pertpy 0.6.0__py3-none-any.whl → 0.8.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pertpy/__init__.py +4 -2
- pertpy/data/__init__.py +66 -1
- pertpy/data/_dataloader.py +28 -26
- pertpy/data/_datasets.py +261 -92
- pertpy/metadata/__init__.py +6 -0
- pertpy/metadata/_cell_line.py +795 -0
- pertpy/metadata/_compound.py +128 -0
- pertpy/metadata/_drug.py +238 -0
- pertpy/metadata/_look_up.py +569 -0
- pertpy/metadata/_metadata.py +70 -0
- pertpy/metadata/_moa.py +125 -0
- pertpy/plot/__init__.py +0 -13
- pertpy/preprocessing/__init__.py +2 -0
- pertpy/preprocessing/_guide_rna.py +89 -6
- pertpy/tools/__init__.py +48 -15
- pertpy/tools/_augur.py +329 -32
- pertpy/tools/_cinemaot.py +145 -6
- pertpy/tools/_coda/_base_coda.py +1237 -116
- pertpy/tools/_coda/_sccoda.py +66 -36
- pertpy/tools/_coda/_tasccoda.py +46 -39
- pertpy/tools/_dialogue.py +180 -77
- pertpy/tools/_differential_gene_expression/__init__.py +20 -0
- pertpy/tools/_differential_gene_expression/_base.py +657 -0
- pertpy/tools/_differential_gene_expression/_checks.py +41 -0
- pertpy/tools/_differential_gene_expression/_dge_comparison.py +86 -0
- pertpy/tools/_differential_gene_expression/_edger.py +125 -0
- pertpy/tools/_differential_gene_expression/_formulaic.py +189 -0
- pertpy/tools/_differential_gene_expression/_pydeseq2.py +95 -0
- pertpy/tools/_differential_gene_expression/_simple_tests.py +162 -0
- pertpy/tools/_differential_gene_expression/_statsmodels.py +72 -0
- pertpy/tools/_distances/_distance_tests.py +29 -24
- pertpy/tools/_distances/_distances.py +584 -98
- pertpy/tools/_enrichment.py +460 -0
- pertpy/tools/_kernel_pca.py +1 -1
- pertpy/tools/_milo.py +406 -49
- pertpy/tools/_mixscape.py +677 -55
- pertpy/tools/_perturbation_space/_clustering.py +10 -3
- pertpy/tools/_perturbation_space/_comparison.py +112 -0
- pertpy/tools/_perturbation_space/_discriminator_classifiers.py +524 -0
- pertpy/tools/_perturbation_space/_perturbation_space.py +146 -52
- pertpy/tools/_perturbation_space/_simple.py +52 -11
- pertpy/tools/_scgen/__init__.py +1 -1
- pertpy/tools/_scgen/_base_components.py +2 -3
- pertpy/tools/_scgen/_scgen.py +706 -0
- pertpy/tools/_scgen/_utils.py +3 -5
- pertpy/tools/decoupler_LICENSE +674 -0
- {pertpy-0.6.0.dist-info → pertpy-0.8.0.dist-info}/METADATA +48 -20
- pertpy-0.8.0.dist-info/RECORD +57 -0
- {pertpy-0.6.0.dist-info → pertpy-0.8.0.dist-info}/WHEEL +1 -1
- pertpy/plot/_augur.py +0 -234
- pertpy/plot/_cinemaot.py +0 -81
- pertpy/plot/_coda.py +0 -1001
- pertpy/plot/_dialogue.py +0 -91
- pertpy/plot/_guide_rna.py +0 -82
- pertpy/plot/_milopy.py +0 -284
- pertpy/plot/_mixscape.py +0 -594
- pertpy/plot/_scgen.py +0 -337
- pertpy/tools/_differential_gene_expression.py +0 -99
- pertpy/tools/_metadata/__init__.py +0 -0
- pertpy/tools/_metadata/_cell_line.py +0 -613
- pertpy/tools/_metadata/_look_up.py +0 -342
- pertpy/tools/_perturbation_space/_discriminator_classifier.py +0 -381
- pertpy/tools/_scgen/_jax_scgen.py +0 -370
- pertpy-0.6.0.dist-info/RECORD +0 -50
- /pertpy/tools/_scgen/{_jax_scgenvae.py → _scgenvae.py} +0 -0
- {pertpy-0.6.0.dist-info → pertpy-0.8.0.dist-info}/licenses/LICENSE +0 -0
pertpy/data/_datasets.py
CHANGED
@@ -40,7 +40,7 @@ def papalexi_2021() -> MuData: # pragma: no cover
|
|
40
40
|
import muon as mu
|
41
41
|
|
42
42
|
output_file_name = "papalexi_2021.h5mu"
|
43
|
-
output_file_path = settings.datasetdir
|
43
|
+
output_file_path = settings.datasetdir / output_file_name
|
44
44
|
if not Path(output_file_path).exists():
|
45
45
|
_download(
|
46
46
|
url="https://figshare.com/ndownloader/files/36509460",
|
@@ -63,7 +63,7 @@ def sc_sim_augur() -> AnnData: # pragma: no cover
|
|
63
63
|
:class:`~anndata.AnnData` object of a simulated single-cell RNA seq dataset
|
64
64
|
"""
|
65
65
|
output_file_name = "sc_sim_augur.h5ad"
|
66
|
-
output_file_path = settings.datasetdir
|
66
|
+
output_file_path = settings.datasetdir / output_file_name
|
67
67
|
if not Path(output_file_path).exists():
|
68
68
|
_download(
|
69
69
|
url="https://figshare.com/ndownloader/files/31645886",
|
@@ -93,7 +93,7 @@ def bhattacherjee() -> AnnData: # pragma: no cover
|
|
93
93
|
:class:`~anndata.AnnData` object of a single-cell RNA seq dataset
|
94
94
|
"""
|
95
95
|
output_file_name = "bhattacherjee_rna.h5ad"
|
96
|
-
output_file_path = settings.datasetdir
|
96
|
+
output_file_path = settings.datasetdir / output_file_name
|
97
97
|
if not Path(output_file_path).exists():
|
98
98
|
_download(
|
99
99
|
url="https://figshare.com/ndownloader/files/34526528",
|
@@ -110,9 +110,7 @@ def sciplex3_raw() -> AnnData: # pragma: no cover
|
|
110
110
|
"""Raw sciplex3 perturbation dataset curated for perturbation modeling.
|
111
111
|
|
112
112
|
References:
|
113
|
-
Srivatsan SR
|
114
|
-
Pliner HA, Jackson DL, Daza RM, Christiansen L, Zhang F, Steemers F,
|
115
|
-
Shendure J, Trapnell C. Massively multiplex chemical transcriptomics at
|
113
|
+
Srivatsan SR et al., Trapnell C. Massively multiplex chemical transcriptomics at
|
116
114
|
single-cell resolution. Science. 2020 Jan 3;367(6473):45-51.
|
117
115
|
doi: 10.1126/science.aax6234. Epub 2019 Dec 5. PMID: 31806696; PMCID: PMC7289078.
|
118
116
|
|
@@ -120,7 +118,7 @@ def sciplex3_raw() -> AnnData: # pragma: no cover
|
|
120
118
|
:class:`~anndata.AnnData` object of a single-cell RNA seq dataset
|
121
119
|
"""
|
122
120
|
output_file_name = "sciplex3.h5ad"
|
123
|
-
output_file_path = settings.datasetdir
|
121
|
+
output_file_path = settings.datasetdir / output_file_name
|
124
122
|
if not Path(output_file_path).exists():
|
125
123
|
_download(
|
126
124
|
url="https://figshare.com/ndownloader/files/33979517",
|
@@ -133,8 +131,12 @@ def sciplex3_raw() -> AnnData: # pragma: no cover
|
|
133
131
|
return adata
|
134
132
|
|
135
133
|
|
136
|
-
def
|
137
|
-
"""
|
134
|
+
def tasccoda_example() -> AnnData: # pragma: no cover
|
135
|
+
"""Example for the coda part of a mudata object.
|
136
|
+
|
137
|
+
Resulting AnnData object (mudata['coda']) when preparing a dataset for processing with tascCODA.
|
138
|
+
Created using the smillie dataset, which comprises scRNA-seq data of the small intestine of mice under Ulcerative Colitis.
|
139
|
+
The full dataset containing the actual count data can be obtained via smillie_2019().
|
138
140
|
|
139
141
|
References:
|
140
142
|
Smillie, Christopher S et al. “Intra- and Inter-cellular Rewiring of the Human Colon during Ulcerative Colitis.”
|
@@ -143,8 +145,8 @@ def smillie() -> AnnData: # pragma: no cover
|
|
143
145
|
Returns:
|
144
146
|
:class:`~anndata.AnnData` object of the dataset.
|
145
147
|
"""
|
146
|
-
output_file_name = "
|
147
|
-
output_file_path = settings.datasetdir
|
148
|
+
output_file_name = "tasccoda_smillie.h5ad"
|
149
|
+
output_file_path = settings.datasetdir / output_file_name
|
148
150
|
if not Path(output_file_path).exists():
|
149
151
|
_download(
|
150
152
|
url="https://figshare.com/ndownloader/files/38648585",
|
@@ -173,7 +175,7 @@ def frangieh_2021() -> AnnData: # pragma: no cover
|
|
173
175
|
:class:`~anndata.AnnData` object of the Perturb-CITE-seq data.
|
174
176
|
"""
|
175
177
|
output_file_name = "frangieh_2021.h5ad"
|
176
|
-
output_file_path = settings.datasetdir
|
178
|
+
output_file_path = settings.datasetdir / output_file_name
|
177
179
|
if not Path(output_file_path).exists():
|
178
180
|
_download(
|
179
181
|
url="https://figshare.com/ndownloader/files/34013717",
|
@@ -202,7 +204,7 @@ def frangieh_2021_raw() -> AnnData: # pragma: no cover
|
|
202
204
|
:class:`~anndata.AnnData` object of raw Perturb-CITE-seq data.
|
203
205
|
"""
|
204
206
|
output_file_name = "frangieh_2021_raw.h5ad"
|
205
|
-
output_file_path = settings.datasetdir
|
207
|
+
output_file_path = settings.datasetdir / output_file_name
|
206
208
|
if not Path(output_file_path).exists():
|
207
209
|
_download(
|
208
210
|
url="https://figshare.com/ndownloader/files/34012565",
|
@@ -231,7 +233,7 @@ def dixit_2016_raw() -> AnnData: # pragma: no cover
|
|
231
233
|
:class:`~anndata.AnnData` object of raw Perturb-seq data.
|
232
234
|
"""
|
233
235
|
output_file_name = "dixit_2016_raw.h5ad"
|
234
|
-
output_file_path = settings.datasetdir
|
236
|
+
output_file_path = settings.datasetdir / output_file_name
|
235
237
|
if not Path(output_file_path).exists():
|
236
238
|
_download(
|
237
239
|
url="https://figshare.com/ndownloader/files/34012565",
|
@@ -260,7 +262,7 @@ def dixit_2016() -> AnnData: # pragma: no cover
|
|
260
262
|
:class:`~anndata.AnnData` object of Perturb-seq data
|
261
263
|
"""
|
262
264
|
output_file_name = "dixit_2016.h5ad"
|
263
|
-
output_file_path = settings.datasetdir
|
265
|
+
output_file_path = settings.datasetdir / output_file_name
|
264
266
|
if not Path(output_file_path).exists():
|
265
267
|
_download(
|
266
268
|
url="https://figshare.com/ndownloader/files/34014608",
|
@@ -288,7 +290,7 @@ def norman_2019() -> AnnData: # pragma: no cover
|
|
288
290
|
:class:`~anndata.AnnData` object of single-cell pooled CRISPR screening.
|
289
291
|
"""
|
290
292
|
output_file_name = "norman_2019.h5ad"
|
291
|
-
output_file_path = settings.datasetdir
|
293
|
+
output_file_path = settings.datasetdir / output_file_name
|
292
294
|
if not Path(output_file_path).exists():
|
293
295
|
_download(
|
294
296
|
url="https://figshare.com/ndownloader/files/34027562",
|
@@ -316,7 +318,7 @@ def norman_2019_raw() -> AnnData: # pragma: no cover
|
|
316
318
|
:class:`~anndata.AnnData` object of raw single-cell pooled CRISPR screening
|
317
319
|
"""
|
318
320
|
output_file_name = "norman_2019_raw.h5ad"
|
319
|
-
output_file_path = settings.datasetdir
|
321
|
+
output_file_path = settings.datasetdir / output_file_name
|
320
322
|
if not Path(output_file_path).exists():
|
321
323
|
_download(
|
322
324
|
url="https://figshare.com/ndownloader/files/34002548",
|
@@ -339,10 +341,10 @@ def dialogue_example() -> AnnData: # pragma: no cover
|
|
339
341
|
:class:`~anndata.AnnData` object
|
340
342
|
"""
|
341
343
|
output_file_name = "dialogue_example.h5ad"
|
342
|
-
output_file_path = settings.datasetdir
|
344
|
+
output_file_path = settings.datasetdir / output_file_name
|
343
345
|
if not Path(output_file_path).exists():
|
344
346
|
_download(
|
345
|
-
url="https://figshare.com/ndownloader/files/
|
347
|
+
url="https://figshare.com/ndownloader/files/43462662",
|
346
348
|
output_file_name=output_file_name,
|
347
349
|
output_path=settings.datasetdir,
|
348
350
|
is_zip=False,
|
@@ -361,7 +363,7 @@ def distance_example() -> AnnData: # pragma: no cover
|
|
361
363
|
:class:`~anndata.AnnData` object
|
362
364
|
"""
|
363
365
|
output_file_name = "distances_example_data.h5ad"
|
364
|
-
output_file_path = settings.datasetdir
|
366
|
+
output_file_path = settings.datasetdir / output_file_name
|
365
367
|
if not Path(output_file_path).exists():
|
366
368
|
_download(
|
367
369
|
url="https://figshare.com/ndownloader/files/39561379",
|
@@ -392,7 +394,7 @@ def kang_2018() -> AnnData: # pragma: no cover
|
|
392
394
|
:class:`~anndata.AnnData` object of droplet-based single cell RNA-sequencing
|
393
395
|
"""
|
394
396
|
output_file_name = "kang_2018.h5ad"
|
395
|
-
output_file_path = settings.datasetdir
|
397
|
+
output_file_path = settings.datasetdir / output_file_name
|
396
398
|
if not Path(output_file_path).exists():
|
397
399
|
_download(
|
398
400
|
url="https://figshare.com/ndownloader/files/34464122",
|
@@ -421,7 +423,7 @@ def stephenson_2021_subsampled() -> AnnData: # pragma: no cover
|
|
421
423
|
:class:`~anndata.AnnData` object of scRNA-seq profiles
|
422
424
|
"""
|
423
425
|
output_file_name = "stephenson_2021_subsampled.h5ad"
|
424
|
-
output_file_path = settings.datasetdir
|
426
|
+
output_file_path = settings.datasetdir / output_file_name
|
425
427
|
if not Path(output_file_path).exists():
|
426
428
|
_download(
|
427
429
|
url="https://figshare.com/ndownloader/files/38171703",
|
@@ -448,7 +450,7 @@ def haber_2017_regions() -> AnnData: # pragma: no cover
|
|
448
450
|
:class:`~anndata.AnnData` object
|
449
451
|
"""
|
450
452
|
output_file_name = "haber_2017_regions.h5ad"
|
451
|
-
output_file_path = settings.datasetdir
|
453
|
+
output_file_path = settings.datasetdir / output_file_name
|
452
454
|
if not Path(output_file_path).exists():
|
453
455
|
_download(
|
454
456
|
url="https://figshare.com/ndownloader/files/38169900",
|
@@ -475,10 +477,10 @@ def adamson_2016_pilot() -> AnnData: # pragma: no cover
|
|
475
477
|
:class:`~anndata.AnnData` object of scPerturb prepared single-cell perturbation data
|
476
478
|
"""
|
477
479
|
output_file_name = "adamson_2016_pilot.h5ad"
|
478
|
-
output_file_path = settings.datasetdir
|
480
|
+
output_file_path = settings.datasetdir / output_file_name
|
479
481
|
if not Path(output_file_path).exists():
|
480
482
|
_download(
|
481
|
-
url="https://zenodo.org/record/
|
483
|
+
url="https://zenodo.org/record/10044268/files/AdamsonWeissman2016_GSM2406675_10X001.h5ad?download=1",
|
482
484
|
output_file_name=output_file_name,
|
483
485
|
output_path=settings.datasetdir,
|
484
486
|
is_zip=False,
|
@@ -506,10 +508,10 @@ def adamson_2016_upr_epistasis() -> AnnData: # pragma: no cover
|
|
506
508
|
:class:`~anndata.AnnData` object of scPerturb preparedsingle-cell perturbation data
|
507
509
|
"""
|
508
510
|
output_file_name = "adamson_2016_upr_epistasis.h5ad"
|
509
|
-
output_file_path = settings.datasetdir
|
511
|
+
output_file_path = settings.datasetdir / output_file_name
|
510
512
|
if not Path(output_file_path).exists():
|
511
513
|
_download(
|
512
|
-
url="https://zenodo.org/record/
|
514
|
+
url="https://zenodo.org/record/10044268/files/AdamsonWeissman2016_GSM2406677_10X005.h5ad?download=1",
|
513
515
|
output_file_name=output_file_name,
|
514
516
|
output_path=settings.datasetdir,
|
515
517
|
is_zip=False,
|
@@ -535,10 +537,10 @@ def adamson_2016_upr_perturb_seq() -> AnnData: # pragma: no cover
|
|
535
537
|
:class:`~anndata.AnnData` object of scPerturb prepared single-cell perturbation data
|
536
538
|
"""
|
537
539
|
output_file_name = "adamson_2016_upr_perturb_seq.h5ad"
|
538
|
-
output_file_path = settings.datasetdir
|
540
|
+
output_file_path = settings.datasetdir / output_file_name
|
539
541
|
if not Path(output_file_path).exists():
|
540
542
|
_download(
|
541
|
-
url="https://zenodo.org/record/
|
543
|
+
url="https://zenodo.org/record/10044268/files/AdamsonWeissman2016_GSM2406681_10X010.h5ad?download=1",
|
542
544
|
output_file_name=output_file_name,
|
543
545
|
output_path=settings.datasetdir,
|
544
546
|
is_zip=False,
|
@@ -562,10 +564,10 @@ def aissa_2021() -> AnnData: # pragma: no cover
|
|
562
564
|
:class:`~anndata.AnnData` object of scPerturb single-cell perturbation data
|
563
565
|
"""
|
564
566
|
output_file_name = "aissa_2021.h5ad"
|
565
|
-
output_file_path = settings.datasetdir
|
567
|
+
output_file_path = settings.datasetdir / output_file_name
|
566
568
|
if not Path(output_file_path).exists():
|
567
569
|
_download(
|
568
|
-
url="https://zenodo.org/record/
|
570
|
+
url="https://zenodo.org/record/10044268/files/AissaBenevolenskaya2021.h5ad?download=1",
|
569
571
|
output_file_name=output_file_name,
|
570
572
|
output_path=settings.datasetdir,
|
571
573
|
is_zip=False,
|
@@ -591,10 +593,10 @@ def chang_2021() -> AnnData: # pragma: no cover
|
|
591
593
|
:class:`~anndata.AnnData` object of scPerturb prepared single-cell perturbation data
|
592
594
|
"""
|
593
595
|
output_file_name = "chang_2021.h5ad"
|
594
|
-
output_file_path = settings.datasetdir
|
596
|
+
output_file_path = settings.datasetdir / output_file_name
|
595
597
|
if not Path(output_file_path).exists():
|
596
598
|
_download(
|
597
|
-
url="https://zenodo.org/record/
|
599
|
+
url="https://zenodo.org/record/10044268/files/ChangYe2021.h5ad?download=1",
|
598
600
|
output_file_name=output_file_name,
|
599
601
|
output_path=settings.datasetdir,
|
600
602
|
is_zip=False,
|
@@ -622,10 +624,10 @@ def datlinger_2017() -> AnnData: # pragma: no cover
|
|
622
624
|
:class:`~anndata.AnnData` object of scPerturb prepared single-cell perturbation data
|
623
625
|
"""
|
624
626
|
output_file_name = "datlinger_2017.h5ad"
|
625
|
-
output_file_path = settings.datasetdir
|
627
|
+
output_file_path = settings.datasetdir / output_file_name
|
626
628
|
if not Path(output_file_path).exists():
|
627
629
|
_download(
|
628
|
-
url="https://zenodo.org/record/
|
630
|
+
url="https://zenodo.org/record/10044268/files/DatlingerBock2017.h5ad?download=1",
|
629
631
|
output_file_name=output_file_name,
|
630
632
|
output_path=settings.datasetdir,
|
631
633
|
is_zip=False,
|
@@ -652,10 +654,10 @@ def datlinger_2021() -> AnnData: # pragma: no cover
|
|
652
654
|
:class:`~anndata.AnnData` object of scPerturb prepared single-cell perturbation data
|
653
655
|
"""
|
654
656
|
output_file_name = "datlinger_2021.h5ad"
|
655
|
-
output_file_path = settings.datasetdir
|
657
|
+
output_file_path = settings.datasetdir / output_file_name
|
656
658
|
if not Path(output_file_path).exists():
|
657
659
|
_download(
|
658
|
-
url="https://zenodo.org/record/
|
660
|
+
url="https://zenodo.org/record/10044268/files/DatlingerBock2021.h5ad?download=1",
|
659
661
|
output_file_name=output_file_name,
|
660
662
|
output_path=settings.datasetdir,
|
661
663
|
is_zip=False,
|
@@ -683,10 +685,10 @@ def frangieh_2021_protein() -> AnnData: # pragma: no cover
|
|
683
685
|
:class:`~anndata.AnnData` object of scPerturb prepared single-cell perturbation data
|
684
686
|
"""
|
685
687
|
output_file_name = "frangieh_2021_protein.h5ad"
|
686
|
-
output_file_path = settings.datasetdir
|
688
|
+
output_file_path = settings.datasetdir / output_file_name
|
687
689
|
if not Path(output_file_path).exists():
|
688
690
|
_download(
|
689
|
-
url="https://zenodo.org/record/
|
691
|
+
url="https://zenodo.org/record/10044268/files/FrangiehIzar2021_protein.h5ad?download=1",
|
690
692
|
output_file_name=output_file_name,
|
691
693
|
output_path=settings.datasetdir,
|
692
694
|
is_zip=False,
|
@@ -714,10 +716,10 @@ def frangieh_2021_rna() -> AnnData: # pragma: no cover
|
|
714
716
|
:class:`~anndata.AnnData` object of scPerturb prepared single-cell perturbation data
|
715
717
|
"""
|
716
718
|
output_file_name = "frangieh_2021_rna.h5ad"
|
717
|
-
output_file_path = settings.datasetdir
|
719
|
+
output_file_path = settings.datasetdir / output_file_name
|
718
720
|
if not Path(output_file_path).exists():
|
719
721
|
_download(
|
720
|
-
url="https://zenodo.org/record/
|
722
|
+
url="https://zenodo.org/record/10044268/files/FrangiehIzar2021_RNA.h5ad?download=1",
|
721
723
|
output_file_name=output_file_name,
|
722
724
|
output_path=settings.datasetdir,
|
723
725
|
is_zip=False,
|
@@ -742,10 +744,10 @@ def gasperini_2019_atscale() -> AnnData: # pragma: no cover
|
|
742
744
|
:class:`~anndata.AnnData` object of scPerturb prepared single-cell perturbation data
|
743
745
|
"""
|
744
746
|
output_file_name = "gasperini_2019_atscale.h5ad"
|
745
|
-
output_file_path = settings.datasetdir
|
747
|
+
output_file_path = settings.datasetdir / output_file_name
|
746
748
|
if not Path(output_file_path).exists():
|
747
749
|
_download(
|
748
|
-
url="https://zenodo.org/record/
|
750
|
+
url="https://zenodo.org/record/10044268/files/GasperiniShendure2019_atscale.h5ad?download=1",
|
749
751
|
output_file_name=output_file_name,
|
750
752
|
output_path=settings.datasetdir,
|
751
753
|
is_zip=False,
|
@@ -771,10 +773,10 @@ def gasperini_2019_highmoi() -> AnnData: # pragma: no cover
|
|
771
773
|
:class:`~anndata.AnnData` object of scPerturb single-cell perturbation data
|
772
774
|
"""
|
773
775
|
output_file_name = "gasperini_2019_highmoi.h5ad"
|
774
|
-
output_file_path = settings.datasetdir
|
776
|
+
output_file_path = settings.datasetdir / output_file_name
|
775
777
|
if not Path(output_file_path).exists():
|
776
778
|
_download(
|
777
|
-
url="https://zenodo.org/record/
|
779
|
+
url="https://zenodo.org/record/10044268/files/GasperiniShendure2019_highMOI.h5ad?download=1",
|
778
780
|
output_file_name=output_file_name,
|
779
781
|
output_path=settings.datasetdir,
|
780
782
|
is_zip=False,
|
@@ -800,10 +802,10 @@ def gasperini_2019_lowmoi() -> AnnData: # pragma: no cover
|
|
800
802
|
:class:`~anndata.AnnData` object of scPerturb prepared single-cell perturbation data
|
801
803
|
"""
|
802
804
|
output_file_name = "gasperini_2019_lowmoi.h5ad"
|
803
|
-
output_file_path = settings.datasetdir
|
805
|
+
output_file_path = settings.datasetdir / output_file_name
|
804
806
|
if not Path(output_file_path).exists():
|
805
807
|
_download(
|
806
|
-
url="https://zenodo.org/record/
|
808
|
+
url="https://zenodo.org/record/10044268/files/GasperiniShendure2019_lowMOI.h5ad?download=1",
|
807
809
|
output_file_name=output_file_name,
|
808
810
|
output_path=settings.datasetdir,
|
809
811
|
is_zip=False,
|
@@ -828,10 +830,10 @@ def gehring_2019() -> AnnData: # pragma: no cover
|
|
828
830
|
:class:`~anndata.AnnData` object of a scPerturb prepared single-cell dataset
|
829
831
|
"""
|
830
832
|
output_file_name = "gehring_2019.h5ad"
|
831
|
-
output_file_path = settings.datasetdir
|
833
|
+
output_file_path = settings.datasetdir / output_file_name
|
832
834
|
if not Path(output_file_path).exists():
|
833
835
|
_download(
|
834
|
-
url="https://zenodo.org/record/
|
836
|
+
url="https://zenodo.org/record/10044268/files/GehringPachter2019.h5ad?download=1",
|
835
837
|
output_file_name=output_file_name,
|
836
838
|
output_path=settings.datasetdir,
|
837
839
|
is_zip=False,
|
@@ -857,10 +859,10 @@ def mcfarland_2020() -> AnnData: # pragma: no cover
|
|
857
859
|
:class:`~anndata.AnnData` object of scPerturb single-cell perturbation data
|
858
860
|
"""
|
859
861
|
output_file_name = "mcfarland_2020.h5ad"
|
860
|
-
output_file_path = settings.datasetdir
|
862
|
+
output_file_path = settings.datasetdir / output_file_name
|
861
863
|
if not Path(output_file_path).exists():
|
862
864
|
_download(
|
863
|
-
url="https://zenodo.org/record/
|
865
|
+
url="https://zenodo.org/record/10044268/files/McFarlandTsherniak2020.h5ad?download=1",
|
864
866
|
output_file_name=output_file_name,
|
865
867
|
output_path=settings.datasetdir,
|
866
868
|
is_zip=False,
|
@@ -886,10 +888,10 @@ def replogle_2022_k562_essential() -> AnnData: # pragma: no cover
|
|
886
888
|
:class:`~anndata.AnnData` object of scPerturb prepared single-cell perturbation data
|
887
889
|
"""
|
888
890
|
output_file_name = "replogle_2022_k562_essential.h5ad"
|
889
|
-
output_file_path = settings.datasetdir
|
891
|
+
output_file_path = settings.datasetdir / output_file_name
|
890
892
|
if not Path(output_file_path).exists():
|
891
893
|
_download(
|
892
|
-
url="https://zenodo.org/record/
|
894
|
+
url="https://zenodo.org/record/10044268/files/ReplogleWeissman2022_K562_essential.h5ad?download=1",
|
893
895
|
output_file_name=output_file_name,
|
894
896
|
output_path=settings.datasetdir,
|
895
897
|
is_zip=False,
|
@@ -900,7 +902,7 @@ def replogle_2022_k562_essential() -> AnnData: # pragma: no cover
|
|
900
902
|
|
901
903
|
|
902
904
|
def replogle_2022_k562_gwps() -> AnnData: # pragma: no cover
|
903
|
-
"""K562 cells transduced with CRISPRi (day 8 after
|
905
|
+
"""K562 cells transduced with CRISPRi (day 8 after transduction).
|
904
906
|
|
905
907
|
Here, the authors used a compact, multiplexed CRISPR interference (CRISPRi) library
|
906
908
|
to assay thousands of loss-of-function genetic perturbations with single-cell RNA sequencing
|
@@ -917,10 +919,10 @@ def replogle_2022_k562_gwps() -> AnnData: # pragma: no cover
|
|
917
919
|
:class:`~anndata.AnnData` object of scPerturb prepared single-cell perturbation data
|
918
920
|
"""
|
919
921
|
output_file_name = "replogle_2022_k562_gwps.h5ad"
|
920
|
-
output_file_path = settings.datasetdir
|
922
|
+
output_file_path = settings.datasetdir / output_file_name
|
921
923
|
if not Path(output_file_path).exists():
|
922
924
|
_download(
|
923
|
-
url="https://zenodo.org/record/
|
925
|
+
url="https://zenodo.org/record/10044268/files/ReplogleWeissman2022_K562_gwps.h5ad?download=1",
|
924
926
|
output_file_name=output_file_name,
|
925
927
|
output_path=settings.datasetdir,
|
926
928
|
is_zip=False,
|
@@ -931,7 +933,7 @@ def replogle_2022_k562_gwps() -> AnnData: # pragma: no cover
|
|
931
933
|
|
932
934
|
|
933
935
|
def replogle_2022_rpe1() -> AnnData: # pragma: no cover
|
934
|
-
"""RPE1 cells transduced with CRISPRi (day 7 after
|
936
|
+
"""RPE1 cells transduced with CRISPRi (day 7 after transduction).
|
935
937
|
|
936
938
|
For day 7 essential-scale Perturb-seq experiment in retinal pigment epithelial (RPE1)
|
937
939
|
cell lines, library lentivirus was packaged into lentivirus in 293T cells and
|
@@ -947,10 +949,10 @@ def replogle_2022_rpe1() -> AnnData: # pragma: no cover
|
|
947
949
|
:class:`~anndata.AnnData` object of scPerturb prepared single-cell perturbation data
|
948
950
|
"""
|
949
951
|
output_file_name = "replogle_2022_rpe1.h5ad"
|
950
|
-
output_file_path = settings.datasetdir
|
952
|
+
output_file_path = settings.datasetdir / output_file_name
|
951
953
|
if not Path(output_file_path).exists():
|
952
954
|
_download(
|
953
|
-
url="https://zenodo.org/record/
|
955
|
+
url="https://zenodo.org/record/10044268/files/ReplogleWeissman2022_rpe1.h5ad?download=1",
|
954
956
|
output_file_name=output_file_name,
|
955
957
|
output_path=settings.datasetdir,
|
956
958
|
is_zip=False,
|
@@ -978,10 +980,10 @@ def schiebinger_2019_16day() -> AnnData: # pragma: no cover
|
|
978
980
|
:class:`~anndata.AnnData` object of scPerturb single-cell perturbation data
|
979
981
|
"""
|
980
982
|
output_file_name = "schiebinger_2019_16day.h5ad"
|
981
|
-
output_file_path = settings.datasetdir
|
983
|
+
output_file_path = settings.datasetdir / output_file_name
|
982
984
|
if not Path(output_file_path).exists():
|
983
985
|
_download(
|
984
|
-
url="https://zenodo.org/record/
|
986
|
+
url="https://zenodo.org/record/10044268/files/SchiebingerLander2019_GSE106340.h5ad?download=1",
|
985
987
|
output_file_name=output_file_name,
|
986
988
|
output_path=settings.datasetdir,
|
987
989
|
is_zip=False,
|
@@ -1007,10 +1009,10 @@ def schiebinger_2019_18day() -> AnnData: # pragma: no cover
|
|
1007
1009
|
:class:`~anndata.AnnData` object of scPerturb single-cell perturbation data
|
1008
1010
|
"""
|
1009
1011
|
output_file_name = "Schiebinger_2019_18day.h5ad"
|
1010
|
-
output_file_path = settings.datasetdir
|
1012
|
+
output_file_path = settings.datasetdir / output_file_name
|
1011
1013
|
if not Path(output_file_path).exists():
|
1012
1014
|
_download(
|
1013
|
-
url="https://zenodo.org/record/
|
1015
|
+
url="https://zenodo.org/record/10044268/files/SchiebingerLander2019_GSE115943.h5ad?download=1",
|
1014
1016
|
output_file_name=output_file_name,
|
1015
1017
|
output_path=settings.datasetdir,
|
1016
1018
|
is_zip=False,
|
@@ -1036,10 +1038,10 @@ def schraivogel_2020_tap_screen_chr11() -> AnnData: # pragma: no cover
|
|
1036
1038
|
:class:`~anndata.AnnData` object of scPerturb single-cell perturbation data
|
1037
1039
|
"""
|
1038
1040
|
output_file_name = "schraivogel_2020_tap_screen_chr11.h5ad"
|
1039
|
-
output_file_path = settings.datasetdir
|
1041
|
+
output_file_path = settings.datasetdir / output_file_name
|
1040
1042
|
if not Path(output_file_path).exists():
|
1041
1043
|
_download(
|
1042
|
-
url="https://zenodo.org/record/
|
1044
|
+
url="https://zenodo.org/record/10044268/files/SchraivogelSteinmetz2020_TAP_SCREEN__chromosome_11_screen.h5ad?download=1",
|
1043
1045
|
output_file_name=output_file_name,
|
1044
1046
|
output_path=settings.datasetdir,
|
1045
1047
|
is_zip=False,
|
@@ -1065,10 +1067,10 @@ def schraivogel_2020_tap_screen_chr8() -> AnnData: # pragma: no cover
|
|
1065
1067
|
:class:`~anndata.AnnData` object of scPerturb prepared single-cell perturbation data
|
1066
1068
|
"""
|
1067
1069
|
output_file_name = "schraivogel_2020_tap_screen_chr8.h5ad"
|
1068
|
-
output_file_path = settings.datasetdir
|
1070
|
+
output_file_path = settings.datasetdir / output_file_name
|
1069
1071
|
if not Path(output_file_path).exists():
|
1070
1072
|
_download(
|
1071
|
-
url="https://zenodo.org/record/
|
1073
|
+
url="https://zenodo.org/record/10044268/files/SchraivogelSteinmetz2020_TAP_SCREEN__chromosome_8_screen.h5ad?download=1",
|
1072
1074
|
output_file_name=output_file_name,
|
1073
1075
|
output_path=settings.datasetdir,
|
1074
1076
|
is_zip=False,
|
@@ -1095,10 +1097,10 @@ def shifrut_2018() -> AnnData: # pragma: no cover
|
|
1095
1097
|
:class:`~anndata.AnnData` object of scPerturb prepared single-cell perturbation data
|
1096
1098
|
"""
|
1097
1099
|
output_file_name = "shifrut_2018.h5ad"
|
1098
|
-
output_file_path = settings.datasetdir
|
1100
|
+
output_file_path = settings.datasetdir / output_file_name
|
1099
1101
|
if not Path(output_file_path).exists():
|
1100
1102
|
_download(
|
1101
|
-
url="https://zenodo.org/record/
|
1103
|
+
url="https://zenodo.org/record/10044268/files/ShifrutMarson2018.h5ad?download=1",
|
1102
1104
|
output_file_name=output_file_name,
|
1103
1105
|
output_path=settings.datasetdir,
|
1104
1106
|
is_zip=False,
|
@@ -1126,10 +1128,10 @@ def srivatsan_2020_sciplex2() -> AnnData: # pragma: no cover
|
|
1126
1128
|
:class:`~anndata.AnnData` object of scPerturb prepared single-cell perturbation data
|
1127
1129
|
"""
|
1128
1130
|
output_file_name = "srivatsan_2020_sciplex2.h5ad"
|
1129
|
-
output_file_path = settings.datasetdir
|
1131
|
+
output_file_path = settings.datasetdir / output_file_name
|
1130
1132
|
if not Path(output_file_path).exists():
|
1131
1133
|
_download(
|
1132
|
-
url="https://zenodo.org/record/
|
1134
|
+
url="https://zenodo.org/record/10044268/files/SrivatsanTrapnell2020_sciplex2.h5ad?download=1",
|
1133
1135
|
output_file_name=output_file_name,
|
1134
1136
|
output_path=settings.datasetdir,
|
1135
1137
|
is_zip=False,
|
@@ -1155,10 +1157,10 @@ def srivatsan_2020_sciplex3() -> AnnData: # pragma: no cover
|
|
1155
1157
|
:class:`~anndata.AnnData` object of scPerturb prepared single-cell perturbation data
|
1156
1158
|
"""
|
1157
1159
|
output_file_name = "srivatsan_2020_sciplex3.h5ad"
|
1158
|
-
output_file_path = settings.datasetdir
|
1160
|
+
output_file_path = settings.datasetdir / output_file_name
|
1159
1161
|
if not Path(output_file_path).exists():
|
1160
1162
|
_download(
|
1161
|
-
url="https://zenodo.org/
|
1163
|
+
url="https://zenodo.org/records/10044268/files/SrivatsanTrapnell2020_sciplex3.h5ad?download=1",
|
1162
1164
|
output_file_name=output_file_name,
|
1163
1165
|
output_path=settings.datasetdir,
|
1164
1166
|
is_zip=False,
|
@@ -1187,10 +1189,10 @@ def srivatsan_2020_sciplex4() -> AnnData: # pragma: no cover
|
|
1187
1189
|
:class:`~anndata.AnnData` object of scPerturb prepared single-cell perturbation data
|
1188
1190
|
"""
|
1189
1191
|
output_file_name = "srivatsan_2020_sciplex4.h5ad"
|
1190
|
-
output_file_path = settings.datasetdir
|
1192
|
+
output_file_path = settings.datasetdir / output_file_name
|
1191
1193
|
if not Path(output_file_path).exists():
|
1192
1194
|
_download(
|
1193
|
-
url="https://zenodo.org/
|
1195
|
+
url="https://zenodo.org/records/10044268/files/SrivatsanTrapnell2020_sciplex4.h5ad?download=1",
|
1194
1196
|
output_file_name=output_file_name,
|
1195
1197
|
output_path=settings.datasetdir,
|
1196
1198
|
is_zip=False,
|
@@ -1219,10 +1221,10 @@ def tian_2019_day7neuron() -> AnnData: # pragma: no cover
|
|
1219
1221
|
:class:`~anndata.AnnData` object of scPerturb prepared single-cell perturbation data
|
1220
1222
|
"""
|
1221
1223
|
output_file_name = "tian_2019_day7neuron.h5ad"
|
1222
|
-
output_file_path = settings.datasetdir
|
1224
|
+
output_file_path = settings.datasetdir / output_file_name
|
1223
1225
|
if not Path(output_file_path).exists():
|
1224
1226
|
_download(
|
1225
|
-
url="https://zenodo.org/
|
1227
|
+
url="https://zenodo.org/records/10044268/files/TianKampmann2019_day7neuron.h5ad?download=1",
|
1226
1228
|
output_file_name=output_file_name,
|
1227
1229
|
output_path=settings.datasetdir,
|
1228
1230
|
is_zip=False,
|
@@ -1251,10 +1253,10 @@ def tian_2019_ipsc() -> AnnData: # pragma: no cover
|
|
1251
1253
|
:class:`~anndata.AnnData` object of scPerturb prepared single-cell perturbation data
|
1252
1254
|
"""
|
1253
1255
|
output_file_name = "tian_2019_iPSC.h5ad"
|
1254
|
-
output_file_path = settings.datasetdir
|
1256
|
+
output_file_path = settings.datasetdir / output_file_name
|
1255
1257
|
if not Path(output_file_path).exists():
|
1256
1258
|
_download(
|
1257
|
-
url="https://zenodo.org/
|
1259
|
+
url="https://zenodo.org/records/10044268/files/TianKampmann2019_iPSC.h5ad?download=1",
|
1258
1260
|
output_file_name=output_file_name,
|
1259
1261
|
output_path=settings.datasetdir,
|
1260
1262
|
is_zip=False,
|
@@ -1281,10 +1283,10 @@ def tian_2021_crispra() -> AnnData: # pragma: no cover
|
|
1281
1283
|
:class:`~anndata.AnnData` object of scPerturb single-cell perturbation data
|
1282
1284
|
"""
|
1283
1285
|
output_file_name = "tian_2021_crispra.h5ad"
|
1284
|
-
output_file_path = settings.datasetdir
|
1286
|
+
output_file_path = settings.datasetdir / output_file_name
|
1285
1287
|
if not Path(output_file_path).exists():
|
1286
1288
|
_download(
|
1287
|
-
url="https://zenodo.org/
|
1289
|
+
url="https://zenodo.org/records/10044268/files/TianKampmann2021_CRISPRa.h5ad?download=1",
|
1288
1290
|
output_file_name=output_file_name,
|
1289
1291
|
output_path=settings.datasetdir,
|
1290
1292
|
is_zip=False,
|
@@ -1311,10 +1313,10 @@ def tian_2021_crispri() -> AnnData: # pragma: no cover
|
|
1311
1313
|
:class:`~anndata.AnnData` object of scPerturb prepared single-cell perturbation data
|
1312
1314
|
"""
|
1313
1315
|
output_file_name = "tian_2021_crispri.h5ad"
|
1314
|
-
output_file_path = settings.datasetdir
|
1316
|
+
output_file_path = settings.datasetdir / output_file_name
|
1315
1317
|
if not Path(output_file_path).exists():
|
1316
1318
|
_download(
|
1317
|
-
url="https://zenodo.org/
|
1319
|
+
url="https://zenodo.org/records/10044268/files/TianKampmann2021_CRISPRi.h5ad?download=1",
|
1318
1320
|
output_file_name=output_file_name,
|
1319
1321
|
output_path=settings.datasetdir,
|
1320
1322
|
is_zip=False,
|
@@ -1338,10 +1340,10 @@ def weinreb_2020() -> AnnData: # pragma: no cover
|
|
1338
1340
|
:class:`~anndata.AnnData` object of scPerturb prepared single-cell perturbation data
|
1339
1341
|
"""
|
1340
1342
|
output_file_name = "weinreb_2020.h5ad"
|
1341
|
-
output_file_path = settings.datasetdir
|
1343
|
+
output_file_path = settings.datasetdir / output_file_name
|
1342
1344
|
if not Path(output_file_path).exists():
|
1343
1345
|
_download(
|
1344
|
-
url="https://zenodo.org/
|
1346
|
+
url="https://zenodo.org/records/10044268/files/WeinrebKlein2020.h5ad?download=1",
|
1345
1347
|
output_file_name=output_file_name,
|
1346
1348
|
output_path=settings.datasetdir,
|
1347
1349
|
is_zip=False,
|
@@ -1366,10 +1368,10 @@ def xie_2017() -> AnnData: # pragma: no cover
|
|
1366
1368
|
:class:`~anndata.AnnData` object of scPerturb prepared single-cell perturbation data
|
1367
1369
|
"""
|
1368
1370
|
output_file_name = "xie_2017.h5ad"
|
1369
|
-
output_file_path = settings.datasetdir
|
1371
|
+
output_file_path = settings.datasetdir / output_file_name
|
1370
1372
|
if not Path(output_file_path).exists():
|
1371
1373
|
_download(
|
1372
|
-
url="https://zenodo.org/
|
1374
|
+
url="https://zenodo.org/records/10044268/files/XieHon2017.h5ad?download=1",
|
1373
1375
|
output_file_name=output_file_name,
|
1374
1376
|
output_path=settings.datasetdir,
|
1375
1377
|
is_zip=False,
|
@@ -1396,10 +1398,10 @@ def zhao_2021() -> AnnData: # pragma: no cover
|
|
1396
1398
|
:class:`~anndata.AnnData` object of scPerturb prepared single-cell perturbation data
|
1397
1399
|
"""
|
1398
1400
|
output_file_name = "zhaoSims2021.h5ad"
|
1399
|
-
output_file_path = settings.datasetdir
|
1401
|
+
output_file_path = settings.datasetdir / output_file_name
|
1400
1402
|
if not Path(output_file_path).exists():
|
1401
1403
|
_download(
|
1402
|
-
url="https://zenodo.org/
|
1404
|
+
url="https://zenodo.org/records/10044268/files/ZhaoSims2021.h5ad?download=1",
|
1403
1405
|
output_file_name=output_file_name,
|
1404
1406
|
output_path=settings.datasetdir,
|
1405
1407
|
is_zip=False,
|
@@ -1410,15 +1412,18 @@ def zhao_2021() -> AnnData: # pragma: no cover
|
|
1410
1412
|
|
1411
1413
|
|
1412
1414
|
def cinemaot_example() -> AnnData: # pragma: no cover:
|
1413
|
-
"""CINEMA-OT
|
1415
|
+
"""Subsampled CINEMA-OT example dataset.
|
1416
|
+
|
1417
|
+
Ex vivo stimulation of human peripheral blood mononuclear cells (PBMC) with interferon. This is a subsampled
|
1418
|
+
dataset containing 1000 cells, either without stimulation or stimulated with IFNb. The full dataset is available
|
1419
|
+
via the cinemaot_full() function.
|
1414
1420
|
|
1415
|
-
Ex vivo stimulation of human peripheral blood mononuclear cells (PBMC) with interferon.
|
1416
1421
|
|
1417
1422
|
Returns:
|
1418
1423
|
:class:`~anndata.AnnData` object of PBMCs stimulated with interferon.
|
1419
1424
|
"""
|
1420
1425
|
output_file_name = "cinemaot_example.h5ad"
|
1421
|
-
output_file_path = settings.datasetdir
|
1426
|
+
output_file_path = settings.datasetdir / output_file_name
|
1422
1427
|
if not Path(output_file_path).exists():
|
1423
1428
|
_download(
|
1424
1429
|
url="https://figshare.com/ndownloader/files/42362796?private_link=270b0d2c7f1ea57c366d",
|
@@ -1429,3 +1434,167 @@ def cinemaot_example() -> AnnData: # pragma: no cover:
|
|
1429
1434
|
adata = sc.read_h5ad(output_file_path)
|
1430
1435
|
|
1431
1436
|
return adata
|
1437
|
+
|
1438
|
+
|
1439
|
+
def dong_2023() -> AnnData: # pragma: no cover
|
1440
|
+
"""Complete CINEMA-OT dataset.
|
1441
|
+
|
1442
|
+
Ex vivo stimulation of human peripheral blood mononuclear cells (PBMC) with interferon. This is the full dataset
|
1443
|
+
containing 9209 cells that were stimulated with IFNb, IFNg, IFNb+IFNg, or left unstimulated. A subsampled version
|
1444
|
+
of the dataset is available via cinemaot_example().
|
1445
|
+
|
1446
|
+
References:
|
1447
|
+
Preprint: https://doi.org/10.1101/2022.07.31.502173
|
1448
|
+
Dataset available here: https://datadryad.org/stash/dataset/doi:10.5061/dryad.4xgxd25g1
|
1449
|
+
|
1450
|
+
Returns:
|
1451
|
+
:class:`~anndata.AnnData` object of PBMCs stimulated with interferon.
|
1452
|
+
"""
|
1453
|
+
output_file_name = "dong_2023.h5ad"
|
1454
|
+
output_file_path = settings.datasetdir / output_file_name
|
1455
|
+
if not Path(output_file_path).exists():
|
1456
|
+
_download(
|
1457
|
+
url="https://figshare.com/ndownloader/files/43068190",
|
1458
|
+
output_file_name=output_file_name,
|
1459
|
+
output_path=settings.datasetdir,
|
1460
|
+
is_zip=False,
|
1461
|
+
)
|
1462
|
+
adata = sc.read_h5ad(output_file_path)
|
1463
|
+
|
1464
|
+
return adata
|
1465
|
+
|
1466
|
+
|
1467
|
+
def smillie_2019() -> AnnData: # pragma: no cover
|
1468
|
+
"""scRNA-seq data of the small intestine of mice under Ulcerative Colitis.
|
1469
|
+
|
1470
|
+
The resulting AnnData when preparing this dataset for processing with tascCODA is available via tasccoda_example().
|
1471
|
+
|
1472
|
+
References:
|
1473
|
+
Smillie, Christopher S et al. “Intra- and Inter-cellular Rewiring of the Human Colon during Ulcerative Colitis.”
|
1474
|
+
Cell vol. 178,3 (2019): 714-730.e22. doi:10.1016/j.cell.2019.06.029
|
1475
|
+
|
1476
|
+
Returns:
|
1477
|
+
:class:`~anndata.AnnData` object of the dataset.
|
1478
|
+
"""
|
1479
|
+
output_file_name = "smillie_2019.h5ad.zip"
|
1480
|
+
output_file_path = settings.datasetdir / Path(output_file_name).with_suffix("")
|
1481
|
+
if not Path(output_file_path).exists():
|
1482
|
+
_download(
|
1483
|
+
url="https://figshare.com/ndownloader/files/43317285",
|
1484
|
+
output_file_name=output_file_name,
|
1485
|
+
output_path=settings.datasetdir,
|
1486
|
+
is_zip=True,
|
1487
|
+
)
|
1488
|
+
adata = sc.read_h5ad(output_file_path)
|
1489
|
+
|
1490
|
+
return adata
|
1491
|
+
|
1492
|
+
|
1493
|
+
def combosciplex() -> AnnData: # pragma: no cover
|
1494
|
+
"""scRNA-seq subset of the combinatorial experiment of sciplex3.
|
1495
|
+
|
1496
|
+
References:
|
1497
|
+
Srivatsan SR et al., Trapnell C. Massively multiplex chemical transcriptomics at
|
1498
|
+
single-cell resolution. Science. 2020 Jan 3;367(6473):45-51.
|
1499
|
+
doi: 10.1126/science.aax6234. Epub 2019 Dec 5. PMID: 31806696; PMCID: PMC7289078.
|
1500
|
+
|
1501
|
+
Returns:
|
1502
|
+
:class:`~anndata.AnnData` object of the dataset.
|
1503
|
+
"""
|
1504
|
+
output_file_name = "combosciplex.h5ad"
|
1505
|
+
output_file_path = settings.datasetdir / output_file_name
|
1506
|
+
if not Path(output_file_path).exists():
|
1507
|
+
_download(
|
1508
|
+
url="https://figshare.com/ndownloader/files/44229635",
|
1509
|
+
output_file_name=output_file_name,
|
1510
|
+
output_path=settings.datasetdir,
|
1511
|
+
is_zip=False,
|
1512
|
+
)
|
1513
|
+
adata = sc.read_h5ad(output_file_path)
|
1514
|
+
|
1515
|
+
return adata
|
1516
|
+
|
1517
|
+
|
1518
|
+
def sciplex_gxe1() -> AnnData: # pragma: no cover
|
1519
|
+
"""sci-Plex-GxE combined chemical and genetic profiling of A172 dCas9-KRAB cells
|
1520
|
+
genetically perturbed for HPRT1 or mismtach repair genes exposed to 6-thioguanine and temozolomide,
|
1521
|
+
respectively, and A172 dCas9-SunTag cells genetically perturbed for HPRT1 exposed to 6-thioguanine.
|
1522
|
+
|
1523
|
+
References:
|
1524
|
+
McFaline-Figueroa JL et al., Trapnell C. Multiplex single-cell chemical genomics reveals
|
1525
|
+
the kinase dependence of the response to targeted therapy. Cell Genomics. 2024 Volume 4, Issue 2.
|
1526
|
+
doi: 10.1016/j.xgen.2023.100487
|
1527
|
+
|
1528
|
+
Returns:
|
1529
|
+
:class:`~anndata.AnnData` object of the dataset.
|
1530
|
+
"""
|
1531
|
+
output_file_name = "sciPlexGxE_1_GSM7056148.h5ad"
|
1532
|
+
output_file_path = settings.datasetdir / output_file_name
|
1533
|
+
if not Path(output_file_path).exists():
|
1534
|
+
_download(
|
1535
|
+
url="https://figshare.com/ndownloader/files/45372454",
|
1536
|
+
output_file_name=output_file_name,
|
1537
|
+
output_path=settings.datasetdir,
|
1538
|
+
is_zip=False,
|
1539
|
+
)
|
1540
|
+
adata = sc.read_h5ad(output_file_path)
|
1541
|
+
|
1542
|
+
return adata
|
1543
|
+
|
1544
|
+
|
1545
|
+
def zhang_2021() -> AnnData: # pragma: no cover
|
1546
|
+
"""Single-cell RNA-seq of TNBC patients' immune cells exposed to paclitaxel alone or combined with the anti-PD-L1 atezolizumab.
|
1547
|
+
|
1548
|
+
This analysis, involving 22 patients, identifies immune subtypes predictive of therapeutic
|
1549
|
+
responses and underscores potential limitations of combining paclitaxel with atezolizumab in treatment protocols.
|
1550
|
+
|
1551
|
+
The script that generated this specific AnnData object:
|
1552
|
+
https://github.com/tessadgreen/ThesisCode/blob/main/Chapter3/drug_response/import_zhang_data.ipynb
|
1553
|
+
|
1554
|
+
This dataset does not contain the single-cell ATAC-seq data that was also measured for the paper.
|
1555
|
+
|
1556
|
+
References:
|
1557
|
+
Zhang Y et al., Liu Z. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer.
|
1558
|
+
Cancer Cell. 2021 Volume 39, Issue 12. doi: https://doi.org/10.1016/j.ccell.2021.09.010
|
1559
|
+
|
1560
|
+
Returns:
|
1561
|
+
:class:`~anndata.AnnData` object of the dataset.
|
1562
|
+
"""
|
1563
|
+
output_file_name = "zhang_2021.h5ad"
|
1564
|
+
output_file_path = settings.datasetdir / output_file_name
|
1565
|
+
if not Path(output_file_path).exists():
|
1566
|
+
_download(
|
1567
|
+
url="https://figshare.com/ndownloader/files/46457872",
|
1568
|
+
output_file_name=output_file_name,
|
1569
|
+
output_path=settings.datasetdir,
|
1570
|
+
is_zip=False,
|
1571
|
+
)
|
1572
|
+
adata = sc.read_h5ad(output_file_path)
|
1573
|
+
|
1574
|
+
return adata
|
1575
|
+
|
1576
|
+
|
1577
|
+
def hagai_2018() -> AnnData: # pragma: no cover
|
1578
|
+
"""Cross-species analysis of primary dermal fibroblasts and bone marrow-derived phagocytes, stimulated with dsRNA and IFNB.
|
1579
|
+
|
1580
|
+
The study explores immune response variations across humans, macaques, mice, and rats.
|
1581
|
+
|
1582
|
+
Referenences:
|
1583
|
+
Hagai, T., Chen, X., Miragaia, R.J. et al. Gene expression variability across cells and species shapes innate immunity.
|
1584
|
+
Nature 563, 197–202 (2018). https://doi.org/10.1038/s41586-018-0657-2
|
1585
|
+
|
1586
|
+
Returns:
|
1587
|
+
:class:`~anndata.AnnData` object of the dataset.
|
1588
|
+
"""
|
1589
|
+
output_file_name = "hagai_2018.h5ad"
|
1590
|
+
output_file_path = settings.datasetdir / output_file_name
|
1591
|
+
if not Path(output_file_path).exists():
|
1592
|
+
_download(
|
1593
|
+
url="https://figshare.com/ndownloader/files/46978846",
|
1594
|
+
output_file_name=output_file_name,
|
1595
|
+
output_path=settings.datasetdir,
|
1596
|
+
is_zip=False,
|
1597
|
+
)
|
1598
|
+
adata = sc.read_h5ad(output_file_path)
|
1599
|
+
|
1600
|
+
return adata
|