pertpy 0.6.0__py3-none-any.whl → 0.8.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- pertpy/__init__.py +4 -2
- pertpy/data/__init__.py +66 -1
- pertpy/data/_dataloader.py +28 -26
- pertpy/data/_datasets.py +261 -92
- pertpy/metadata/__init__.py +6 -0
- pertpy/metadata/_cell_line.py +795 -0
- pertpy/metadata/_compound.py +128 -0
- pertpy/metadata/_drug.py +238 -0
- pertpy/metadata/_look_up.py +569 -0
- pertpy/metadata/_metadata.py +70 -0
- pertpy/metadata/_moa.py +125 -0
- pertpy/plot/__init__.py +0 -13
- pertpy/preprocessing/__init__.py +2 -0
- pertpy/preprocessing/_guide_rna.py +89 -6
- pertpy/tools/__init__.py +48 -15
- pertpy/tools/_augur.py +329 -32
- pertpy/tools/_cinemaot.py +145 -6
- pertpy/tools/_coda/_base_coda.py +1237 -116
- pertpy/tools/_coda/_sccoda.py +66 -36
- pertpy/tools/_coda/_tasccoda.py +46 -39
- pertpy/tools/_dialogue.py +180 -77
- pertpy/tools/_differential_gene_expression/__init__.py +20 -0
- pertpy/tools/_differential_gene_expression/_base.py +657 -0
- pertpy/tools/_differential_gene_expression/_checks.py +41 -0
- pertpy/tools/_differential_gene_expression/_dge_comparison.py +86 -0
- pertpy/tools/_differential_gene_expression/_edger.py +125 -0
- pertpy/tools/_differential_gene_expression/_formulaic.py +189 -0
- pertpy/tools/_differential_gene_expression/_pydeseq2.py +95 -0
- pertpy/tools/_differential_gene_expression/_simple_tests.py +162 -0
- pertpy/tools/_differential_gene_expression/_statsmodels.py +72 -0
- pertpy/tools/_distances/_distance_tests.py +29 -24
- pertpy/tools/_distances/_distances.py +584 -98
- pertpy/tools/_enrichment.py +460 -0
- pertpy/tools/_kernel_pca.py +1 -1
- pertpy/tools/_milo.py +406 -49
- pertpy/tools/_mixscape.py +677 -55
- pertpy/tools/_perturbation_space/_clustering.py +10 -3
- pertpy/tools/_perturbation_space/_comparison.py +112 -0
- pertpy/tools/_perturbation_space/_discriminator_classifiers.py +524 -0
- pertpy/tools/_perturbation_space/_perturbation_space.py +146 -52
- pertpy/tools/_perturbation_space/_simple.py +52 -11
- pertpy/tools/_scgen/__init__.py +1 -1
- pertpy/tools/_scgen/_base_components.py +2 -3
- pertpy/tools/_scgen/_scgen.py +706 -0
- pertpy/tools/_scgen/_utils.py +3 -5
- pertpy/tools/decoupler_LICENSE +674 -0
- {pertpy-0.6.0.dist-info → pertpy-0.8.0.dist-info}/METADATA +48 -20
- pertpy-0.8.0.dist-info/RECORD +57 -0
- {pertpy-0.6.0.dist-info → pertpy-0.8.0.dist-info}/WHEEL +1 -1
- pertpy/plot/_augur.py +0 -234
- pertpy/plot/_cinemaot.py +0 -81
- pertpy/plot/_coda.py +0 -1001
- pertpy/plot/_dialogue.py +0 -91
- pertpy/plot/_guide_rna.py +0 -82
- pertpy/plot/_milopy.py +0 -284
- pertpy/plot/_mixscape.py +0 -594
- pertpy/plot/_scgen.py +0 -337
- pertpy/tools/_differential_gene_expression.py +0 -99
- pertpy/tools/_metadata/__init__.py +0 -0
- pertpy/tools/_metadata/_cell_line.py +0 -613
- pertpy/tools/_metadata/_look_up.py +0 -342
- pertpy/tools/_perturbation_space/_discriminator_classifier.py +0 -381
- pertpy/tools/_scgen/_jax_scgen.py +0 -370
- pertpy-0.6.0.dist-info/RECORD +0 -50
- /pertpy/tools/_scgen/{_jax_scgenvae.py → _scgenvae.py} +0 -0
- {pertpy-0.6.0.dist-info → pertpy-0.8.0.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,569 @@
|
|
1
|
+
from __future__ import annotations
|
2
|
+
|
3
|
+
from collections import namedtuple
|
4
|
+
from typing import TYPE_CHECKING, Literal
|
5
|
+
|
6
|
+
from lamin_utils import logger
|
7
|
+
|
8
|
+
if TYPE_CHECKING:
|
9
|
+
from collections.abc import Sequence
|
10
|
+
|
11
|
+
if TYPE_CHECKING:
|
12
|
+
import pandas as pd
|
13
|
+
|
14
|
+
import pubchempy as pcp
|
15
|
+
|
16
|
+
|
17
|
+
class LookUp:
|
18
|
+
"""Generate LookUp object for different type of metadata."""
|
19
|
+
|
20
|
+
def __init__(
|
21
|
+
self,
|
22
|
+
type: Literal["cell_line", "moa", "compound", "drug"] = "cell_line",
|
23
|
+
transfer_metadata: Sequence[pd.DataFrame] | None = None,
|
24
|
+
):
|
25
|
+
"""
|
26
|
+
Args:
|
27
|
+
type: Metadata type for annotation. One of 'cell_line', 'compound', 'moa' or 'drug.
|
28
|
+
transfer_metadata: DataFrames used to generate Lookup object.
|
29
|
+
This is currently set to None for CompoundMetaData which does not require any dataframes for transfer.
|
30
|
+
"""
|
31
|
+
self.type = type
|
32
|
+
if type == "cell_line":
|
33
|
+
self.cell_line_meta = transfer_metadata[0]
|
34
|
+
self.cl_cancer_project_meta = transfer_metadata[1]
|
35
|
+
self.gene_annotation = transfer_metadata[2]
|
36
|
+
self.bulk_rna_sanger = transfer_metadata[3]
|
37
|
+
self.bulk_rna_broad = transfer_metadata[4]
|
38
|
+
self.proteomics_data = transfer_metadata[5]
|
39
|
+
self.drug_response_gdsc1 = transfer_metadata[6]
|
40
|
+
self.drug_response_gdsc2 = transfer_metadata[7]
|
41
|
+
|
42
|
+
cell_line_annotation = namedtuple(
|
43
|
+
"cell_line_annotation",
|
44
|
+
"n_cell_line cell_line n_metadata metadata reference_id reference_id_example default_parameter",
|
45
|
+
)
|
46
|
+
cell_lines = namedtuple("cell_lines", ["depmap", "cancerrxgene"])
|
47
|
+
|
48
|
+
depmap_data = {
|
49
|
+
"n_cell_line": len(self.cell_line_meta.index),
|
50
|
+
"n_metadata": len(self.cell_line_meta.columns),
|
51
|
+
"cell_line": self.cell_line_meta.ModelID.values,
|
52
|
+
"metadata": self.cell_line_meta.columns.values,
|
53
|
+
"reference_id": [
|
54
|
+
"ModelID",
|
55
|
+
"CellLineName",
|
56
|
+
"StrippedCellLineName",
|
57
|
+
"CCLE_Name",
|
58
|
+
],
|
59
|
+
"reference_id_example": "ModelID: ACH-000001 | CellLineName: NIH:OVCAR-3 | StrippedCellLineName: NIHOVCAR3 | CCLEName: NIHOVCAR3_OVARY",
|
60
|
+
"default_parameter": {
|
61
|
+
"cell_line_source": "DepMap",
|
62
|
+
"query_id": "DepMap_ID",
|
63
|
+
"reference_id": "ModelID",
|
64
|
+
"fetch": "None",
|
65
|
+
},
|
66
|
+
}
|
67
|
+
depmap_record = cell_line_annotation(**depmap_data)
|
68
|
+
|
69
|
+
cancerrxgene_data = {
|
70
|
+
"n_cell_line": len(self.cl_cancer_project_meta.index),
|
71
|
+
"n_metadata": len(self.cl_cancer_project_meta.columns),
|
72
|
+
"cell_line": self.cl_cancer_project_meta.stripped_cell_line_name.values,
|
73
|
+
"metadata": self.cl_cancer_project_meta.columns.values,
|
74
|
+
"reference_id": [
|
75
|
+
"cell_line_name",
|
76
|
+
"stripped_cell_line_name",
|
77
|
+
"Model ID",
|
78
|
+
"COSMIC ID",
|
79
|
+
],
|
80
|
+
"reference_id_example": "cell_line_name: SNU-283 | stripped_cell_line_name: SNU283 | Model ID: SIDM00215 | COSMIC ID: 1659929",
|
81
|
+
"default_parameter": {
|
82
|
+
"query_id": "stripped_cell_line_name",
|
83
|
+
"reference_id": "stripped_cell_line_name",
|
84
|
+
"fetch": "None",
|
85
|
+
},
|
86
|
+
}
|
87
|
+
cancerrxgene_record = cell_line_annotation(**cancerrxgene_data)
|
88
|
+
self.cell_lines = cell_lines(depmap_record, cancerrxgene_record)
|
89
|
+
|
90
|
+
bulk_rna_annotation = namedtuple(
|
91
|
+
"bulk_rna_annotation",
|
92
|
+
"n_cell_line cell_line n_gene gene reference_id reference_id_example default_parameter",
|
93
|
+
)
|
94
|
+
bulk_rna_expression = namedtuple("bulk_rna_expression", ["broad", "sanger"])
|
95
|
+
|
96
|
+
broad_data = {
|
97
|
+
"n_cell_line": len(self.bulk_rna_broad.index),
|
98
|
+
"n_gene": len(self.bulk_rna_broad.columns),
|
99
|
+
"cell_line": self.bulk_rna_broad.index.values,
|
100
|
+
"gene": self.bulk_rna_broad.columns.values,
|
101
|
+
"reference_id": "DepMap_ID",
|
102
|
+
"reference_id_example": "DepMap_ID: ACH-001113",
|
103
|
+
"default_parameter": {
|
104
|
+
"query_id": "DepMap_ID",
|
105
|
+
"cell_line_source": "broad",
|
106
|
+
},
|
107
|
+
}
|
108
|
+
broad_record = bulk_rna_annotation(**broad_data)
|
109
|
+
|
110
|
+
sanger_data = {
|
111
|
+
"n_cell_line": len(self.bulk_rna_sanger.index),
|
112
|
+
"n_gene": len(self.bulk_rna_sanger.columns),
|
113
|
+
"cell_line": self.bulk_rna_sanger.index.values,
|
114
|
+
"gene": self.bulk_rna_sanger.columns.values,
|
115
|
+
"reference_id": "model_name",
|
116
|
+
"reference_id_example": "model_name: MEC-1",
|
117
|
+
"default_parameter": {
|
118
|
+
"query_id": "cell_line_name",
|
119
|
+
"cell_line_source": "sanger",
|
120
|
+
},
|
121
|
+
}
|
122
|
+
sanger_record = bulk_rna_annotation(**sanger_data)
|
123
|
+
self.bulk_rna = bulk_rna_expression(broad_record, sanger_record)
|
124
|
+
|
125
|
+
proteomics = namedtuple(
|
126
|
+
"proteomics",
|
127
|
+
"n_cell_line cell_line n_protein protein metadata reference_id reference_id_example default_parameter",
|
128
|
+
)
|
129
|
+
proteomics_data = {
|
130
|
+
"n_cell_line": len(self.proteomics_data["model_name"].unique()),
|
131
|
+
"n_protein": len(self.proteomics_data.uniprot_id.unique()),
|
132
|
+
"cell_line": self.proteomics_data["model_name"].unique(),
|
133
|
+
"protein": self.proteomics_data.uniprot_id.unique(),
|
134
|
+
"metadata": self.proteomics_data.columns.values,
|
135
|
+
"reference_id": ["model_id", "model_name"],
|
136
|
+
"reference_id_example": "model_id: SIDM00483 | model_name: SK-GT-4",
|
137
|
+
"default_parameter": {
|
138
|
+
"query_id": "cell_line_name",
|
139
|
+
"reference_id": "model_name",
|
140
|
+
"bulk_rna_information": "read_count",
|
141
|
+
"protein_information": "protein_intensity",
|
142
|
+
"protein_id": "uniprot_id",
|
143
|
+
},
|
144
|
+
}
|
145
|
+
self.proteomics = proteomics(**proteomics_data)
|
146
|
+
|
147
|
+
drug_response_annotation = namedtuple(
|
148
|
+
"drug_response_annotation",
|
149
|
+
"n_cell_line cell_line n_drug drug_name metadata reference_id reference_id_example default_parameter",
|
150
|
+
)
|
151
|
+
drug_response = namedtuple("drug_response", ["gdsc1", "gdsc2"])
|
152
|
+
|
153
|
+
gdsc1_data = {
|
154
|
+
"n_cell_line": len(self.drug_response_gdsc1["cell_line_name"].unique()),
|
155
|
+
"n_drug": len(self.drug_response_gdsc1.drug_name.unique()),
|
156
|
+
"cell_line": self.drug_response_gdsc1.cell_line_name.unique(),
|
157
|
+
"drug_name": self.drug_response_gdsc1.drug_name.unique(),
|
158
|
+
"metadata": self.drug_response_gdsc1.columns.values,
|
159
|
+
"reference_id": ["cell_line_name", "sanger_model_id", "cosmic_id"],
|
160
|
+
"reference_id_example": "cell_line_name: ES5 | sanger_model_id: SIDM00263 | cosmic_id: 684057",
|
161
|
+
"default_parameter": {
|
162
|
+
"gdsc_dataset": "1",
|
163
|
+
"query_id": "cell_line_name",
|
164
|
+
"reference_id": "cell_line_name",
|
165
|
+
"query_perturbation": "perturbation",
|
166
|
+
"reference_perturbation": "drug_name",
|
167
|
+
},
|
168
|
+
}
|
169
|
+
gdsc1_dict = drug_response_annotation(**gdsc1_data)
|
170
|
+
|
171
|
+
gdsc2_data = {
|
172
|
+
"n_cell_line": len(self.drug_response_gdsc2["cell_line_name"].unique()),
|
173
|
+
"n_drug": len(self.drug_response_gdsc2.drug_name.unique()),
|
174
|
+
"cell_line": self.drug_response_gdsc2.cell_line_name.unique(),
|
175
|
+
"drug_name": self.drug_response_gdsc2.drug_name.unique(),
|
176
|
+
"metadata": self.drug_response_gdsc2.columns.values,
|
177
|
+
"reference_id": ["cell_line_name", "sanger_model_id", "cosmic_id"],
|
178
|
+
"reference_id_example": "cell_line_name: PFSK-1 | sanger_model_id: SIDM01132 | cosmic_id: 683667",
|
179
|
+
"default_parameter": {
|
180
|
+
"gdsc_dataset": "1",
|
181
|
+
"query_id": "cell_line_name",
|
182
|
+
"reference_id": "cell_line_name",
|
183
|
+
"query_perturbation": "perturbation",
|
184
|
+
"reference_perturbation": "drug_name",
|
185
|
+
},
|
186
|
+
}
|
187
|
+
gdsc2_dict = drug_response_annotation(**gdsc2_data)
|
188
|
+
|
189
|
+
self.drug_response = drug_response(gdsc1_dict, gdsc2_dict)
|
190
|
+
|
191
|
+
elif type == "moa":
|
192
|
+
self.moa_meta = transfer_metadata[0]
|
193
|
+
moa_annotation = namedtuple(
|
194
|
+
"moa_annotation",
|
195
|
+
"n_pert n_moa query_id query_id_example target_example default_parameter",
|
196
|
+
)
|
197
|
+
moa_data = {
|
198
|
+
"n_pert": len(self.moa_meta.pert_iname.unique()),
|
199
|
+
"n_moa": len(self.moa_meta.moa.unique()),
|
200
|
+
"query_id": "pert_iname",
|
201
|
+
"query_id_example": [
|
202
|
+
"(R)-(-)-apomorphine",
|
203
|
+
"9-aminocamptothecin",
|
204
|
+
"A-803467",
|
205
|
+
],
|
206
|
+
"target_example": [
|
207
|
+
"ADRA2A|ADRA2B|ADRA2C|CALY|DRD1|DRD2|DRD3|DRD4|DRD5|HTR1A|HTR1B|HTR1D|HTR2A|HTR2B|HTR2C|HTR5A",
|
208
|
+
"SCN10A",
|
209
|
+
"TOP1",
|
210
|
+
],
|
211
|
+
"default_parameter": {
|
212
|
+
"query_id": "pert_iname",
|
213
|
+
"target": None,
|
214
|
+
},
|
215
|
+
}
|
216
|
+
self.moa = moa_annotation(**moa_data)
|
217
|
+
|
218
|
+
elif type == "compound":
|
219
|
+
compound_annotation = namedtuple("compound_annotation", "query_id query_id_example default_parameter")
|
220
|
+
compound_data = {
|
221
|
+
"query_id_type": ["name", "cid"],
|
222
|
+
"query_id_example": "name: ACH-000016 | cid: SLR 21",
|
223
|
+
"default_parameter": {
|
224
|
+
"query_id": "perturbation",
|
225
|
+
"query_id_type": "name",
|
226
|
+
},
|
227
|
+
}
|
228
|
+
self.compound = compound_annotation(**compound_data)
|
229
|
+
|
230
|
+
elif type == "drug":
|
231
|
+
self.chembl = transfer_metadata[0]
|
232
|
+
self.dgidb = transfer_metadata[1]
|
233
|
+
self.pharmgkb = transfer_metadata[2]
|
234
|
+
|
235
|
+
drug_annotation = namedtuple(
|
236
|
+
"drug_annotation",
|
237
|
+
"n_compound compound_example n_target target_example n_disease disease_example",
|
238
|
+
)
|
239
|
+
drugs = namedtuple("drugs", ["chembl", "dgidb", "pharmgkb"])
|
240
|
+
|
241
|
+
dgidb_data = {
|
242
|
+
"n_compound": len(self.dgidb.drug_claim_name.unique()),
|
243
|
+
"n_target": len(self.dgidb.gene_claim_name.unique()),
|
244
|
+
"compound_example": self.dgidb.drug_claim_name.values[0:5],
|
245
|
+
"target_example": self.dgidb.gene_claim_name.unique()[0:5],
|
246
|
+
"n_disease": 0,
|
247
|
+
"disease_example": "",
|
248
|
+
}
|
249
|
+
dgidb_record = drug_annotation(**dgidb_data)
|
250
|
+
|
251
|
+
chembl_targets = list(
|
252
|
+
{t for target in self.chembl.targets.tolist() for t in target}
|
253
|
+
) # flatten the target column and remove duplicates
|
254
|
+
chembl_data = {
|
255
|
+
"n_compound": len(self.chembl.compounds),
|
256
|
+
"n_target": len(chembl_targets),
|
257
|
+
"compound_example": self.chembl.compounds.values[0:5],
|
258
|
+
"target_example": chembl_targets[0:5],
|
259
|
+
"n_disease": 0,
|
260
|
+
"disease_example": "",
|
261
|
+
}
|
262
|
+
chembl_record = drug_annotation(**chembl_data)
|
263
|
+
|
264
|
+
pharmgkb_data = {
|
265
|
+
"n_compound": len(self.pharmgkb[self.pharmgkb.Type == "Chemical"]["Compound|Disease"].unique()),
|
266
|
+
"n_target": len(self.pharmgkb.Gene.unique()),
|
267
|
+
"compound_example": self.pharmgkb[self.pharmgkb.Type == "Chemical"]["Compound|Disease"].unique()[0:5],
|
268
|
+
"target_example": self.pharmgkb.Gene.unique()[0:5],
|
269
|
+
"n_disease": len(self.pharmgkb[self.pharmgkb.Type == "Disease"]["Compound|Disease"].unique()),
|
270
|
+
"disease_example": self.pharmgkb[self.pharmgkb.Type == "Disease"]["Compound|Disease"].unique()[0:5],
|
271
|
+
}
|
272
|
+
pharmgkb_record = drug_annotation(**pharmgkb_data)
|
273
|
+
self.drugs = drugs(chembl_record, dgidb_record, pharmgkb_record)
|
274
|
+
|
275
|
+
else:
|
276
|
+
raise NotImplementedError
|
277
|
+
|
278
|
+
def available_cell_lines(
|
279
|
+
self,
|
280
|
+
cell_line_source: Literal["DepMap", "Cancerrxgene"] = "DepMap",
|
281
|
+
reference_id: str = "ModelID",
|
282
|
+
query_id_list: Sequence[str] | None = None,
|
283
|
+
) -> None:
|
284
|
+
"""A brief summary of cell line metadata.
|
285
|
+
|
286
|
+
Args:
|
287
|
+
cell_line_source: the source of cell line annotation, DepMap or Cancerrxgene.
|
288
|
+
reference_id: The type of cell line identifier in the meta data, e.g. ModelID, CellLineName or StrippedCellLineName.
|
289
|
+
If fetch cell line metadata from Cancerrxgene, it is recommended to choose "stripped_cell_line_name".
|
290
|
+
query_id_list: Unique cell line identifiers to test the number of matched ids present in the
|
291
|
+
metadata. If set to None, the query of metadata identifiers will be disabled.
|
292
|
+
"""
|
293
|
+
if self.type != "cell_line":
|
294
|
+
raise ValueError("This is not a LookUp object specifically for CellLineMetaData!")
|
295
|
+
|
296
|
+
if query_id_list is not None:
|
297
|
+
identifier_num_all = len(query_id_list)
|
298
|
+
if cell_line_source == "DepMap":
|
299
|
+
if reference_id not in self.cell_line_meta.columns:
|
300
|
+
raise ValueError(
|
301
|
+
f"The specified `reference_id` {reference_id} is not available in the DepMap cell line annotation data. "
|
302
|
+
)
|
303
|
+
not_matched_identifiers = list(set(query_id_list) - set(self.cell_line_meta[reference_id]))
|
304
|
+
else:
|
305
|
+
if reference_id == "ModelID":
|
306
|
+
reference_id = "stripped_cell_line_name"
|
307
|
+
if reference_id not in self.cl_cancer_project_meta.columns:
|
308
|
+
raise ValueError(
|
309
|
+
f"The specified `reference_id` {reference_id} is not available "
|
310
|
+
f"in the cell line annotation from the project Genomics of Drug Sensitivity in Cancer. "
|
311
|
+
)
|
312
|
+
not_matched_identifiers = list(set(query_id_list) - set(self.cl_cancer_project_meta[reference_id]))
|
313
|
+
|
314
|
+
logger.info(f"{len(not_matched_identifiers)} cell lines are not found in the metadata.")
|
315
|
+
logger.info(f"{identifier_num_all - len(not_matched_identifiers)} cell lines are found! ")
|
316
|
+
|
317
|
+
def available_bulk_rna(
|
318
|
+
self,
|
319
|
+
cell_line_source: Literal["broad", "sanger"] = "sanger",
|
320
|
+
query_id_list: Sequence[str] | None = None,
|
321
|
+
) -> None:
|
322
|
+
"""A brief summary of bulk RNA expression data.
|
323
|
+
|
324
|
+
Args:
|
325
|
+
cell_line_source: the source of RNA-seq data, broad or sanger.
|
326
|
+
query_id_list: Unique cell line identifiers to test the number of matched ids present in the
|
327
|
+
metadata. If set to None, the query of metadata identifiers will be disabled.
|
328
|
+
"""
|
329
|
+
if self.type != "cell_line":
|
330
|
+
raise ValueError("This is not a LookUp object specific for CellLineMetaData!")
|
331
|
+
|
332
|
+
if cell_line_source == "broad":
|
333
|
+
bulk_rna = self.bulk_rna_broad
|
334
|
+
else:
|
335
|
+
bulk_rna = self.bulk_rna_sanger
|
336
|
+
|
337
|
+
if query_id_list is not None:
|
338
|
+
identifier_num_all = len(query_id_list)
|
339
|
+
not_matched_identifiers = list(set(query_id_list) - set(bulk_rna.index))
|
340
|
+
|
341
|
+
logger.info(f"{len(not_matched_identifiers)} cell lines are not found in the metadata.")
|
342
|
+
logger.info(f"{identifier_num_all - len(not_matched_identifiers)} cell lines are found! ")
|
343
|
+
|
344
|
+
def available_protein_expression(
|
345
|
+
self,
|
346
|
+
reference_id: Literal["model_name", "model_id"] = "model_name",
|
347
|
+
query_id_list: Sequence[str] | None = None,
|
348
|
+
) -> None:
|
349
|
+
"""A brief summary of protein expression data.
|
350
|
+
|
351
|
+
Args:
|
352
|
+
reference_id: The type of cell line identifier in the meta data, model_name or model_id.
|
353
|
+
query_id_list: Unique cell line identifiers to test the number of matched ids present in the
|
354
|
+
metadata. If set to None, the query of metadata identifiers will be disabled.
|
355
|
+
"""
|
356
|
+
if self.type != "cell_line":
|
357
|
+
raise ValueError("This is not a LookUp object specific for CellLineMetaData!")
|
358
|
+
|
359
|
+
if query_id_list is not None:
|
360
|
+
identifier_num_all = len(query_id_list)
|
361
|
+
|
362
|
+
if reference_id not in self.proteomics_data.columns:
|
363
|
+
raise ValueError(
|
364
|
+
f"The specified `reference_id` {reference_id} is not available in the proteomics data. "
|
365
|
+
)
|
366
|
+
not_matched_identifiers = list(set(query_id_list) - set(self.proteomics_data[reference_id]))
|
367
|
+
logger.info(f"{len(not_matched_identifiers)} cell lines are not found in the metadata.")
|
368
|
+
logger.info(f"{identifier_num_all - len(not_matched_identifiers)} cell lines are found! ")
|
369
|
+
|
370
|
+
def available_drug_response(
|
371
|
+
self,
|
372
|
+
gdsc_dataset: Literal[1, 2] = 1,
|
373
|
+
reference_id: Literal["cell_line_name", "sanger_model_id", "cosmic_id"] = "cell_line_name",
|
374
|
+
query_id_list: Sequence[str] | None = None,
|
375
|
+
reference_perturbation: Literal["drug_name", "drug_id"] = "drug_name",
|
376
|
+
query_perturbation_list: Sequence[str] | None = None,
|
377
|
+
) -> None:
|
378
|
+
"""A brief summary of drug response data.
|
379
|
+
|
380
|
+
Args:
|
381
|
+
gdsc_dataset: The GDSC dataset, 1 or 2.
|
382
|
+
The GDSC1 dataset updates previous releases with additional drug screening data from the Wellcome Sanger Institute and Massachusetts General Hospital.
|
383
|
+
It covers 970 Cell lines and 403 Compounds with 333292 IC50s.
|
384
|
+
GDSC2 is new and has 243,466 IC50 results from the latest screening at the Wellcome Sanger Institute using improved experimental procedures.
|
385
|
+
reference_id: The type of cell line identifier in the meta data, cell_line_name, sanger_model_id or cosmic_id.
|
386
|
+
query_id_list: Unique cell line identifiers to test the number of matched ids present in the metadata.
|
387
|
+
If set to None, the query of metadata identifiers will be disabled.
|
388
|
+
reference_perturbation: The perturbation information in the meta data, drug_name or drug_id.
|
389
|
+
query_perturbation_list: Unique perturbation types to test the number of matched ones present in the metadata.
|
390
|
+
If set to None, the query of perturbation types will be disabled.
|
391
|
+
"""
|
392
|
+
if self.type != "cell_line":
|
393
|
+
raise ValueError("This is not a LookUp object specific for CellLineMetaData!")
|
394
|
+
if gdsc_dataset == 1:
|
395
|
+
gdsc_data = self.drug_response_gdsc1
|
396
|
+
else:
|
397
|
+
gdsc_data = self.drug_response_gdsc2
|
398
|
+
|
399
|
+
if query_id_list is not None:
|
400
|
+
if reference_id not in gdsc_data.columns:
|
401
|
+
raise ValueError(
|
402
|
+
f"The specified `reference_id` {reference_id} is not available in the GDSC drug response data. "
|
403
|
+
)
|
404
|
+
identifier_num_all = len(query_id_list)
|
405
|
+
not_matched_identifiers = list(set(query_id_list) - set(gdsc_data[reference_id]))
|
406
|
+
logger.info(f"{len(not_matched_identifiers)} cell lines are not found in the metadata.")
|
407
|
+
logger.info(f"{identifier_num_all - len(not_matched_identifiers)} cell lines are found! ")
|
408
|
+
|
409
|
+
if query_perturbation_list is not None:
|
410
|
+
if reference_perturbation not in gdsc_data.columns:
|
411
|
+
raise ValueError(
|
412
|
+
f"The specified `reference_perturbation` {reference_perturbation} is not available in the GDSC drug response data. "
|
413
|
+
)
|
414
|
+
identifier_num_all = len(query_perturbation_list)
|
415
|
+
not_matched_identifiers = list(set(query_perturbation_list) - set(gdsc_data[reference_perturbation]))
|
416
|
+
logger.info(f"{len(not_matched_identifiers)} perturbation types are not found in the metadata.")
|
417
|
+
logger.info(f"{identifier_num_all - len(not_matched_identifiers)} perturbation types are found! ")
|
418
|
+
|
419
|
+
def available_genes_annotation(
|
420
|
+
self,
|
421
|
+
reference_id: Literal["gene_id", "ensembl_gene_id", "hgnc_id", "hgnc_symbol"] = "ensembl_gene_id",
|
422
|
+
query_id_list: Sequence[str] | None = None,
|
423
|
+
) -> None:
|
424
|
+
"""A brief summary of gene annotation metadata
|
425
|
+
|
426
|
+
Args:
|
427
|
+
reference_id: The type of gene identifier in the meta data, gene_id, ensembl_gene_id, hgnc_id, hgnc_symbol.
|
428
|
+
query_id_list: Unique gene identifiers to test the number of matched ids present in the metadata.
|
429
|
+
"""
|
430
|
+
if self.type != "cell_line":
|
431
|
+
raise ValueError("This is not a LookUp object specific for CellLineMetaData!")
|
432
|
+
|
433
|
+
logger.info("To summarize: in the DepMap_Sanger gene annotation file, you can find: ")
|
434
|
+
logger.info(f"{len(self.gene_annotation.index)} driver genes")
|
435
|
+
logger.info(
|
436
|
+
f"{len(self.gene_annotation.columns)} meta data including: ",
|
437
|
+
*list(self.gene_annotation.columns.values),
|
438
|
+
sep="\n- ",
|
439
|
+
)
|
440
|
+
logger.info("Overview of gene annotation: ")
|
441
|
+
logger.info(self.gene_annotation.head().to_string())
|
442
|
+
"""
|
443
|
+
#not implemented yet
|
444
|
+
print("Default parameters to annotate gene annotation: ")
|
445
|
+
default_param = {
|
446
|
+
"query_id": "ensembl_gene_id",
|
447
|
+
}
|
448
|
+
print("\n".join(f"- {k}: {v}" for k, v in default_param.items()))
|
449
|
+
if query_id_list is not None:
|
450
|
+
identifier_num_all = len(query_id_list)
|
451
|
+
not_matched_identifiers = list(set(query_id_list) - set(self.gene_annotation[reference_id]))
|
452
|
+
print(f"{len(not_matched_identifiers)} genes are not found in the metadata.")
|
453
|
+
print(f"{identifier_num_all - len(not_matched_identifiers)} genes are found! ")
|
454
|
+
"""
|
455
|
+
|
456
|
+
def available_moa(
|
457
|
+
self,
|
458
|
+
query_id_list: Sequence[str] | None = None,
|
459
|
+
target_list: Sequence[str] | None = None,
|
460
|
+
) -> None:
|
461
|
+
"""A brief summary of MoA annotation.
|
462
|
+
|
463
|
+
Args:
|
464
|
+
query_id_list: Unique perturbagens to test the number of matched ones present in the metadata.
|
465
|
+
If set to None, the query of metadata perturbagens will be disabled.
|
466
|
+
target_list: Unique molecular targets to test the number of matched ones present in the metadata.
|
467
|
+
If set to None, the comparison of molecular targets in the query of metadata perturbagens will be disabled.
|
468
|
+
"""
|
469
|
+
if query_id_list is not None:
|
470
|
+
if self.type != "moa":
|
471
|
+
raise ValueError("This is not a LookUp object specific for MoaMetaData!")
|
472
|
+
identifier_num_all = len(query_id_list)
|
473
|
+
not_matched_identifiers = list(set(query_id_list) - set(self.moa_meta.pert_iname))
|
474
|
+
logger.info(f"{len(not_matched_identifiers)} perturbagens are not found in the metadata.")
|
475
|
+
logger.info(f"{identifier_num_all - len(not_matched_identifiers)} perturbagens are found! ")
|
476
|
+
|
477
|
+
if target_list is not None:
|
478
|
+
targets = self.moa_meta.target.astype(str).apply(lambda x: x.split("|"))
|
479
|
+
all_targets = [t for tl in targets for t in tl]
|
480
|
+
identifier_num_all = len(target_list)
|
481
|
+
not_matched_identifiers = list(set(target_list) - set(all_targets))
|
482
|
+
logger.info(f"{len(not_matched_identifiers)} molecular targets are not found in the metadata.")
|
483
|
+
logger.info(f"{identifier_num_all - len(not_matched_identifiers)} molecular targets are found! ")
|
484
|
+
|
485
|
+
def available_compounds(
|
486
|
+
self,
|
487
|
+
query_id_list: Sequence[str] | None = None,
|
488
|
+
query_id_type: Literal["name", "cid"] = "name",
|
489
|
+
) -> None:
|
490
|
+
"""A brief summary of compound annotation.
|
491
|
+
|
492
|
+
Args:
|
493
|
+
query_id_list: Unique compounds to test the number of matched ones present in the metadata.
|
494
|
+
If set to None, query of compound identifiers will be disabled.
|
495
|
+
query_id_type: The type of compound identifiers, name or cid.
|
496
|
+
"""
|
497
|
+
if self.type != "compound":
|
498
|
+
raise ValueError("This is not a LookUp object specific for CompoundData!")
|
499
|
+
if query_id_list is not None:
|
500
|
+
identifier_num_all = len(query_id_list)
|
501
|
+
not_matched_identifiers = []
|
502
|
+
|
503
|
+
for compound in query_id_list:
|
504
|
+
if query_id_type == "name":
|
505
|
+
cids = pcp.get_compounds(compound, "name")
|
506
|
+
if len(cids) == 0: # search did not work
|
507
|
+
not_matched_identifiers.append(compound)
|
508
|
+
else:
|
509
|
+
try:
|
510
|
+
pcp.Compound.from_cid(compound)
|
511
|
+
except pcp.BadRequestError:
|
512
|
+
not_matched_identifiers.append(compound)
|
513
|
+
|
514
|
+
logger.info(f"{len(not_matched_identifiers)} compounds are not found in the metadata.")
|
515
|
+
logger.info(f"{identifier_num_all - len(not_matched_identifiers)} compounds are found! ")
|
516
|
+
|
517
|
+
def available_drug_annotation(
|
518
|
+
self,
|
519
|
+
drug_annotation_source: Literal["chembl", "dgidb", "pharmgkb"] = "chembl",
|
520
|
+
query_id_list: Sequence[str] | None = None,
|
521
|
+
query_id_type: Literal["target", "compound", "disease"] = "target",
|
522
|
+
) -> None:
|
523
|
+
"""A brief summary of drug annotation.
|
524
|
+
|
525
|
+
Args:
|
526
|
+
drug_annotation_source: the source of drug annotation data, chembl, dgidb or pharmgkb.
|
527
|
+
query_id_list: Unique target or compound names to test the number of matched ones present in the metadata.
|
528
|
+
If set to None, query of compound identifiers will be disabled.
|
529
|
+
query_id_type: The type of identifiers, target, compound and disease(pharmgkb only).
|
530
|
+
"""
|
531
|
+
if self.type != "drug":
|
532
|
+
raise ValueError("This is not a LookUp object specific for DrugMetaData!")
|
533
|
+
if query_id_list is not None:
|
534
|
+
identifier_num_all = len(query_id_list)
|
535
|
+
not_matched_identifiers = []
|
536
|
+
|
537
|
+
if drug_annotation_source == "chembl":
|
538
|
+
if query_id_type == "target":
|
539
|
+
chembl_targets = {t for target in self.chembl.targets.tolist() for t in target}
|
540
|
+
# flatten the target column and remove duplicates
|
541
|
+
not_matched_identifiers = list(set(query_id_list) - chembl_targets)
|
542
|
+
elif query_id_type == "compound":
|
543
|
+
not_matched_identifiers = list(set(query_id_list) - self.chembl["compounds"])
|
544
|
+
else:
|
545
|
+
raise ValueError(
|
546
|
+
"Gene-disease association is not available in chembl dataset, please try with pharmgkb."
|
547
|
+
)
|
548
|
+
|
549
|
+
elif drug_annotation_source == "dgidb":
|
550
|
+
if query_id_type == "target":
|
551
|
+
not_matched_identifiers = list(set(query_id_list) - set(self.dgidb["gene_claim_name"]))
|
552
|
+
elif query_id_type == "compound":
|
553
|
+
not_matched_identifiers = list(set(query_id_list) - set(self.dgidb["drug_claim_name"]))
|
554
|
+
else:
|
555
|
+
raise ValueError(
|
556
|
+
"Gene-disease association is not available in dgidb dataset, please try with pharmgkb."
|
557
|
+
)
|
558
|
+
else:
|
559
|
+
if query_id_type == "target":
|
560
|
+
not_matched_identifiers = list(set(query_id_list) - set(self.pharmgkb["Gene"]))
|
561
|
+
elif query_id_type == "compound":
|
562
|
+
compounds = self.pharmgkb[self.pharmgkb["Type"] == "Chemical"]
|
563
|
+
not_matched_identifiers = list(set(query_id_list) - set(compounds["Compound|Disease"]))
|
564
|
+
else:
|
565
|
+
diseases = self.pharmgkb[self.pharmgkb["Type"] == "Disease"]
|
566
|
+
not_matched_identifiers = list(set(query_id_list) - set(diseases["Compound|Disease"]))
|
567
|
+
|
568
|
+
logger.info(f"{len(not_matched_identifiers)} {query_id_type}s are not found in the metadata.")
|
569
|
+
logger.info(f"{identifier_num_all - len(not_matched_identifiers)} {query_id_type}s are found! ")
|
@@ -0,0 +1,70 @@
|
|
1
|
+
from __future__ import annotations
|
2
|
+
|
3
|
+
from typing import TYPE_CHECKING, Literal
|
4
|
+
|
5
|
+
from lamin_utils import logger
|
6
|
+
|
7
|
+
if TYPE_CHECKING:
|
8
|
+
from collections.abc import Sequence
|
9
|
+
|
10
|
+
|
11
|
+
class MetaData:
|
12
|
+
"""Superclass for pertpy's MetaData components."""
|
13
|
+
|
14
|
+
def _warn_unmatch(
|
15
|
+
self,
|
16
|
+
total_identifiers: int,
|
17
|
+
unmatched_identifiers: Sequence[str],
|
18
|
+
query_id: str,
|
19
|
+
reference_id: str,
|
20
|
+
metadata_type: Literal[
|
21
|
+
"cell line",
|
22
|
+
"protein expression",
|
23
|
+
"bulk RNA",
|
24
|
+
"drug response",
|
25
|
+
"moa",
|
26
|
+
"compound",
|
27
|
+
] = "cell line",
|
28
|
+
verbosity: int | str = 5,
|
29
|
+
) -> None:
|
30
|
+
"""Helper function to print out the unmatched identifiers.
|
31
|
+
|
32
|
+
Args:
|
33
|
+
total_identifiers: The total number of identifiers in the `adata` object.
|
34
|
+
unmatched_identifiers: Unmatched identifiers in the `adata` object.
|
35
|
+
query_id: The column of `.obs` with cell line information.
|
36
|
+
reference_id: The type of cell line identifier in the metadata.
|
37
|
+
metadata_type: The type of metadata where some identifiers are not matched during annotation such as
|
38
|
+
cell line, protein expression, bulk RNA expression, drug response, moa or compound.
|
39
|
+
verbosity: The number of unmatched identifiers to print, can be either non-negative values or 'all'.
|
40
|
+
"""
|
41
|
+
if isinstance(verbosity, str):
|
42
|
+
if verbosity != "all":
|
43
|
+
raise ValueError("Only a non-negative value or 'all' is accepted.")
|
44
|
+
else:
|
45
|
+
verbosity = len(unmatched_identifiers)
|
46
|
+
|
47
|
+
if len(unmatched_identifiers) == total_identifiers:
|
48
|
+
hint = ""
|
49
|
+
if metadata_type in ["protein expression", "bulk RNA", "drug response"]:
|
50
|
+
hint = "Additionally, call the `CellLineMetaData.annotate()` function to acquire more possible query IDs that can be used for cell line annotation purposes."
|
51
|
+
raise ValueError(
|
52
|
+
f"Attempting to match the query id {query_id} in 'adata.obs' to the reference id {reference_id} in the metadata.\n"
|
53
|
+
"However, none of the query IDs could be found in the {metadata_type} annotation data.\n"
|
54
|
+
"To resolve this issue, call the `lookup()` function to create a LookUp object.\n"
|
55
|
+
"This enables obtaining the count of matched identifiers in the AnnData object for different types of reference and query IDs.\n"
|
56
|
+
f"{hint}"
|
57
|
+
)
|
58
|
+
if len(unmatched_identifiers) == 0:
|
59
|
+
return
|
60
|
+
if isinstance(verbosity, int) and verbosity >= 0:
|
61
|
+
verbosity = min(verbosity, len(unmatched_identifiers))
|
62
|
+
if verbosity > 0:
|
63
|
+
logger.info(
|
64
|
+
f"There are {total_identifiers} identifiers in `adata.obs`."
|
65
|
+
f"However, {len(unmatched_identifiers)} identifiers can't be found in the {metadata_type} annotation,"
|
66
|
+
"leading to the presence of NA values for their respective metadata.\n"
|
67
|
+
f"Please check again: *unmatched_identifiers[:verbosity]..."
|
68
|
+
)
|
69
|
+
else:
|
70
|
+
raise ValueError("Only 'all' or a non-negative value is accepted.")
|