pertpy 0.6.0__py3-none-any.whl → 0.8.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pertpy/__init__.py +4 -2
- pertpy/data/__init__.py +66 -1
- pertpy/data/_dataloader.py +28 -26
- pertpy/data/_datasets.py +261 -92
- pertpy/metadata/__init__.py +6 -0
- pertpy/metadata/_cell_line.py +795 -0
- pertpy/metadata/_compound.py +128 -0
- pertpy/metadata/_drug.py +238 -0
- pertpy/metadata/_look_up.py +569 -0
- pertpy/metadata/_metadata.py +70 -0
- pertpy/metadata/_moa.py +125 -0
- pertpy/plot/__init__.py +0 -13
- pertpy/preprocessing/__init__.py +2 -0
- pertpy/preprocessing/_guide_rna.py +89 -6
- pertpy/tools/__init__.py +48 -15
- pertpy/tools/_augur.py +329 -32
- pertpy/tools/_cinemaot.py +145 -6
- pertpy/tools/_coda/_base_coda.py +1237 -116
- pertpy/tools/_coda/_sccoda.py +66 -36
- pertpy/tools/_coda/_tasccoda.py +46 -39
- pertpy/tools/_dialogue.py +180 -77
- pertpy/tools/_differential_gene_expression/__init__.py +20 -0
- pertpy/tools/_differential_gene_expression/_base.py +657 -0
- pertpy/tools/_differential_gene_expression/_checks.py +41 -0
- pertpy/tools/_differential_gene_expression/_dge_comparison.py +86 -0
- pertpy/tools/_differential_gene_expression/_edger.py +125 -0
- pertpy/tools/_differential_gene_expression/_formulaic.py +189 -0
- pertpy/tools/_differential_gene_expression/_pydeseq2.py +95 -0
- pertpy/tools/_differential_gene_expression/_simple_tests.py +162 -0
- pertpy/tools/_differential_gene_expression/_statsmodels.py +72 -0
- pertpy/tools/_distances/_distance_tests.py +29 -24
- pertpy/tools/_distances/_distances.py +584 -98
- pertpy/tools/_enrichment.py +460 -0
- pertpy/tools/_kernel_pca.py +1 -1
- pertpy/tools/_milo.py +406 -49
- pertpy/tools/_mixscape.py +677 -55
- pertpy/tools/_perturbation_space/_clustering.py +10 -3
- pertpy/tools/_perturbation_space/_comparison.py +112 -0
- pertpy/tools/_perturbation_space/_discriminator_classifiers.py +524 -0
- pertpy/tools/_perturbation_space/_perturbation_space.py +146 -52
- pertpy/tools/_perturbation_space/_simple.py +52 -11
- pertpy/tools/_scgen/__init__.py +1 -1
- pertpy/tools/_scgen/_base_components.py +2 -3
- pertpy/tools/_scgen/_scgen.py +706 -0
- pertpy/tools/_scgen/_utils.py +3 -5
- pertpy/tools/decoupler_LICENSE +674 -0
- {pertpy-0.6.0.dist-info → pertpy-0.8.0.dist-info}/METADATA +48 -20
- pertpy-0.8.0.dist-info/RECORD +57 -0
- {pertpy-0.6.0.dist-info → pertpy-0.8.0.dist-info}/WHEEL +1 -1
- pertpy/plot/_augur.py +0 -234
- pertpy/plot/_cinemaot.py +0 -81
- pertpy/plot/_coda.py +0 -1001
- pertpy/plot/_dialogue.py +0 -91
- pertpy/plot/_guide_rna.py +0 -82
- pertpy/plot/_milopy.py +0 -284
- pertpy/plot/_mixscape.py +0 -594
- pertpy/plot/_scgen.py +0 -337
- pertpy/tools/_differential_gene_expression.py +0 -99
- pertpy/tools/_metadata/__init__.py +0 -0
- pertpy/tools/_metadata/_cell_line.py +0 -613
- pertpy/tools/_metadata/_look_up.py +0 -342
- pertpy/tools/_perturbation_space/_discriminator_classifier.py +0 -381
- pertpy/tools/_scgen/_jax_scgen.py +0 -370
- pertpy-0.6.0.dist-info/RECORD +0 -50
- /pertpy/tools/_scgen/{_jax_scgenvae.py → _scgenvae.py} +0 -0
- {pertpy-0.6.0.dist-info → pertpy-0.8.0.dist-info}/licenses/LICENSE +0 -0
pertpy/plot/_mixscape.py
DELETED
@@ -1,594 +0,0 @@
|
|
1
|
-
from __future__ import annotations
|
2
|
-
|
3
|
-
import copy
|
4
|
-
from collections import OrderedDict
|
5
|
-
from typing import TYPE_CHECKING, Literal
|
6
|
-
|
7
|
-
import numpy as np
|
8
|
-
import pandas as pd
|
9
|
-
import scanpy as sc
|
10
|
-
from matplotlib import pyplot as pl
|
11
|
-
from plotnine import (
|
12
|
-
aes,
|
13
|
-
element_blank,
|
14
|
-
element_text,
|
15
|
-
facet_wrap,
|
16
|
-
geom_bar,
|
17
|
-
geom_density,
|
18
|
-
geom_point,
|
19
|
-
ggplot,
|
20
|
-
labs,
|
21
|
-
scale_color_manual,
|
22
|
-
scale_fill_manual,
|
23
|
-
theme,
|
24
|
-
theme_classic,
|
25
|
-
xlab,
|
26
|
-
ylab,
|
27
|
-
)
|
28
|
-
from scanpy import get
|
29
|
-
from scanpy._settings import settings
|
30
|
-
from scanpy._utils import _check_use_raw, sanitize_anndata
|
31
|
-
from scanpy.plotting import _utils
|
32
|
-
|
33
|
-
if TYPE_CHECKING:
|
34
|
-
from collections.abc import Sequence
|
35
|
-
|
36
|
-
from anndata import AnnData
|
37
|
-
from matplotlib.axes import Axes
|
38
|
-
|
39
|
-
|
40
|
-
class MixscapePlot:
|
41
|
-
"""Plotting functions for Mixscape."""
|
42
|
-
|
43
|
-
@staticmethod
|
44
|
-
def barplot( # pragma: no cover
|
45
|
-
adata: AnnData,
|
46
|
-
guide_rna_column: str,
|
47
|
-
mixscape_class_global="mixscape_class_global",
|
48
|
-
axis_text_x_size: int = 8,
|
49
|
-
axis_text_y_size: int = 6,
|
50
|
-
axis_title_size: int = 8,
|
51
|
-
strip_text_size: int = 6,
|
52
|
-
panel_spacing_x: float = 0.3,
|
53
|
-
panel_spacing_y: float = 0.3,
|
54
|
-
legend_title_size: int = 8,
|
55
|
-
legend_text_size: int = 8,
|
56
|
-
show: bool | None = None,
|
57
|
-
save: bool | str | None = None,
|
58
|
-
):
|
59
|
-
"""Barplot to visualize perturbation scores calculated from RunMixscape function.
|
60
|
-
|
61
|
-
Args:
|
62
|
-
adata: The annotated data object.
|
63
|
-
guide_rna_column: The column of `.obs` with guide RNA labels. The target gene labels.
|
64
|
-
The format must be <gene_target>g<#>. For example, 'STAT2g1' and 'ATF2g1'.
|
65
|
-
mixscape_class_global: The column of `.obs` with mixscape global classification result (perturbed, NP or NT).
|
66
|
-
show: Show the plot, do not return axis.
|
67
|
-
save: If True or a str, save the figure. A string is appended to the default filename.
|
68
|
-
Infer the filetype if ending on {'.pdf', '.png', '.svg'}.
|
69
|
-
|
70
|
-
Returns:
|
71
|
-
If show is False, return ggplot object used to draw the plot.
|
72
|
-
|
73
|
-
Examples:
|
74
|
-
>>> import pertpy as pt
|
75
|
-
>>> mdata = pt.dt.papalexi_2021()
|
76
|
-
>>> mixscape_identifier = pt.tl.Mixscape()
|
77
|
-
>>> mixscape_identifier.perturbation_signature(mdata['rna'], 'perturbation', 'NT', 'replicate')
|
78
|
-
>>> mixscape_identifier.mixscape(adata = mdata['rna'], control = 'NT', labels='gene_target', layer='X_pert')
|
79
|
-
>>> pt.pl.ms.barplot(mdata['rna'], guide_rna_column='NT')
|
80
|
-
"""
|
81
|
-
if mixscape_class_global not in adata.obs:
|
82
|
-
raise ValueError("Please run `pt.tl.mixscape` first.")
|
83
|
-
count = pd.crosstab(index=adata.obs[mixscape_class_global], columns=adata.obs[guide_rna_column])
|
84
|
-
all_cells_percentage = pd.melt(count / count.sum(), ignore_index=False).reset_index()
|
85
|
-
KO_cells_percentage = all_cells_percentage[all_cells_percentage[mixscape_class_global] == "KO"]
|
86
|
-
KO_cells_percentage = KO_cells_percentage.sort_values("value", ascending=False)
|
87
|
-
|
88
|
-
new_levels = KO_cells_percentage[guide_rna_column]
|
89
|
-
all_cells_percentage[guide_rna_column] = pd.Categorical(
|
90
|
-
all_cells_percentage[guide_rna_column], categories=new_levels, ordered=False
|
91
|
-
)
|
92
|
-
all_cells_percentage[mixscape_class_global] = pd.Categorical(
|
93
|
-
all_cells_percentage[mixscape_class_global], categories=["NT", "NP", "KO"], ordered=False
|
94
|
-
)
|
95
|
-
all_cells_percentage["gene"] = all_cells_percentage[guide_rna_column].str.rsplit("g", expand=True)[0]
|
96
|
-
all_cells_percentage["guide_number"] = all_cells_percentage[guide_rna_column].str.rsplit("g", expand=True)[1]
|
97
|
-
all_cells_percentage["guide_number"] = "g" + all_cells_percentage["guide_number"]
|
98
|
-
NP_KO_cells = all_cells_percentage[all_cells_percentage["gene"] != "NT"]
|
99
|
-
|
100
|
-
p1 = (
|
101
|
-
ggplot(NP_KO_cells, aes(x="guide_number", y="value", fill="mixscape_class_global"))
|
102
|
-
+ scale_fill_manual(values=["#7d7d7d", "#c9c9c9", "#ff7256"])
|
103
|
-
+ geom_bar(stat="identity")
|
104
|
-
+ theme_classic()
|
105
|
-
+ xlab("sgRNA")
|
106
|
-
+ ylab("% of cells")
|
107
|
-
)
|
108
|
-
|
109
|
-
p1 = (
|
110
|
-
p1
|
111
|
-
+ theme(
|
112
|
-
axis_text_x=element_text(size=axis_text_x_size, hjust=2),
|
113
|
-
axis_text_y=element_text(size=axis_text_y_size),
|
114
|
-
axis_title=element_text(size=axis_title_size),
|
115
|
-
strip_text=element_text(size=strip_text_size, face="bold"),
|
116
|
-
panel_spacing_x=panel_spacing_x,
|
117
|
-
panel_spacing_y=panel_spacing_y,
|
118
|
-
)
|
119
|
-
+ facet_wrap("gene", ncol=5, scales="free")
|
120
|
-
+ labs(fill="mixscape class")
|
121
|
-
+ theme(legend_title=element_text(size=legend_title_size), legend_text=element_text(size=legend_text_size))
|
122
|
-
)
|
123
|
-
|
124
|
-
_utils.savefig_or_show("mixscape_barplot", show=show, save=save)
|
125
|
-
if not show:
|
126
|
-
return p1
|
127
|
-
|
128
|
-
@staticmethod
|
129
|
-
def heatmap( # pragma: no cover
|
130
|
-
adata: AnnData,
|
131
|
-
labels: str,
|
132
|
-
target_gene: str,
|
133
|
-
control: str,
|
134
|
-
layer: str | None = None,
|
135
|
-
method: str | None = "wilcoxon",
|
136
|
-
subsample_number: int | None = 900,
|
137
|
-
vmin: float | None = -2,
|
138
|
-
vmax: float | None = 2,
|
139
|
-
show: bool | None = None,
|
140
|
-
save: bool | str | None = None,
|
141
|
-
**kwds,
|
142
|
-
):
|
143
|
-
"""Heatmap plot using mixscape results. Requires `pt.tl.mixscape()` to be run first.
|
144
|
-
|
145
|
-
Args:
|
146
|
-
adata: The annotated data object.
|
147
|
-
labels: The column of `.obs` with target gene labels.
|
148
|
-
target_gene: Target gene name to visualize heatmap for.
|
149
|
-
control: Control category from the `pert_key` column.
|
150
|
-
layer: Key from `adata.layers` whose value will be used to perform tests on.
|
151
|
-
method: The default method is 'wilcoxon', see `method` parameter in `scanpy.tl.rank_genes_groups` for more options.
|
152
|
-
subsample_number: Subsample to this number of observations.
|
153
|
-
vmin: The value representing the lower limit of the color scale. Values smaller than vmin are plotted with the same color as vmin.
|
154
|
-
vmax: The value representing the upper limit of the color scale. Values larger than vmax are plotted with the same color as vmax.
|
155
|
-
show: Show the plot, do not return axis.
|
156
|
-
save: If `True` or a `str`, save the figure. A string is appended to the default filename. Infer the filetype if ending on {`'.pdf'`, `'.png'`, `'.svg'`}.
|
157
|
-
ax: A matplotlib axes object. Only works if plotting a single component.
|
158
|
-
**kwds: Additional arguments to `scanpy.pl.rank_genes_groups_heatmap`.
|
159
|
-
|
160
|
-
Examples:
|
161
|
-
>>> import pertpy as pt
|
162
|
-
>>> mdata = pt.dt.papalexi_2021()
|
163
|
-
>>> mixscape_identifier = pt.tl.Mixscape()
|
164
|
-
>>> mixscape_identifier.perturbation_signature(mdata['rna'], 'perturbation', 'NT', 'replicate')
|
165
|
-
>>> mixscape_identifier.mixscape(adata = mdata['rna'], control = 'NT', labels='gene_target', layer='X_pert')
|
166
|
-
>>> pt.pl.ms.heatmap(adata = mdata['rna'], labels='gene_target', target_gene='IFNGR2', layer='X_pert', control='NT')
|
167
|
-
"""
|
168
|
-
if "mixscape_class" not in adata.obs:
|
169
|
-
raise ValueError("Please run `pt.tl.mixscape` first.")
|
170
|
-
adata_subset = adata[(adata.obs[labels] == target_gene) | (adata.obs[labels] == control)].copy()
|
171
|
-
sc.tl.rank_genes_groups(adata_subset, layer=layer, groupby=labels, method=method)
|
172
|
-
sc.pp.scale(adata_subset, max_value=vmax)
|
173
|
-
sc.pp.subsample(adata_subset, n_obs=subsample_number)
|
174
|
-
return sc.pl.rank_genes_groups_heatmap(
|
175
|
-
adata_subset,
|
176
|
-
groupby="mixscape_class",
|
177
|
-
vmin=vmin,
|
178
|
-
vmax=vmax,
|
179
|
-
n_genes=20,
|
180
|
-
groups=["NT"],
|
181
|
-
show=show,
|
182
|
-
save=save,
|
183
|
-
**kwds,
|
184
|
-
)
|
185
|
-
|
186
|
-
@staticmethod
|
187
|
-
def perturbscore( # pragma: no cover
|
188
|
-
adata: AnnData,
|
189
|
-
labels: str,
|
190
|
-
target_gene: str,
|
191
|
-
mixscape_class="mixscape_class",
|
192
|
-
color="orange",
|
193
|
-
split_by: str = None,
|
194
|
-
before_mixscape=False,
|
195
|
-
perturbation_type: str = "KO",
|
196
|
-
):
|
197
|
-
"""Density plots to visualize perturbation scores calculated by the `pt.tl.mixscape` function. Requires `pt.tl.mixscape` to be run first.
|
198
|
-
|
199
|
-
https://satijalab.org/seurat/reference/plotperturbscore
|
200
|
-
|
201
|
-
Args:
|
202
|
-
adata: The annotated data object.
|
203
|
-
labels: The column of `.obs` with target gene labels.
|
204
|
-
target_gene: Target gene name to visualize perturbation scores for.
|
205
|
-
mixscape_class: The column of `.obs` with mixscape classifications.
|
206
|
-
color: Specify color of target gene class or knockout cell class. For control non-targeting and non-perturbed cells, colors are set to different shades of grey.
|
207
|
-
split_by: Provide the column `.obs` if multiple biological replicates exist to calculate
|
208
|
-
the perturbation signature for every replicate separately.
|
209
|
-
before_mixscape: Option to split densities based on mixscape classification (default) or original target gene classification. Default is set to NULL and plots cells by original class ID.
|
210
|
-
perturbation_type: specify type of CRISPR perturbation expected for labeling mixscape classifications. Default is KO.
|
211
|
-
|
212
|
-
Returns:
|
213
|
-
The ggplot object used for drawn.
|
214
|
-
|
215
|
-
Examples:
|
216
|
-
Visualizing the perturbation scores for the cells in a dataset:
|
217
|
-
|
218
|
-
>>> import pertpy as pt
|
219
|
-
>>> mdata = pt.dt.papalexi_2021()
|
220
|
-
>>> mixscape_identifier = pt.tl.Mixscape()
|
221
|
-
>>> mixscape_identifier.perturbation_signature(mdata['rna'], 'perturbation', 'NT', 'replicate')
|
222
|
-
>>> mixscape_identifier.mixscape(adata = mdata['rna'], control = 'NT', labels='gene_target', layer='X_pert')
|
223
|
-
>>> pt.pl.ms.perturbscore(adata = mdata['rna'], labels='gene_target', target_gene='IFNGR2', color = 'orange')
|
224
|
-
"""
|
225
|
-
if "mixscape" not in adata.uns:
|
226
|
-
raise ValueError("Please run `pt.tl.mixscape` first.")
|
227
|
-
perturbation_score = None
|
228
|
-
for key in adata.uns["mixscape"][target_gene].keys():
|
229
|
-
perturbation_score_temp = adata.uns["mixscape"][target_gene][key]
|
230
|
-
perturbation_score_temp["name"] = key
|
231
|
-
if perturbation_score is None:
|
232
|
-
perturbation_score = copy.deepcopy(perturbation_score_temp)
|
233
|
-
else:
|
234
|
-
perturbation_score = pd.concat([perturbation_score, perturbation_score_temp])
|
235
|
-
perturbation_score["mix"] = adata.obs[mixscape_class][perturbation_score.index]
|
236
|
-
gd = list(set(perturbation_score[labels]).difference({target_gene}))[0]
|
237
|
-
# If before_mixscape is True, split densities based on original target gene classification
|
238
|
-
if before_mixscape is True:
|
239
|
-
cols = {gd: "#7d7d7d", target_gene: color}
|
240
|
-
p = ggplot(perturbation_score, aes(x="pvec", color=labels)) + geom_density() + theme_classic()
|
241
|
-
p_copy = copy.deepcopy(p)
|
242
|
-
p_copy._build()
|
243
|
-
top_r = max(p_copy.layers[0].data["density"])
|
244
|
-
perturbation_score["y_jitter"] = perturbation_score["pvec"]
|
245
|
-
rng = np.random.default_rng()
|
246
|
-
perturbation_score.loc[perturbation_score[labels] == gd, "y_jitter"] = rng.uniform(
|
247
|
-
low=0.001, high=top_r / 10, size=sum(perturbation_score[labels] == gd)
|
248
|
-
)
|
249
|
-
perturbation_score.loc[perturbation_score[labels] == target_gene, "y_jitter"] = rng.uniform(
|
250
|
-
low=-top_r / 10, high=0, size=sum(perturbation_score[labels] == target_gene)
|
251
|
-
)
|
252
|
-
# If split_by is provided, split densities based on the split_by
|
253
|
-
if split_by is not None:
|
254
|
-
perturbation_score["split"] = adata.obs[split_by][perturbation_score.index]
|
255
|
-
p2 = (
|
256
|
-
p
|
257
|
-
+ scale_color_manual(values=cols, drop=False)
|
258
|
-
+ geom_density(size=1.5)
|
259
|
-
+ geom_point(aes(x="pvec", y="y_jitter"), size=0.1)
|
260
|
-
+ theme(axis_text=element_text(size=18), axis_title=element_text(size=20))
|
261
|
-
+ ylab("Cell density")
|
262
|
-
+ xlab("Perturbation score")
|
263
|
-
+ theme(
|
264
|
-
legend_key_size=1,
|
265
|
-
legend_text=element_text(colour="black", size=14),
|
266
|
-
legend_title=element_blank(),
|
267
|
-
plot_title=element_text(size=16, face="bold"),
|
268
|
-
)
|
269
|
-
+ facet_wrap("split")
|
270
|
-
)
|
271
|
-
else:
|
272
|
-
p2 = (
|
273
|
-
p
|
274
|
-
+ scale_color_manual(values=cols, drop=False)
|
275
|
-
+ geom_density(size=1.5)
|
276
|
-
+ geom_point(aes(x="pvec", y="y_jitter"), size=0.1)
|
277
|
-
+ theme(axis_text=element_text(size=18), axis_title=element_text(size=20))
|
278
|
-
+ ylab("Cell density")
|
279
|
-
+ xlab("Perturbation score")
|
280
|
-
+ theme(
|
281
|
-
legend_key_size=1,
|
282
|
-
legend_text=element_text(colour="black", size=14),
|
283
|
-
legend_title=element_blank(),
|
284
|
-
plot_title=element_text(size=16, face="bold"),
|
285
|
-
)
|
286
|
-
)
|
287
|
-
# If before_mixscape is False, split densities based on mixscape classifications
|
288
|
-
else:
|
289
|
-
cols = {gd: "#7d7d7d", f"{target_gene} NP": "#c9c9c9", f"{target_gene} {perturbation_type}": color}
|
290
|
-
p = ggplot(perturbation_score, aes(x="pvec", color="mix")) + geom_density() + theme_classic()
|
291
|
-
p_copy = copy.deepcopy(p)
|
292
|
-
p_copy._build()
|
293
|
-
top_r = max(p_copy.layers[0].data["density"])
|
294
|
-
perturbation_score["y_jitter"] = perturbation_score["pvec"]
|
295
|
-
rng = np.random.default_rng()
|
296
|
-
gd2 = list(
|
297
|
-
set(perturbation_score["mix"]).difference([f"{target_gene} NP", f"{target_gene} {perturbation_type}"])
|
298
|
-
)[0]
|
299
|
-
perturbation_score.loc[perturbation_score["mix"] == gd2, "y_jitter"] = rng.uniform(
|
300
|
-
low=0.001, high=top_r / 10, size=sum(perturbation_score["mix"] == gd2)
|
301
|
-
)
|
302
|
-
perturbation_score.loc[
|
303
|
-
perturbation_score["mix"] == f"{target_gene} {perturbation_type}", "y_jitter"
|
304
|
-
] = rng.uniform(
|
305
|
-
low=-top_r / 10, high=0, size=sum(perturbation_score["mix"] == f"{target_gene} {perturbation_type}")
|
306
|
-
)
|
307
|
-
perturbation_score.loc[perturbation_score["mix"] == f"{target_gene} NP", "y_jitter"] = rng.uniform(
|
308
|
-
low=-top_r / 10, high=0, size=sum(perturbation_score["mix"] == f"{target_gene} NP")
|
309
|
-
)
|
310
|
-
# If split_by is provided, split densities based on the split_by
|
311
|
-
if split_by is not None:
|
312
|
-
perturbation_score["split"] = adata.obs[split_by][perturbation_score.index]
|
313
|
-
p2 = (
|
314
|
-
ggplot(perturbation_score, aes(x="pvec", color="mix"))
|
315
|
-
+ scale_color_manual(values=cols, drop=False)
|
316
|
-
+ geom_density(size=1.5)
|
317
|
-
+ geom_point(aes(x="pvec", y="y_jitter"), size=0.1)
|
318
|
-
+ theme_classic()
|
319
|
-
+ theme(axis_text=element_text(size=18), axis_title=element_text(size=20))
|
320
|
-
+ ylab("Cell density")
|
321
|
-
+ xlab("Perturbation score")
|
322
|
-
+ theme(
|
323
|
-
legend_key_size=1,
|
324
|
-
legend_text=element_text(colour="black", size=14),
|
325
|
-
legend_title=element_blank(),
|
326
|
-
plot_title=element_text(size=16, face="bold"),
|
327
|
-
)
|
328
|
-
+ facet_wrap("split")
|
329
|
-
)
|
330
|
-
else:
|
331
|
-
p2 = (
|
332
|
-
p
|
333
|
-
+ scale_color_manual(values=cols, drop=False)
|
334
|
-
+ geom_density(size=1.5)
|
335
|
-
+ geom_point(aes(x="pvec", y="y_jitter"), size=0.1)
|
336
|
-
+ theme(axis_text=element_text(size=18), axis_title=element_text(size=20))
|
337
|
-
+ ylab("Cell density")
|
338
|
-
+ xlab("Perturbation score")
|
339
|
-
+ theme(
|
340
|
-
legend_key_size=1,
|
341
|
-
legend_text=element_text(colour="black", size=14),
|
342
|
-
legend_title=element_blank(),
|
343
|
-
plot_title=element_text(size=16, face="bold"),
|
344
|
-
)
|
345
|
-
)
|
346
|
-
return p2
|
347
|
-
|
348
|
-
@staticmethod
|
349
|
-
def violin( # pragma: no cover
|
350
|
-
adata: AnnData,
|
351
|
-
target_gene_idents: str | list[str],
|
352
|
-
keys: str | Sequence[str] = "mixscape_class_p_ko",
|
353
|
-
groupby: str | None = "mixscape_class",
|
354
|
-
log: bool = False,
|
355
|
-
use_raw: bool | None = None,
|
356
|
-
stripplot: bool = True,
|
357
|
-
hue: str | None = None,
|
358
|
-
jitter: float | bool = True,
|
359
|
-
size: int = 1,
|
360
|
-
layer: str | None = None,
|
361
|
-
scale: Literal["area", "count", "width"] = "width",
|
362
|
-
order: Sequence[str] | None = None,
|
363
|
-
multi_panel: bool | None = None,
|
364
|
-
xlabel: str = "",
|
365
|
-
ylabel: str | Sequence[str] | None = None,
|
366
|
-
rotation: float | None = None,
|
367
|
-
show: bool | None = None,
|
368
|
-
save: bool | str | None = None,
|
369
|
-
ax: Axes | None = None,
|
370
|
-
**kwds,
|
371
|
-
):
|
372
|
-
"""Violin plot using mixscape results. Requires `pt.tl.mixscape` to be run first.
|
373
|
-
|
374
|
-
Args:
|
375
|
-
adata: The annotated data object.
|
376
|
-
target_gene: Target gene name to plot.
|
377
|
-
keys: Keys for accessing variables of `.var_names` or fields of `.obs`. Default is 'mixscape_class_p_ko'.
|
378
|
-
groupby: The key of the observation grouping to consider. Default is 'mixscape_class'.
|
379
|
-
log: Plot on logarithmic axis.
|
380
|
-
use_raw: Whether to use `raw` attribute of `adata`. Defaults to `True` if `.raw` is present.
|
381
|
-
stripplot: Add a stripplot on top of the violin plot.
|
382
|
-
order: Order in which to show the categories.
|
383
|
-
xlabel: Label of the x axis. Defaults to `groupby` if `rotation` is `None`, otherwise, no label is shown.
|
384
|
-
ylabel: Label of the y axis. If `None` and `groupby` is `None`, defaults to `'value'`. If `None` and `groubpy` is not `None`, defaults to `keys`.
|
385
|
-
show: Show the plot, do not return axis.
|
386
|
-
save: If `True` or a `str`, save the figure. A string is appended to the default filename. Infer the filetype if ending on {`'.pdf'`, `'.png'`, `'.svg'`}.
|
387
|
-
ax: A matplotlib axes object. Only works if plotting a single component.
|
388
|
-
**kwds: Additional arguments to `seaborn.violinplot`.
|
389
|
-
|
390
|
-
Returns:
|
391
|
-
A :class:`~matplotlib.axes.Axes` object if `ax` is `None` else `None`.
|
392
|
-
|
393
|
-
Examples:
|
394
|
-
>>> import pertpy as pt
|
395
|
-
>>> mdata = pt.dt.papalexi_2021()
|
396
|
-
>>> mixscape_identifier = pt.tl.Mixscape()
|
397
|
-
>>> mixscape_identifier.perturbation_signature(mdata['rna'], 'perturbation', 'NT', 'replicate')
|
398
|
-
>>> mixscape_identifier.mixscape(adata = mdata['rna'], control = 'NT', labels='gene_target', layer='X_pert')
|
399
|
-
>>> pt.pl.ms.violin(adata = mdata['rna'], target_gene_idents=['NT', 'IFNGR2 NP', 'IFNGR2 KO'], groupby='mixscape_class')
|
400
|
-
"""
|
401
|
-
if isinstance(target_gene_idents, str):
|
402
|
-
mixscape_class_mask = adata.obs[groupby] == target_gene_idents
|
403
|
-
elif isinstance(target_gene_idents, list):
|
404
|
-
mixscape_class_mask = np.full_like(adata.obs[groupby], False, dtype=bool)
|
405
|
-
for ident in target_gene_idents:
|
406
|
-
mixscape_class_mask |= adata.obs[groupby] == ident
|
407
|
-
adata = adata[mixscape_class_mask]
|
408
|
-
|
409
|
-
import seaborn as sns # Slow import, only import if called
|
410
|
-
|
411
|
-
sanitize_anndata(adata)
|
412
|
-
use_raw = _check_use_raw(adata, use_raw)
|
413
|
-
if isinstance(keys, str):
|
414
|
-
keys = [keys]
|
415
|
-
keys = list(OrderedDict.fromkeys(keys)) # remove duplicates, preserving the order
|
416
|
-
|
417
|
-
if isinstance(ylabel, (str, type(None))):
|
418
|
-
ylabel = [ylabel] * (1 if groupby is None else len(keys))
|
419
|
-
if groupby is None:
|
420
|
-
if len(ylabel) != 1:
|
421
|
-
raise ValueError(f"Expected number of y-labels to be `1`, found `{len(ylabel)}`.")
|
422
|
-
elif len(ylabel) != len(keys):
|
423
|
-
raise ValueError(f"Expected number of y-labels to be `{len(keys)}`, " f"found `{len(ylabel)}`.")
|
424
|
-
|
425
|
-
if groupby is not None:
|
426
|
-
if hue is not None:
|
427
|
-
obs_df = get.obs_df(adata, keys=[groupby] + keys + [hue], layer=layer, use_raw=use_raw)
|
428
|
-
else:
|
429
|
-
obs_df = get.obs_df(adata, keys=[groupby] + keys, layer=layer, use_raw=use_raw)
|
430
|
-
|
431
|
-
else:
|
432
|
-
obs_df = get.obs_df(adata, keys=keys, layer=layer, use_raw=use_raw)
|
433
|
-
if groupby is None:
|
434
|
-
obs_tidy = pd.melt(obs_df, value_vars=keys)
|
435
|
-
x = "variable"
|
436
|
-
ys = ["value"]
|
437
|
-
else:
|
438
|
-
obs_tidy = obs_df
|
439
|
-
x = groupby
|
440
|
-
ys = keys
|
441
|
-
|
442
|
-
if multi_panel and groupby is None and len(ys) == 1:
|
443
|
-
# This is a quick and dirty way for adapting scales across several
|
444
|
-
# keys if groupby is None.
|
445
|
-
y = ys[0]
|
446
|
-
|
447
|
-
g = sns.catplot(
|
448
|
-
y=y,
|
449
|
-
data=obs_tidy,
|
450
|
-
kind="violin",
|
451
|
-
scale=scale,
|
452
|
-
col=x,
|
453
|
-
col_order=keys,
|
454
|
-
sharey=False,
|
455
|
-
order=keys,
|
456
|
-
cut=0,
|
457
|
-
inner=None,
|
458
|
-
**kwds,
|
459
|
-
)
|
460
|
-
|
461
|
-
if stripplot:
|
462
|
-
grouped_df = obs_tidy.groupby(x)
|
463
|
-
for ax_id, key in zip(range(g.axes.shape[1]), keys):
|
464
|
-
sns.stripplot(
|
465
|
-
y=y,
|
466
|
-
data=grouped_df.get_group(key),
|
467
|
-
jitter=jitter,
|
468
|
-
size=size,
|
469
|
-
color="black",
|
470
|
-
ax=g.axes[0, ax_id],
|
471
|
-
)
|
472
|
-
if log:
|
473
|
-
g.set(yscale="log")
|
474
|
-
g.set_titles(col_template="{col_name}").set_xlabels("")
|
475
|
-
if rotation is not None:
|
476
|
-
for ax in g.axes[0]:
|
477
|
-
ax.tick_params(axis="x", labelrotation=rotation)
|
478
|
-
else:
|
479
|
-
# set by default the violin plot cut=0 to limit the extend
|
480
|
-
# of the violin plot (see stacked_violin code) for more info.
|
481
|
-
kwds.setdefault("cut", 0)
|
482
|
-
kwds.setdefault("inner")
|
483
|
-
|
484
|
-
if ax is None:
|
485
|
-
axs, _, _, _ = _utils.setup_axes(
|
486
|
-
ax=ax,
|
487
|
-
panels=["x"] if groupby is None else keys,
|
488
|
-
show_ticks=True,
|
489
|
-
right_margin=0.3,
|
490
|
-
)
|
491
|
-
else:
|
492
|
-
axs = [ax]
|
493
|
-
for ax, y, ylab in zip(axs, ys, ylabel): # noqa: F402
|
494
|
-
ax = sns.violinplot(
|
495
|
-
x=x,
|
496
|
-
y=y,
|
497
|
-
data=obs_tidy,
|
498
|
-
order=order,
|
499
|
-
orient="vertical",
|
500
|
-
scale=scale,
|
501
|
-
ax=ax,
|
502
|
-
hue=hue,
|
503
|
-
**kwds,
|
504
|
-
)
|
505
|
-
# Get the handles and labels.
|
506
|
-
handles, labels = ax.get_legend_handles_labels()
|
507
|
-
if stripplot:
|
508
|
-
ax = sns.stripplot(
|
509
|
-
x=x,
|
510
|
-
y=y,
|
511
|
-
data=obs_tidy,
|
512
|
-
order=order,
|
513
|
-
jitter=jitter,
|
514
|
-
color="black",
|
515
|
-
size=size,
|
516
|
-
ax=ax,
|
517
|
-
hue=hue,
|
518
|
-
dodge=True,
|
519
|
-
)
|
520
|
-
if xlabel == "" and groupby is not None and rotation is None:
|
521
|
-
xlabel = groupby.replace("_", " ")
|
522
|
-
ax.set_xlabel(xlabel)
|
523
|
-
if ylab is not None:
|
524
|
-
ax.set_ylabel(ylab)
|
525
|
-
|
526
|
-
if log:
|
527
|
-
ax.set_yscale("log")
|
528
|
-
if rotation is not None:
|
529
|
-
ax.tick_params(axis="x", labelrotation=rotation)
|
530
|
-
|
531
|
-
show = settings.autoshow if show is None else show
|
532
|
-
if hue is not None and stripplot is True:
|
533
|
-
pl.legend(handles, labels)
|
534
|
-
_utils.savefig_or_show("mixscape_violin", show=show, save=save)
|
535
|
-
|
536
|
-
if not show:
|
537
|
-
if multi_panel and groupby is None and len(ys) == 1:
|
538
|
-
return g
|
539
|
-
elif len(axs) == 1:
|
540
|
-
return axs[0]
|
541
|
-
else:
|
542
|
-
return axs
|
543
|
-
|
544
|
-
@staticmethod
|
545
|
-
def lda( # pragma: no cover
|
546
|
-
adata: AnnData,
|
547
|
-
control: str,
|
548
|
-
mixscape_class="mixscape_class",
|
549
|
-
mixscape_class_global="mixscape_class_global",
|
550
|
-
perturbation_type: str | None = "KO",
|
551
|
-
lda_key: str | None = "mixscape_lda",
|
552
|
-
n_components: int | None = None,
|
553
|
-
show: bool | None = None,
|
554
|
-
save: bool | str | None = None,
|
555
|
-
**kwds,
|
556
|
-
):
|
557
|
-
"""Visualizing perturbation responses with Linear Discriminant Analysis. Requires `pt.tl.mixscape()` to be run first.
|
558
|
-
|
559
|
-
Args:
|
560
|
-
adata: The annotated data object.
|
561
|
-
control: Control category from the `pert_key` column.
|
562
|
-
labels: The column of `.obs` with target gene labels.
|
563
|
-
mixscape_class: The column of `.obs` with the mixscape classification result.
|
564
|
-
mixscape_class_global: The column of `.obs` with mixscape global classification result (perturbed, NP or NT).
|
565
|
-
perturbation_type: specify type of CRISPR perturbation expected for labeling mixscape classifications. Defaults to 'KO'.
|
566
|
-
lda_key: If not speficied, lda looks .uns["mixscape_lda"] for the LDA results.
|
567
|
-
n_components: The number of dimensions of the embedding.
|
568
|
-
show: Show the plot, do not return axis.
|
569
|
-
save: If `True` or a `str`, save the figure. A string is appended to the default filename. Infer the filetype if ending on {`'.pdf'`, `'.png'`, `'.svg'`}.
|
570
|
-
**kwds: Additional arguments to `scanpy.pl.umap`.
|
571
|
-
|
572
|
-
Examples:
|
573
|
-
>>> import pertpy as pt
|
574
|
-
>>> mdata = pt.dt.papalexi_2021()
|
575
|
-
>>> mixscape_identifier = pt.tl.Mixscape()
|
576
|
-
>>> mixscape_identifier.perturbation_signature(mdata['rna'], 'perturbation', 'NT', 'replicate')
|
577
|
-
>>> mixscape_identifier.mixscape(adata = mdata['rna'], control = 'NT', labels='gene_target', layer='X_pert')
|
578
|
-
>>> mixscape_identifier.lda(adata=mdata['rna'], control='NT', labels='gene_target', layer='X_pert')
|
579
|
-
>>> pt.pl.ms.lda(adata=mdata['rna'], control='NT')
|
580
|
-
"""
|
581
|
-
if mixscape_class not in adata.obs:
|
582
|
-
raise ValueError(f'Did not find .obs["{mixscape_class!r}"]. Please run `pt.tl.mixscape` first.')
|
583
|
-
if lda_key not in adata.uns:
|
584
|
-
raise ValueError(f'Did not find .uns["{lda_key!r}"]. Run `pt.tl.neighbors` first.')
|
585
|
-
|
586
|
-
adata_subset = adata[
|
587
|
-
(adata.obs[mixscape_class_global] == perturbation_type) | (adata.obs[mixscape_class_global] == control)
|
588
|
-
].copy()
|
589
|
-
adata_subset.obsm[lda_key] = adata_subset.uns[lda_key]
|
590
|
-
if n_components is None:
|
591
|
-
n_components = adata_subset.uns[lda_key].shape[1]
|
592
|
-
sc.pp.neighbors(adata_subset, use_rep=lda_key)
|
593
|
-
sc.tl.umap(adata_subset, n_components=n_components)
|
594
|
-
sc.pl.umap(adata_subset, color=mixscape_class, show=show, save=save, **kwds)
|