pvlib 0.11.2__py3-none-any.whl → 0.12.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (139) hide show
  1. pvlib/__init__.py +1 -0
  2. pvlib/atmosphere.py +0 -9
  3. pvlib/bifacial/infinite_sheds.py +4 -3
  4. pvlib/bifacial/utils.py +2 -1
  5. pvlib/iotools/psm3.py +1 -1
  6. pvlib/iotools/pvgis.py +10 -2
  7. pvlib/iotools/tmy.py +3 -69
  8. pvlib/irradiance.py +14 -0
  9. pvlib/location.py +73 -33
  10. pvlib/modelchain.py +18 -35
  11. pvlib/pvsystem.py +7 -10
  12. pvlib/snow.py +64 -28
  13. pvlib/spectrum/__init__.py +0 -1
  14. pvlib/spectrum/irradiance.py +0 -63
  15. pvlib/spectrum/mismatch.py +3 -3
  16. pvlib/tools.py +6 -5
  17. {pvlib-0.11.2.dist-info → pvlib-0.12.0.dist-info}/METADATA +5 -3
  18. pvlib-0.12.0.dist-info/RECORD +75 -0
  19. {pvlib-0.11.2.dist-info → pvlib-0.12.0.dist-info}/WHEEL +1 -1
  20. pvlib/data/BIRD_08_16_2012.csv +0 -8761
  21. pvlib/data/BIRD_08_16_2012_patm.csv +0 -8761
  22. pvlib/data/Burlington, United States SolarAnywhere Time Series 2021 Lat_44_465 Lon_-73_205 TMY3 format.csv +0 -8762
  23. pvlib/data/Burlington, United States SolarAnywhere Time Series 20210101 to 20210103 Lat_44_4675 Lon_-73_2075 SA format.csv +0 -578
  24. pvlib/data/Burlington, United States SolarAnywhere Typical GHI Year Lat_44_465 Lon_-73_205 SA format.csv +0 -74
  25. pvlib/data/CPS SCH275KTL-DO-US-800-250kW_275kVA_1.OND +0 -146
  26. pvlib/data/CRNS0101-05-2019-AZ_Tucson_11_W.txt +0 -4
  27. pvlib/data/CRN_with_problems.txt +0 -3
  28. pvlib/data/ET-M772BH550GL.PAN +0 -75
  29. pvlib/data/NLD_Amsterdam062400_IWEC.epw +0 -8768
  30. pvlib/data/PVsyst_demo.csv +0 -10757
  31. pvlib/data/PVsyst_demo_model.csv +0 -3588
  32. pvlib/data/SRML-day-EUPO1801.txt +0 -1441
  33. pvlib/data/abq19056.dat +0 -6
  34. pvlib/data/bishop88_numerical_precision.csv +0 -101
  35. pvlib/data/bsrn-lr0100-pay0616.dat +0 -86901
  36. pvlib/data/bsrn-pay0616.dat.gz +0 -0
  37. pvlib/data/cams_mcclear_1min_verbose.csv +0 -60
  38. pvlib/data/cams_mcclear_monthly.csv +0 -42
  39. pvlib/data/cams_radiation_1min_verbose.csv +0 -72
  40. pvlib/data/cams_radiation_monthly.csv +0 -47
  41. pvlib/data/detect_clearsky_data.csv +0 -35
  42. pvlib/data/detect_clearsky_threshold_data.csv +0 -126
  43. pvlib/data/greensboro_kimber_soil_manwash.dat +0 -8761
  44. pvlib/data/greensboro_kimber_soil_nowash.dat +0 -8761
  45. pvlib/data/inverter_fit_snl_meas.csv +0 -127
  46. pvlib/data/inverter_fit_snl_sim.csv +0 -19
  47. pvlib/data/ivtools_numdiff.csv +0 -52
  48. pvlib/data/midc_20181014.txt +0 -1441
  49. pvlib/data/midc_raw_20181018.txt +0 -1441
  50. pvlib/data/midc_raw_short_header_20191115.txt +0 -1441
  51. pvlib/data/msn19056.dat +0 -6
  52. pvlib/data/precise_iv_curves1.json +0 -10251
  53. pvlib/data/precise_iv_curves2.json +0 -10251
  54. pvlib/data/precise_iv_curves_parameter_sets1.csv +0 -33
  55. pvlib/data/precise_iv_curves_parameter_sets2.csv +0 -33
  56. pvlib/data/pvgis_hourly_Timeseries_45.000_8.000_SA2_10kWp_CIS_5_2a_2013_2014.json +0 -1
  57. pvlib/data/pvgis_hourly_Timeseries_45.000_8.000_SA_30deg_0deg_2016_2016.csv +0 -35
  58. pvlib/data/pvgis_tmy_meta.json +0 -32
  59. pvlib/data/pvgis_tmy_test.csv +0 -8761
  60. pvlib/data/pvwatts_8760_rackmount.csv +0 -8779
  61. pvlib/data/pvwatts_8760_roofmount.csv +0 -8779
  62. pvlib/data/singleaxis_tracker_wslope.csv +0 -8761
  63. pvlib/data/spectrl2_example_spectra.csv +0 -123
  64. pvlib/data/surfrad-slv16001.dat +0 -1442
  65. pvlib/data/test_psm3_2017.csv +0 -17521
  66. pvlib/data/test_psm3_2019_5min.csv +0 -289
  67. pvlib/data/test_psm3_tmy-2017.csv +0 -8761
  68. pvlib/data/test_read_psm3.csv +0 -17523
  69. pvlib/data/test_read_pvgis_horizon.csv +0 -49
  70. pvlib/data/tmy_45.000_8.000_2005_2023.csv +0 -8789
  71. pvlib/data/tmy_45.000_8.000_2005_2023.epw +0 -8768
  72. pvlib/data/tmy_45.000_8.000_2005_2023.json +0 -1
  73. pvlib/data/tmy_45.000_8.000_2005_2023.txt +0 -8761
  74. pvlib/data/tmy_45.000_8.000_userhorizon.json +0 -1
  75. pvlib/spa_c_files/README.md +0 -81
  76. pvlib/spa_c_files/cspa_py.pxd +0 -43
  77. pvlib/spa_c_files/spa_py.pyx +0 -30
  78. pvlib/tests/__init__.py +0 -0
  79. pvlib/tests/bifacial/__init__.py +0 -0
  80. pvlib/tests/bifacial/test_infinite_sheds.py +0 -317
  81. pvlib/tests/bifacial/test_losses_models.py +0 -54
  82. pvlib/tests/bifacial/test_pvfactors.py +0 -82
  83. pvlib/tests/bifacial/test_utils.py +0 -192
  84. pvlib/tests/conftest.py +0 -476
  85. pvlib/tests/iotools/__init__.py +0 -0
  86. pvlib/tests/iotools/test_acis.py +0 -213
  87. pvlib/tests/iotools/test_bsrn.py +0 -131
  88. pvlib/tests/iotools/test_crn.py +0 -95
  89. pvlib/tests/iotools/test_epw.py +0 -23
  90. pvlib/tests/iotools/test_midc.py +0 -89
  91. pvlib/tests/iotools/test_panond.py +0 -32
  92. pvlib/tests/iotools/test_psm3.py +0 -198
  93. pvlib/tests/iotools/test_pvgis.py +0 -644
  94. pvlib/tests/iotools/test_sodapro.py +0 -298
  95. pvlib/tests/iotools/test_solaranywhere.py +0 -287
  96. pvlib/tests/iotools/test_solargis.py +0 -68
  97. pvlib/tests/iotools/test_solcast.py +0 -324
  98. pvlib/tests/iotools/test_solrad.py +0 -152
  99. pvlib/tests/iotools/test_srml.py +0 -124
  100. pvlib/tests/iotools/test_surfrad.py +0 -75
  101. pvlib/tests/iotools/test_tmy.py +0 -133
  102. pvlib/tests/ivtools/__init__.py +0 -0
  103. pvlib/tests/ivtools/test_sde.py +0 -230
  104. pvlib/tests/ivtools/test_sdm.py +0 -429
  105. pvlib/tests/ivtools/test_utils.py +0 -173
  106. pvlib/tests/spectrum/__init__.py +0 -0
  107. pvlib/tests/spectrum/conftest.py +0 -40
  108. pvlib/tests/spectrum/test_irradiance.py +0 -138
  109. pvlib/tests/spectrum/test_mismatch.py +0 -304
  110. pvlib/tests/spectrum/test_response.py +0 -124
  111. pvlib/tests/spectrum/test_spectrl2.py +0 -72
  112. pvlib/tests/test__deprecation.py +0 -97
  113. pvlib/tests/test_albedo.py +0 -84
  114. pvlib/tests/test_atmosphere.py +0 -351
  115. pvlib/tests/test_clearsky.py +0 -884
  116. pvlib/tests/test_conftest.py +0 -37
  117. pvlib/tests/test_iam.py +0 -555
  118. pvlib/tests/test_inverter.py +0 -213
  119. pvlib/tests/test_irradiance.py +0 -1487
  120. pvlib/tests/test_location.py +0 -356
  121. pvlib/tests/test_modelchain.py +0 -2020
  122. pvlib/tests/test_numerical_precision.py +0 -124
  123. pvlib/tests/test_pvarray.py +0 -71
  124. pvlib/tests/test_pvsystem.py +0 -2511
  125. pvlib/tests/test_scaling.py +0 -207
  126. pvlib/tests/test_shading.py +0 -391
  127. pvlib/tests/test_singlediode.py +0 -608
  128. pvlib/tests/test_snow.py +0 -212
  129. pvlib/tests/test_soiling.py +0 -230
  130. pvlib/tests/test_solarposition.py +0 -966
  131. pvlib/tests/test_spa.py +0 -454
  132. pvlib/tests/test_temperature.py +0 -470
  133. pvlib/tests/test_tools.py +0 -146
  134. pvlib/tests/test_tracking.py +0 -474
  135. pvlib/tests/test_transformer.py +0 -60
  136. pvlib-0.11.2.dist-info/RECORD +0 -191
  137. {pvlib-0.11.2.dist-info → pvlib-0.12.0.dist-info/licenses}/AUTHORS.md +0 -0
  138. {pvlib-0.11.2.dist-info → pvlib-0.12.0.dist-info/licenses}/LICENSE +0 -0
  139. {pvlib-0.11.2.dist-info → pvlib-0.12.0.dist-info}/top_level.txt +0 -0
@@ -1,356 +0,0 @@
1
- import datetime
2
- from unittest.mock import ANY
3
-
4
- import numpy as np
5
- from numpy import nan
6
- import pandas as pd
7
- from .conftest import assert_frame_equal, assert_index_equal
8
-
9
- import pytest
10
-
11
- import pytz
12
- from pytz.exceptions import UnknownTimeZoneError
13
-
14
- import pvlib
15
- from pvlib import location
16
- from pvlib.location import Location, lookup_altitude
17
- from pvlib.solarposition import declination_spencer71
18
- from pvlib.solarposition import equation_of_time_spencer71
19
- from .conftest import requires_ephem
20
-
21
-
22
- def test_location_required():
23
- Location(32.2, -111)
24
-
25
-
26
- def test_location_all():
27
- Location(32.2, -111, 'US/Arizona', 700, 'Tucson')
28
-
29
-
30
- @pytest.mark.parametrize('tz', [
31
- pytz.timezone('US/Arizona'), 'America/Phoenix', -7, -7.0,
32
- datetime.timezone.utc
33
- ])
34
- def test_location_tz(tz):
35
- Location(32.2, -111, tz)
36
-
37
-
38
- def test_location_invalid_tz():
39
- with pytest.raises(UnknownTimeZoneError):
40
- Location(32.2, -111, 'invalid')
41
-
42
-
43
- def test_location_invalid_tz_type():
44
- with pytest.raises(TypeError):
45
- Location(32.2, -111, [5])
46
-
47
-
48
- def test_location_print_all():
49
- tus = Location(32.2, -111, 'US/Arizona', 700, 'Tucson')
50
- expected_str = '\n'.join([
51
- 'Location: ',
52
- ' name: Tucson',
53
- ' latitude: 32.2',
54
- ' longitude: -111',
55
- ' altitude: 700',
56
- ' tz: US/Arizona'
57
- ])
58
- assert tus.__str__() == expected_str
59
-
60
-
61
- def test_location_print_pytz():
62
- tus = Location(32.2, -111, pytz.timezone('US/Arizona'), 700, 'Tucson')
63
- expected_str = '\n'.join([
64
- 'Location: ',
65
- ' name: Tucson',
66
- ' latitude: 32.2',
67
- ' longitude: -111',
68
- ' altitude: 700',
69
- ' tz: US/Arizona'
70
- ])
71
- assert tus.__str__() == expected_str
72
-
73
-
74
- @pytest.fixture
75
- def times():
76
- return pd.date_range(start='20160101T0600-0700',
77
- end='20160101T1800-0700',
78
- freq='3h')
79
-
80
-
81
- def test_get_clearsky(mocker, times):
82
- tus = Location(32.2, -111, 'US/Arizona', 700, 'Tucson')
83
- m = mocker.spy(pvlib.clearsky, 'ineichen')
84
- out = tus.get_clearsky(times)
85
- assert m.call_count == 1
86
- assert_index_equal(out.index, times)
87
- # check that values are 0 before sunrise and after sunset
88
- assert out.iloc[0, :].sum().sum() == 0
89
- assert out.iloc[-1:, :].sum().sum() == 0
90
- # check that values are > 0 during the day
91
- assert (out.iloc[1:-1, :] > 0).all().all()
92
- assert (out.columns.values == ['ghi', 'dni', 'dhi']).all()
93
-
94
-
95
- def test_get_clearsky_ineichen_supply_linke(mocker):
96
- tus = Location(32.2, -111, 'US/Arizona', 700)
97
- times = pd.date_range(start='2014-06-24-0700', end='2014-06-25-0700',
98
- freq='3h')
99
- mocker.spy(pvlib.clearsky, 'ineichen')
100
- out = tus.get_clearsky(times, linke_turbidity=3)
101
- # we only care that the LT is passed in this test
102
- pvlib.clearsky.ineichen.assert_called_once_with(ANY, ANY, 3, ANY, ANY)
103
- assert_index_equal(out.index, times)
104
- # check that values are 0 before sunrise and after sunset
105
- assert out.iloc[0:2, :].sum().sum() == 0
106
- assert out.iloc[-2:, :].sum().sum() == 0
107
- # check that values are > 0 during the day
108
- assert (out.iloc[2:-2, :] > 0).all().all()
109
- assert (out.columns.values == ['ghi', 'dni', 'dhi']).all()
110
-
111
-
112
- def test_get_clearsky_haurwitz(times):
113
- tus = Location(32.2, -111, 'US/Arizona', 700, 'Tucson')
114
- clearsky = tus.get_clearsky(times, model='haurwitz')
115
- expected = pd.DataFrame(data=np.array(
116
- [[ 0. ],
117
- [ 242.30085588],
118
- [ 559.38247117],
119
- [ 384.6873791 ],
120
- [ 0. ]]),
121
- columns=['ghi'],
122
- index=times)
123
- assert_frame_equal(expected, clearsky)
124
-
125
-
126
- def test_get_clearsky_simplified_solis(times):
127
- tus = Location(32.2, -111, 'US/Arizona', 700, 'Tucson')
128
- clearsky = tus.get_clearsky(times, model='simplified_solis')
129
- expected = pd.DataFrame(data=np.
130
- array([[ 0. , 0. , 0. ],
131
- [ 70.00146271, 638.01145669, 236.71136245],
132
- [ 101.69729217, 852.51950946, 577.1117803 ],
133
- [ 86.1679965 , 755.98048017, 385.59586091],
134
- [ 0. , 0. , 0. ]]),
135
- columns=['dhi', 'dni', 'ghi'],
136
- index=times)
137
- expected = expected[['ghi', 'dni', 'dhi']]
138
- assert_frame_equal(expected, clearsky, check_less_precise=2)
139
-
140
-
141
- def test_get_clearsky_simplified_solis_apparent_elevation(times):
142
- tus = Location(32.2, -111, 'US/Arizona', 700, 'Tucson')
143
- solar_position = {'apparent_elevation': pd.Series(80, index=times),
144
- 'apparent_zenith': pd.Series(10, index=times)}
145
- clearsky = tus.get_clearsky(times, model='simplified_solis',
146
- solar_position=solar_position)
147
- expected = pd.DataFrame(data=np.
148
- array([[ 131.3124497 , 1001.14754036, 1108.14147919],
149
- [ 131.3124497 , 1001.14754036, 1108.14147919],
150
- [ 131.3124497 , 1001.14754036, 1108.14147919],
151
- [ 131.3124497 , 1001.14754036, 1108.14147919],
152
- [ 131.3124497 , 1001.14754036, 1108.14147919]]),
153
- columns=['dhi', 'dni', 'ghi'],
154
- index=times)
155
- expected = expected[['ghi', 'dni', 'dhi']]
156
- assert_frame_equal(expected, clearsky, check_less_precise=2)
157
-
158
-
159
- def test_get_clearsky_simplified_solis_dni_extra(times):
160
- tus = Location(32.2, -111, 'US/Arizona', 700, 'Tucson')
161
- clearsky = tus.get_clearsky(times, model='simplified_solis',
162
- dni_extra=1370)
163
- expected = pd.DataFrame(data=np.
164
- array([[ 0. , 0. , 0. ],
165
- [ 67.82281485, 618.15469596, 229.34422063],
166
- [ 98.53217848, 825.98663808, 559.15039353],
167
- [ 83.48619937, 732.45218243, 373.59500313],
168
- [ 0. , 0. , 0. ]]),
169
- columns=['dhi', 'dni', 'ghi'],
170
- index=times)
171
- expected = expected[['ghi', 'dni', 'dhi']]
172
- assert_frame_equal(expected, clearsky)
173
-
174
-
175
- def test_get_clearsky_simplified_solis_pressure(times):
176
- tus = Location(32.2, -111, 'US/Arizona', 700, 'Tucson')
177
- clearsky = tus.get_clearsky(times, model='simplified_solis',
178
- pressure=95000)
179
- expected = pd.DataFrame(data=np.
180
- array([[ 0. , 0. , 0. ],
181
- [ 70.20556637, 635.53091983, 236.17716435],
182
- [ 102.08954904, 850.49502085, 576.28465815],
183
- [ 86.46561686, 753.70744638, 384.90537859],
184
- [ 0. , 0. , 0. ]]),
185
- columns=['dhi', 'dni', 'ghi'],
186
- index=times)
187
- expected = expected[['ghi', 'dni', 'dhi']]
188
- assert_frame_equal(expected, clearsky, check_less_precise=2)
189
-
190
-
191
- def test_get_clearsky_simplified_solis_aod_pw(times):
192
- tus = Location(32.2, -111, 'US/Arizona', 700, 'Tucson')
193
- clearsky = tus.get_clearsky(times, model='simplified_solis',
194
- aod700=0.25, precipitable_water=2.)
195
- expected = pd.DataFrame(data=np.
196
- array([[ 0. , 0. , 0. ],
197
- [ 85.77821205, 374.58084365, 179.48483117],
198
- [ 143.52743364, 625.91745295, 490.06254157],
199
- [ 114.63275842, 506.52275195, 312.24711495],
200
- [ 0. , 0. , 0. ]]),
201
- columns=['dhi', 'dni', 'ghi'],
202
- index=times)
203
- expected = expected[['ghi', 'dni', 'dhi']]
204
- assert_frame_equal(expected, clearsky, check_less_precise=2)
205
-
206
-
207
- def test_get_clearsky_valueerror(times):
208
- tus = Location(32.2, -111, 'US/Arizona', 700, 'Tucson')
209
- with pytest.raises(ValueError):
210
- tus.get_clearsky(times, model='invalid_model')
211
-
212
-
213
- def test_from_tmy_3():
214
- from pvlib.tests.iotools.test_tmy import TMY3_TESTFILE
215
- from pvlib.iotools import read_tmy3
216
- data, meta = read_tmy3(TMY3_TESTFILE, map_variables=True)
217
- loc = Location.from_tmy(meta, data)
218
- assert loc.name is not None
219
- assert loc.altitude != 0
220
- assert loc.tz != 'UTC'
221
- assert_frame_equal(loc.weather, data)
222
-
223
-
224
- def test_from_tmy_2():
225
- from pvlib.tests.iotools.test_tmy import TMY2_TESTFILE
226
- from pvlib.iotools import read_tmy2
227
- data, meta = read_tmy2(TMY2_TESTFILE)
228
- loc = Location.from_tmy(meta, data)
229
- assert loc.name is not None
230
- assert loc.altitude != 0
231
- assert loc.tz != 'UTC'
232
- assert_frame_equal(loc.weather, data)
233
-
234
-
235
- def test_from_epw():
236
- from pvlib.tests.iotools.test_epw import epw_testfile
237
- from pvlib.iotools import read_epw
238
- data, meta = read_epw(epw_testfile)
239
- loc = Location.from_epw(meta, data)
240
- assert loc.name is not None
241
- assert loc.altitude != 0
242
- assert loc.tz != 'UTC'
243
- assert_frame_equal(loc.weather, data)
244
-
245
-
246
- def test_get_solarposition(expected_solpos, golden_mst):
247
- times = pd.date_range(datetime.datetime(2003, 10, 17, 12, 30, 30),
248
- periods=1, freq='D', tz=golden_mst.tz)
249
- ephem_data = golden_mst.get_solarposition(times, temperature=11)
250
- ephem_data = np.round(ephem_data, 3)
251
- expected_solpos.index = times
252
- expected_solpos = np.round(expected_solpos, 3)
253
- assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns])
254
-
255
-
256
- def test_get_airmass(times):
257
- tus = Location(32.2, -111, 'US/Arizona', 700, 'Tucson')
258
- airmass = tus.get_airmass(times)
259
- expected = pd.DataFrame(data=np.array(
260
- [[ nan, nan],
261
- [ 3.61046506, 3.32072602],
262
- [ 1.76470864, 1.62309115],
263
- [ 2.45582153, 2.25874238],
264
- [ nan, nan]]),
265
- columns=['airmass_relative', 'airmass_absolute'],
266
- index=times)
267
- assert_frame_equal(expected, airmass)
268
-
269
- airmass = tus.get_airmass(times, model='young1994')
270
- expected = pd.DataFrame(data=np.array(
271
- [[ nan, nan],
272
- [ 3.6075018 , 3.31800056],
273
- [ 1.7641033 , 1.62253439],
274
- [ 2.45413091, 2.25718744],
275
- [ nan, nan]]),
276
- columns=['airmass_relative', 'airmass_absolute'],
277
- index=times)
278
- assert_frame_equal(expected, airmass)
279
-
280
-
281
- def test_get_airmass_valueerror(times):
282
- tus = Location(32.2, -111, 'US/Arizona', 700, 'Tucson')
283
- with pytest.raises(ValueError):
284
- tus.get_airmass(times, model='invalid_model')
285
-
286
-
287
- def test_Location___repr__():
288
- tus = Location(32.2, -111, 'US/Arizona', 700, 'Tucson')
289
-
290
- expected = '\n'.join([
291
- 'Location: ',
292
- ' name: Tucson',
293
- ' latitude: 32.2',
294
- ' longitude: -111',
295
- ' altitude: 700',
296
- ' tz: US/Arizona'
297
- ])
298
- assert tus.__repr__() == expected
299
-
300
-
301
- @requires_ephem
302
- def test_get_sun_rise_set_transit(golden):
303
- times = pd.DatetimeIndex(['2015-01-01 07:00:00', '2015-01-01 23:00:00'],
304
- tz='MST')
305
- result = golden.get_sun_rise_set_transit(times, method='pyephem')
306
- assert all(result.columns == ['sunrise', 'sunset', 'transit'])
307
-
308
- result = golden.get_sun_rise_set_transit(times, method='spa')
309
- assert all(result.columns == ['sunrise', 'sunset', 'transit'])
310
-
311
- dayofyear = 1
312
- declination = declination_spencer71(dayofyear)
313
- eot = equation_of_time_spencer71(dayofyear)
314
- result = golden.get_sun_rise_set_transit(times, method='geometric',
315
- declination=declination,
316
- equation_of_time=eot)
317
- assert all(result.columns == ['sunrise', 'sunset', 'transit'])
318
-
319
-
320
- def test_get_sun_rise_set_transit_valueerror(golden):
321
- times = pd.DatetimeIndex(['2015-01-01 07:00:00', '2015-01-01 23:00:00'],
322
- tz='MST')
323
- with pytest.raises(ValueError):
324
- golden.get_sun_rise_set_transit(times, method='eyeball')
325
-
326
-
327
- def test_extra_kwargs():
328
- with pytest.raises(TypeError, match='arbitrary_kwarg'):
329
- Location(32.2, -111, arbitrary_kwarg='value')
330
-
331
-
332
- @pytest.mark.parametrize('lat,lon,expected_alt', [
333
- pytest.param(32.2540, -110.9742, 724, id='Tucson, USA'),
334
- pytest.param(-15.3875, 28.3228, 1253, id='Lusaka, Zambia'),
335
- pytest.param(35.6762, 139.6503, 40, id='Tokyo, Japan'),
336
- pytest.param(-35.2802, 149.1310, 566, id='Canberra, Australia'),
337
- pytest.param(4.7110, -74.0721, 2555, id='Bogota, Colombia'),
338
- pytest.param(31.525849, 35.449214, -415, id='Dead Sea, West Bank'),
339
- pytest.param(28.6139, 77.2090, 214, id='New Delhi, India'),
340
- pytest.param(0, 0, 0, id='Null Island, Atlantic Ocean'),
341
- ])
342
- def test_lookup_altitude(lat, lon, expected_alt):
343
- alt_found = lookup_altitude(lat, lon)
344
- assert alt_found == pytest.approx(expected_alt, abs=125)
345
-
346
-
347
- def test_location_lookup_altitude(mocker):
348
- mocker.spy(location, 'lookup_altitude')
349
- tus = Location(32.2, -111, 'US/Arizona', 700, 'Tucson')
350
- location.lookup_altitude.assert_not_called()
351
- assert tus.altitude == 700
352
- location.lookup_altitude.reset_mock()
353
-
354
- tus = Location(32.2, -111, 'US/Arizona')
355
- location.lookup_altitude.assert_called_once_with(32.2, -111)
356
- assert tus.altitude == location.lookup_altitude(32.2, -111)