pertpy 0.6.0__py3-none-any.whl → 0.8.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- pertpy/__init__.py +4 -2
- pertpy/data/__init__.py +66 -1
- pertpy/data/_dataloader.py +28 -26
- pertpy/data/_datasets.py +261 -92
- pertpy/metadata/__init__.py +6 -0
- pertpy/metadata/_cell_line.py +795 -0
- pertpy/metadata/_compound.py +128 -0
- pertpy/metadata/_drug.py +238 -0
- pertpy/metadata/_look_up.py +569 -0
- pertpy/metadata/_metadata.py +70 -0
- pertpy/metadata/_moa.py +125 -0
- pertpy/plot/__init__.py +0 -13
- pertpy/preprocessing/__init__.py +2 -0
- pertpy/preprocessing/_guide_rna.py +89 -6
- pertpy/tools/__init__.py +48 -15
- pertpy/tools/_augur.py +329 -32
- pertpy/tools/_cinemaot.py +145 -6
- pertpy/tools/_coda/_base_coda.py +1237 -116
- pertpy/tools/_coda/_sccoda.py +66 -36
- pertpy/tools/_coda/_tasccoda.py +46 -39
- pertpy/tools/_dialogue.py +180 -77
- pertpy/tools/_differential_gene_expression/__init__.py +20 -0
- pertpy/tools/_differential_gene_expression/_base.py +657 -0
- pertpy/tools/_differential_gene_expression/_checks.py +41 -0
- pertpy/tools/_differential_gene_expression/_dge_comparison.py +86 -0
- pertpy/tools/_differential_gene_expression/_edger.py +125 -0
- pertpy/tools/_differential_gene_expression/_formulaic.py +189 -0
- pertpy/tools/_differential_gene_expression/_pydeseq2.py +95 -0
- pertpy/tools/_differential_gene_expression/_simple_tests.py +162 -0
- pertpy/tools/_differential_gene_expression/_statsmodels.py +72 -0
- pertpy/tools/_distances/_distance_tests.py +29 -24
- pertpy/tools/_distances/_distances.py +584 -98
- pertpy/tools/_enrichment.py +460 -0
- pertpy/tools/_kernel_pca.py +1 -1
- pertpy/tools/_milo.py +406 -49
- pertpy/tools/_mixscape.py +677 -55
- pertpy/tools/_perturbation_space/_clustering.py +10 -3
- pertpy/tools/_perturbation_space/_comparison.py +112 -0
- pertpy/tools/_perturbation_space/_discriminator_classifiers.py +524 -0
- pertpy/tools/_perturbation_space/_perturbation_space.py +146 -52
- pertpy/tools/_perturbation_space/_simple.py +52 -11
- pertpy/tools/_scgen/__init__.py +1 -1
- pertpy/tools/_scgen/_base_components.py +2 -3
- pertpy/tools/_scgen/_scgen.py +706 -0
- pertpy/tools/_scgen/_utils.py +3 -5
- pertpy/tools/decoupler_LICENSE +674 -0
- {pertpy-0.6.0.dist-info → pertpy-0.8.0.dist-info}/METADATA +48 -20
- pertpy-0.8.0.dist-info/RECORD +57 -0
- {pertpy-0.6.0.dist-info → pertpy-0.8.0.dist-info}/WHEEL +1 -1
- pertpy/plot/_augur.py +0 -234
- pertpy/plot/_cinemaot.py +0 -81
- pertpy/plot/_coda.py +0 -1001
- pertpy/plot/_dialogue.py +0 -91
- pertpy/plot/_guide_rna.py +0 -82
- pertpy/plot/_milopy.py +0 -284
- pertpy/plot/_mixscape.py +0 -594
- pertpy/plot/_scgen.py +0 -337
- pertpy/tools/_differential_gene_expression.py +0 -99
- pertpy/tools/_metadata/__init__.py +0 -0
- pertpy/tools/_metadata/_cell_line.py +0 -613
- pertpy/tools/_metadata/_look_up.py +0 -342
- pertpy/tools/_perturbation_space/_discriminator_classifier.py +0 -381
- pertpy/tools/_scgen/_jax_scgen.py +0 -370
- pertpy-0.6.0.dist-info/RECORD +0 -50
- /pertpy/tools/_scgen/{_jax_scgenvae.py → _scgenvae.py} +0 -0
- {pertpy-0.6.0.dist-info → pertpy-0.8.0.dist-info}/licenses/LICENSE +0 -0
@@ -1,11 +1,11 @@
|
|
1
|
-
Metadata-Version: 2.
|
1
|
+
Metadata-Version: 2.3
|
2
2
|
Name: pertpy
|
3
|
-
Version: 0.
|
3
|
+
Version: 0.8.0
|
4
4
|
Summary: Perturbation Analysis in the scverse ecosystem.
|
5
5
|
Project-URL: Documentation, https://pertpy.readthedocs.io
|
6
|
-
Project-URL: Source, https://github.com/
|
7
|
-
Project-URL: Home-page, https://github.com/
|
8
|
-
Author: Lukas Heumos, Yuge Ji, Alejandro Tejada, Johannes Köster, Emma Dann, Xinyue Zhang, Xichen Wu,
|
6
|
+
Project-URL: Source, https://github.com/scverse/pertpy
|
7
|
+
Project-URL: Home-page, https://github.com/scverse/pertpy
|
8
|
+
Author: Lukas Heumos, Yuge Ji, Lilly May, Alejandro Tejada, Johannes Köster, Emma Dann, Xinyue Zhang, Xichen Wu, Tessa Green, Stefan Peidli, Antonia Schumacher, Gregor Sturm
|
9
9
|
Maintainer-email: Lukas Heumos <lukas.heumos@posteo.net>
|
10
10
|
License: MIT License
|
11
11
|
|
@@ -29,18 +29,30 @@ License: MIT License
|
|
29
29
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
30
30
|
SOFTWARE.
|
31
31
|
License-File: LICENSE
|
32
|
-
|
32
|
+
Classifier: Development Status :: 4 - Beta
|
33
|
+
Classifier: Environment :: Console
|
34
|
+
Classifier: Framework :: Jupyter
|
35
|
+
Classifier: Intended Audience :: Developers
|
36
|
+
Classifier: Intended Audience :: Science/Research
|
37
|
+
Classifier: License :: OSI Approved :: Apache Software License
|
38
|
+
Classifier: Natural Language :: English
|
39
|
+
Classifier: Operating System :: MacOS :: MacOS X
|
40
|
+
Classifier: Operating System :: POSIX :: Linux
|
41
|
+
Classifier: Programming Language :: Python :: 3
|
42
|
+
Classifier: Programming Language :: Python :: 3.10
|
43
|
+
Classifier: Programming Language :: Python :: 3.11
|
44
|
+
Classifier: Topic :: Scientific/Engineering :: Bio-Informatics
|
45
|
+
Classifier: Topic :: Scientific/Engineering :: Visualization
|
46
|
+
Requires-Python: >=3.10
|
33
47
|
Requires-Dist: adjusttext
|
34
|
-
Requires-Dist:
|
35
|
-
Requires-Dist: arviz
|
48
|
+
Requires-Dist: blitzgsea
|
36
49
|
Requires-Dist: decoupler
|
37
|
-
Requires-Dist:
|
50
|
+
Requires-Dist: lamin-utils
|
38
51
|
Requires-Dist: muon
|
39
|
-
Requires-Dist: numba
|
40
|
-
Requires-Dist: numpyro
|
41
52
|
Requires-Dist: openpyxl
|
42
53
|
Requires-Dist: ott-jax
|
43
|
-
Requires-Dist:
|
54
|
+
Requires-Dist: pubchempy
|
55
|
+
Requires-Dist: pyarrow
|
44
56
|
Requires-Dist: requests
|
45
57
|
Requires-Dist: rich
|
46
58
|
Requires-Dist: scanpy[leiden]
|
@@ -48,10 +60,14 @@ Requires-Dist: scikit-misc
|
|
48
60
|
Requires-Dist: scipy
|
49
61
|
Requires-Dist: scvi-tools
|
50
62
|
Requires-Dist: sparsecca
|
51
|
-
Requires-Dist: toytree
|
52
63
|
Provides-Extra: coda
|
64
|
+
Requires-Dist: arviz; extra == 'coda'
|
53
65
|
Requires-Dist: ete3; extra == 'coda'
|
54
66
|
Requires-Dist: pyqt5; extra == 'coda'
|
67
|
+
Requires-Dist: toytree; extra == 'coda'
|
68
|
+
Provides-Extra: de
|
69
|
+
Requires-Dist: formulaic; extra == 'de'
|
70
|
+
Requires-Dist: pydeseq2; extra == 'de'
|
55
71
|
Provides-Extra: dev
|
56
72
|
Requires-Dist: pre-commit; extra == 'dev'
|
57
73
|
Provides-Extra: doc
|
@@ -76,23 +92,23 @@ Requires-Dist: sphinx>=4; extra == 'doc'
|
|
76
92
|
Requires-Dist: sphinxcontrib-bibtex>=1.0.0; extra == 'doc'
|
77
93
|
Requires-Dist: sphinxext-opengraph; extra == 'doc'
|
78
94
|
Provides-Extra: test
|
95
|
+
Requires-Dist: coverage; extra == 'test'
|
79
96
|
Requires-Dist: pytest; extra == 'test'
|
80
|
-
Requires-Dist: pytest-cov; extra == 'test'
|
81
97
|
Description-Content-Type: text/markdown
|
82
98
|
|
83
99
|
[](https://github.com/psf/black)
|
84
|
-
[](https://github.com/scverse/pertpy/actions/workflows/build.yml)
|
101
|
+
[](https://codecov.io/gh/scverse/pertpy)
|
102
|
+
[](https://opensource.org/licenses/Apache2.0)
|
87
103
|
[](https://pypi.org/project/pertpy/)
|
88
104
|
[](https://pypi.org/project/pertpy)
|
89
105
|
[](https://pertpy.readthedocs.io/)
|
90
|
-
[](https://github.com/scverse/pertpy/actions/workflows/test.yml)
|
91
107
|
[](https://github.com/pre-commit/pre-commit)
|
92
108
|
|
93
109
|
# pertpy
|
94
110
|
|
95
|
-

|
96
112
|
|
97
113
|
## Documentation
|
98
114
|
|
@@ -103,7 +119,19 @@ Please read the [documentation](https://pertpy.readthedocs.io/en/latest).
|
|
103
119
|
You can install _pertpy_ via [pip] from [PyPI]:
|
104
120
|
|
105
121
|
```console
|
106
|
-
|
122
|
+
pip install pertpy
|
123
|
+
```
|
124
|
+
|
125
|
+
if you want to use scCODA or tascCODA, please install pertpy as follows:
|
126
|
+
|
127
|
+
```console
|
128
|
+
pip install pertpy[coda]
|
129
|
+
```
|
130
|
+
|
131
|
+
If you want to use the differential gene expression interface, please install pertpy by running:
|
132
|
+
|
133
|
+
```console
|
134
|
+
pip install pertpy[de]
|
107
135
|
```
|
108
136
|
|
109
137
|
[pip]: https://pip.pypa.io/
|
@@ -0,0 +1,57 @@
|
|
1
|
+
pertpy/__init__.py,sha256=GMFyfRErEysnlkYKMqQxtO7QbqjGki7SpvgtLxIuG6o,658
|
2
|
+
pertpy/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
3
|
+
pertpy/data/__init__.py,sha256=ah3yvoxkgbdMUNAWxS3SyqcUuVamBOSeuWkF2QRAEwM,2703
|
4
|
+
pertpy/data/_dataloader.py,sha256=fl16n82nun01gGiP7qhr5sShfcDchp0szzZp7aXkfBI,2495
|
5
|
+
pertpy/data/_datasets.py,sha256=I-keaJSTsRBySCPjiVonKmC9rRIM0AEgo0_0UlEX804,65616
|
6
|
+
pertpy/metadata/__init__.py,sha256=zoE_VXNyuKa4nlXlUk2nTgsHRW3jSQSpDEulcCnzOT0,222
|
7
|
+
pertpy/metadata/_cell_line.py,sha256=-8KSqmP5XjmLEmNX3TavxSM_MtIHwLWS_x3MVkk6JEw,38595
|
8
|
+
pertpy/metadata/_compound.py,sha256=JEFwP_TOTyMzfd2qFMb2VkJJvPhCVIvu6gs9Bq_stgs,4756
|
9
|
+
pertpy/metadata/_drug.py,sha256=8QDSyxiFl25JdS80EQJC_krg6fEe5LIQEE6BsV1r8nY,9006
|
10
|
+
pertpy/metadata/_look_up.py,sha256=DoWp6OxIk_HyyyOhW1p8z5E68IZ31_nZDnqxk1rJqps,28778
|
11
|
+
pertpy/metadata/_metadata.py,sha256=pvarnv3X5pblnvG8AQ8Omu5jQcC5ORzCxRk3FRhOLgs,3276
|
12
|
+
pertpy/metadata/_moa.py,sha256=u_OcMonjOeeoW5P9xOltquVSoTH3Vs80ztHsXf-X1DY,4701
|
13
|
+
pertpy/plot/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
14
|
+
pertpy/preprocessing/__init__.py,sha256=VAPFaeq2_qCvdFkQTCj_Hm460HC4Tersu8Rig_tnp_Y,71
|
15
|
+
pertpy/preprocessing/_guide_rna.py,sha256=Xrv0cN16Ub1U1z-3LDNTkm98zs9JOjc2h1N7IAt_FaE,7612
|
16
|
+
pertpy/tools/__init__.py,sha256=yhDyv5J-nd3SDqc3T08Nzca8dzj3SpoVG2m9VU1rFUk,1481
|
17
|
+
pertpy/tools/_augur.py,sha256=UWro1nIEZe_rWtjlQCBv4ucqeh3Vt1m8IRzKlux72Z8,55683
|
18
|
+
pertpy/tools/_cinemaot.py,sha256=BD_oYC1TktbFMX7fpp0A57QAF6frLEgNQ_2wFUpxjyo,39509
|
19
|
+
pertpy/tools/_dialogue.py,sha256=f2fbhKWdm4Co79ZzVgtVq9xYwjYWFLdGNDeGFOO_pfM,51990
|
20
|
+
pertpy/tools/_enrichment.py,sha256=rjPHK9YBCJZfpa5Rvfxo3Ii7W5Mvm5dOdolAD7QazVg,21440
|
21
|
+
pertpy/tools/_kernel_pca.py,sha256=_EJ9WlBLjHOafF34sZGdyBgZL6Fj0WiJ1elVT1XMmo4,1579
|
22
|
+
pertpy/tools/_milo.py,sha256=kGnfx-CMOpYSl85fOW62J2X3utVjOsQFne7ixEptDmI,43691
|
23
|
+
pertpy/tools/_mixscape.py,sha256=FtH3PKvbLTe03LPgN4O9sS70oj_6AHz4Mz5otzEwRl8,52406
|
24
|
+
pertpy/tools/decoupler_LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
|
25
|
+
pertpy/tools/transferlearning_MMD_LICENSE,sha256=MUvDA-o_j9htRpI8fStVdCRuyLdPkQUuIH0a_EIc57w,1069
|
26
|
+
pertpy/tools/_coda/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
27
|
+
pertpy/tools/_coda/_base_coda.py,sha256=jnoLPFfluxB0_CK8-T-qolPa7xPIEb6NpeEpGwHPiNg,113058
|
28
|
+
pertpy/tools/_coda/_sccoda.py,sha256=gGmyd0MGpchulV9d4PxKSmGORyZ8fCDS9tQVPOuF_Og,22622
|
29
|
+
pertpy/tools/_coda/_tasccoda.py,sha256=vNk43OQHn7pBLsez2rmSj0bMZKOf8jZTI7G8TfBByRg,30665
|
30
|
+
pertpy/tools/_differential_gene_expression/__init__.py,sha256=sabAXym8mMLwp19ZjyBN7wp-oJh32iVj9plvJ-AbXlE,521
|
31
|
+
pertpy/tools/_differential_gene_expression/_base.py,sha256=qnQkK_hyIcViHBSkgJcAazC26JQ72bEyafKiytZikCY,23624
|
32
|
+
pertpy/tools/_differential_gene_expression/_checks.py,sha256=SxNHJDsCYZ6rWLTMEymEBpigs_B9cnXyw0kkAe1l6e0,1675
|
33
|
+
pertpy/tools/_differential_gene_expression/_dge_comparison.py,sha256=9HjmWkrqZhj_ZJeR-ymyEDzpRJNx7JiYJoStvCfKuCU,4188
|
34
|
+
pertpy/tools/_differential_gene_expression/_edger.py,sha256=JziiW5rkXuQBJISAD_LvB2HOZUgJ1_qoqiR5Q4hEoP0,4321
|
35
|
+
pertpy/tools/_differential_gene_expression/_formulaic.py,sha256=X4rPv4j8SDu5VJnf6_AIYJCCquUQka7G2LGtDLa8FhE,8715
|
36
|
+
pertpy/tools/_differential_gene_expression/_pydeseq2.py,sha256=JK7H7u4va0q_TLE_sqi4JEzoPBd_xNRycYGu1507HS4,4117
|
37
|
+
pertpy/tools/_differential_gene_expression/_simple_tests.py,sha256=tTSr0Z2Qbpxdy9bcO8Gi_up6R616IcoK_e4_rlanyx4,6621
|
38
|
+
pertpy/tools/_differential_gene_expression/_statsmodels.py,sha256=zSOwJYDJyrl3hsEhMI5Q9Pyw2XLuEuj7T0zSAVcP6tQ,2585
|
39
|
+
pertpy/tools/_distances/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
40
|
+
pertpy/tools/_distances/_distance_tests.py,sha256=mNmNu5cX0Wj5IegR6x5K-CbBSid8EhrH2jZPQxuvK4U,13521
|
41
|
+
pertpy/tools/_distances/_distances.py,sha256=iuHpBtWZbJhMZNSEjQkZUu6KPJXCjs_fX6YjopIWvwY,50343
|
42
|
+
pertpy/tools/_perturbation_space/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
43
|
+
pertpy/tools/_perturbation_space/_clustering.py,sha256=m52-J8c8OnIXRCf3NoFabIO2yMHIuy1X0m0amtsK2vE,3556
|
44
|
+
pertpy/tools/_perturbation_space/_comparison.py,sha256=rLO-EGU0I7t5MnLw4k1gYU-ypRu-JsDPLat1t4h2U2M,4329
|
45
|
+
pertpy/tools/_perturbation_space/_discriminator_classifiers.py,sha256=BNMP-2g4X_9jhs3Vf2rwlIjSCAcADkxBAFYGlsQ5Irw,21609
|
46
|
+
pertpy/tools/_perturbation_space/_metrics.py,sha256=y8-baP8WRdB1iDgvP3uuQxSCDxA2lcxvEHHM2C_vWHY,3248
|
47
|
+
pertpy/tools/_perturbation_space/_perturbation_space.py,sha256=cZPPzzK4_UZV7ktcD5BQVXEy6ITHrfkg1CLFov3TzsY,18497
|
48
|
+
pertpy/tools/_perturbation_space/_simple.py,sha256=LH5EYvcAbzFMvgd9bH7AUPKFmdioPiy2xG8xGaXzmq0,12624
|
49
|
+
pertpy/tools/_scgen/__init__.py,sha256=uERFlFyF88TH0uLiwmsUGEfHfLVCiZMFuk8gO5f7164,45
|
50
|
+
pertpy/tools/_scgen/_base_components.py,sha256=Qq8myRUm43q9XBrZ9gBggfa2cSV2wbz_KYoLgH7iF1A,3009
|
51
|
+
pertpy/tools/_scgen/_scgen.py,sha256=HPvFVjY9SS9bGqgTkCDuPYjmA4QHW7rKgHnI2yuI_Q4,30608
|
52
|
+
pertpy/tools/_scgen/_scgenvae.py,sha256=v_6tZ4wY-JjdMH1QVd_wG4_N0PoaqB-FM8zC2JsDu1o,3935
|
53
|
+
pertpy/tools/_scgen/_utils.py,sha256=1upgOt1FpadfvNG05YpMjYYG-IAlxrC3l_ZxczmIczo,2841
|
54
|
+
pertpy-0.8.0.dist-info/METADATA,sha256=cLAhPubizJ7vgCThHv-kHsAAvepUyRTnTHTKRKX9kYQ,6054
|
55
|
+
pertpy-0.8.0.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
|
56
|
+
pertpy-0.8.0.dist-info/licenses/LICENSE,sha256=OZ-ZkXM5CmExJiEMM90b_7dGNNvRpj7kdE-49AnrLuI,1070
|
57
|
+
pertpy-0.8.0.dist-info/RECORD,,
|
pertpy/plot/_augur.py
DELETED
@@ -1,234 +0,0 @@
|
|
1
|
-
from __future__ import annotations
|
2
|
-
|
3
|
-
from typing import TYPE_CHECKING, Any
|
4
|
-
|
5
|
-
from anndata import AnnData
|
6
|
-
from matplotlib import pyplot as plt
|
7
|
-
|
8
|
-
if TYPE_CHECKING:
|
9
|
-
import pandas as pd
|
10
|
-
from matplotlib.axes import Axes
|
11
|
-
from matplotlib.figure import Figure
|
12
|
-
|
13
|
-
|
14
|
-
class AugurpyPlot:
|
15
|
-
"""Plotting functions for Augurpy."""
|
16
|
-
|
17
|
-
@staticmethod
|
18
|
-
def dp_scatter(results: pd.DataFrame, top_n=None, ax: Axes = None, return_figure: bool = False) -> Figure | Axes:
|
19
|
-
"""Plot result of differential prioritization.
|
20
|
-
|
21
|
-
Args:
|
22
|
-
results: Results after running differential prioritization.
|
23
|
-
top_n: optionally, the number of top prioritized cell types to label in the plot
|
24
|
-
ax: optionally, axes used to draw plot
|
25
|
-
return_figure: if `True` returns figure of the plot
|
26
|
-
|
27
|
-
Returns:
|
28
|
-
Axes of the plot.
|
29
|
-
|
30
|
-
Examples:
|
31
|
-
>>> import pertpy as pt
|
32
|
-
>>> adata = pt.dt.bhattacherjee()
|
33
|
-
>>> ag_rfc = pt.tl.Augur("random_forest_classifier")
|
34
|
-
|
35
|
-
>>> data_15 = ag_rfc.load(adata, condition_label="Maintenance_Cocaine", treatment_label="withdraw_15d_Cocaine")
|
36
|
-
>>> adata_15, results_15 = ag_rfc.predict(data_15, random_state=None, n_threads=4)
|
37
|
-
>>> adata_15_permute, results_15_permute = ag_rfc.predict(data_15, augur_mode="permute", n_subsamples=100, random_state=None, n_threads=4)
|
38
|
-
|
39
|
-
>>> data_48 = ag_rfc.load(adata, condition_label="Maintenance_Cocaine", treatment_label="withdraw_48h_Cocaine")
|
40
|
-
>>> adata_48, results_48 = ag_rfc.predict(data_48, random_state=None, n_threads=4)
|
41
|
-
>>> adata_48_permute, results_48_permute = ag_rfc.predict(data_48, augur_mode="permute", n_subsamples=100, random_state=None, n_threads=4)
|
42
|
-
|
43
|
-
>>> pvals = ag_rfc.predict_differential_prioritization(augur_results1=results_15, augur_results2=results_48, \
|
44
|
-
permuted_results1=results_15_permute, permuted_results2=results_48_permute)
|
45
|
-
>>> pt.pl.ag.dp_scatter(pvals)
|
46
|
-
"""
|
47
|
-
x = results["mean_augur_score1"]
|
48
|
-
y = results["mean_augur_score2"]
|
49
|
-
|
50
|
-
if ax is None:
|
51
|
-
fig, ax = plt.subplots()
|
52
|
-
scatter = ax.scatter(x, y, c=results.z, cmap="Greens")
|
53
|
-
|
54
|
-
# adding optional labels
|
55
|
-
top_n_index = results.sort_values(by="pval").index[:top_n]
|
56
|
-
for idx in top_n_index:
|
57
|
-
ax.annotate(
|
58
|
-
results.loc[idx, "cell_type"],
|
59
|
-
(results.loc[idx, "mean_augur_score1"], results.loc[idx, "mean_augur_score2"]),
|
60
|
-
)
|
61
|
-
|
62
|
-
# add diagonal
|
63
|
-
limits = max(ax.get_xlim(), ax.get_ylim())
|
64
|
-
(diag_line,) = ax.plot(limits, limits, ls="--", c=".3")
|
65
|
-
|
66
|
-
# formatting and details
|
67
|
-
plt.xlabel("Augur scores 1")
|
68
|
-
plt.ylabel("Augur scores 2")
|
69
|
-
legend1 = ax.legend(*scatter.legend_elements(), loc="center left", title="z-scores", bbox_to_anchor=(1, 0.5))
|
70
|
-
ax.add_artist(legend1)
|
71
|
-
|
72
|
-
return fig if return_figure else ax
|
73
|
-
|
74
|
-
@staticmethod
|
75
|
-
def important_features(
|
76
|
-
data: dict[str, Any], key: str = "augurpy_results", top_n=10, ax: Axes = None, return_figure: bool = False
|
77
|
-
) -> Figure | Axes:
|
78
|
-
"""Plot a lollipop plot of the n features with largest feature importances.
|
79
|
-
|
80
|
-
Args:
|
81
|
-
results: results after running `predict()` as dictionary or the AnnData object.
|
82
|
-
key: Key in the AnnData object of the results
|
83
|
-
top_n: n number feature importance values to plot. Default is 10.
|
84
|
-
ax: optionally, axes used to draw plot
|
85
|
-
return_figure: if `True` returns figure of the plot, default is `False`
|
86
|
-
|
87
|
-
Returns:
|
88
|
-
Axes of the plot.
|
89
|
-
|
90
|
-
Examples:
|
91
|
-
>>> import pertpy as pt
|
92
|
-
>>> adata = pt.dt.sc_sim_augur()
|
93
|
-
>>> ag_rfc = pt.tl.Augur("random_forest_classifier")
|
94
|
-
>>> loaded_data = ag_rfc.load(adata)
|
95
|
-
>>> v_adata, v_results = ag_rfc.predict(loaded_data, subsample_size=20, select_variance_features=True, n_threads=4)
|
96
|
-
>>> pt.pl.ag.important_features(v_results)
|
97
|
-
"""
|
98
|
-
if isinstance(data, AnnData):
|
99
|
-
results = data.uns[key]
|
100
|
-
else:
|
101
|
-
results = data
|
102
|
-
# top_n features to plot
|
103
|
-
n_features = (
|
104
|
-
results["feature_importances"]
|
105
|
-
.groupby("genes", as_index=False)
|
106
|
-
.feature_importances.mean()
|
107
|
-
.sort_values(by="feature_importances")[-top_n:]
|
108
|
-
)
|
109
|
-
|
110
|
-
if ax is None:
|
111
|
-
fig, ax = plt.subplots()
|
112
|
-
y_axes_range = range(1, top_n + 1)
|
113
|
-
ax.hlines(
|
114
|
-
y_axes_range,
|
115
|
-
xmin=0,
|
116
|
-
xmax=n_features["feature_importances"],
|
117
|
-
)
|
118
|
-
|
119
|
-
# drawing the markers (circle)
|
120
|
-
ax.plot(n_features["feature_importances"], y_axes_range, "o")
|
121
|
-
|
122
|
-
# formatting and details
|
123
|
-
plt.xlabel("Mean Feature Importance")
|
124
|
-
plt.ylabel("Gene")
|
125
|
-
plt.yticks(y_axes_range, n_features["genes"])
|
126
|
-
|
127
|
-
return fig if return_figure else ax
|
128
|
-
|
129
|
-
@staticmethod
|
130
|
-
def lollipop(
|
131
|
-
data: dict[str, Any], key: str = "augurpy_results", ax: Axes = None, return_figure: bool = False
|
132
|
-
) -> Figure | Axes:
|
133
|
-
"""Plot a lollipop plot of the mean augur values.
|
134
|
-
|
135
|
-
Args:
|
136
|
-
results: results after running `predict()` as dictionary or the AnnData object.
|
137
|
-
key: Key in the AnnData object of the results
|
138
|
-
ax: optionally, axes used to draw plot
|
139
|
-
return_figure: if `True` returns figure of the plot
|
140
|
-
|
141
|
-
Returns:
|
142
|
-
Axes of the plot.
|
143
|
-
|
144
|
-
Examples:
|
145
|
-
>>> import pertpy as pt
|
146
|
-
>>> adata = pt.dt.sc_sim_augur()
|
147
|
-
>>> ag_rfc = pt.tl.Augur("random_forest_classifier")
|
148
|
-
>>> loaded_data = ag_rfc.load(adata)
|
149
|
-
>>> v_adata, v_results = ag_rfc.predict(loaded_data, subsample_size=20, select_variance_features=True, n_threads=4)
|
150
|
-
>>> pt.pl.ag.lollipop(v_results)
|
151
|
-
"""
|
152
|
-
if isinstance(data, AnnData):
|
153
|
-
results = data.uns[key]
|
154
|
-
else:
|
155
|
-
results = data
|
156
|
-
if ax is None:
|
157
|
-
fig, ax = plt.subplots()
|
158
|
-
y_axes_range = range(1, len(results["summary_metrics"].columns) + 1)
|
159
|
-
ax.hlines(
|
160
|
-
y_axes_range,
|
161
|
-
xmin=0,
|
162
|
-
xmax=results["summary_metrics"].sort_values("mean_augur_score", axis=1).loc["mean_augur_score"],
|
163
|
-
)
|
164
|
-
|
165
|
-
# drawing the markers (circle)
|
166
|
-
ax.plot(
|
167
|
-
results["summary_metrics"].sort_values("mean_augur_score", axis=1).loc["mean_augur_score"],
|
168
|
-
y_axes_range,
|
169
|
-
"o",
|
170
|
-
)
|
171
|
-
|
172
|
-
# formatting and details
|
173
|
-
plt.xlabel("Mean Augur Score")
|
174
|
-
plt.ylabel("Cell Type")
|
175
|
-
plt.yticks(y_axes_range, results["summary_metrics"].sort_values("mean_augur_score", axis=1).columns)
|
176
|
-
|
177
|
-
return fig if return_figure else ax
|
178
|
-
|
179
|
-
@staticmethod
|
180
|
-
def scatterplot(
|
181
|
-
results1: dict[str, Any], results2: dict[str, Any], top_n=None, return_figure: bool = False
|
182
|
-
) -> Figure | Axes:
|
183
|
-
"""Create scatterplot with two augur results.
|
184
|
-
|
185
|
-
Args:
|
186
|
-
results1: results after running `predict()`
|
187
|
-
results2: results after running `predict()`
|
188
|
-
top_n: optionally, the number of top prioritized cell types to label in the plot
|
189
|
-
return_figure: if `True` returns figure of the plot
|
190
|
-
|
191
|
-
Returns:
|
192
|
-
Axes of the plot.
|
193
|
-
|
194
|
-
Examples:
|
195
|
-
>>> import pertpy as pt
|
196
|
-
>>> adata = pt.dt.sc_sim_augur()
|
197
|
-
>>> ag_rfc = pt.tl.Augur("random_forest_classifier")
|
198
|
-
>>> loaded_data = ag_rfc.load(adata)
|
199
|
-
>>> h_adata, h_results = ag_rfc.predict(loaded_data, subsample_size=20, n_threads=4)
|
200
|
-
>>> v_adata, v_results = ag_rfc.predict(loaded_data, subsample_size=20, select_variance_features=True, n_threads=4)
|
201
|
-
>>> pt.pl.ag.scatterplot(v_results, h_results)
|
202
|
-
"""
|
203
|
-
cell_types = results1["summary_metrics"].columns
|
204
|
-
|
205
|
-
fig, ax = plt.subplots()
|
206
|
-
ax.scatter(
|
207
|
-
results1["summary_metrics"].loc["mean_augur_score", cell_types],
|
208
|
-
results2["summary_metrics"].loc["mean_augur_score", cell_types],
|
209
|
-
)
|
210
|
-
|
211
|
-
# adding optional labels
|
212
|
-
top_n_cell_types = (
|
213
|
-
(results1["summary_metrics"].loc["mean_augur_score"] - results2["summary_metrics"].loc["mean_augur_score"])
|
214
|
-
.sort_values(ascending=False)
|
215
|
-
.index[:top_n]
|
216
|
-
)
|
217
|
-
for txt in top_n_cell_types:
|
218
|
-
ax.annotate(
|
219
|
-
txt,
|
220
|
-
(
|
221
|
-
results1["summary_metrics"].loc["mean_augur_score", txt],
|
222
|
-
results2["summary_metrics"].loc["mean_augur_score", txt],
|
223
|
-
),
|
224
|
-
)
|
225
|
-
|
226
|
-
# adding diagonal
|
227
|
-
limits = max(ax.get_xlim(), ax.get_ylim())
|
228
|
-
(diag_line,) = ax.plot(limits, limits, ls="--", c=".3")
|
229
|
-
|
230
|
-
# formatting and details
|
231
|
-
plt.xlabel("Augur scores 1")
|
232
|
-
plt.ylabel("Augur scores 2")
|
233
|
-
|
234
|
-
return fig if return_figure else ax
|
pertpy/plot/_cinemaot.py
DELETED
@@ -1,81 +0,0 @@
|
|
1
|
-
from typing import Optional
|
2
|
-
|
3
|
-
import matplotlib.pyplot as plt
|
4
|
-
import pandas as pd
|
5
|
-
import scanpy as sc
|
6
|
-
import seaborn as sns
|
7
|
-
from anndata import AnnData
|
8
|
-
from matplotlib.axes import Axes
|
9
|
-
from scanpy.plotting import _utils
|
10
|
-
|
11
|
-
|
12
|
-
class CinemaotPlot:
|
13
|
-
"""Plotting functions for CINEMA-OT. Only includes new functions beyond the scanpy.pl.embedding family."""
|
14
|
-
|
15
|
-
@staticmethod
|
16
|
-
def vis_matching(
|
17
|
-
adata: AnnData,
|
18
|
-
de: AnnData,
|
19
|
-
pert_key: str,
|
20
|
-
control: str,
|
21
|
-
de_label: str,
|
22
|
-
source_label: str,
|
23
|
-
matching_rep: str = "ot",
|
24
|
-
resolution: float = 0.5,
|
25
|
-
normalize: str = "col",
|
26
|
-
title: str = "CINEMA-OT matching matrix",
|
27
|
-
min_val: float = 0.01,
|
28
|
-
show: bool = True,
|
29
|
-
save: Optional[str] = None,
|
30
|
-
ax: Optional[Axes] = None,
|
31
|
-
**kwargs,
|
32
|
-
) -> None:
|
33
|
-
"""Visualize the CINEMA-OT matching matrix.
|
34
|
-
|
35
|
-
Args:
|
36
|
-
adata: the original anndata after running cinemaot.causaleffect or cinemaot.causaleffect_weighted.
|
37
|
-
de: The anndata output from Cinemaot.causaleffect() or Cinemaot.causaleffect_weighted().
|
38
|
-
pert_key: The column of `.obs` with perturbation categories, should also contain `control`.
|
39
|
-
control: Control category from the `pert_key` column.
|
40
|
-
de_label: the label for differential response. If none, use leiden cluster labels at resolution 1.0.
|
41
|
-
source_label: the confounder / cell type label.
|
42
|
-
matching_rep: the place that stores the matching matrix. default de.obsm['ot'].
|
43
|
-
normalize: normalize the coarse-grained matching matrix by row / column.
|
44
|
-
title: the title for the figure.
|
45
|
-
min_val: The min value to truncate the matching matrix.
|
46
|
-
show: Show the plot, do not return axis.
|
47
|
-
save: If `True` or a `str`, save the figure. A string is appended to the default filename.
|
48
|
-
Infer the filetype if ending on {`'.pdf'`, `'.png'`, `'.svg'`}.
|
49
|
-
**kwargs: Other parameters to input for seaborn.heatmap.
|
50
|
-
"""
|
51
|
-
adata_ = adata[adata.obs[pert_key] == control]
|
52
|
-
|
53
|
-
df = pd.DataFrame(de.obsm[matching_rep])
|
54
|
-
if de_label is None:
|
55
|
-
de_label = "leiden"
|
56
|
-
sc.pp.neighbors(de, use_rep="X_embedding")
|
57
|
-
sc.tl.leiden(de, resolution=resolution)
|
58
|
-
df["de_label"] = de.obs[de_label].astype(str).values
|
59
|
-
df["de_label"] = "Response " + df["de_label"]
|
60
|
-
df = df.groupby("de_label").sum().T
|
61
|
-
df["source_label"] = adata_.obs[source_label].astype(str).values
|
62
|
-
df = df.groupby("source_label").sum()
|
63
|
-
|
64
|
-
if normalize == "col":
|
65
|
-
df = df / df.sum(axis=0)
|
66
|
-
else:
|
67
|
-
df = (df.T / df.sum(axis=1)).T
|
68
|
-
df = df.clip(lower=min_val) - min_val
|
69
|
-
if normalize == "col":
|
70
|
-
df = df / df.sum(axis=0)
|
71
|
-
else:
|
72
|
-
df = (df.T / df.sum(axis=1)).T
|
73
|
-
|
74
|
-
g = sns.heatmap(df, annot=True, ax=ax, **kwargs)
|
75
|
-
plt.title(title)
|
76
|
-
_utils.savefig_or_show("matching_heatmap", show=show, save=save)
|
77
|
-
if not show:
|
78
|
-
if ax is not None:
|
79
|
-
return ax
|
80
|
-
else:
|
81
|
-
return g
|