pertpy 0.6.0__py3-none-any.whl → 0.8.0__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (66) hide show
  1. pertpy/__init__.py +4 -2
  2. pertpy/data/__init__.py +66 -1
  3. pertpy/data/_dataloader.py +28 -26
  4. pertpy/data/_datasets.py +261 -92
  5. pertpy/metadata/__init__.py +6 -0
  6. pertpy/metadata/_cell_line.py +795 -0
  7. pertpy/metadata/_compound.py +128 -0
  8. pertpy/metadata/_drug.py +238 -0
  9. pertpy/metadata/_look_up.py +569 -0
  10. pertpy/metadata/_metadata.py +70 -0
  11. pertpy/metadata/_moa.py +125 -0
  12. pertpy/plot/__init__.py +0 -13
  13. pertpy/preprocessing/__init__.py +2 -0
  14. pertpy/preprocessing/_guide_rna.py +89 -6
  15. pertpy/tools/__init__.py +48 -15
  16. pertpy/tools/_augur.py +329 -32
  17. pertpy/tools/_cinemaot.py +145 -6
  18. pertpy/tools/_coda/_base_coda.py +1237 -116
  19. pertpy/tools/_coda/_sccoda.py +66 -36
  20. pertpy/tools/_coda/_tasccoda.py +46 -39
  21. pertpy/tools/_dialogue.py +180 -77
  22. pertpy/tools/_differential_gene_expression/__init__.py +20 -0
  23. pertpy/tools/_differential_gene_expression/_base.py +657 -0
  24. pertpy/tools/_differential_gene_expression/_checks.py +41 -0
  25. pertpy/tools/_differential_gene_expression/_dge_comparison.py +86 -0
  26. pertpy/tools/_differential_gene_expression/_edger.py +125 -0
  27. pertpy/tools/_differential_gene_expression/_formulaic.py +189 -0
  28. pertpy/tools/_differential_gene_expression/_pydeseq2.py +95 -0
  29. pertpy/tools/_differential_gene_expression/_simple_tests.py +162 -0
  30. pertpy/tools/_differential_gene_expression/_statsmodels.py +72 -0
  31. pertpy/tools/_distances/_distance_tests.py +29 -24
  32. pertpy/tools/_distances/_distances.py +584 -98
  33. pertpy/tools/_enrichment.py +460 -0
  34. pertpy/tools/_kernel_pca.py +1 -1
  35. pertpy/tools/_milo.py +406 -49
  36. pertpy/tools/_mixscape.py +677 -55
  37. pertpy/tools/_perturbation_space/_clustering.py +10 -3
  38. pertpy/tools/_perturbation_space/_comparison.py +112 -0
  39. pertpy/tools/_perturbation_space/_discriminator_classifiers.py +524 -0
  40. pertpy/tools/_perturbation_space/_perturbation_space.py +146 -52
  41. pertpy/tools/_perturbation_space/_simple.py +52 -11
  42. pertpy/tools/_scgen/__init__.py +1 -1
  43. pertpy/tools/_scgen/_base_components.py +2 -3
  44. pertpy/tools/_scgen/_scgen.py +706 -0
  45. pertpy/tools/_scgen/_utils.py +3 -5
  46. pertpy/tools/decoupler_LICENSE +674 -0
  47. {pertpy-0.6.0.dist-info → pertpy-0.8.0.dist-info}/METADATA +48 -20
  48. pertpy-0.8.0.dist-info/RECORD +57 -0
  49. {pertpy-0.6.0.dist-info → pertpy-0.8.0.dist-info}/WHEEL +1 -1
  50. pertpy/plot/_augur.py +0 -234
  51. pertpy/plot/_cinemaot.py +0 -81
  52. pertpy/plot/_coda.py +0 -1001
  53. pertpy/plot/_dialogue.py +0 -91
  54. pertpy/plot/_guide_rna.py +0 -82
  55. pertpy/plot/_milopy.py +0 -284
  56. pertpy/plot/_mixscape.py +0 -594
  57. pertpy/plot/_scgen.py +0 -337
  58. pertpy/tools/_differential_gene_expression.py +0 -99
  59. pertpy/tools/_metadata/__init__.py +0 -0
  60. pertpy/tools/_metadata/_cell_line.py +0 -613
  61. pertpy/tools/_metadata/_look_up.py +0 -342
  62. pertpy/tools/_perturbation_space/_discriminator_classifier.py +0 -381
  63. pertpy/tools/_scgen/_jax_scgen.py +0 -370
  64. pertpy-0.6.0.dist-info/RECORD +0 -50
  65. /pertpy/tools/_scgen/{_jax_scgenvae.py → _scgenvae.py} +0 -0
  66. {pertpy-0.6.0.dist-info → pertpy-0.8.0.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,128 @@
1
+ from __future__ import annotations
2
+
3
+ from typing import TYPE_CHECKING, Literal
4
+
5
+ import pandas as pd
6
+ import pubchempy as pcp
7
+
8
+ from ._look_up import LookUp
9
+ from ._metadata import MetaData
10
+
11
+ if TYPE_CHECKING:
12
+ from anndata import AnnData
13
+
14
+
15
+ class Compound(MetaData):
16
+ """Utilities to fetch metadata for compounds."""
17
+
18
+ def __init__(self):
19
+ super().__init__()
20
+
21
+ def annotate_compounds(
22
+ self,
23
+ adata: AnnData,
24
+ query_id: str = "perturbation",
25
+ query_id_type: Literal["name", "cid"] = "name",
26
+ verbosity: int | str = 5,
27
+ copy: bool = False,
28
+ ) -> AnnData:
29
+ """Fetch compound annotation from pubchempy.
30
+
31
+ Args:
32
+ adata: The data object to annotate.
33
+ query_id: The column of `.obs` with compound identifiers.
34
+ query_id_type: The type of compound identifiers, 'name' or 'cid'.
35
+ verbosity: The number of unmatched identifiers to print, can be either non-negative values or "all".
36
+ copy: Determines whether a copy of the `adata` is returned.
37
+
38
+ Returns:
39
+ Returns an AnnData object with compound annotation.
40
+ """
41
+ if copy:
42
+ adata = adata.copy()
43
+
44
+ if query_id not in adata.obs.columns:
45
+ raise ValueError(f"The requested query_id {query_id} is not in `adata.obs`.\n" f"Please check again. ")
46
+
47
+ query_dict = {}
48
+ not_matched_identifiers = []
49
+ for compound in adata.obs[query_id].dropna().astype(str).unique():
50
+ if query_id_type == "name":
51
+ cids = pcp.get_compounds(compound, "name")
52
+ if len(cids) == 0: # search did not work
53
+ not_matched_identifiers.append(compound)
54
+ if len(cids) >= 1:
55
+ # If the name matches the first synonym offered by PubChem (outside of capitalization),
56
+ # it is not changed (outside of capitalization). Otherwise, it is replaced with the first synonym.
57
+ query_dict[compound] = [
58
+ cids[0].synonyms[0],
59
+ cids[0].cid,
60
+ cids[0].canonical_smiles,
61
+ ]
62
+ else:
63
+ try:
64
+ cid = pcp.Compound.from_cid(compound)
65
+ query_dict[compound] = [
66
+ cid.synonyms[0],
67
+ compound,
68
+ cid.canonical_smiles,
69
+ ]
70
+ except pcp.BadRequestError:
71
+ # pubchempy throws badrequest if a cid is not found
72
+ not_matched_identifiers.append(compound)
73
+
74
+ identifier_num_all = len(adata.obs[query_id].unique())
75
+ self._warn_unmatch(
76
+ total_identifiers=identifier_num_all,
77
+ unmatched_identifiers=not_matched_identifiers,
78
+ query_id=query_id,
79
+ reference_id=query_id_type,
80
+ metadata_type="compound",
81
+ verbosity=verbosity,
82
+ )
83
+
84
+ query_df = pd.DataFrame.from_dict(query_dict, orient="index", columns=["pubchem_name", "pubchem_ID", "smiles"])
85
+ # Merge and remove duplicate columns
86
+ # Column is converted to float after merging due to unmatches
87
+ # Convert back to integers
88
+ if query_id_type == "cid":
89
+ query_df.pubchem_ID = query_df.pubchem_ID.astype("Int64")
90
+ adata.obs = (
91
+ adata.obs.merge(
92
+ query_df,
93
+ left_on=query_id,
94
+ right_on="pubchem_ID",
95
+ how="left",
96
+ suffixes=("", "_fromMeta"),
97
+ )
98
+ .filter(regex="^(?!.*_fromMeta)")
99
+ .set_index(adata.obs.index)
100
+ )
101
+ else:
102
+ adata.obs = (
103
+ adata.obs.merge(
104
+ query_df,
105
+ left_on=query_id,
106
+ right_index=True,
107
+ how="left",
108
+ suffixes=("", "_fromMeta"),
109
+ )
110
+ .filter(regex="^(?!.*_fromMeta)")
111
+ .set_index(adata.obs.index)
112
+ )
113
+ adata.obs.pubchem_ID = adata.obs.pubchem_ID.astype("Int64")
114
+
115
+ return adata
116
+
117
+ def lookup(self) -> LookUp:
118
+ """Generate LookUp object for CompoundMetaData.
119
+
120
+ The LookUp object provides an overview of the metadata to annotate.
121
+ Each annotate_{metadata} function has a corresponding lookup function in the LookUp object,
122
+ where users can search the reference_id in the metadata and
123
+ compare with the query_id in their own data.
124
+
125
+ Returns:
126
+ Returns a LookUp object specific for compound annotation.
127
+ """
128
+ return LookUp(type="compound")
@@ -0,0 +1,238 @@
1
+ from __future__ import annotations
2
+
3
+ import json
4
+ from collections import ChainMap
5
+ from pathlib import Path
6
+ from typing import TYPE_CHECKING, Literal
7
+
8
+ import pandas as pd
9
+ from scanpy import settings
10
+
11
+ from pertpy.data._dataloader import _download
12
+
13
+ from ._look_up import LookUp
14
+ from ._metadata import MetaData
15
+
16
+ if TYPE_CHECKING:
17
+ from anndata import AnnData
18
+
19
+
20
+ def _download_drug_annotation(
21
+ source: Literal["chembl", "dgidb", "pharmgkb"] = "chembl",
22
+ ) -> pd.DataFrame | dict[str, dict[str, list[str]]]:
23
+ if source == "chembl":
24
+ # Prepared in https://github.com/theislab/pertpy-datasets/blob/main/chembl_data.ipynb
25
+ chembl_path = Path(settings.cachedir) / "chembl.json"
26
+ if not Path(chembl_path).exists():
27
+ _download(
28
+ url="https://figshare.com/ndownloader/files/43871718",
29
+ output_file_name="chembl.json",
30
+ output_path=settings.cachedir,
31
+ block_size=4096,
32
+ is_zip=False,
33
+ )
34
+ with chembl_path.open() as file:
35
+ chembl_json = json.load(file)
36
+ return chembl_json
37
+
38
+ elif source == "dgidb":
39
+ dgidb_path = Path(settings.cachedir) / "dgidb.tsv"
40
+ if not Path(dgidb_path).exists():
41
+ _download(
42
+ url="https://www.dgidb.org/data/latest/interactions.tsv",
43
+ output_file_name="dgidb.tsv",
44
+ output_path=settings.cachedir,
45
+ block_size=4096,
46
+ is_zip=False,
47
+ )
48
+ dgidb_df = pd.read_table(dgidb_path)
49
+ return dgidb_df
50
+
51
+ else:
52
+ pharmgkb_path = Path(settings.cachedir) / "pharmgkb.tsv"
53
+ if not Path(pharmgkb_path).exists():
54
+ _download(
55
+ url="https://api.pharmgkb.org/v1/download/file/data/relationships.zip",
56
+ output_file_name="pharmgkb.zip",
57
+ output_path=settings.cachedir,
58
+ block_size=4096,
59
+ is_zip=True,
60
+ )
61
+ Path.rename(Path(settings.cachedir) / "relationships.tsv", pharmgkb_path)
62
+
63
+ pharmgkb_df = pd.read_table(pharmgkb_path)
64
+ pharmgkb_df = pharmgkb_df[pharmgkb_df["Association"] != "not associated"]
65
+ pharmgkb_df = pharmgkb_df[
66
+ (pharmgkb_df["Entity1_type"] == "Gene")
67
+ & ((pharmgkb_df["Entity2_type"] == "Chemical") | (pharmgkb_df["Entity2_type"] == "Disease"))
68
+ ]
69
+ pharmgkb_df.rename(
70
+ columns={
71
+ "Entity2_name": "Compound|Disease",
72
+ "Entity1_name": "Gene",
73
+ "Entity2_type": "Type",
74
+ },
75
+ inplace=True,
76
+ )
77
+ pharmgkb_df.drop(["Entity1_type", "Entity1_id", "Entity2_id"], axis=1, inplace=True)
78
+
79
+ return pharmgkb_df
80
+
81
+
82
+ class Drug(MetaData):
83
+ """Utilities to fetch metadata for drug studies."""
84
+
85
+ def __init__(self):
86
+ self.chembl = self.DrugDataBase(database="chembl")
87
+ self.dgidb = self.DrugDataBase(database="dgidb")
88
+ self.pharmgkb = self.DrugDataBase(database="pharmgkb")
89
+
90
+ def annotate(
91
+ self,
92
+ adata: AnnData,
93
+ source: Literal["chembl", "dgidb", "pharmgkb"] = "chembl",
94
+ copy: bool = False,
95
+ ) -> AnnData:
96
+ """Annotates genes by their involvement in applied drugs.
97
+
98
+ Genes need to be in HGNC format.
99
+
100
+ Args:
101
+ adata: AnnData object containing log-normalised data.
102
+ source: Source of the metadata, chembl, dgidb or pharmgkb.
103
+ copy: Determines whether a copy of the `adata` is returned.
104
+
105
+ Returns:
106
+ An AnnData object with a new column `drug` in the var slot.
107
+ """
108
+ if copy:
109
+ adata = adata.copy()
110
+
111
+ if source == "chembl":
112
+ if not self.chembl.loaded:
113
+ self.chembl.set()
114
+ interaction = self.chembl.dataframe
115
+ elif source == "dgidb":
116
+ if not self.dgidb.loaded:
117
+ self.dgidb.set()
118
+ interaction = self.dgidb.dataframe
119
+ else:
120
+ if not self.pharmgkb.loaded:
121
+ self.pharmgkb.set()
122
+ interaction = self.pharmgkb.data
123
+
124
+ if source != "pharmgkb":
125
+ exploded_df = interaction.explode("targets")
126
+ gene_compound_dict = (
127
+ exploded_df.groupby("targets")["compounds"]
128
+ .apply(lambda compounds: "|".join(sorted(set(compounds))))
129
+ .to_dict()
130
+ )
131
+
132
+ adata.var["compounds"] = adata.var_names.map(lambda gene: gene_compound_dict.get(gene, ""))
133
+ else:
134
+ compounds = interaction[interaction["Type"] == "Chemical"]
135
+ exploded_df = compounds.explode("Gene")
136
+ gene_compound_dict = (
137
+ exploded_df.groupby("Gene")["Compound|Disease"]
138
+ .apply(lambda compounds: "|".join(sorted(set(compounds))))
139
+ .to_dict()
140
+ )
141
+
142
+ adata.var["compounds"] = adata.var_names.map(lambda gene: gene_compound_dict.get(gene, ""))
143
+ diseases = interaction[interaction["Type"] == "Disease"]
144
+ exploded_df = diseases.explode("Gene")
145
+ gene_disease_dict = (
146
+ exploded_df.groupby("Gene")["Compound|Disease"]
147
+ .apply(lambda diseases: "|".join(sorted(set(diseases))))
148
+ .to_dict()
149
+ )
150
+
151
+ adata.var["diseases"] = adata.var_names.map(lambda gene: gene_disease_dict.get(gene, ""))
152
+ return adata
153
+
154
+ def lookup(self) -> LookUp:
155
+ """Generate LookUp object for Drug.
156
+
157
+ The LookUp object provides an overview of the metadata to annotate.
158
+ annotate function has a corresponding lookup function in the LookUp object,
159
+ where users can search the compound and targets in the metadata.
160
+
161
+ Returns:
162
+ Returns a LookUp object specific for drug annotation.
163
+ """
164
+ if not self.chembl.loaded:
165
+ self.chembl.set()
166
+ if not self.dgidb.loaded:
167
+ self.dgidb.set()
168
+ if not self.pharmgkb.loaded:
169
+ self.pharmgkb.set()
170
+
171
+ return LookUp(
172
+ type="drug",
173
+ transfer_metadata=[
174
+ self.chembl.dataframe,
175
+ self.dgidb.data,
176
+ self.pharmgkb.data,
177
+ ],
178
+ )
179
+
180
+ class DrugDataBase:
181
+ def __init__(self, database: Literal["chembl", "dgidb", "pharmgkb"] = "chembl"):
182
+ self.database = database
183
+ self.loaded = False
184
+
185
+ def set(self) -> None:
186
+ self.loaded = True
187
+ data = _download_drug_annotation(source=self.database)
188
+ self.data = data
189
+ if self.database == "chembl":
190
+ if not isinstance(data, dict):
191
+ raise ValueError(
192
+ "The chembl data is in a wrong format. Please clear the cache and reinitialize the object."
193
+ )
194
+ self.dictionary = data
195
+ targets = dict(ChainMap(*[data[cat] for cat in data]))
196
+ self.dataframe = pd.DataFrame([{"Compound": k, "Targets": v} for k, v in targets.items()])
197
+ self.dataframe.rename(
198
+ columns={"Targets": "targets", "Compound": "compounds"},
199
+ inplace=True,
200
+ )
201
+ elif self.database == "dgidb":
202
+ if not isinstance(data, pd.DataFrame):
203
+ raise ValueError(
204
+ "The dgidb data is in a wrong format. Please clear the cache and reinitialize the object."
205
+ )
206
+ self.dataframe = data.groupby("drug_claim_name")["gene_claim_name"].apply(list).reset_index()
207
+ self.dataframe.rename(
208
+ columns={
209
+ "gene_claim_name": "targets",
210
+ "drug_claim_name": "compounds",
211
+ },
212
+ inplace=True,
213
+ )
214
+ self.dictionary = self.dataframe.set_index("compounds")["targets"].to_dict()
215
+ else:
216
+ if not isinstance(data, pd.DataFrame):
217
+ raise ValueError(
218
+ "The pharmGKB data is in a wrong format. Please clear the cache and reinitialize the object."
219
+ )
220
+ self.dataframe = data.groupby("Compound|Disease")["Gene"].apply(list).reset_index()
221
+ self.dataframe.rename(
222
+ columns={
223
+ "Gene": "targets",
224
+ "Compound|Disease": "compounds|diseases",
225
+ },
226
+ inplace=True,
227
+ )
228
+ self.dictionary = self.dataframe.set_index("compounds|diseases")["targets"].to_dict()
229
+
230
+ def df(self) -> pd.DataFrame:
231
+ if not self.loaded:
232
+ self.set()
233
+ return self.dataframe
234
+
235
+ def dict(self) -> dict[str, list[str]] | dict[str, dict[str, list[str]]]:
236
+ if not self.loaded:
237
+ self.set()
238
+ return self.dictionary