pvlib 0.11.2__py3-none-any.whl → 0.12.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (139) hide show
  1. pvlib/__init__.py +1 -0
  2. pvlib/atmosphere.py +0 -9
  3. pvlib/bifacial/infinite_sheds.py +4 -3
  4. pvlib/bifacial/utils.py +2 -1
  5. pvlib/iotools/psm3.py +1 -1
  6. pvlib/iotools/pvgis.py +10 -2
  7. pvlib/iotools/tmy.py +3 -69
  8. pvlib/irradiance.py +14 -0
  9. pvlib/location.py +73 -33
  10. pvlib/modelchain.py +18 -35
  11. pvlib/pvsystem.py +7 -10
  12. pvlib/snow.py +64 -28
  13. pvlib/spectrum/__init__.py +0 -1
  14. pvlib/spectrum/irradiance.py +0 -63
  15. pvlib/spectrum/mismatch.py +3 -3
  16. pvlib/tools.py +6 -5
  17. {pvlib-0.11.2.dist-info → pvlib-0.12.0.dist-info}/METADATA +5 -3
  18. pvlib-0.12.0.dist-info/RECORD +75 -0
  19. {pvlib-0.11.2.dist-info → pvlib-0.12.0.dist-info}/WHEEL +1 -1
  20. pvlib/data/BIRD_08_16_2012.csv +0 -8761
  21. pvlib/data/BIRD_08_16_2012_patm.csv +0 -8761
  22. pvlib/data/Burlington, United States SolarAnywhere Time Series 2021 Lat_44_465 Lon_-73_205 TMY3 format.csv +0 -8762
  23. pvlib/data/Burlington, United States SolarAnywhere Time Series 20210101 to 20210103 Lat_44_4675 Lon_-73_2075 SA format.csv +0 -578
  24. pvlib/data/Burlington, United States SolarAnywhere Typical GHI Year Lat_44_465 Lon_-73_205 SA format.csv +0 -74
  25. pvlib/data/CPS SCH275KTL-DO-US-800-250kW_275kVA_1.OND +0 -146
  26. pvlib/data/CRNS0101-05-2019-AZ_Tucson_11_W.txt +0 -4
  27. pvlib/data/CRN_with_problems.txt +0 -3
  28. pvlib/data/ET-M772BH550GL.PAN +0 -75
  29. pvlib/data/NLD_Amsterdam062400_IWEC.epw +0 -8768
  30. pvlib/data/PVsyst_demo.csv +0 -10757
  31. pvlib/data/PVsyst_demo_model.csv +0 -3588
  32. pvlib/data/SRML-day-EUPO1801.txt +0 -1441
  33. pvlib/data/abq19056.dat +0 -6
  34. pvlib/data/bishop88_numerical_precision.csv +0 -101
  35. pvlib/data/bsrn-lr0100-pay0616.dat +0 -86901
  36. pvlib/data/bsrn-pay0616.dat.gz +0 -0
  37. pvlib/data/cams_mcclear_1min_verbose.csv +0 -60
  38. pvlib/data/cams_mcclear_monthly.csv +0 -42
  39. pvlib/data/cams_radiation_1min_verbose.csv +0 -72
  40. pvlib/data/cams_radiation_monthly.csv +0 -47
  41. pvlib/data/detect_clearsky_data.csv +0 -35
  42. pvlib/data/detect_clearsky_threshold_data.csv +0 -126
  43. pvlib/data/greensboro_kimber_soil_manwash.dat +0 -8761
  44. pvlib/data/greensboro_kimber_soil_nowash.dat +0 -8761
  45. pvlib/data/inverter_fit_snl_meas.csv +0 -127
  46. pvlib/data/inverter_fit_snl_sim.csv +0 -19
  47. pvlib/data/ivtools_numdiff.csv +0 -52
  48. pvlib/data/midc_20181014.txt +0 -1441
  49. pvlib/data/midc_raw_20181018.txt +0 -1441
  50. pvlib/data/midc_raw_short_header_20191115.txt +0 -1441
  51. pvlib/data/msn19056.dat +0 -6
  52. pvlib/data/precise_iv_curves1.json +0 -10251
  53. pvlib/data/precise_iv_curves2.json +0 -10251
  54. pvlib/data/precise_iv_curves_parameter_sets1.csv +0 -33
  55. pvlib/data/precise_iv_curves_parameter_sets2.csv +0 -33
  56. pvlib/data/pvgis_hourly_Timeseries_45.000_8.000_SA2_10kWp_CIS_5_2a_2013_2014.json +0 -1
  57. pvlib/data/pvgis_hourly_Timeseries_45.000_8.000_SA_30deg_0deg_2016_2016.csv +0 -35
  58. pvlib/data/pvgis_tmy_meta.json +0 -32
  59. pvlib/data/pvgis_tmy_test.csv +0 -8761
  60. pvlib/data/pvwatts_8760_rackmount.csv +0 -8779
  61. pvlib/data/pvwatts_8760_roofmount.csv +0 -8779
  62. pvlib/data/singleaxis_tracker_wslope.csv +0 -8761
  63. pvlib/data/spectrl2_example_spectra.csv +0 -123
  64. pvlib/data/surfrad-slv16001.dat +0 -1442
  65. pvlib/data/test_psm3_2017.csv +0 -17521
  66. pvlib/data/test_psm3_2019_5min.csv +0 -289
  67. pvlib/data/test_psm3_tmy-2017.csv +0 -8761
  68. pvlib/data/test_read_psm3.csv +0 -17523
  69. pvlib/data/test_read_pvgis_horizon.csv +0 -49
  70. pvlib/data/tmy_45.000_8.000_2005_2023.csv +0 -8789
  71. pvlib/data/tmy_45.000_8.000_2005_2023.epw +0 -8768
  72. pvlib/data/tmy_45.000_8.000_2005_2023.json +0 -1
  73. pvlib/data/tmy_45.000_8.000_2005_2023.txt +0 -8761
  74. pvlib/data/tmy_45.000_8.000_userhorizon.json +0 -1
  75. pvlib/spa_c_files/README.md +0 -81
  76. pvlib/spa_c_files/cspa_py.pxd +0 -43
  77. pvlib/spa_c_files/spa_py.pyx +0 -30
  78. pvlib/tests/__init__.py +0 -0
  79. pvlib/tests/bifacial/__init__.py +0 -0
  80. pvlib/tests/bifacial/test_infinite_sheds.py +0 -317
  81. pvlib/tests/bifacial/test_losses_models.py +0 -54
  82. pvlib/tests/bifacial/test_pvfactors.py +0 -82
  83. pvlib/tests/bifacial/test_utils.py +0 -192
  84. pvlib/tests/conftest.py +0 -476
  85. pvlib/tests/iotools/__init__.py +0 -0
  86. pvlib/tests/iotools/test_acis.py +0 -213
  87. pvlib/tests/iotools/test_bsrn.py +0 -131
  88. pvlib/tests/iotools/test_crn.py +0 -95
  89. pvlib/tests/iotools/test_epw.py +0 -23
  90. pvlib/tests/iotools/test_midc.py +0 -89
  91. pvlib/tests/iotools/test_panond.py +0 -32
  92. pvlib/tests/iotools/test_psm3.py +0 -198
  93. pvlib/tests/iotools/test_pvgis.py +0 -644
  94. pvlib/tests/iotools/test_sodapro.py +0 -298
  95. pvlib/tests/iotools/test_solaranywhere.py +0 -287
  96. pvlib/tests/iotools/test_solargis.py +0 -68
  97. pvlib/tests/iotools/test_solcast.py +0 -324
  98. pvlib/tests/iotools/test_solrad.py +0 -152
  99. pvlib/tests/iotools/test_srml.py +0 -124
  100. pvlib/tests/iotools/test_surfrad.py +0 -75
  101. pvlib/tests/iotools/test_tmy.py +0 -133
  102. pvlib/tests/ivtools/__init__.py +0 -0
  103. pvlib/tests/ivtools/test_sde.py +0 -230
  104. pvlib/tests/ivtools/test_sdm.py +0 -429
  105. pvlib/tests/ivtools/test_utils.py +0 -173
  106. pvlib/tests/spectrum/__init__.py +0 -0
  107. pvlib/tests/spectrum/conftest.py +0 -40
  108. pvlib/tests/spectrum/test_irradiance.py +0 -138
  109. pvlib/tests/spectrum/test_mismatch.py +0 -304
  110. pvlib/tests/spectrum/test_response.py +0 -124
  111. pvlib/tests/spectrum/test_spectrl2.py +0 -72
  112. pvlib/tests/test__deprecation.py +0 -97
  113. pvlib/tests/test_albedo.py +0 -84
  114. pvlib/tests/test_atmosphere.py +0 -351
  115. pvlib/tests/test_clearsky.py +0 -884
  116. pvlib/tests/test_conftest.py +0 -37
  117. pvlib/tests/test_iam.py +0 -555
  118. pvlib/tests/test_inverter.py +0 -213
  119. pvlib/tests/test_irradiance.py +0 -1487
  120. pvlib/tests/test_location.py +0 -356
  121. pvlib/tests/test_modelchain.py +0 -2020
  122. pvlib/tests/test_numerical_precision.py +0 -124
  123. pvlib/tests/test_pvarray.py +0 -71
  124. pvlib/tests/test_pvsystem.py +0 -2511
  125. pvlib/tests/test_scaling.py +0 -207
  126. pvlib/tests/test_shading.py +0 -391
  127. pvlib/tests/test_singlediode.py +0 -608
  128. pvlib/tests/test_snow.py +0 -212
  129. pvlib/tests/test_soiling.py +0 -230
  130. pvlib/tests/test_solarposition.py +0 -966
  131. pvlib/tests/test_spa.py +0 -454
  132. pvlib/tests/test_temperature.py +0 -470
  133. pvlib/tests/test_tools.py +0 -146
  134. pvlib/tests/test_tracking.py +0 -474
  135. pvlib/tests/test_transformer.py +0 -60
  136. pvlib-0.11.2.dist-info/RECORD +0 -191
  137. {pvlib-0.11.2.dist-info → pvlib-0.12.0.dist-info/licenses}/AUTHORS.md +0 -0
  138. {pvlib-0.11.2.dist-info → pvlib-0.12.0.dist-info/licenses}/LICENSE +0 -0
  139. {pvlib-0.11.2.dist-info → pvlib-0.12.0.dist-info}/top_level.txt +0 -0
@@ -1,213 +0,0 @@
1
- """
2
- tests for :mod:`pvlib.iotools.acis`
3
- """
4
-
5
- import pandas as pd
6
- import numpy as np
7
- import pytest
8
- from pvlib.iotools import (
9
- get_acis_prism, get_acis_nrcc, get_acis_mpe,
10
- get_acis_station_data, get_acis_available_stations
11
- )
12
- from ..conftest import RERUNS, RERUNS_DELAY, assert_frame_equal
13
- from requests import HTTPError
14
-
15
-
16
- @pytest.mark.remote_data
17
- @pytest.mark.flaky(reruns=RERUNS, reruns_delay=RERUNS_DELAY)
18
- def test_get_acis_prism():
19
- # map_variables=True
20
- df, meta = get_acis_prism(40.001, -80.001, '2020-01-01', '2020-01-02')
21
- expected = pd.DataFrame(
22
- [
23
- [0.5, 5, 0, 2.5, 0, 62, 0],
24
- [0, 5, -3, 1, 0, 64, 0]
25
- ],
26
- columns=['precipitation', 'temp_air_max', 'temp_air_min',
27
- 'temp_air_average', 'cooling_degree_days',
28
- 'heating_degree_days', 'growing_degree_days'],
29
- index=pd.to_datetime(['2020-01-01', '2020-01-02']),
30
- )
31
- assert_frame_equal(df, expected)
32
- expected_meta = {'latitude': 40, 'longitude': -80, 'altitude': 298.0944}
33
- assert meta == expected_meta
34
-
35
- # map_variables=False
36
- df, meta = get_acis_prism(40.001, -80.001, '2020-01-01', '2020-01-02',
37
- map_variables=False)
38
- expected.columns = ['pcpn', 'maxt', 'mint', 'avgt', 'cdd', 'hdd', 'gdd']
39
- assert_frame_equal(df, expected)
40
- expected_meta = {'lat': 40, 'lon': -80, 'elev': 298.0944}
41
- assert meta == expected_meta
42
-
43
-
44
- @pytest.mark.remote_data
45
- @pytest.mark.flaky(reruns=RERUNS, reruns_delay=RERUNS_DELAY)
46
- @pytest.mark.parametrize('grid, expected', [
47
- (1, [[0.51, 5, 0, 2.5, 0, 62, 0]]),
48
- (3, [[0.51, 5, -1, 2.0, 0, 63, 0]])
49
- ])
50
- def test_get_acis_nrcc(grid, expected):
51
- # map_variables=True
52
- df, meta = get_acis_nrcc(40.001, -80.001, '2020-01-01', '2020-01-01', grid)
53
- expected = pd.DataFrame(
54
- expected,
55
- columns=['precipitation', 'temp_air_max', 'temp_air_min',
56
- 'temp_air_average', 'cooling_degree_days',
57
- 'heating_degree_days', 'growing_degree_days'],
58
- index=pd.to_datetime(['2020-01-01']),
59
- )
60
- assert_frame_equal(df, expected)
61
- expected_meta = {'latitude': 40., 'longitude': -80., 'altitude': 356.9208}
62
- assert meta == pytest.approx(expected_meta)
63
-
64
- # map_variables=False
65
- df, meta = get_acis_nrcc(40.001, -80.001, '2020-01-01', '2020-01-01', grid,
66
- map_variables=False)
67
- expected.columns = ['pcpn', 'maxt', 'mint', 'avgt', 'cdd', 'hdd', 'gdd']
68
- assert_frame_equal(df, expected)
69
- expected_meta = {'lat': 40., 'lon': -80., 'elev': 356.9208}
70
- assert meta == pytest.approx(expected_meta)
71
-
72
-
73
- @pytest.mark.remote_data
74
- @pytest.mark.flaky(reruns=RERUNS, reruns_delay=RERUNS_DELAY)
75
- def test_get_acis_nrcc_error():
76
- with pytest.raises(HTTPError, match='invalid grid'):
77
- # 50 is not a valid dataset (or "grid", in ACIS lingo)
78
- _ = get_acis_nrcc(40, -80, '2012-01-01', '2012-01-01', 50)
79
-
80
-
81
- @pytest.mark.remote_data
82
- @pytest.mark.flaky(reruns=RERUNS, reruns_delay=RERUNS_DELAY)
83
- def test_get_acis_mpe():
84
- # map_variables=True
85
- df, meta = get_acis_mpe(40.001, -80.001, '2020-01-01', '2020-01-02')
86
- expected = pd.DataFrame(
87
- {'precipitation': [0.4, 0.0]},
88
- index=pd.to_datetime(['2020-01-01', '2020-01-02']),
89
- )
90
- assert_frame_equal(df, expected)
91
- expected_meta = {'latitude': 40.0083, 'longitude': -79.9653}
92
- assert meta == expected_meta
93
-
94
- # map_variables=False
95
- df, meta = get_acis_mpe(40.001, -80.001, '2020-01-01', '2020-01-02',
96
- map_variables=False)
97
- expected.columns = ['pcpn']
98
- assert_frame_equal(df, expected)
99
- expected_meta = {'lat': 40.0083, 'lon': -79.9653}
100
- assert meta == expected_meta
101
-
102
-
103
- @pytest.mark.remote_data
104
- @pytest.mark.flaky(reruns=RERUNS, reruns_delay=RERUNS_DELAY)
105
- def test_get_acis_station_data():
106
- # map_variables=True
107
- df, meta = get_acis_station_data('ORD', '2020-01-10', '2020-01-12',
108
- trace_val=-99)
109
- expected = pd.DataFrame(
110
- [[10., 2., 6., np.nan, 21.34, 0., 0., 0., 59., 0.],
111
- [3., -4., -0.5, np.nan, 9.4, 5.3, 0., 0., 65., 0.],
112
- [-1., -5., -3., np.nan, -99, -99, 5., 0., 68., 0.]],
113
- columns=['temp_air_max', 'temp_air_min', 'temp_air_average',
114
- 'temp_air_observation', 'precipitation', 'snowfall',
115
- 'snowdepth', 'cooling_degree_days',
116
- 'heating_degree_days', 'growing_degree_days'],
117
- index=pd.to_datetime(['2020-01-10', '2020-01-11', '2020-01-12']),
118
- )
119
- assert_frame_equal(df, expected)
120
- expected_meta = {
121
- 'uid': 48,
122
- 'state': 'IL',
123
- 'name': 'CHICAGO OHARE INTL AP',
124
- 'altitude': 204.8256,
125
- 'latitude': 41.96017,
126
- 'longitude': -87.93164
127
- }
128
- expected_meta = {
129
- 'valid_daterange': [
130
- ['1958-11-01', '2023-06-15'],
131
- ['1958-11-01', '2023-06-15'],
132
- ['1958-11-01', '2023-06-15'],
133
- [],
134
- ['1958-11-01', '2023-06-15'],
135
- ['1958-11-01', '2023-06-15'],
136
- ['1958-11-01', '2023-06-15'],
137
- ['1958-11-01', '2023-06-15'],
138
- ['1958-11-01', '2023-06-15'],
139
- ['1958-11-01', '2023-06-15']
140
- ],
141
- 'name': 'CHICAGO OHARE INTL AP',
142
- 'sids': ['94846 1', '111549 2', 'ORD 3', '72530 4', 'KORD 5',
143
- 'USW00094846 6', 'ORD 7', 'USW00094846 32'],
144
- 'county': '17031',
145
- 'state': 'IL',
146
- 'climdiv': 'IL02',
147
- 'uid': 48,
148
- 'tzo': -6.0,
149
- 'sid_dates': [
150
- ['94846 1', '1989-01-19', '9999-12-31'],
151
- ['94846 1', '1958-10-30', '1989-01-01'],
152
- ['111549 2', '1989-01-19', '9999-12-31'],
153
- ['111549 2', '1958-10-30', '1989-01-01'],
154
- ['ORD 3', '1989-01-19', '9999-12-31'],
155
- ['ORD 3', '1958-10-30', '1989-01-01'],
156
- ['72530 4', '1989-01-19', '9999-12-31'],
157
- ['72530 4', '1958-10-30', '1989-01-01'],
158
- ['KORD 5', '1989-01-19', '9999-12-31'],
159
- ['KORD 5', '1958-10-30', '1989-01-01'],
160
- ['USW00094846 6', '1989-01-19', '9999-12-31'],
161
- ['USW00094846 6', '1958-10-30', '1989-01-01'],
162
- ['ORD 7', '1989-01-19', '9999-12-31'],
163
- ['ORD 7', '1958-10-30', '1989-01-01'],
164
- ['USW00094846 32', '1989-01-19', '9999-12-31'],
165
- ['USW00094846 32', '1958-10-30', '1989-01-01']],
166
- 'altitude': 204.8256,
167
- 'longitude': -87.93164,
168
- 'latitude': 41.96017
169
- }
170
- # don't check valid dates since they get extended every day
171
- meta.pop("valid_daterange")
172
- expected_meta.pop("valid_daterange")
173
- assert meta == expected_meta
174
-
175
- # map_variables=False
176
- df, meta = get_acis_station_data('ORD', '2020-01-10', '2020-01-12',
177
- trace_val=-99, map_variables=False)
178
- expected.columns = ['maxt', 'mint', 'avgt', 'obst', 'pcpn', 'snow',
179
- 'snwd', 'cdd', 'hdd', 'gdd']
180
- assert_frame_equal(df, expected)
181
- expected_meta['lat'] = expected_meta.pop('latitude')
182
- expected_meta['lon'] = expected_meta.pop('longitude')
183
- expected_meta['elev'] = expected_meta.pop('altitude')
184
- meta.pop("valid_daterange")
185
- assert meta == expected_meta
186
-
187
-
188
- @pytest.mark.remote_data
189
- @pytest.mark.flaky(reruns=RERUNS, reruns_delay=RERUNS_DELAY)
190
- def test_get_acis_available_stations():
191
- # use a very narrow bounding box to hopefully make this test less likely
192
- # to fail due to new stations being added in the future
193
- lat, lon = 39.8986, -80.1656
194
- stations = get_acis_available_stations([lat - 0.0001, lat + 0.0001],
195
- [lon - 0.0001, lon + 0.0001])
196
- assert len(stations) == 1
197
- station = stations.iloc[0]
198
-
199
- # test the more relevant values
200
- assert station['name'] == 'WAYNESBURG 1 E'
201
- assert station['sids'] == ['369367 2', 'USC00369367 6', 'WYNP1 7']
202
- assert station['state'] == 'PA'
203
- assert station['altitude'] == 940.
204
- assert station['tzo'] == -5.0
205
- assert station['latitude'] == lat
206
- assert station['longitude'] == lon
207
-
208
- # check that start/end work as filters
209
- stations = get_acis_available_stations([lat - 0.0001, lat + 0.0001],
210
- [lon - 0.0001, lon + 0.0001],
211
- start='1900-01-01',
212
- end='1900-01-02')
213
- assert stations.empty
@@ -1,131 +0,0 @@
1
- """
2
- tests for :mod:`pvlib.iotools.bsrn`
3
- """
4
-
5
- import pandas as pd
6
- import pytest
7
- import os
8
- import tempfile
9
- from pvlib.iotools import read_bsrn, get_bsrn
10
- from ..conftest import (DATA_DIR, RERUNS, RERUNS_DELAY, assert_index_equal,
11
- requires_bsrn_credentials)
12
-
13
-
14
- @pytest.fixture(scope="module")
15
- def bsrn_credentials():
16
- """Supplies the BSRN FTP credentials for testing purposes.
17
-
18
- Users should obtain their own credentials as described in the `read_bsrn`
19
- documentation."""
20
- bsrn_username = os.environ["BSRN_FTP_USERNAME"]
21
- bsrn_password = os.environ["BSRN_FTP_PASSWORD"]
22
- return bsrn_username, bsrn_password
23
-
24
-
25
- @pytest.fixture
26
- def expected_index():
27
- return pd.date_range(start='20160601', periods=43200, freq='1min',
28
- tz='UTC')
29
-
30
-
31
- @pytest.mark.parametrize('testfile', [
32
- ('bsrn-pay0616.dat.gz'),
33
- ('bsrn-lr0100-pay0616.dat'),
34
- ])
35
- def test_read_bsrn(testfile, expected_index):
36
- data, metadata = read_bsrn(DATA_DIR / testfile)
37
- assert_index_equal(expected_index, data.index)
38
- assert 'ghi' in data.columns
39
- assert 'dni_std' in data.columns
40
- assert 'dhi_min' in data.columns
41
- assert 'lwd_max' in data.columns
42
- assert 'relative_humidity' in data.columns
43
-
44
-
45
- def test_read_bsrn_logical_records(expected_index):
46
- # Test if logical records 0300 and 0500 are correct parsed
47
- # and that 0100 is not passed when not specified
48
- data, metadata = read_bsrn(DATA_DIR / 'bsrn-pay0616.dat.gz',
49
- logical_records=['0300', '0500'])
50
- assert_index_equal(expected_index, data.index)
51
- assert 'lwu' in data.columns
52
- assert 'uva_global' in data.columns
53
- assert 'uvb_reflected_std' in data.columns
54
- assert 'ghi' not in data.columns
55
-
56
-
57
- def test_read_bsrn_bad_logical_record():
58
- # Test if ValueError is raised if an unsupported logical record is passed
59
- with pytest.raises(ValueError, match='not in'):
60
- read_bsrn(DATA_DIR / 'bsrn-lr0100-pay0616.dat',
61
- logical_records=['dummy'])
62
-
63
-
64
- def test_read_bsrn_logical_records_not_found():
65
- # Test if an empty dataframe is returned if specified LRs are not present
66
- data, metadata = read_bsrn(DATA_DIR / 'bsrn-lr0100-pay0616.dat',
67
- logical_records=['0300', '0500'])
68
- assert data.empty # assert that the dataframe is empty
69
- assert 'uva_global' in data.columns
70
- assert 'uvb_reflected_std' in data.columns
71
- assert 'uva_global_max' in data.columns
72
- assert 'dni' not in data.columns
73
- assert 'day' not in data.columns
74
-
75
-
76
- @requires_bsrn_credentials
77
- @pytest.mark.remote_data
78
- @pytest.mark.flaky(reruns=RERUNS, reruns_delay=RERUNS_DELAY)
79
- def test_get_bsrn(expected_index, bsrn_credentials):
80
- # Retrieve irradiance data from the BSRN FTP server
81
- # the TAM station is chosen due to its small file sizes
82
- temp_dir = tempfile.TemporaryDirectory() # create temporary directory
83
- username, password = bsrn_credentials
84
- data, metadata = get_bsrn(
85
- start=pd.Timestamp(2016, 6, 1),
86
- end=pd.Timestamp(2016, 6, 29),
87
- station='tam',
88
- username=username,
89
- password=password,
90
- save_path=temp_dir.name)
91
- assert_index_equal(expected_index, data.index)
92
- assert 'ghi' in data.columns
93
- assert 'dni_std' in data.columns
94
- assert 'dhi_min' in data.columns
95
- assert 'lwd_max' in data.columns
96
- assert 'relative_humidity' in data.columns
97
- # test that a local file was saved and is read correctly
98
- data2, metadata2 = read_bsrn(os.path.join(temp_dir.name, 'tam0616.dat.gz'))
99
- assert_index_equal(expected_index, data2.index)
100
- assert 'ghi' in data2.columns
101
- temp_dir.cleanup() # explicitly remove temporary directory
102
-
103
-
104
- @requires_bsrn_credentials
105
- @pytest.mark.remote_data
106
- @pytest.mark.flaky(reruns=RERUNS, reruns_delay=RERUNS_DELAY)
107
- def test_get_bsrn_bad_station(bsrn_credentials):
108
- # Test if KeyError is raised if a bad station name is passed
109
- username, password = bsrn_credentials
110
- with pytest.raises(KeyError, match='sub-directory does not exist'):
111
- get_bsrn(
112
- start=pd.Timestamp(2016, 6, 1),
113
- end=pd.Timestamp(2016, 6, 29),
114
- station='not_a_station_name',
115
- username=username,
116
- password=password)
117
-
118
-
119
- @requires_bsrn_credentials
120
- @pytest.mark.remote_data
121
- @pytest.mark.flaky(reruns=RERUNS, reruns_delay=RERUNS_DELAY)
122
- def test_get_bsrn_no_files(bsrn_credentials):
123
- username, password = bsrn_credentials
124
- # Test if Warning is given if no files are found for the entire time frame
125
- with pytest.warns(UserWarning, match='No files'):
126
- get_bsrn(
127
- start=pd.Timestamp(1990, 6, 1),
128
- end=pd.Timestamp(1990, 6, 29),
129
- station='tam',
130
- username=username,
131
- password=password)
@@ -1,95 +0,0 @@
1
- import pandas as pd
2
- import numpy as np
3
- from numpy import dtype, nan
4
- import pytest
5
- from pvlib.iotools import crn
6
- from ..conftest import DATA_DIR, assert_frame_equal, assert_index_equal
7
-
8
-
9
- @pytest.fixture
10
- def columns_mapped():
11
- return [
12
- 'WBANNO', 'UTC_DATE', 'UTC_TIME', 'LST_DATE', 'LST_TIME', 'CRX_VN',
13
- 'longitude', 'latitude', 'temp_air', 'PRECIPITATION', 'ghi',
14
- 'ghi_flag',
15
- 'SURFACE_TEMPERATURE', 'ST_TYPE', 'ST_FLAG', 'relative_humidity',
16
- 'relative_humidity_flag', 'SOIL_MOISTURE_5', 'SOIL_TEMPERATURE_5',
17
- 'WETNESS', 'WET_FLAG', 'wind_speed', 'wind_speed_flag']
18
-
19
-
20
- @pytest.fixture
21
- def columns_unmapped():
22
- return [
23
- 'WBANNO', 'UTC_DATE', 'UTC_TIME', 'LST_DATE', 'LST_TIME', 'CRX_VN',
24
- 'LONGITUDE', 'LATITUDE', 'AIR_TEMPERATURE', 'PRECIPITATION',
25
- 'SOLAR_RADIATION', 'SR_FLAG', 'SURFACE_TEMPERATURE', 'ST_TYPE',
26
- 'ST_FLAG', 'RELATIVE_HUMIDITY', 'RH_FLAG', 'SOIL_MOISTURE_5',
27
- 'SOIL_TEMPERATURE_5', 'WETNESS', 'WET_FLAG', 'WIND_1_5', 'WIND_FLAG']
28
-
29
-
30
- @pytest.fixture
31
- def dtypes():
32
- return [
33
- dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'),
34
- dtype('int64'), dtype('O'), dtype('float64'), dtype('float64'),
35
- dtype('float64'), dtype('float64'), dtype('float64'),
36
- dtype('int64'), dtype('float64'), dtype('O'), dtype('int64'),
37
- dtype('float64'), dtype('int64'), dtype('float64'),
38
- dtype('float64'), dtype('int64'), dtype('int64'), dtype('float64'),
39
- dtype('int64')]
40
-
41
-
42
- @pytest.fixture
43
- def testfile():
44
- return DATA_DIR / 'CRNS0101-05-2019-AZ_Tucson_11_W.txt'
45
-
46
-
47
- @pytest.fixture
48
- def testfile_problems():
49
- return DATA_DIR / 'CRN_with_problems.txt'
50
-
51
-
52
- def test_read_crn(testfile, columns_mapped, dtypes):
53
- index = pd.DatetimeIndex(['2019-01-01 16:10:00',
54
- '2019-01-01 16:15:00',
55
- '2019-01-01 16:20:00',
56
- '2019-01-01 16:25:00'],
57
- freq=None).tz_localize('UTC')
58
- values = np.array([
59
- [53131, 20190101, 1610, 20190101, 910, 3, -111.17, 32.24, nan,
60
- 0.0, 296.0, 0, 4.4, 'C', 0, 90.0, 0, nan, nan, 24, 0, 0.78, 0],
61
- [53131, 20190101, 1615, 20190101, 915, 3, -111.17, 32.24, 3.3,
62
- 0.0, 183.0, 0, 4.0, 'C', 0, 87.0, 0, nan, nan, 1182, 0, 0.36, 0],
63
- [53131, 20190101, 1620, 20190101, 920, 3, -111.17, 32.24, 3.5,
64
- 0.0, 340.0, 0, 4.3, 'C', 0, 83.0, 0, nan, nan, 1183, 0, 0.53, 0],
65
- [53131, 20190101, 1625, 20190101, 925, 3, -111.17, 32.24, 4.0,
66
- 0.0, 393.0, 0, 4.8, 'C', 0, 81.0, 0, nan, nan, 1223, 0, 0.64, 0]])
67
- expected = pd.DataFrame(values, columns=columns_mapped, index=index)
68
- for (col, _dtype) in zip(expected.columns, dtypes):
69
- expected[col] = expected[col].astype(_dtype)
70
- out = crn.read_crn(testfile)
71
- assert_frame_equal(out, expected)
72
-
73
-
74
- # Test map_variables=False returns correct column names
75
- def test_read_crn_map_variables(testfile, columns_unmapped, dtypes):
76
- out = crn.read_crn(testfile, map_variables=False)
77
- assert_index_equal(out.columns, pd.Index(columns_unmapped))
78
-
79
-
80
- def test_read_crn_problems(testfile_problems, columns_mapped, dtypes):
81
- # GH1025
82
- index = pd.DatetimeIndex(['2020-07-06 12:00:00',
83
- '2020-07-06 13:10:00'],
84
- freq=None).tz_localize('UTC')
85
- values = np.array([
86
- [92821, 20200706, 1200, 20200706, 700, '3', -80.69, 28.62, 24.9,
87
- 0.0, np.nan, 0, 25.5, 'C', 0, 93.0, 0, nan, nan, 990, 0, 1.57, 0],
88
- [92821, 20200706, 1310, 20200706, 810, '2.623', -80.69, 28.62,
89
- 26.9, 0.0, 430.0, 0, 30.2, 'C', 0, 87.0, 0, nan, nan, 989, 0,
90
- 1.64, 0]])
91
- expected = pd.DataFrame(values, columns=columns_mapped, index=index)
92
- for (col, _dtype) in zip(expected.columns, dtypes):
93
- expected[col] = expected[col].astype(_dtype)
94
- out = crn.read_crn(testfile_problems)
95
- assert_frame_equal(out, expected)
@@ -1,23 +0,0 @@
1
- import pytest
2
-
3
- from pvlib.iotools import epw
4
- from ..conftest import DATA_DIR, RERUNS, RERUNS_DELAY
5
-
6
- epw_testfile = DATA_DIR / 'NLD_Amsterdam062400_IWEC.epw'
7
-
8
-
9
- def test_read_epw():
10
- epw.read_epw(epw_testfile)
11
-
12
-
13
- @pytest.mark.remote_data
14
- @pytest.mark.flaky(reruns=RERUNS, reruns_delay=RERUNS_DELAY)
15
- def test_read_epw_remote():
16
- url = 'https://energyplus-weather.s3.amazonaws.com/europe_wmo_region_6/NLD/NLD_Amsterdam.062400_IWEC/NLD_Amsterdam.062400_IWEC.epw'
17
- epw.read_epw(url)
18
-
19
-
20
- def test_read_epw_coerce_year():
21
- coerce_year = 1987
22
- data, _ = epw.read_epw(epw_testfile, coerce_year=coerce_year)
23
- assert (data.index.year == 1987).all()
@@ -1,89 +0,0 @@
1
- import pandas as pd
2
- import pytest
3
- import pytz
4
-
5
- from pvlib.iotools import midc
6
- from ..conftest import DATA_DIR, RERUNS, RERUNS_DELAY
7
-
8
-
9
- @pytest.fixture
10
- def test_mapping():
11
- return {
12
- 'Direct Normal [W/m^2]': 'dni',
13
- 'Global PSP [W/m^2]': 'ghi',
14
- 'Rel Humidity [%]': 'relative_humidity',
15
- 'Temperature @ 2m [deg C]': 'temp_air',
16
- 'Non Existant': 'variable',
17
- }
18
-
19
-
20
- MIDC_TESTFILE = DATA_DIR / 'midc_20181014.txt'
21
- MIDC_RAW_TESTFILE = DATA_DIR / 'midc_raw_20181018.txt'
22
- MIDC_RAW_SHORT_HEADER_TESTFILE = (
23
- DATA_DIR / 'midc_raw_short_header_20191115.txt')
24
-
25
- # TODO: not used, remove?
26
- # midc_network_testfile = ('https://midcdmz.nrel.gov/apps/data_api.pl'
27
- # '?site=UAT&begin=20181018&end=20181019')
28
-
29
-
30
- def test_midc__format_index():
31
- data = pd.read_csv(MIDC_TESTFILE)
32
- data = midc._format_index(data)
33
- start = pd.Timestamp("20181014 00:00")
34
- start = start.tz_localize("MST")
35
- end = pd.Timestamp("20181014 23:59")
36
- end = end.tz_localize("MST")
37
- assert type(data.index) == pd.DatetimeIndex
38
- assert data.index[0] == start
39
- assert data.index[-1] == end
40
-
41
-
42
- def test_midc__format_index_tz_conversion():
43
- data = pd.read_csv(MIDC_TESTFILE)
44
- data = data.rename(columns={'MST': 'PST'})
45
- data = midc._format_index(data)
46
- assert data.index[0].tz == pytz.timezone('Etc/GMT+8')
47
-
48
-
49
- def test_midc__format_index_raw():
50
- data = pd.read_csv(MIDC_RAW_TESTFILE)
51
- data = midc._format_index_raw(data)
52
- start = pd.Timestamp('20181018 00:00')
53
- start = start.tz_localize('MST')
54
- end = pd.Timestamp('20181018 23:59')
55
- end = end.tz_localize('MST')
56
- assert data.index[0] == start
57
- assert data.index[-1] == end
58
-
59
-
60
- def test_read_midc_var_mapping_as_arg(test_mapping):
61
- data = midc.read_midc(MIDC_TESTFILE, variable_map=test_mapping)
62
- assert 'ghi' in data.columns
63
- assert 'temp_air' in data.columns
64
-
65
-
66
- @pytest.mark.remote_data
67
- @pytest.mark.flaky(reruns=RERUNS, reruns_delay=RERUNS_DELAY)
68
- def test_read_midc_raw_data_from_nrel():
69
- start_ts = pd.Timestamp('20181018')
70
- end_ts = pd.Timestamp('20181019')
71
- var_map = midc.MIDC_VARIABLE_MAP['UAT']
72
- data = midc.read_midc_raw_data_from_nrel('UAT', start_ts, end_ts, var_map)
73
- for k, v in var_map.items():
74
- assert v in data.columns
75
- assert data.index.size == 2880
76
-
77
-
78
- def test_read_midc_header_length_mismatch(mocker):
79
- mock_data = mocker.MagicMock()
80
- with MIDC_RAW_SHORT_HEADER_TESTFILE.open() as f:
81
- mock_data.text = f.read()
82
- mocker.patch('pvlib.iotools.midc.requests.get',
83
- return_value=mock_data)
84
- start = pd.Timestamp('2019-11-15T00:00:00-06:00')
85
- end = pd.Timestamp('2019-11-15T23:59:00-06:00')
86
- data = midc.read_midc_raw_data_from_nrel('', start, end)
87
- assert isinstance(data.index, pd.DatetimeIndex)
88
- assert data.index[0] == start
89
- assert data.index[-1] == end
@@ -1,32 +0,0 @@
1
- """
2
- test iotools for panond
3
- """
4
-
5
- from pvlib.iotools import read_panond
6
- from pvlib.tests.conftest import DATA_DIR
7
-
8
- PAN_FILE = DATA_DIR / 'ET-M772BH550GL.PAN'
9
- OND_FILE = DATA_DIR / 'CPS SCH275KTL-DO-US-800-250kW_275kVA_1.OND'
10
-
11
-
12
- def test_read_panond():
13
- # test that returned contents have expected keys, types, and structure
14
-
15
- pan = read_panond(PAN_FILE, encoding='utf-8-sig')
16
- assert list(pan.keys()) == ['PVObject_']
17
- pan = pan['PVObject_']
18
- assert pan['PVObject_Commercial']['Model'] == 'ET-M772BH550GL'
19
- assert pan['Voc'] == 49.9
20
- assert pan['PVObject_IAM']['IAMProfile']['Point_5'] == [50.0, 0.98]
21
- assert pan['BifacialityFactor'] == 0.7
22
- assert pan['FrontSurface'] == 'fsARCoating'
23
- assert pan['Technol'] == 'mtSiMono'
24
-
25
- ond = read_panond(OND_FILE, encoding='utf-8-sig')
26
- assert list(ond.keys()) == ['PVObject_']
27
- ond = ond['PVObject_']
28
- assert ond['PVObject_Commercial']['Model'] == 'CPS SCH275KTL-DO/US-800'
29
- assert ond['TanPhiMin'] == -0.75
30
- assert ond['NbMPPT'] == 12
31
- assert ond['Converter']['ModeOper'] == 'MPPT'
32
- assert ond['Converter']['ProfilPIOV2']['Point_5'] == [75795.9, 75000.0]