.py +0 -287
  96. pvlib/tests/iotools/test_solargis.py +0 -68
  97. pvlib/tests/iotools/test_solcast.py +0 -324
  98. pvlib/tests/iotools/test_solrad.py +0 -152
  99. pvlib/tests/iotools/test_srml.py +0 -124
  100. pvlib/tests/iotools/test_surfrad.py +0 -75
  101. pvlib/tests/iotools/test_tmy.py +0 -133
  102. pvlib/tests/ivtools/__init__.py +0 -0
  103. pvlib/tests/ivtools/test_sde.py +0 -230
  104. pvlib/tests/ivtools/test_sdm.py +0 -429
  105. pvlib/tests/ivtools/test_utils.py +0 -173
  106. pvlib/tests/spectrum/__init__.py +0 -0
  107. pvlib/tests/spectrum/conftest.py +0 -40
  108. pvlib/tests/spectrum/test_irradiance.py +0 -138
  109. pvlib/tests/spectrum/test_mismatch.py +0 -304
  110. pvlib/tests/spectrum/test_response.py +0 -124
  111. pvlib/tests/spectrum/test_spectrl2.py +0 -72
  112. pvlib/tests/test__deprecation.py +0 -97
  113. pvlib/tests/test_albedo.py +0 -84
  114. pvlib/tests/test_atmosphere.py +0 -351
  115. pvlib/tests/test_clearsky.py +0 -884
  116. pvlib/tests/test_conftest.py +0 -37
  117. pvlib/tests/test_iam.py +0 -555
  118. pvlib/tests/test_inverter.py +0 -213
  119. pvlib/tests/test_irradiance.py +0 -1487
  120. pvlib/tests/test_location.py +0 -356
  121. pvlib/tests/test_modelchain.py +0 -2020
  122. pvlib/tests/test_numerical_precision.py +0 -124
  123. pvlib/tests/test_pvarray.py +0 -71
  124. pvlib/tests/test_pvsystem.py +0 -2511
  125. pvlib/tests/test_scaling.py +0 -207
  126. pvlib/tests/test_shading.py +0 -391
  127. pvlib/tests/test_singlediode.py +0 -608
  128. pvlib/tests/test_snow.py +0 -212
  129. pvlib/tests/test_soiling.py +0 -230
  130. pvlib/tests/test_solarposition.py +0 -966
  131. pvlib/tests/test_spa.py +0 -454
  132. pvlib/tests/test_temperature.py +0 -470
  133. pvlib/tests/test_tools.py +0 -146
  134. pvlib/tests/test_tracking.py +0 -474
  135. pvlib/tests/test_transformer.py +0 -60
  136. pvlib-0.11.2.dist-info/RECORD +0 -191
  137. {pvlib-0.11.2.dist-info → pvlib-0.12.0.dist-info/licenses}/AUTHORS.md +0 -0
  138. {pvlib-0.11.2.dist-info → pvlib-0.12.0.dist-info/licenses}/LICENSE +0 -0
  139. {pvlib-0.11.2.dist-info → pvlib-0.12.0.dist-info}/top_level.txt +0 -0
@@ -1,133 +0,0 @@
1
- import numpy as np
2
- import pandas as pd
3
- from pvlib.iotools import tmy
4
- from pvlib._deprecation import pvlibDeprecationWarning
5
- from ..conftest import DATA_DIR
6
- import pytest
7
- import warnings
8
-
9
- # test the API works
10
- from pvlib.iotools import read_tmy3
11
-
12
- TMY2_TESTFILE = DATA_DIR / '12839.tm2'
13
- # TMY3 format (two files below) represents midnight as 24:00
14
- TMY3_TESTFILE = DATA_DIR / '703165TY.csv'
15
- TMY3_FEB_LEAPYEAR = DATA_DIR / '723170TYA.CSV'
16
- # The SolarAnywhere TMY3 format (file below) represents midnight as 00:00
17
- TMY3_SOLARANYWHERE = DATA_DIR / 'Burlington, United States SolarAnywhere Time Series 2021 Lat_44_465 Lon_-73_205 TMY3 format.csv' # noqa: E501
18
-
19
-
20
- def test_read_tmy3():
21
- tmy.read_tmy3(TMY3_TESTFILE, map_variables=False)
22
-
23
-
24
- def test_read_tmy3_recolumn():
25
- with warnings.catch_warnings():
26
- warnings.simplefilter("ignore")
27
- data, meta = tmy.read_tmy3(TMY3_TESTFILE, recolumn=True)
28
- assert 'GHISource' in data.columns
29
-
30
-
31
- def test_read_tmy3_norecolumn():
32
- data, _ = tmy.read_tmy3(TMY3_TESTFILE, map_variables=False)
33
- assert 'GHI source' in data.columns
34
-
35
-
36
- def test_read_tmy3_raise_valueerror():
37
- with pytest.raises(ValueError, match='`map_variables` and `recolumn`'):
38
- _ = tmy.read_tmy3(TMY3_TESTFILE, recolumn=True, map_variables=True)
39
-
40
-
41
- def test_read_tmy3_map_variables():
42
- data, meta = tmy.read_tmy3(TMY3_TESTFILE, map_variables=True)
43
- assert 'ghi' in data.columns
44
- assert 'dni' in data.columns
45
- assert 'dhi' in data.columns
46
- assert 'pressure' in data.columns
47
- assert 'wind_direction' in data.columns
48
- assert 'wind_speed' in data.columns
49
- assert 'temp_air' in data.columns
50
- assert 'temp_dew' in data.columns
51
- assert 'relative_humidity' in data.columns
52
- assert 'albedo' in data.columns
53
- assert 'ghi_extra' in data.columns
54
- assert 'dni_extra' in data.columns
55
- assert 'precipitable_water' in data.columns
56
-
57
-
58
- def test_read_tmy3_map_variables_deprecating_warning():
59
- with pytest.warns(pvlibDeprecationWarning, match='names will be renamed'):
60
- data, meta = tmy.read_tmy3(TMY3_TESTFILE)
61
-
62
-
63
- def test_read_tmy3_coerce_year():
64
- coerce_year = 1987
65
- data, _ = tmy.read_tmy3(TMY3_TESTFILE, coerce_year=coerce_year,
66
- map_variables=False)
67
- assert (data.index[:-1].year == 1987).all()
68
- assert data.index[-1].year == 1988
69
-
70
-
71
- def test_read_tmy3_no_coerce_year():
72
- coerce_year = None
73
- data, _ = tmy.read_tmy3(TMY3_TESTFILE, coerce_year=coerce_year,
74
- map_variables=False)
75
- assert 1997 and 1999 in data.index.year
76
- assert data.index[-2] == pd.Timestamp('1998-12-31 23:00:00-09:00')
77
- assert data.index[-1] == pd.Timestamp('1999-01-01 00:00:00-09:00')
78
-
79
-
80
- def test_read_tmy2():
81
- tmy.read_tmy2(TMY2_TESTFILE)
82
-
83
-
84
- def test_gh865_read_tmy3_feb_leapyear_hr24():
85
- """correctly parse the 24th hour if the tmy3 file has a leap year in feb"""
86
- data, meta = read_tmy3(TMY3_FEB_LEAPYEAR, map_variables=False)
87
- # just to be safe, make sure this _IS_ the Greensboro file
88
- greensboro = {
89
- 'USAF': 723170,
90
- 'Name': '"GREENSBORO PIEDMONT TRIAD INT"',
91
- 'State': 'NC',
92
- 'TZ': -5.0,
93
- 'latitude': 36.1,
94
- 'longitude': -79.95,
95
- 'altitude': 273.0}
96
- assert meta == greensboro
97
- # February for Greensboro is 1996, a leap year, so check to make sure there
98
- # aren't any rows in the output that contain Feb 29th
99
- assert data.index[1414] == pd.Timestamp('1996-02-28 23:00:00-0500')
100
- assert data.index[1415] == pd.Timestamp('1996-03-01 00:00:00-0500')
101
- # now check if it parses correctly when we try to coerce the year
102
- data, _ = read_tmy3(TMY3_FEB_LEAPYEAR, coerce_year=1990,
103
- map_variables=False)
104
- # if get's here w/o an error, then gh865 is fixed, but let's check anyway
105
- assert all(data.index[:-1].year == 1990)
106
- assert data.index[-1].year == 1991
107
- # let's do a quick sanity check, are the indices monotonically increasing?
108
- assert all(np.diff(data.index.view(np.int64)) == 3600000000000)
109
- # according to the TMY3 manual, each record corresponds to the previous
110
- # hour so check that the 1st hour is 1AM and the last hour is midnite
111
- assert data.index[0].hour == 1
112
- assert data.index[-1].hour == 0
113
-
114
-
115
- @pytest.fixture
116
- def solaranywhere_index():
117
- return pd.date_range('2021-01-01 01:00:00-05:00', periods=8760, freq='1h')
118
-
119
-
120
- def test_solaranywhere_tmy3(solaranywhere_index):
121
- # The SolarAnywhere TMY3 format specifies midnight as 00:00 whereas the
122
- # NREL TMY3 format utilizes 24:00. The SolarAnywhere file is therefore
123
- # included to test files with 00:00 timestamps are parsed correctly
124
- data, meta = tmy.read_tmy3(TMY3_SOLARANYWHERE, encoding='iso-8859-1',
125
- map_variables=False)
126
- pd.testing.assert_index_equal(data.index, solaranywhere_index)
127
- assert meta['USAF'] == 0
128
- assert meta['Name'] == 'Burlington United States'
129
- assert meta['State'] == 'NA'
130
- assert meta['TZ'] == -5.0
131
- assert meta['latitude'] == 44.465
132
- assert meta['longitude'] == -73.205
133
- assert meta['altitude'] == 41.0
File without changes
@@ -1,230 +0,0 @@
1
- import numpy as np
2
- import pytest
3
- from pvlib import pvsystem
4
- from pvlib.ivtools import sde
5
- from pvlib._deprecation import pvlibDeprecationWarning
6
-
7
-
8
- @pytest.fixture
9
- def get_test_iv_params():
10
- return {'IL': 8.0, 'I0': 5e-10, 'Rs': 0.2, 'Rsh': 1000, 'nNsVth': 1.61864}
11
-
12
-
13
- def test_fit_sandia_simple(get_test_iv_params, get_bad_iv_curves):
14
- test_params = get_test_iv_params
15
- test_params = dict(photocurrent=test_params['IL'],
16
- saturation_current=test_params['I0'],
17
- resistance_series=test_params['Rs'],
18
- resistance_shunt=test_params['Rsh'],
19
- nNsVth=test_params['nNsVth'])
20
- testcurve = pvsystem.singlediode(**test_params)
21
- v = np.linspace(0., testcurve['v_oc'], 300)
22
- i = pvsystem.i_from_v(voltage=v, **test_params)
23
- expected = tuple(test_params.values())
24
-
25
- result = sde.fit_sandia_simple(voltage=v, current=i)
26
- assert np.allclose(result, expected, rtol=5e-5)
27
-
28
- result = sde.fit_sandia_simple(voltage=v, current=i,
29
- v_oc=testcurve['v_oc'],
30
- i_sc=testcurve['i_sc'])
31
- assert np.allclose(result, expected, rtol=5e-5)
32
-
33
- result = sde.fit_sandia_simple(voltage=v, current=i,
34
- v_oc=testcurve['v_oc'],
35
- i_sc=testcurve['i_sc'],
36
- v_mp_i_mp=(testcurve['v_mp'],
37
- testcurve['i_mp']))
38
- assert np.allclose(result, expected, rtol=5e-5)
39
-
40
- result = sde.fit_sandia_simple(voltage=v, current=i, vlim=0.1)
41
- assert np.allclose(result, expected, rtol=5e-5)
42
-
43
-
44
- def test_fit_sandia_simple_bad_iv(get_bad_iv_curves):
45
- # bad IV curves for coverage of if/then in sde._sandia_simple_params
46
- v1, i1, v2, i2 = get_bad_iv_curves
47
- result = sde.fit_sandia_simple(voltage=v1, current=i1)
48
- assert np.allclose(result, (-2.4322856072799985, 8.826830831727355,
49
- 111.18558915546389, -63.56227601452038,
50
- -137.9965046659527))
51
- result = sde.fit_sandia_simple(voltage=v2, current=i2)
52
- assert np.allclose(result, (2.62405311949227, 5.075520636620032,
53
- -65.652554411442, 110.35202827739991,
54
- 174.49362093001415))
55
-
56
-
57
- @pytest.mark.parametrize('i,v,nsvth,expected', [
58
- (np.array([3., 2.9, 2.8, 2.7, 2.6, 2.5, 2.4, 1.7, 0.8, 0.]),
59
- np.array([0., 0.2, 0.4, 0.6, 0.8, 1., 1.2, 1.4, 1.45, 1.5]),
60
- 10.,
61
- (2.3392, 11.6865, -.232, -.2596, -.7119)),
62
- (np.array(
63
- [5., 4.9, 4.8, 4.7, 4.6, 4.5, 4.4, 4.3, 4.2, 4.1, 4., 3.8, 3.5, 1.7,
64
- 0.]),
65
- np.array(
66
- [0., .1, .2, .3, .4, .5, .6, .7, .8, .9, 1., 1.1, 1.18, 1.2, 1.22]),
67
- 15.,
68
- (-22.0795, 27.1196, -4.2076, -.0056, -.0498))])
69
- def test__fit_sandia_cocontent(i, v, nsvth, expected):
70
- # test confirms agreement with Matlab code. The returned parameters
71
- # are nonsense
72
- iph, io, rsh, rs, n = sde._fit_sandia_cocontent(v, i, nsvth)
73
- np.testing.assert_allclose(iph, np.array(expected[0]), atol=.0001)
74
- np.testing.assert_allclose(io, np.array([expected[1]]), atol=.0001)
75
- np.testing.assert_allclose(rs, np.array([expected[2]]), atol=.0001)
76
- np.testing.assert_allclose(rsh, np.array([expected[3]]), atol=.0001)
77
- np.testing.assert_allclose(n, np.array([expected[4]]), atol=.0001)
78
-
79
-
80
- def test__fit_sandia_cocontent_fail():
81
- # tests for ValueError
82
- exc_text = 'voltage and current should have the same length'
83
- with pytest.raises(ValueError, match=exc_text):
84
- sde._fit_sandia_cocontent(np.array([0., 1., 2.]), np.array([4., 3.]),
85
- 2.)
86
- exc_text = 'at least 6 voltage points are required; ~50 are recommended'
87
- with pytest.raises(ValueError, match=exc_text):
88
- sde._fit_sandia_cocontent(np.array([0., 1., 2., 3., 4.]),
89
- np.array([4., 3.9, 3.4, 2., 0.]),
90
- 2.)
91
-
92
-
93
- @pytest.fixture
94
- def get_bad_iv_curves():
95
- # v1, i1 produces a bad value for I0_voc
96
- v1 = np.array([0, 0.338798867469060, 0.677597734938121, 1.01639660240718,
97
- 1.35519546987624, 1.69399433734530, 2.03279320481436,
98
- 2.37159207228342, 2.71039093975248, 3.04918980722154,
99
- 3.38798867469060, 3.72678754215966, 4.06558640962873,
100
- 4.40438527709779, 4.74318414456685, 5.08198301203591,
101
- 5.42078187950497, 5.75958074697403, 6.09837961444309,
102
- 6.43717848191215, 6.77597734938121, 7.11477621685027,
103
- 7.45357508431933, 7.79237395178839, 8.13117281925745,
104
- 8.46997168672651, 8.80877055419557, 9.14756942166463,
105
- 9.48636828913369, 9.82516715660275, 10.1639660240718,
106
- 10.5027648915409, 10.8415637590099, 11.1803626264790,
107
- 11.5191614939481, 11.8579603614171, 12.1967592288862,
108
- 12.5355580963552, 12.8743569638243, 13.2131558312934,
109
- 13.5519546987624, 13.8907535662315, 14.2295524337005,
110
- 14.5683513011696, 14.9071501686387, 15.2459490361077,
111
- 15.5847479035768, 15.9235467710458, 16.2623456385149,
112
- 16.6011445059840, 16.9399433734530, 17.2787422409221,
113
- 17.6175411083911, 17.9563399758602, 18.2951388433293,
114
- 18.6339377107983, 18.9727365782674, 19.3115354457364,
115
- 19.6503343132055, 19.9891331806746, 20.3279320481436,
116
- 20.6667309156127, 21.0055297830817, 21.3443286505508,
117
- 21.6831275180199, 22.0219263854889, 22.3607252529580,
118
- 22.6995241204270, 23.0383229878961, 23.3771218553652,
119
- 23.7159207228342, 24.0547195903033, 24.3935184577724,
120
- 24.7323173252414, 25.0711161927105, 25.4099150601795,
121
- 25.7487139276486, 26.0875127951177, 26.4263116625867,
122
- 26.7651105300558, 27.1039093975248, 27.4427082649939,
123
- 27.7815071324630, 28.1203059999320, 28.4591048674011,
124
- 28.7979037348701, 29.1367026023392, 29.4755014698083,
125
- 29.8143003372773, 30.1530992047464, 30.4918980722154,
126
- 30.8306969396845, 31.1694958071536, 31.5082946746226,
127
- 31.8470935420917, 32.1858924095607, 32.5246912770298,
128
- 32.8634901444989, 33.2022890119679, 33.5410878794370])
129
- i1 = np.array([3.39430882774470, 2.80864492110761, 3.28358165429196,
130
- 3.41191190551673, 3.11975662808148, 3.35436585834612,
131
- 3.23953272899809, 3.60307083325333, 2.80478101508277,
132
- 2.80505102853845, 3.16918996870373, 3.21088388439857,
133
- 3.46332865310431, 3.09224155015883, 3.17541550741062,
134
- 3.32470179290389, 3.33224664316240, 3.07709000050741,
135
- 2.89141245343405, 3.01365768561537, 3.23265176770231,
136
- 3.32253647634228, 2.97900657569736, 3.31959549243966,
137
- 3.03375461550111, 2.97579298978937, 3.25432831375159,
138
- 2.89178382564454, 3.00341909207567, 3.72637492250097,
139
- 3.28379856976360, 2.96516169245835, 3.25658381110230,
140
- 3.41655911533139, 3.02718097944604, 3.11458376760376,
141
- 3.24617304369762, 3.45935502367636, 3.21557333256913,
142
- 3.27611176482650, 2.86954135732485, 3.32416319254657,
143
- 3.15277467598732, 3.08272557013770, 3.15602202666259,
144
- 3.49432799877150, 3.53863997177632, 3.10602611478455,
145
- 3.05373911151821, 3.09876772570781, 2.97417228624287,
146
- 2.84573593699237, 3.16288578405195, 3.06533173612783,
147
- 3.02118336639575, 3.34374977225502, 2.97255164138821,
148
- 3.19286135682863, 3.10999753817133, 3.26925354620079,
149
- 3.11957809501529, 3.20155017481720, 3.31724984405837,
150
- 3.42879043512927, 3.17933067619240, 3.47777362613969,
151
- 3.20708912539777, 3.48205761174907, 3.16804363684327,
152
- 3.14055472378230, 3.13445657434470, 2.91152696252998,
153
- 3.10984113847427, 2.80443349399489, 3.23146278164875,
154
- 2.94521083406108, 3.17388903141715, 3.05930294897030,
155
- 3.18985234673287, 3.27946609274898, 3.33717523113602,
156
- 2.76394303462702, 3.19375132937510, 2.82628616689450,
157
- 2.85238527394143, 2.82975892599489, 2.79196912313914,
158
- 2.72860792049395, 2.75585977414140, 2.44280222448805,
159
- 2.36052347370628, 2.26785071765738, 2.10868255743462,
160
- 2.06165739407987, 1.90047259509385, 1.39925575828709,
161
- 1.24749015957606, 0.867823806536762, 0.432752457749993, 0])
162
- # v2, i2 produces a bad value for I0_vmp
163
- v2 = np.array([0, 0.365686097622586, 0.731372195245173, 1.09705829286776,
164
- 1.46274439049035, 1.82843048811293, 2.19411658573552,
165
- 2.55980268335810, 2.92548878098069, 3.29117487860328,
166
- 3.65686097622586, 4.02254707384845, 4.38823317147104,
167
- 4.75391926909362, 5.11960536671621, 5.48529146433880,
168
- 5.85097756196138, 6.21666365958397, 6.58234975720655,
169
- 6.94803585482914, 7.31372195245173, 7.67940805007431,
170
- 8.04509414769690, 8.41078024531949, 8.77646634294207,
171
- 9.14215244056466, 9.50783853818725, 9.87352463580983,
172
- 10.2392107334324, 10.6048968310550, 10.9705829286776,
173
- 11.3362690263002, 11.7019551239228, 12.0676412215454,
174
- 12.4333273191679, 12.7990134167905, 13.1646995144131,
175
- 13.5303856120357, 13.8960717096583, 14.2617578072809,
176
- 14.6274439049035, 14.9931300025260, 15.3588161001486,
177
- 15.7245021977712, 16.0901882953938, 16.4558743930164,
178
- 16.8215604906390, 17.1872465882616, 17.5529326858841,
179
- 17.9186187835067, 18.2843048811293, 18.6499909787519,
180
- 19.0156770763745, 19.3813631739971, 19.7470492716197,
181
- 20.1127353692422, 20.4784214668648, 20.8441075644874,
182
- 21.2097936621100, 21.5754797597326, 21.9411658573552,
183
- 22.3068519549778, 22.6725380526004, 23.0382241502229,
184
- 23.4039102478455, 23.7695963454681, 24.1352824430907,
185
- 24.5009685407133, 24.8666546383359, 25.2323407359585,
186
- 25.5980268335810, 25.9637129312036, 26.3293990288262,
187
- 26.6950851264488, 27.0607712240714, 27.4264573216940,
188
- 27.7921434193166, 28.1578295169392, 28.5235156145617,
189
- 28.8892017121843, 29.2548878098069, 29.6205739074295,
190
- 29.9862600050521, 30.3519461026747, 30.7176322002973,
191
- 31.0833182979198, 31.4490043955424, 31.8146904931650,
192
- 32.1803765907876, 32.5460626884102, 32.9117487860328,
193
- 33.2774348836554, 33.6431209812779, 34.0088070789005,
194
- 34.3744931765231, 34.7401792741457, 35.1058653717683,
195
- 35.4715514693909, 35.8372375670135, 36.2029236646360])
196
- i2 = np.array([6.49218806928330, 6.49139336899548, 6.17810697175204,
197
- 6.75197816263663, 6.59529074137515, 6.18164578868300,
198
- 6.38709397931910, 6.30685422248427, 6.44640615548925,
199
- 6.88727230397772, 6.42074852785591, 6.46348580823746,
200
- 6.38642309763941, 5.66356277572311, 6.61010381702082,
201
- 6.33288284311125, 6.22475343933610, 6.30651399433833,
202
- 6.44435022944051, 6.43741711131908, 6.03536180208946,
203
- 6.23814639328170, 5.97229140403242, 6.20790000748341,
204
- 6.22933550182341, 6.22992127804882, 6.13400871899299,
205
- 6.83491312449950, 6.07952797245846, 6.35837746415450,
206
- 6.41972128662324, 6.85256717258275, 6.25807797296759,
207
- 6.25124948151766, 6.22229212812413, 6.72249444167406,
208
- 6.41085549981649, 6.75792874870056, 6.22096181559171,
209
- 6.47839564388996, 6.56010208597432, 6.63300966556949,
210
- 6.34617546039339, 6.79812221146153, 6.14486056194136,
211
- 6.14979256889311, 6.16883037644880, 6.57309183229605,
212
- 6.40064681038509, 6.18861448239873, 6.91340138179698,
213
- 5.94164388433788, 6.23638991745862, 6.31898940411710,
214
- 6.45247884556830, 6.58081455524297, 6.64915284801713,
215
- 6.07122119270245, 6.41398258148256, 6.62144271089614,
216
- 6.36377197712687, 6.51487678829345, 6.53418950147730,
217
- 6.18886469125371, 6.26341063475750, 6.83488211680259,
218
- 6.62699397226695, 6.41286837534735, 6.44060085001851,
219
- 6.48114130629288, 6.18607038456406, 6.16923370572396,
220
- 6.64223126283631, 6.07231852289266, 5.79043710204375,
221
- 6.48463886529882, 6.36263392044401, 6.11212476454494,
222
- 6.14573900812925, 6.12568047243240, 6.43836230231577,
223
- 6.02505694060219, 6.13819468942244, 6.22100593815064,
224
- 6.02394682666345, 5.89016573063789, 5.74448527739202,
225
- 5.50415294280017, 5.31883018164157, 4.87476769510305,
226
- 4.74386713755523, 4.60638346931628, 4.06177345572680,
227
- 3.73334482123538, 3.13848311672243, 2.71638862600768,
228
- 2.02963773590165, 1.49291145092070, 0.818343889647352, 0])
229
-
230
- return v1, i1, v2, i2