pertpy 0.6.0__py3-none-any.whl → 0.8.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pertpy/__init__.py +4 -2
 - pertpy/data/__init__.py +66 -1
 - pertpy/data/_dataloader.py +28 -26
 - pertpy/data/_datasets.py +261 -92
 - pertpy/metadata/__init__.py +6 -0
 - pertpy/metadata/_cell_line.py +795 -0
 - pertpy/metadata/_compound.py +128 -0
 - pertpy/metadata/_drug.py +238 -0
 - pertpy/metadata/_look_up.py +569 -0
 - pertpy/metadata/_metadata.py +70 -0
 - pertpy/metadata/_moa.py +125 -0
 - pertpy/plot/__init__.py +0 -13
 - pertpy/preprocessing/__init__.py +2 -0
 - pertpy/preprocessing/_guide_rna.py +89 -6
 - pertpy/tools/__init__.py +48 -15
 - pertpy/tools/_augur.py +329 -32
 - pertpy/tools/_cinemaot.py +145 -6
 - pertpy/tools/_coda/_base_coda.py +1237 -116
 - pertpy/tools/_coda/_sccoda.py +66 -36
 - pertpy/tools/_coda/_tasccoda.py +46 -39
 - pertpy/tools/_dialogue.py +180 -77
 - pertpy/tools/_differential_gene_expression/__init__.py +20 -0
 - pertpy/tools/_differential_gene_expression/_base.py +657 -0
 - pertpy/tools/_differential_gene_expression/_checks.py +41 -0
 - pertpy/tools/_differential_gene_expression/_dge_comparison.py +86 -0
 - pertpy/tools/_differential_gene_expression/_edger.py +125 -0
 - pertpy/tools/_differential_gene_expression/_formulaic.py +189 -0
 - pertpy/tools/_differential_gene_expression/_pydeseq2.py +95 -0
 - pertpy/tools/_differential_gene_expression/_simple_tests.py +162 -0
 - pertpy/tools/_differential_gene_expression/_statsmodels.py +72 -0
 - pertpy/tools/_distances/_distance_tests.py +29 -24
 - pertpy/tools/_distances/_distances.py +584 -98
 - pertpy/tools/_enrichment.py +460 -0
 - pertpy/tools/_kernel_pca.py +1 -1
 - pertpy/tools/_milo.py +406 -49
 - pertpy/tools/_mixscape.py +677 -55
 - pertpy/tools/_perturbation_space/_clustering.py +10 -3
 - pertpy/tools/_perturbation_space/_comparison.py +112 -0
 - pertpy/tools/_perturbation_space/_discriminator_classifiers.py +524 -0
 - pertpy/tools/_perturbation_space/_perturbation_space.py +146 -52
 - pertpy/tools/_perturbation_space/_simple.py +52 -11
 - pertpy/tools/_scgen/__init__.py +1 -1
 - pertpy/tools/_scgen/_base_components.py +2 -3
 - pertpy/tools/_scgen/_scgen.py +706 -0
 - pertpy/tools/_scgen/_utils.py +3 -5
 - pertpy/tools/decoupler_LICENSE +674 -0
 - {pertpy-0.6.0.dist-info → pertpy-0.8.0.dist-info}/METADATA +48 -20
 - pertpy-0.8.0.dist-info/RECORD +57 -0
 - {pertpy-0.6.0.dist-info → pertpy-0.8.0.dist-info}/WHEEL +1 -1
 - pertpy/plot/_augur.py +0 -234
 - pertpy/plot/_cinemaot.py +0 -81
 - pertpy/plot/_coda.py +0 -1001
 - pertpy/plot/_dialogue.py +0 -91
 - pertpy/plot/_guide_rna.py +0 -82
 - pertpy/plot/_milopy.py +0 -284
 - pertpy/plot/_mixscape.py +0 -594
 - pertpy/plot/_scgen.py +0 -337
 - pertpy/tools/_differential_gene_expression.py +0 -99
 - pertpy/tools/_metadata/__init__.py +0 -0
 - pertpy/tools/_metadata/_cell_line.py +0 -613
 - pertpy/tools/_metadata/_look_up.py +0 -342
 - pertpy/tools/_perturbation_space/_discriminator_classifier.py +0 -381
 - pertpy/tools/_scgen/_jax_scgen.py +0 -370
 - pertpy-0.6.0.dist-info/RECORD +0 -50
 - /pertpy/tools/_scgen/{_jax_scgenvae.py → _scgenvae.py} +0 -0
 - {pertpy-0.6.0.dist-info → pertpy-0.8.0.dist-info}/licenses/LICENSE +0 -0
 
| 
         @@ -1,381 +0,0 @@ 
     | 
|
| 
       1 
     | 
    
         
            -
            from __future__ import annotations
         
     | 
| 
       2 
     | 
    
         
            -
             
     | 
| 
       3 
     | 
    
         
            -
            from typing import TYPE_CHECKING
         
     | 
| 
       4 
     | 
    
         
            -
             
     | 
| 
       5 
     | 
    
         
            -
            import anndata
         
     | 
| 
       6 
     | 
    
         
            -
            import pytorch_lightning as pl
         
     | 
| 
       7 
     | 
    
         
            -
            import scipy
         
     | 
| 
       8 
     | 
    
         
            -
            import torch
         
     | 
| 
       9 
     | 
    
         
            -
            from anndata import AnnData
         
     | 
| 
       10 
     | 
    
         
            -
            from pytorch_lightning.callbacks import EarlyStopping
         
     | 
| 
       11 
     | 
    
         
            -
            from sklearn.model_selection import train_test_split
         
     | 
| 
       12 
     | 
    
         
            -
            from sklearn.preprocessing import LabelEncoder
         
     | 
| 
       13 
     | 
    
         
            -
            from torch import optim
         
     | 
| 
       14 
     | 
    
         
            -
            from torch.utils.data import DataLoader, Dataset, WeightedRandomSampler
         
     | 
| 
       15 
     | 
    
         
            -
             
     | 
| 
       16 
     | 
    
         
            -
            from pertpy.tools._perturbation_space._perturbation_space import PerturbationSpace
         
     | 
| 
       17 
     | 
    
         
            -
             
     | 
| 
       18 
     | 
    
         
            -
            if TYPE_CHECKING:
         
     | 
| 
       19 
     | 
    
         
            -
                import numpy as np
         
     | 
| 
       20 
     | 
    
         
            -
             
     | 
| 
       21 
     | 
    
         
            -
             
     | 
| 
       22 
     | 
    
         
            -
            class DiscriminatorClassifierSpace(PerturbationSpace):
         
     | 
| 
       23 
     | 
    
         
            -
                """Leveraging discriminator classifier. Fit a regressor model to the data and take the feature space.
         
     | 
| 
       24 
     | 
    
         
            -
             
     | 
| 
       25 
     | 
    
         
            -
                See here https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289078/ (Dose-response analysis) and Sup 17-19)
         
     | 
| 
       26 
     | 
    
         
            -
                We use either the coefficients of the model for each perturbation as a feature or train a classifier example
         
     | 
| 
       27 
     | 
    
         
            -
                (simple MLP or logistic regression and take the penultimate layer as feature space and apply pseudobulking approach).
         
     | 
| 
       28 
     | 
    
         
            -
                """
         
     | 
| 
       29 
     | 
    
         
            -
             
     | 
| 
       30 
     | 
    
         
            -
                def load(  # type: ignore
         
     | 
| 
       31 
     | 
    
         
            -
                    self,
         
     | 
| 
       32 
     | 
    
         
            -
                    adata: AnnData,
         
     | 
| 
       33 
     | 
    
         
            -
                    target_col: str = "perturbations",
         
     | 
| 
       34 
     | 
    
         
            -
                    layer_key: str = None,
         
     | 
| 
       35 
     | 
    
         
            -
                    hidden_dim: list[int] = None,
         
     | 
| 
       36 
     | 
    
         
            -
                    dropout: float = 0.0,
         
     | 
| 
       37 
     | 
    
         
            -
                    batch_norm: bool = True,
         
     | 
| 
       38 
     | 
    
         
            -
                    batch_size: int = 256,
         
     | 
| 
       39 
     | 
    
         
            -
                    test_split_size: float = 0.2,
         
     | 
| 
       40 
     | 
    
         
            -
                    validation_split_size: float = 0.25,
         
     | 
| 
       41 
     | 
    
         
            -
                ):
         
     | 
| 
       42 
     | 
    
         
            -
                    """Creates a model with the specified parameters (hidden_dim, dropout, batch_norm).
         
     | 
| 
       43 
     | 
    
         
            -
             
     | 
| 
       44 
     | 
    
         
            -
                    It further creates dataloaders and fixes class imbalance due to control.
         
     | 
| 
       45 
     | 
    
         
            -
                    Sets the device to a GPU if available.
         
     | 
| 
       46 
     | 
    
         
            -
             
     | 
| 
       47 
     | 
    
         
            -
                    Args:
         
     | 
| 
       48 
     | 
    
         
            -
                        adata: AnnData object of size cells x genes
         
     | 
| 
       49 
     | 
    
         
            -
                        target_col: .obs column that stores the perturbations. Defaults to "perturbations".
         
     | 
| 
       50 
     | 
    
         
            -
                        layer_key: Layer to use. Defaults to None.
         
     | 
| 
       51 
     | 
    
         
            -
                        hidden_dim: list of hidden layers of the neural network. For instance: [512, 256].
         
     | 
| 
       52 
     | 
    
         
            -
                        dropout: amount of dropout applied, constant for all layers. Defaults to 0.
         
     | 
| 
       53 
     | 
    
         
            -
                        batch_norm: Whether to apply batch normalization. Defaults to True.
         
     | 
| 
       54 
     | 
    
         
            -
                        batch_size: The batch size. Defaults to 256.
         
     | 
| 
       55 
     | 
    
         
            -
                        test_split_size: Default to 0.2.
         
     | 
| 
       56 
     | 
    
         
            -
                        validation_split_size: Size of the validation split taking into account that is taking with respect to the resultant train split.
         
     | 
| 
       57 
     | 
    
         
            -
                                               Defaults to 0.25.
         
     | 
| 
       58 
     | 
    
         
            -
             
     | 
| 
       59 
     | 
    
         
            -
                    Examples:
         
     | 
| 
       60 
     | 
    
         
            -
                        >>> import pertpy as pt
         
     | 
| 
       61 
     | 
    
         
            -
                        >>> adata = pt.dt.papalexi_2021()['rna']
         
     | 
| 
       62 
     | 
    
         
            -
                        >>> dcs = pt.tl.DiscriminatorClassifierSpace()
         
     | 
| 
       63 
     | 
    
         
            -
                        >>> dcs.load(adata, target_col="gene_target")
         
     | 
| 
       64 
     | 
    
         
            -
                    """
         
     | 
| 
       65 
     | 
    
         
            -
                    if layer_key is not None and layer_key not in adata.obs.columns:
         
     | 
| 
       66 
     | 
    
         
            -
                        raise ValueError(f"Layer key {layer_key} not found in adata. {layer_key}")
         
     | 
| 
       67 
     | 
    
         
            -
             
     | 
| 
       68 
     | 
    
         
            -
                    if target_col not in adata.obs:
         
     | 
| 
       69 
     | 
    
         
            -
                        raise ValueError(f"Column {target_col!r} does not exist in the .obs attribute.")
         
     | 
| 
       70 
     | 
    
         
            -
             
     | 
| 
       71 
     | 
    
         
            -
                    if hidden_dim is None:
         
     | 
| 
       72 
     | 
    
         
            -
                        hidden_dim = [512]
         
     | 
| 
       73 
     | 
    
         
            -
             
     | 
| 
       74 
     | 
    
         
            -
                    # Labels are strings, one hot encoding for classification
         
     | 
| 
       75 
     | 
    
         
            -
                    n_classes = len(adata.obs[target_col].unique())
         
     | 
| 
       76 
     | 
    
         
            -
                    labels = adata.obs[target_col]
         
     | 
| 
       77 
     | 
    
         
            -
                    label_encoder = LabelEncoder()
         
     | 
| 
       78 
     | 
    
         
            -
                    encoded_labels = label_encoder.fit_transform(labels)
         
     | 
| 
       79 
     | 
    
         
            -
                    adata.obs["encoded_perturbations"] = encoded_labels
         
     | 
| 
       80 
     | 
    
         
            -
             
     | 
| 
       81 
     | 
    
         
            -
                    # Split the data in train, test and validation
         
     | 
| 
       82 
     | 
    
         
            -
                    X = list(range(0, adata.n_obs))
         
     | 
| 
       83 
     | 
    
         
            -
                    y = adata.obs[target_col]
         
     | 
| 
       84 
     | 
    
         
            -
             
     | 
| 
       85 
     | 
    
         
            -
                    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_split_size, stratify=y)
         
     | 
| 
       86 
     | 
    
         
            -
                    X_train, X_val, y_train, y_val = train_test_split(
         
     | 
| 
       87 
     | 
    
         
            -
                        X_train, y_train, test_size=validation_split_size, stratify=y_train
         
     | 
| 
       88 
     | 
    
         
            -
                    )
         
     | 
| 
       89 
     | 
    
         
            -
             
     | 
| 
       90 
     | 
    
         
            -
                    train_dataset = PLDataset(
         
     | 
| 
       91 
     | 
    
         
            -
                        adata=adata[X_train], target_col="encoded_perturbations", label_col=target_col, layer_key=layer_key
         
     | 
| 
       92 
     | 
    
         
            -
                    )
         
     | 
| 
       93 
     | 
    
         
            -
                    val_dataset = PLDataset(
         
     | 
| 
       94 
     | 
    
         
            -
                        adata=adata[X_val], target_col="encoded_perturbations", label_col=target_col, layer_key=layer_key
         
     | 
| 
       95 
     | 
    
         
            -
                    )
         
     | 
| 
       96 
     | 
    
         
            -
                    test_dataset = PLDataset(
         
     | 
| 
       97 
     | 
    
         
            -
                        adata=adata[X_test], target_col="encoded_perturbations", label_col=target_col, layer_key=layer_key
         
     | 
| 
       98 
     | 
    
         
            -
                    )  # we don't need to pass y_test since the label selection is done inside
         
     | 
| 
       99 
     | 
    
         
            -
             
     | 
| 
       100 
     | 
    
         
            -
                    # Fix class unbalance (likely to happen in perturbation datasets)
         
     | 
| 
       101 
     | 
    
         
            -
                    # Usually control cells are overrepresented such that predicting control all time would give good results
         
     | 
| 
       102 
     | 
    
         
            -
                    # Cells with rare perturbations are sampled more
         
     | 
| 
       103 
     | 
    
         
            -
                    class_weights = 1.0 / torch.bincount(torch.tensor(train_dataset.labels.values))
         
     | 
| 
       104 
     | 
    
         
            -
                    train_weights = class_weights[train_dataset.labels]
         
     | 
| 
       105 
     | 
    
         
            -
                    train_sampler = WeightedRandomSampler(train_weights, len(train_weights))
         
     | 
| 
       106 
     | 
    
         
            -
             
     | 
| 
       107 
     | 
    
         
            -
                    self.train_dataloader = DataLoader(train_dataset, batch_size=batch_size, sampler=train_sampler, num_workers=4)
         
     | 
| 
       108 
     | 
    
         
            -
                    self.test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
         
     | 
| 
       109 
     | 
    
         
            -
                    self.valid_dataloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
         
     | 
| 
       110 
     | 
    
         
            -
             
     | 
| 
       111 
     | 
    
         
            -
                    # Define the network
         
     | 
| 
       112 
     | 
    
         
            -
                    sizes = [adata.n_vars] + hidden_dim + [n_classes]
         
     | 
| 
       113 
     | 
    
         
            -
                    self.net = MLP(sizes=sizes, dropout=dropout, batch_norm=batch_norm)
         
     | 
| 
       114 
     | 
    
         
            -
             
     | 
| 
       115 
     | 
    
         
            -
                    # Define a dataset that gathers all the data and dataloader for getting embeddings
         
     | 
| 
       116 
     | 
    
         
            -
                    total_dataset = PLDataset(
         
     | 
| 
       117 
     | 
    
         
            -
                        adata=adata, target_col="encoded_perturbations", label_col=target_col, layer_key=layer_key
         
     | 
| 
       118 
     | 
    
         
            -
                    )
         
     | 
| 
       119 
     | 
    
         
            -
                    self.entire_dataset = DataLoader(total_dataset, batch_size=batch_size * 2, shuffle=False, num_workers=4)
         
     | 
| 
       120 
     | 
    
         
            -
             
     | 
| 
       121 
     | 
    
         
            -
                    return self
         
     | 
| 
       122 
     | 
    
         
            -
             
     | 
| 
       123 
     | 
    
         
            -
                def train(self, max_epochs: int = 40, val_epochs_check: int = 5, patience: int = 2):
         
     | 
| 
       124 
     | 
    
         
            -
                    """Trains and test the defined model in the load step.
         
     | 
| 
       125 
     | 
    
         
            -
             
     | 
| 
       126 
     | 
    
         
            -
                    Args:
         
     | 
| 
       127 
     | 
    
         
            -
                        max_epochs: max epochs for training. Default to 40
         
     | 
| 
       128 
     | 
    
         
            -
                        val_epochs_check: check in validation dataset each val_epochs_check epochs
         
     | 
| 
       129 
     | 
    
         
            -
                        patience: patience before the early stopping flag is activated
         
     | 
| 
       130 
     | 
    
         
            -
             
     | 
| 
       131 
     | 
    
         
            -
                    Examples:
         
     | 
| 
       132 
     | 
    
         
            -
                        >>> import pertpy as pt
         
     | 
| 
       133 
     | 
    
         
            -
                        >>> adata = pt.dt.papalexi_2021()['rna']
         
     | 
| 
       134 
     | 
    
         
            -
                        >>> dcs = pt.tl.DiscriminatorClassifierSpace()
         
     | 
| 
       135 
     | 
    
         
            -
                        >>> dcs.load(adata, target_col="gene_target")
         
     | 
| 
       136 
     | 
    
         
            -
                        >>> dcs.train(max_epochs=5)
         
     | 
| 
       137 
     | 
    
         
            -
                    """
         
     | 
| 
       138 
     | 
    
         
            -
                    self.trainer = pl.Trainer(
         
     | 
| 
       139 
     | 
    
         
            -
                        min_epochs=1,
         
     | 
| 
       140 
     | 
    
         
            -
                        max_epochs=max_epochs,
         
     | 
| 
       141 
     | 
    
         
            -
                        check_val_every_n_epoch=val_epochs_check,
         
     | 
| 
       142 
     | 
    
         
            -
                        callbacks=[EarlyStopping(monitor="val_loss", mode="min", patience=patience)],
         
     | 
| 
       143 
     | 
    
         
            -
                        devices="auto",
         
     | 
| 
       144 
     | 
    
         
            -
                        accelerator="auto",
         
     | 
| 
       145 
     | 
    
         
            -
                    )
         
     | 
| 
       146 
     | 
    
         
            -
             
     | 
| 
       147 
     | 
    
         
            -
                    self.model = PerturbationClassifier(model=self.net)
         
     | 
| 
       148 
     | 
    
         
            -
             
     | 
| 
       149 
     | 
    
         
            -
                    self.trainer.fit(
         
     | 
| 
       150 
     | 
    
         
            -
                        model=self.model, train_dataloaders=self.train_dataloader, val_dataloaders=self.valid_dataloader
         
     | 
| 
       151 
     | 
    
         
            -
                    )
         
     | 
| 
       152 
     | 
    
         
            -
                    self.trainer.test(model=self.model, dataloaders=self.test_dataloader)
         
     | 
| 
       153 
     | 
    
         
            -
             
     | 
| 
       154 
     | 
    
         
            -
                def get_embeddings(self) -> AnnData:
         
     | 
| 
       155 
     | 
    
         
            -
                    """Access to the embeddings of the last layer.
         
     | 
| 
       156 
     | 
    
         
            -
             
     | 
| 
       157 
     | 
    
         
            -
                    Returns:
         
     | 
| 
       158 
     | 
    
         
            -
                        AnnData whose `X` attribute is the perturbation embedding and whose .obs['perturbations'] are the names of the perturbations.
         
     | 
| 
       159 
     | 
    
         
            -
             
     | 
| 
       160 
     | 
    
         
            -
                    Examples:
         
     | 
| 
       161 
     | 
    
         
            -
                        >>> import pertpy as pt
         
     | 
| 
       162 
     | 
    
         
            -
                        >>> adata = pt.dt.papalexi_2021()['rna']
         
     | 
| 
       163 
     | 
    
         
            -
                        >>> dcs = pt.tl.DiscriminatorClassifierSpace()
         
     | 
| 
       164 
     | 
    
         
            -
                        >>> dcs.load(adata, target_col="gene_target")
         
     | 
| 
       165 
     | 
    
         
            -
                        >>> dcs.train()
         
     | 
| 
       166 
     | 
    
         
            -
                        >>> embeddings = dcs.get_embeddings()
         
     | 
| 
       167 
     | 
    
         
            -
                    """
         
     | 
| 
       168 
     | 
    
         
            -
                    with torch.no_grad():
         
     | 
| 
       169 
     | 
    
         
            -
                        self.model.eval()
         
     | 
| 
       170 
     | 
    
         
            -
                        for dataset_count, batch in enumerate(self.entire_dataset):
         
     | 
| 
       171 
     | 
    
         
            -
                            emb, y = self.model.get_embeddings(batch)
         
     | 
| 
       172 
     | 
    
         
            -
                            batch_adata = AnnData(X=emb.cpu().numpy())
         
     | 
| 
       173 
     | 
    
         
            -
                            batch_adata.obs["perturbations"] = y
         
     | 
| 
       174 
     | 
    
         
            -
                            if dataset_count == 0:
         
     | 
| 
       175 
     | 
    
         
            -
                                pert_adata = batch_adata
         
     | 
| 
       176 
     | 
    
         
            -
                            else:
         
     | 
| 
       177 
     | 
    
         
            -
                                pert_adata = anndata.concat([pert_adata, batch_adata])
         
     | 
| 
       178 
     | 
    
         
            -
             
     | 
| 
       179 
     | 
    
         
            -
                    return pert_adata
         
     | 
| 
       180 
     | 
    
         
            -
             
     | 
| 
       181 
     | 
    
         
            -
             
     | 
| 
       182 
     | 
    
         
            -
            class MLP(torch.nn.Module):
         
     | 
| 
       183 
     | 
    
         
            -
                """
         
     | 
| 
       184 
     | 
    
         
            -
                A multilayer perceptron with ReLU activations, optional Dropout and optional BatchNorm.
         
     | 
| 
       185 
     | 
    
         
            -
                """
         
     | 
| 
       186 
     | 
    
         
            -
             
     | 
| 
       187 
     | 
    
         
            -
                def __init__(
         
     | 
| 
       188 
     | 
    
         
            -
                    self,
         
     | 
| 
       189 
     | 
    
         
            -
                    sizes: list[int],
         
     | 
| 
       190 
     | 
    
         
            -
                    dropout: float = 0.0,
         
     | 
| 
       191 
     | 
    
         
            -
                    batch_norm: bool = True,
         
     | 
| 
       192 
     | 
    
         
            -
                    layer_norm: bool = False,
         
     | 
| 
       193 
     | 
    
         
            -
                    last_layer_act: str = "linear",
         
     | 
| 
       194 
     | 
    
         
            -
                ) -> None:
         
     | 
| 
       195 
     | 
    
         
            -
                    """
         
     | 
| 
       196 
     | 
    
         
            -
                    Args:
         
     | 
| 
       197 
     | 
    
         
            -
                        sizes: size of layers
         
     | 
| 
       198 
     | 
    
         
            -
                        dropout: Dropout probability. Defaults to 0.0.
         
     | 
| 
       199 
     | 
    
         
            -
                        batch_norm: batch norm. Defaults to True.
         
     | 
| 
       200 
     | 
    
         
            -
                        layer_norm: layern norm, common in Transformers. Defaults to False.
         
     | 
| 
       201 
     | 
    
         
            -
                        last_layer_act: activation function of last layer. Defaults to "linear".
         
     | 
| 
       202 
     | 
    
         
            -
                    """
         
     | 
| 
       203 
     | 
    
         
            -
                    super().__init__()
         
     | 
| 
       204 
     | 
    
         
            -
                    layers = []
         
     | 
| 
       205 
     | 
    
         
            -
                    for s in range(len(sizes) - 1):
         
     | 
| 
       206 
     | 
    
         
            -
                        layers += [
         
     | 
| 
       207 
     | 
    
         
            -
                            torch.nn.Linear(sizes[s], sizes[s + 1]),
         
     | 
| 
       208 
     | 
    
         
            -
                            torch.nn.BatchNorm1d(sizes[s + 1]) if batch_norm and s < len(sizes) - 2 else None,
         
     | 
| 
       209 
     | 
    
         
            -
                            torch.nn.LayerNorm(sizes[s + 1]) if layer_norm and s < len(sizes) - 2 and not batch_norm else None,
         
     | 
| 
       210 
     | 
    
         
            -
                            torch.nn.ReLU(),
         
     | 
| 
       211 
     | 
    
         
            -
                            torch.nn.Dropout(dropout) if s < len(sizes) - 2 else None,
         
     | 
| 
       212 
     | 
    
         
            -
                        ]
         
     | 
| 
       213 
     | 
    
         
            -
             
     | 
| 
       214 
     | 
    
         
            -
                    layers = [layer for layer in layers if layer is not None][:-1]
         
     | 
| 
       215 
     | 
    
         
            -
                    self.activation = last_layer_act
         
     | 
| 
       216 
     | 
    
         
            -
                    if self.activation == "linear":
         
     | 
| 
       217 
     | 
    
         
            -
                        pass
         
     | 
| 
       218 
     | 
    
         
            -
                    elif self.activation == "ReLU":
         
     | 
| 
       219 
     | 
    
         
            -
                        self.relu = torch.nn.ReLU()
         
     | 
| 
       220 
     | 
    
         
            -
                    else:
         
     | 
| 
       221 
     | 
    
         
            -
                        raise ValueError("last_layer_act must be one of 'linear' or 'ReLU'")
         
     | 
| 
       222 
     | 
    
         
            -
             
     | 
| 
       223 
     | 
    
         
            -
                    self.network = torch.nn.Sequential(*layers)
         
     | 
| 
       224 
     | 
    
         
            -
             
     | 
| 
       225 
     | 
    
         
            -
                    self.network.apply(init_weights)
         
     | 
| 
       226 
     | 
    
         
            -
             
     | 
| 
       227 
     | 
    
         
            -
                    self.sizes = sizes
         
     | 
| 
       228 
     | 
    
         
            -
                    self.batch_norm = batch_norm
         
     | 
| 
       229 
     | 
    
         
            -
                    self.layer_norm = layer_norm
         
     | 
| 
       230 
     | 
    
         
            -
                    self.last_layer_act = last_layer_act
         
     | 
| 
       231 
     | 
    
         
            -
             
     | 
| 
       232 
     | 
    
         
            -
                def forward(self, x) -> torch.Tensor:
         
     | 
| 
       233 
     | 
    
         
            -
                    if self.activation == "ReLU":
         
     | 
| 
       234 
     | 
    
         
            -
                        return self.relu(self.network(x))
         
     | 
| 
       235 
     | 
    
         
            -
                    return self.network(x)
         
     | 
| 
       236 
     | 
    
         
            -
             
     | 
| 
       237 
     | 
    
         
            -
                def embedding(self, x) -> torch.Tensor:
         
     | 
| 
       238 
     | 
    
         
            -
                    for layer in self.network[:-1]:
         
     | 
| 
       239 
     | 
    
         
            -
                        x = layer(x)
         
     | 
| 
       240 
     | 
    
         
            -
                    return x
         
     | 
| 
       241 
     | 
    
         
            -
             
     | 
| 
       242 
     | 
    
         
            -
             
     | 
| 
       243 
     | 
    
         
            -
            def init_weights(m):
         
     | 
| 
       244 
     | 
    
         
            -
                if isinstance(m, torch.nn.Linear):
         
     | 
| 
       245 
     | 
    
         
            -
                    torch.nn.init.kaiming_uniform_(m.weight)
         
     | 
| 
       246 
     | 
    
         
            -
                    m.bias.data.fill_(0.01)
         
     | 
| 
       247 
     | 
    
         
            -
             
     | 
| 
       248 
     | 
    
         
            -
             
     | 
| 
       249 
     | 
    
         
            -
            class PLDataset(Dataset):
         
     | 
| 
       250 
     | 
    
         
            -
                """
         
     | 
| 
       251 
     | 
    
         
            -
                Dataset for perturbation classification.
         
     | 
| 
       252 
     | 
    
         
            -
                Needed for training a model that classifies the perturbed cells and takes as perturbation embedding the second to last layer.
         
     | 
| 
       253 
     | 
    
         
            -
                """
         
     | 
| 
       254 
     | 
    
         
            -
             
     | 
| 
       255 
     | 
    
         
            -
                def __init__(
         
     | 
| 
       256 
     | 
    
         
            -
                    self,
         
     | 
| 
       257 
     | 
    
         
            -
                    adata: np.array,
         
     | 
| 
       258 
     | 
    
         
            -
                    target_col: str = "perturbations",
         
     | 
| 
       259 
     | 
    
         
            -
                    label_col: str = "perturbations",
         
     | 
| 
       260 
     | 
    
         
            -
                    layer_key: str = None,
         
     | 
| 
       261 
     | 
    
         
            -
                ):
         
     | 
| 
       262 
     | 
    
         
            -
                    """
         
     | 
| 
       263 
     | 
    
         
            -
                    Args:
         
     | 
| 
       264 
     | 
    
         
            -
                        adata: AnnData object with observations and labels.
         
     | 
| 
       265 
     | 
    
         
            -
                        target_col: key with the perturbation labels numerically encoded. Defaults to 'perturbations'.
         
     | 
| 
       266 
     | 
    
         
            -
                        label_col: key with the perturbation labels. Defaults to 'perturbations'.
         
     | 
| 
       267 
     | 
    
         
            -
                        layer_key: key of the layer to be used as data, otherwise .X
         
     | 
| 
       268 
     | 
    
         
            -
                    """
         
     | 
| 
       269 
     | 
    
         
            -
             
     | 
| 
       270 
     | 
    
         
            -
                    if layer_key:
         
     | 
| 
       271 
     | 
    
         
            -
                        self.data = adata.layers[layer_key]
         
     | 
| 
       272 
     | 
    
         
            -
                    else:
         
     | 
| 
       273 
     | 
    
         
            -
                        self.data = adata.X
         
     | 
| 
       274 
     | 
    
         
            -
             
     | 
| 
       275 
     | 
    
         
            -
                    self.labels = adata.obs[target_col]
         
     | 
| 
       276 
     | 
    
         
            -
                    self.pert_labels = adata.obs[label_col]
         
     | 
| 
       277 
     | 
    
         
            -
             
     | 
| 
       278 
     | 
    
         
            -
                def __len__(self):
         
     | 
| 
       279 
     | 
    
         
            -
                    return len(self.data)
         
     | 
| 
       280 
     | 
    
         
            -
             
     | 
| 
       281 
     | 
    
         
            -
                def __getitem__(self, idx):
         
     | 
| 
       282 
     | 
    
         
            -
                    """Returns a sample and corresponding perturbations applied (labels)"""
         
     | 
| 
       283 
     | 
    
         
            -
             
     | 
| 
       284 
     | 
    
         
            -
                    sample = self.data[idx].A if scipy.sparse.issparse(self.data) else self.data[idx]
         
     | 
| 
       285 
     | 
    
         
            -
                    num_label = self.labels[idx]
         
     | 
| 
       286 
     | 
    
         
            -
                    str_label = self.pert_labels[idx]
         
     | 
| 
       287 
     | 
    
         
            -
             
     | 
| 
       288 
     | 
    
         
            -
                    return sample, num_label, str_label
         
     | 
| 
       289 
     | 
    
         
            -
             
     | 
| 
       290 
     | 
    
         
            -
             
     | 
| 
       291 
     | 
    
         
            -
            class PerturbationClassifier(pl.LightningModule):
         
     | 
| 
       292 
     | 
    
         
            -
                def __init__(
         
     | 
| 
       293 
     | 
    
         
            -
                    self,
         
     | 
| 
       294 
     | 
    
         
            -
                    model: torch.nn.Module,
         
     | 
| 
       295 
     | 
    
         
            -
                    layers: list = [512],  # noqa
         
     | 
| 
       296 
     | 
    
         
            -
                    dropout: float = 0.0,
         
     | 
| 
       297 
     | 
    
         
            -
                    batch_norm: bool = True,
         
     | 
| 
       298 
     | 
    
         
            -
                    layer_norm: bool = False,
         
     | 
| 
       299 
     | 
    
         
            -
                    last_layer_act: str = "linear",
         
     | 
| 
       300 
     | 
    
         
            -
                    lr=1e-4,
         
     | 
| 
       301 
     | 
    
         
            -
                    seed=42,
         
     | 
| 
       302 
     | 
    
         
            -
                ):
         
     | 
| 
       303 
     | 
    
         
            -
                    """
         
     | 
| 
       304 
     | 
    
         
            -
                    Inputs:
         
     | 
| 
       305 
     | 
    
         
            -
                        layers - list: layers of the MLP
         
     | 
| 
       306 
     | 
    
         
            -
                    """
         
     | 
| 
       307 
     | 
    
         
            -
                    super().__init__()
         
     | 
| 
       308 
     | 
    
         
            -
                    self.save_hyperparameters()
         
     | 
| 
       309 
     | 
    
         
            -
                    if model:
         
     | 
| 
       310 
     | 
    
         
            -
                        self.net = model
         
     | 
| 
       311 
     | 
    
         
            -
                    else:
         
     | 
| 
       312 
     | 
    
         
            -
                        self._create_model()
         
     | 
| 
       313 
     | 
    
         
            -
             
     | 
| 
       314 
     | 
    
         
            -
                def _create_model(self):
         
     | 
| 
       315 
     | 
    
         
            -
                    self.net = MLP(
         
     | 
| 
       316 
     | 
    
         
            -
                        sizes=self.hparams.layers,
         
     | 
| 
       317 
     | 
    
         
            -
                        dropout=self.hparams.dropout,
         
     | 
| 
       318 
     | 
    
         
            -
                        batch_norm=self.hparams.batch_norm,
         
     | 
| 
       319 
     | 
    
         
            -
                        layer_norm=self.hparams.layer_norm,
         
     | 
| 
       320 
     | 
    
         
            -
                        last_layer_act=self.hparams.last_layer_act,
         
     | 
| 
       321 
     | 
    
         
            -
                    )
         
     | 
| 
       322 
     | 
    
         
            -
             
     | 
| 
       323 
     | 
    
         
            -
                def forward(self, x):
         
     | 
| 
       324 
     | 
    
         
            -
                    x = self.net(x)
         
     | 
| 
       325 
     | 
    
         
            -
                    return x
         
     | 
| 
       326 
     | 
    
         
            -
             
     | 
| 
       327 
     | 
    
         
            -
                def configure_optimizers(self):
         
     | 
| 
       328 
     | 
    
         
            -
                    optimizer = optim.Adam(self.parameters(), lr=self.hparams.lr, weight_decay=0.1)
         
     | 
| 
       329 
     | 
    
         
            -
             
     | 
| 
       330 
     | 
    
         
            -
                    return optimizer
         
     | 
| 
       331 
     | 
    
         
            -
             
     | 
| 
       332 
     | 
    
         
            -
                def training_step(self, batch, batch_idx):
         
     | 
| 
       333 
     | 
    
         
            -
                    x, y, _ = batch
         
     | 
| 
       334 
     | 
    
         
            -
                    x = x.to(torch.float32)
         
     | 
| 
       335 
     | 
    
         
            -
                    y = y.to(torch.long)
         
     | 
| 
       336 
     | 
    
         
            -
             
     | 
| 
       337 
     | 
    
         
            -
                    y_hat = self.forward(x)
         
     | 
| 
       338 
     | 
    
         
            -
             
     | 
| 
       339 
     | 
    
         
            -
                    loss = torch.nn.functional.cross_entropy(y_hat, y)
         
     | 
| 
       340 
     | 
    
         
            -
                    self.log("train_loss", loss, prog_bar=True)
         
     | 
| 
       341 
     | 
    
         
            -
             
     | 
| 
       342 
     | 
    
         
            -
                    return loss
         
     | 
| 
       343 
     | 
    
         
            -
             
     | 
| 
       344 
     | 
    
         
            -
                def validation_step(self, batch, batch_idx):
         
     | 
| 
       345 
     | 
    
         
            -
                    x, y, _ = batch
         
     | 
| 
       346 
     | 
    
         
            -
                    x = x.to(torch.float32)
         
     | 
| 
       347 
     | 
    
         
            -
                    y = y.to(torch.long)
         
     | 
| 
       348 
     | 
    
         
            -
             
     | 
| 
       349 
     | 
    
         
            -
                    y_hat = self.forward(x)
         
     | 
| 
       350 
     | 
    
         
            -
             
     | 
| 
       351 
     | 
    
         
            -
                    loss = torch.nn.functional.cross_entropy(y_hat, y)
         
     | 
| 
       352 
     | 
    
         
            -
                    self.log("val_loss", loss, prog_bar=True)
         
     | 
| 
       353 
     | 
    
         
            -
             
     | 
| 
       354 
     | 
    
         
            -
                    return loss
         
     | 
| 
       355 
     | 
    
         
            -
             
     | 
| 
       356 
     | 
    
         
            -
                def test_step(self, batch, batch_idx):
         
     | 
| 
       357 
     | 
    
         
            -
                    x, y, _ = batch
         
     | 
| 
       358 
     | 
    
         
            -
                    x = x.to(torch.float32)
         
     | 
| 
       359 
     | 
    
         
            -
                    y = y.to(torch.long)
         
     | 
| 
       360 
     | 
    
         
            -
             
     | 
| 
       361 
     | 
    
         
            -
                    y_hat = self.forward(x)
         
     | 
| 
       362 
     | 
    
         
            -
             
     | 
| 
       363 
     | 
    
         
            -
                    loss = torch.nn.functional.cross_entropy(y_hat, y)
         
     | 
| 
       364 
     | 
    
         
            -
                    self.log("test_loss", loss, prog_bar=True)
         
     | 
| 
       365 
     | 
    
         
            -
             
     | 
| 
       366 
     | 
    
         
            -
                    return loss
         
     | 
| 
       367 
     | 
    
         
            -
             
     | 
| 
       368 
     | 
    
         
            -
                def embedding(self, x):
         
     | 
| 
       369 
     | 
    
         
            -
                    """
         
     | 
| 
       370 
     | 
    
         
            -
                    Inputs:
         
     | 
| 
       371 
     | 
    
         
            -
                        x - Input features of shape [Batch, SeqLen, 1]
         
     | 
| 
       372 
     | 
    
         
            -
                    """
         
     | 
| 
       373 
     | 
    
         
            -
                    x = self.net.embedding(x)
         
     | 
| 
       374 
     | 
    
         
            -
                    return x
         
     | 
| 
       375 
     | 
    
         
            -
             
     | 
| 
       376 
     | 
    
         
            -
                def get_embeddings(self, batch):
         
     | 
| 
       377 
     | 
    
         
            -
                    x, _, y = batch
         
     | 
| 
       378 
     | 
    
         
            -
                    x = x.to(torch.float32)
         
     | 
| 
       379 
     | 
    
         
            -
             
     | 
| 
       380 
     | 
    
         
            -
                    embedding = self.embedding(x)
         
     | 
| 
       381 
     | 
    
         
            -
                    return embedding, y
         
     |