passagemath-polyhedra 10.6.37__cp314-cp314-musllinux_1_2_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_polyhedra/__init__.py +3 -0
- passagemath_polyhedra-10.6.37.dist-info/METADATA +367 -0
- passagemath_polyhedra-10.6.37.dist-info/METADATA.bak +369 -0
- passagemath_polyhedra-10.6.37.dist-info/RECORD +209 -0
- passagemath_polyhedra-10.6.37.dist-info/WHEEL +5 -0
- passagemath_polyhedra-10.6.37.dist-info/top_level.txt +3 -0
- passagemath_polyhedra.libs/libgcc_s-0cd532bd.so.1 +0 -0
- passagemath_polyhedra.libs/libgmp-0e7fc84e.so.10.5.0 +0 -0
- passagemath_polyhedra.libs/libgomp-8949ffbe.so.1.0.0 +0 -0
- passagemath_polyhedra.libs/libstdc++-5d72f927.so.6.0.33 +0 -0
- sage/all__sagemath_polyhedra.py +50 -0
- sage/game_theory/all.py +8 -0
- sage/game_theory/catalog.py +6 -0
- sage/game_theory/catalog_normal_form_games.py +923 -0
- sage/game_theory/cooperative_game.py +844 -0
- sage/game_theory/matching_game.py +1181 -0
- sage/game_theory/normal_form_game.py +2697 -0
- sage/game_theory/parser.py +275 -0
- sage/geometry/all__sagemath_polyhedra.py +22 -0
- sage/geometry/cone.py +6940 -0
- sage/geometry/cone_catalog.py +847 -0
- sage/geometry/cone_critical_angles.py +1027 -0
- sage/geometry/convex_set.py +1119 -0
- sage/geometry/fan.py +3743 -0
- sage/geometry/fan_isomorphism.py +389 -0
- sage/geometry/fan_morphism.py +1884 -0
- sage/geometry/hasse_diagram.py +202 -0
- sage/geometry/hyperplane_arrangement/affine_subspace.py +390 -0
- sage/geometry/hyperplane_arrangement/all.py +1 -0
- sage/geometry/hyperplane_arrangement/arrangement.py +3905 -0
- sage/geometry/hyperplane_arrangement/check_freeness.py +145 -0
- sage/geometry/hyperplane_arrangement/hyperplane.py +773 -0
- sage/geometry/hyperplane_arrangement/library.py +825 -0
- sage/geometry/hyperplane_arrangement/ordered_arrangement.py +642 -0
- sage/geometry/hyperplane_arrangement/plot.py +520 -0
- sage/geometry/integral_points.py +35 -0
- sage/geometry/integral_points_generic_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/geometry/integral_points_generic_dense.pyx +7 -0
- sage/geometry/lattice_polytope.py +5894 -0
- sage/geometry/linear_expression.py +773 -0
- sage/geometry/newton_polygon.py +767 -0
- sage/geometry/point_collection.cpython-314-x86_64-linux-musl.so +0 -0
- sage/geometry/point_collection.pyx +1008 -0
- sage/geometry/polyhedral_complex.py +2616 -0
- sage/geometry/polyhedron/all.py +8 -0
- sage/geometry/polyhedron/backend_cdd.py +460 -0
- sage/geometry/polyhedron/backend_cdd_rdf.py +231 -0
- sage/geometry/polyhedron/backend_field.py +347 -0
- sage/geometry/polyhedron/backend_normaliz.py +2503 -0
- sage/geometry/polyhedron/backend_number_field.py +168 -0
- sage/geometry/polyhedron/backend_polymake.py +765 -0
- sage/geometry/polyhedron/backend_ppl.py +582 -0
- sage/geometry/polyhedron/base.py +1206 -0
- sage/geometry/polyhedron/base0.py +1444 -0
- sage/geometry/polyhedron/base1.py +886 -0
- sage/geometry/polyhedron/base2.py +812 -0
- sage/geometry/polyhedron/base3.py +1845 -0
- sage/geometry/polyhedron/base4.py +1262 -0
- sage/geometry/polyhedron/base5.py +2700 -0
- sage/geometry/polyhedron/base6.py +1741 -0
- sage/geometry/polyhedron/base7.py +997 -0
- sage/geometry/polyhedron/base_QQ.py +1258 -0
- sage/geometry/polyhedron/base_RDF.py +98 -0
- sage/geometry/polyhedron/base_ZZ.py +934 -0
- sage/geometry/polyhedron/base_mutable.py +215 -0
- sage/geometry/polyhedron/base_number_field.py +122 -0
- sage/geometry/polyhedron/cdd_file_format.py +155 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/all.py +1 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/base.cpython-314-x86_64-linux-musl.so +0 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/base.pxd +76 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/base.pyx +3859 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/combinatorial_face.cpython-314-x86_64-linux-musl.so +0 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/combinatorial_face.pxd +39 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/combinatorial_face.pyx +1038 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/conversions.cpython-314-x86_64-linux-musl.so +0 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/conversions.pxd +9 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/conversions.pyx +501 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/face_data_structure.pxd +207 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/face_iterator.cpython-314-x86_64-linux-musl.so +0 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/face_iterator.pxd +102 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/face_iterator.pyx +2274 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/face_list_data_structure.cpython-314-x86_64-linux-musl.so +0 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/face_list_data_structure.pxd +370 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/face_list_data_structure.pyx +84 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/list_of_faces.cpython-314-x86_64-linux-musl.so +0 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/list_of_faces.pxd +31 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/list_of_faces.pyx +587 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/polyhedron_face_lattice.cpython-314-x86_64-linux-musl.so +0 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/polyhedron_face_lattice.pxd +52 -0
- sage/geometry/polyhedron/combinatorial_polyhedron/polyhedron_face_lattice.pyx +560 -0
- sage/geometry/polyhedron/constructor.py +773 -0
- sage/geometry/polyhedron/double_description.py +753 -0
- sage/geometry/polyhedron/double_description_inhomogeneous.py +564 -0
- sage/geometry/polyhedron/face.py +1060 -0
- sage/geometry/polyhedron/generating_function.py +1810 -0
- sage/geometry/polyhedron/lattice_euclidean_group_element.py +178 -0
- sage/geometry/polyhedron/library.py +3502 -0
- sage/geometry/polyhedron/misc.py +121 -0
- sage/geometry/polyhedron/modules/all.py +1 -0
- sage/geometry/polyhedron/modules/formal_polyhedra_module.py +155 -0
- sage/geometry/polyhedron/palp_database.py +447 -0
- sage/geometry/polyhedron/parent.py +1279 -0
- sage/geometry/polyhedron/plot.py +1986 -0
- sage/geometry/polyhedron/ppl_lattice_polygon.py +556 -0
- sage/geometry/polyhedron/ppl_lattice_polytope.py +1257 -0
- sage/geometry/polyhedron/representation.py +1723 -0
- sage/geometry/pseudolines.py +515 -0
- sage/geometry/relative_interior.py +445 -0
- sage/geometry/toric_plotter.py +1103 -0
- sage/geometry/triangulation/all.py +2 -0
- sage/geometry/triangulation/base.cpython-314-x86_64-linux-musl.so +0 -0
- sage/geometry/triangulation/base.pyx +963 -0
- sage/geometry/triangulation/data.h +147 -0
- sage/geometry/triangulation/data.pxd +4 -0
- sage/geometry/triangulation/element.py +914 -0
- sage/geometry/triangulation/functions.h +10 -0
- sage/geometry/triangulation/functions.pxd +4 -0
- sage/geometry/triangulation/point_configuration.py +2256 -0
- sage/geometry/triangulation/triangulations.h +49 -0
- sage/geometry/triangulation/triangulations.pxd +7 -0
- sage/geometry/voronoi_diagram.py +319 -0
- sage/interfaces/all__sagemath_polyhedra.py +1 -0
- sage/interfaces/polymake.py +2028 -0
- sage/numerical/all.py +13 -0
- sage/numerical/all__sagemath_polyhedra.py +11 -0
- sage/numerical/backends/all.py +1 -0
- sage/numerical/backends/all__sagemath_polyhedra.py +1 -0
- sage/numerical/backends/cvxopt_backend.cpython-314-x86_64-linux-musl.so +0 -0
- sage/numerical/backends/cvxopt_backend.pyx +1006 -0
- sage/numerical/backends/cvxopt_backend_test.py +19 -0
- sage/numerical/backends/cvxopt_sdp_backend.cpython-314-x86_64-linux-musl.so +0 -0
- sage/numerical/backends/cvxopt_sdp_backend.pyx +382 -0
- sage/numerical/backends/cvxpy_backend.cpython-314-x86_64-linux-musl.so +0 -0
- sage/numerical/backends/cvxpy_backend.pxd +41 -0
- sage/numerical/backends/cvxpy_backend.pyx +934 -0
- sage/numerical/backends/cvxpy_backend_test.py +13 -0
- sage/numerical/backends/generic_backend_test.py +24 -0
- sage/numerical/backends/interactivelp_backend.cpython-314-x86_64-linux-musl.so +0 -0
- sage/numerical/backends/interactivelp_backend.pxd +36 -0
- sage/numerical/backends/interactivelp_backend.pyx +1231 -0
- sage/numerical/backends/interactivelp_backend_test.py +12 -0
- sage/numerical/backends/logging_backend.py +391 -0
- sage/numerical/backends/matrix_sdp_backend.cpython-314-x86_64-linux-musl.so +0 -0
- sage/numerical/backends/matrix_sdp_backend.pxd +15 -0
- sage/numerical/backends/matrix_sdp_backend.pyx +478 -0
- sage/numerical/backends/ppl_backend.cpython-314-x86_64-linux-musl.so +0 -0
- sage/numerical/backends/ppl_backend.pyx +1126 -0
- sage/numerical/backends/ppl_backend_test.py +13 -0
- sage/numerical/backends/scip_backend.cpython-314-x86_64-linux-musl.so +0 -0
- sage/numerical/backends/scip_backend.pxd +22 -0
- sage/numerical/backends/scip_backend.pyx +1289 -0
- sage/numerical/backends/scip_backend_test.py +13 -0
- sage/numerical/interactive_simplex_method.py +5338 -0
- sage/numerical/knapsack.py +665 -0
- sage/numerical/linear_functions.cpython-314-x86_64-linux-musl.so +0 -0
- sage/numerical/linear_functions.pxd +31 -0
- sage/numerical/linear_functions.pyx +1648 -0
- sage/numerical/linear_tensor.py +470 -0
- sage/numerical/linear_tensor_constraints.py +448 -0
- sage/numerical/linear_tensor_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/numerical/linear_tensor_element.pxd +6 -0
- sage/numerical/linear_tensor_element.pyx +459 -0
- sage/numerical/mip.cpython-314-x86_64-linux-musl.so +0 -0
- sage/numerical/mip.pxd +40 -0
- sage/numerical/mip.pyx +3667 -0
- sage/numerical/sdp.cpython-314-x86_64-linux-musl.so +0 -0
- sage/numerical/sdp.pxd +39 -0
- sage/numerical/sdp.pyx +1433 -0
- sage/rings/all__sagemath_polyhedra.py +3 -0
- sage/rings/polynomial/all__sagemath_polyhedra.py +10 -0
- sage/rings/polynomial/omega.py +982 -0
- sage/schemes/all__sagemath_polyhedra.py +2 -0
- sage/schemes/toric/all.py +10 -0
- sage/schemes/toric/chow_group.py +1248 -0
- sage/schemes/toric/divisor.py +2082 -0
- sage/schemes/toric/divisor_class.cpython-314-x86_64-linux-musl.so +0 -0
- sage/schemes/toric/divisor_class.pyx +322 -0
- sage/schemes/toric/fano_variety.py +1606 -0
- sage/schemes/toric/homset.py +650 -0
- sage/schemes/toric/ideal.py +451 -0
- sage/schemes/toric/library.py +1322 -0
- sage/schemes/toric/morphism.py +1958 -0
- sage/schemes/toric/points.py +1032 -0
- sage/schemes/toric/sheaf/all.py +1 -0
- sage/schemes/toric/sheaf/constructor.py +302 -0
- sage/schemes/toric/sheaf/klyachko.py +921 -0
- sage/schemes/toric/toric_subscheme.py +905 -0
- sage/schemes/toric/variety.py +3460 -0
- sage/schemes/toric/weierstrass.py +1078 -0
- sage/schemes/toric/weierstrass_covering.py +457 -0
- sage/schemes/toric/weierstrass_higher.py +288 -0
- sage_wheels/share/reflexive_polytopes/Full2d/zzdb.info +10 -0
- sage_wheels/share/reflexive_polytopes/Full2d/zzdb.v03 +0 -0
- sage_wheels/share/reflexive_polytopes/Full2d/zzdb.v04 +0 -0
- sage_wheels/share/reflexive_polytopes/Full2d/zzdb.v05 +1 -0
- sage_wheels/share/reflexive_polytopes/Full2d/zzdb.v06 +1 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.info +22 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v04 +0 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v05 +0 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v06 +0 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v07 +0 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v08 +0 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v09 +0 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v10 +0 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v11 +1 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v12 +1 -0
- sage_wheels/share/reflexive_polytopes/Full3d/zzdb.v13 +1 -0
- sage_wheels/share/reflexive_polytopes/reflexive_polytopes_2d +80 -0
- sage_wheels/share/reflexive_polytopes/reflexive_polytopes_3d +37977 -0
|
@@ -0,0 +1,1958 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-polyhedra
|
|
2
|
+
# sage.doctest: needs sage.geometry.polyhedron sage.graphs
|
|
3
|
+
r"""
|
|
4
|
+
Morphisms of toric varieties
|
|
5
|
+
|
|
6
|
+
There are three "obvious" ways to map toric varieties to toric
|
|
7
|
+
varieties:
|
|
8
|
+
|
|
9
|
+
1. Polynomial maps in local coordinates, the usual morphisms in
|
|
10
|
+
algebraic geometry.
|
|
11
|
+
|
|
12
|
+
2. Polynomial maps in the (global) homogeneous coordinates.
|
|
13
|
+
|
|
14
|
+
3. Toric morphisms, that is, algebraic morphisms equivariant with
|
|
15
|
+
respect to the torus action on the toric variety.
|
|
16
|
+
|
|
17
|
+
Both 2 and 3 are special cases of 1, which is just to say that we
|
|
18
|
+
always remain within the realm of algebraic geometry. But apart from
|
|
19
|
+
that, none is included in one of the other cases. In the examples
|
|
20
|
+
below, we will explore some algebraic maps that can or can not be
|
|
21
|
+
written as a toric morphism. Often a toric morphism can be written
|
|
22
|
+
with polynomial maps in homogeneous coordinates, but sometimes it
|
|
23
|
+
cannot.
|
|
24
|
+
|
|
25
|
+
The toric morphisms are perhaps the most mysterious at the
|
|
26
|
+
beginning. Let us quickly review their definition (See Definition
|
|
27
|
+
3.3.3 of [CLS2011]_). Let `\Sigma_1` be a fan in `N_{1,\RR}` and `\Sigma_2` be a
|
|
28
|
+
fan in `N_{2,\RR}`. A morphism `\phi: X_{\Sigma_1} \to X_{\Sigma_2}`
|
|
29
|
+
of the associated toric varieties is toric if `\phi` maps the maximal
|
|
30
|
+
torus `T_{N_1} \subseteq X_{\Sigma_1}` into `T_{N_2} \subseteq
|
|
31
|
+
X_{\Sigma_2}` and `\phi|_{T_N}` is a group homomorphism.
|
|
32
|
+
|
|
33
|
+
The data defining a toric morphism is precisely what defines a fan
|
|
34
|
+
morphism (see :mod:`~sage.geometry.fan_morphism`), extending the more
|
|
35
|
+
familiar dictionary between toric varieties and fans. Toric geometry
|
|
36
|
+
is a functor from the category of fans and fan morphisms to the
|
|
37
|
+
category of toric varieties and toric morphisms.
|
|
38
|
+
|
|
39
|
+
.. NOTE::
|
|
40
|
+
|
|
41
|
+
Do not create the toric morphisms (or any morphism of schemes)
|
|
42
|
+
directly from the ``SchemeMorphism...`` classes. Instead, use the
|
|
43
|
+
:meth:`~sage.schemes.generic.scheme.hom` method common to all
|
|
44
|
+
algebraic schemes to create new homomorphisms.
|
|
45
|
+
|
|
46
|
+
EXAMPLES:
|
|
47
|
+
|
|
48
|
+
First, consider the following embedding of `\mathbb{P}^1` into
|
|
49
|
+
`\mathbb{P}^2` ::
|
|
50
|
+
|
|
51
|
+
sage: P2.<x,y,z> = toric_varieties.P2()
|
|
52
|
+
sage: P1.<u,v> = toric_varieties.P1()
|
|
53
|
+
sage: P1.hom([0, u^2 + v^2, u*v], P2)
|
|
54
|
+
Scheme morphism:
|
|
55
|
+
From: 1-d CPR-Fano toric variety covered by 2 affine patches
|
|
56
|
+
To: 2-d CPR-Fano toric variety covered by 3 affine patches
|
|
57
|
+
Defn: Defined on coordinates by sending [u : v] to [0 : u^2 + v^2 : u*v]
|
|
58
|
+
|
|
59
|
+
This is a well-defined morphism of algebraic varieties because
|
|
60
|
+
homogeneously rescaled coordinates of a point of `\mathbb{P}^1` map to the same
|
|
61
|
+
point in `\mathbb{P}^2` up to its homogeneous rescalings. It is not
|
|
62
|
+
equivariant with respect to the torus actions
|
|
63
|
+
|
|
64
|
+
.. MATH::
|
|
65
|
+
|
|
66
|
+
\CC^\times \times \mathbb{P}^1,
|
|
67
|
+
(\mu,[u:v]) \mapsto [u:\mu v]
|
|
68
|
+
\quad\text{and}\quad
|
|
69
|
+
\left(\CC^\times\right)^2 \times \mathbb{P}^2,
|
|
70
|
+
((\alpha,\beta),[x:y:z]) \mapsto [x:\alpha y:\beta z]
|
|
71
|
+
,
|
|
72
|
+
|
|
73
|
+
hence it is not a toric morphism. Clearly, the problem is that
|
|
74
|
+
the map in homogeneous coordinates contains summands that transform
|
|
75
|
+
differently under the torus action. However, this is not the only
|
|
76
|
+
difficulty. For example, consider ::
|
|
77
|
+
|
|
78
|
+
sage: phi = P1.hom([0,u,v], P2); phi
|
|
79
|
+
Scheme morphism:
|
|
80
|
+
From: 1-d CPR-Fano toric variety covered by 2 affine patches
|
|
81
|
+
To: 2-d CPR-Fano toric variety covered by 3 affine patches
|
|
82
|
+
Defn: Defined on coordinates by sending [u : v] to [0 : u : v]
|
|
83
|
+
|
|
84
|
+
This map is actually the embedding of the
|
|
85
|
+
:meth:`~sage.schemes.toric.variety.ToricVariety_field.orbit_closure`
|
|
86
|
+
associated to one of the rays of the fan of `\mathbb{P}^2`. Now the
|
|
87
|
+
morphism is equivariant with respect to **some** map `\CC^\times \to
|
|
88
|
+
(\CC^\times)^2` of the maximal tori of `\mathbb{P}^1` and
|
|
89
|
+
`\mathbb{P}^2`. But this map of the maximal tori cannot be the same as
|
|
90
|
+
``phi`` defined above. Indeed, the image of ``phi`` completely misses
|
|
91
|
+
the maximal torus `T_{\mathbb{P}^2} = \{ [x:y:z] | x\not=0, y\not=0,
|
|
92
|
+
z\not=0 \}` of `\mathbb{P}^2`.
|
|
93
|
+
|
|
94
|
+
Consider instead the following morphism of fans::
|
|
95
|
+
|
|
96
|
+
sage: fm = FanMorphism(matrix(ZZ, [[1,0]]), P1.fan(), P2.fan()); fm
|
|
97
|
+
Fan morphism defined by the matrix
|
|
98
|
+
[1 0]
|
|
99
|
+
Domain fan: Rational polyhedral fan in 1-d lattice N
|
|
100
|
+
Codomain fan: Rational polyhedral fan in 2-d lattice N
|
|
101
|
+
|
|
102
|
+
which also defines a morphism of toric varieties::
|
|
103
|
+
|
|
104
|
+
sage: P1.hom(fm, P2)
|
|
105
|
+
Scheme morphism:
|
|
106
|
+
From: 1-d CPR-Fano toric variety covered by 2 affine patches
|
|
107
|
+
To: 2-d CPR-Fano toric variety covered by 3 affine patches
|
|
108
|
+
Defn: Defined by sending Rational polyhedral fan in 1-d lattice N
|
|
109
|
+
to Rational polyhedral fan in 2-d lattice N.
|
|
110
|
+
|
|
111
|
+
The fan morphism map is equivalent to the following polynomial map::
|
|
112
|
+
|
|
113
|
+
sage: _.as_polynomial_map()
|
|
114
|
+
Scheme morphism:
|
|
115
|
+
From: 1-d CPR-Fano toric variety covered by 2 affine patches
|
|
116
|
+
To: 2-d CPR-Fano toric variety covered by 3 affine patches
|
|
117
|
+
Defn: Defined on coordinates by sending [u : v] to [u : v : v]
|
|
118
|
+
|
|
119
|
+
Finally, here is an example of a fan morphism that cannot be written
|
|
120
|
+
using homogeneous polynomials. Consider the blowup `O_{\mathbb{P}^1}(2)
|
|
121
|
+
\to \CC^2/\ZZ_2`. In terms of toric data, this blowup is::
|
|
122
|
+
|
|
123
|
+
sage: A2_Z2 = toric_varieties.A2_Z2()
|
|
124
|
+
sage: A2_Z2.fan().rays()
|
|
125
|
+
N(1, 0),
|
|
126
|
+
N(1, 2)
|
|
127
|
+
in 2-d lattice N
|
|
128
|
+
sage: O2_P1 = A2_Z2.resolve(new_rays=[(1,1)])
|
|
129
|
+
sage: blowup = O2_P1.hom(identity_matrix(2), A2_Z2)
|
|
130
|
+
sage: blowup.as_polynomial_map()
|
|
131
|
+
Traceback (most recent call last):
|
|
132
|
+
...
|
|
133
|
+
TypeError: the fan morphism cannot be written in homogeneous polynomials
|
|
134
|
+
|
|
135
|
+
If we denote the homogeneous coordinates of `O_{\mathbb{P}^1}(2)` by
|
|
136
|
+
`x`, `t`, `y` corresponding to the rays `(1,2)`, `(1,1)`, and `(1,0)`
|
|
137
|
+
then the blow-up map is [BB2013]_:
|
|
138
|
+
|
|
139
|
+
.. MATH::
|
|
140
|
+
|
|
141
|
+
f: O_{\mathbb{P}^1}(2) \to \CC^2/\ZZ_2, \quad
|
|
142
|
+
(x,t,y) \mapsto \left( x\sqrt{t}, y\sqrt{t} \right)
|
|
143
|
+
|
|
144
|
+
which requires square roots.
|
|
145
|
+
|
|
146
|
+
|
|
147
|
+
Fibrations
|
|
148
|
+
----------
|
|
149
|
+
|
|
150
|
+
If a toric morphism is :meth:`dominant
|
|
151
|
+
<SchemeMorphism_fan_toric_variety.is_dominant>`, then all fibers over
|
|
152
|
+
a fixed torus orbit in the base are isomorphic. Hence, studying the
|
|
153
|
+
fibers is again a combinatorial question and Sage implements
|
|
154
|
+
additional methods to study such fibrations that are not available
|
|
155
|
+
otherwise (however, note that you can always
|
|
156
|
+
:meth:`~SchemeMorphism_fan_toric_variety.factor` to pick out the part
|
|
157
|
+
that is dominant over the image or its closure).
|
|
158
|
+
|
|
159
|
+
For example, consider the blow-up restricted to one of the two
|
|
160
|
+
coordinate charts of `O_{\mathbb{P}^1}(2)` ::
|
|
161
|
+
|
|
162
|
+
|
|
163
|
+
sage: O2_P1_chart = ToricVariety(Fan([O2_P1.fan().generating_cones()[0]]))
|
|
164
|
+
sage: single_chart = O2_P1_chart.hom(identity_matrix(2), A2_Z2)
|
|
165
|
+
sage: single_chart.is_dominant()
|
|
166
|
+
True
|
|
167
|
+
sage: single_chart.is_surjective()
|
|
168
|
+
False
|
|
169
|
+
|
|
170
|
+
sage: fiber = single_chart.fiber_generic(); fiber
|
|
171
|
+
(0-d affine toric variety, 1)
|
|
172
|
+
sage: fiber[0].embedding_morphism().as_polynomial_map()
|
|
173
|
+
Scheme morphism:
|
|
174
|
+
From: 0-d affine toric variety
|
|
175
|
+
To: 2-d affine toric variety
|
|
176
|
+
Defn: Defined on coordinates by sending [] to [1 : 1]
|
|
177
|
+
|
|
178
|
+
The fibers are labeled by torus orbits in the base, that is, cones of
|
|
179
|
+
the codomain fan. In this case, the fibers over lower-dimensional
|
|
180
|
+
torus orbits are::
|
|
181
|
+
|
|
182
|
+
sage: A2_Z2_cones = flatten(A2_Z2.fan().cones())
|
|
183
|
+
sage: table([('cone', 'dim')] +
|
|
184
|
+
....: [(cone.ambient_ray_indices(), single_chart.fiber_dimension(cone))
|
|
185
|
+
....: for cone in A2_Z2_cones], header_row=True)
|
|
186
|
+
cone dim
|
|
187
|
+
├────────┼─────┤
|
|
188
|
+
() 0
|
|
189
|
+
(0,) 0
|
|
190
|
+
(1,) -1
|
|
191
|
+
(0, 1) 1
|
|
192
|
+
|
|
193
|
+
Lets look closer at the one-dimensional fiber. Although not the case
|
|
194
|
+
in this example, connected components of fibers over higher-dimensional cones
|
|
195
|
+
(corresponding
|
|
196
|
+
to lower-dimensional torus orbits) of the base are often not
|
|
197
|
+
irreducible. The irreducible components are labeled by the
|
|
198
|
+
:meth:`~sage.geometry.fan_morphism.FanMorphism.primitive_preimage_cones`,
|
|
199
|
+
which are certain cones of the domain fan that map to the cone in the
|
|
200
|
+
base that defines the torus orbit::
|
|
201
|
+
|
|
202
|
+
sage: table([('base cone', 'primitive preimage cones')] +
|
|
203
|
+
....: [(cone.ambient_ray_indices(),
|
|
204
|
+
....: single_chart.fan_morphism().primitive_preimage_cones(cone))
|
|
205
|
+
....: for cone in A2_Z2_cones], header_row=True)
|
|
206
|
+
base cone primitive preimage cones
|
|
207
|
+
├───────────┼─────────────────────────────────────────────────────────┤
|
|
208
|
+
() (0-d cone of Rational polyhedral fan in 2-d lattice N,)
|
|
209
|
+
(0,) (1-d cone of Rational polyhedral fan in 2-d lattice N,)
|
|
210
|
+
(1,) ()
|
|
211
|
+
(0, 1) (1-d cone of Rational polyhedral fan in 2-d lattice N,)
|
|
212
|
+
|
|
213
|
+
The fiber over the trivial cone is the generic fiber that we have
|
|
214
|
+
already encountered. The interesting fiber is the one over the
|
|
215
|
+
2-dimensional cone, which represents the exceptional set of the
|
|
216
|
+
blow-up in this single coordinate chart. Lets investigate further::
|
|
217
|
+
|
|
218
|
+
sage: fm = single_chart.fan_morphism()
|
|
219
|
+
sage: exceptional_cones = fm.primitive_preimage_cones(A2_Z2.fan(2)[0])
|
|
220
|
+
sage: exceptional_set = single_chart.fiber_component(exceptional_cones[0])
|
|
221
|
+
sage: exceptional_set
|
|
222
|
+
1-d affine toric variety
|
|
223
|
+
sage: exceptional_set.embedding_morphism().as_polynomial_map()
|
|
224
|
+
Scheme morphism:
|
|
225
|
+
From: 1-d affine toric variety
|
|
226
|
+
To: 2-d affine toric variety
|
|
227
|
+
Defn: Defined on coordinates by sending [z0] to [z0 : 0]
|
|
228
|
+
|
|
229
|
+
So we see that the fiber over this point is an affine line. Together
|
|
230
|
+
with another affine line in the other coordinate patch, this covers
|
|
231
|
+
the exceptional `\mathbb{P}^1` of the blowup `O_{\mathbb{P}^1}(2) \to
|
|
232
|
+
\CC^2/\ZZ_2`.
|
|
233
|
+
|
|
234
|
+
Here is an example with higher dimensional varieties involved::
|
|
235
|
+
|
|
236
|
+
sage: A3 = toric_varieties.A(3)
|
|
237
|
+
sage: P3 = toric_varieties.P(3)
|
|
238
|
+
sage: m = matrix([(2,0,0), (1,1,0), (3,1,0)])
|
|
239
|
+
sage: phi = A3.hom(m, P3)
|
|
240
|
+
sage: phi.as_polynomial_map()
|
|
241
|
+
Scheme morphism:
|
|
242
|
+
From: 3-d affine toric variety
|
|
243
|
+
To: 3-d CPR-Fano toric variety covered by 4 affine patches
|
|
244
|
+
Defn: Defined on coordinates by sending [z0 : z1 : z2] to
|
|
245
|
+
[z0^2*z1*z2^3 : z1*z2 : 1 : 1]
|
|
246
|
+
sage: phi.fiber_generic()
|
|
247
|
+
Traceback (most recent call last):
|
|
248
|
+
...
|
|
249
|
+
AttributeError: 'SchemeMorphism_fan_toric_variety' object
|
|
250
|
+
has no attribute 'fiber_generic'...
|
|
251
|
+
|
|
252
|
+
Let's use factorization mentioned above::
|
|
253
|
+
|
|
254
|
+
sage: phi_i, phi_b, phi_s = phi.factor()
|
|
255
|
+
|
|
256
|
+
It is possible to study fibers of the last two morphisms or their composition::
|
|
257
|
+
|
|
258
|
+
sage: phi_d = phi_b * phi_s
|
|
259
|
+
sage: phi_d
|
|
260
|
+
Scheme morphism:
|
|
261
|
+
From: 3-d affine toric variety
|
|
262
|
+
To: 2-d toric variety covered by 3 affine patches
|
|
263
|
+
Defn: Defined by sending Rational polyhedral fan in 3-d lattice N to
|
|
264
|
+
Rational polyhedral fan in Sublattice <N(1, 0, 0), N(0, 1, 0)>.
|
|
265
|
+
sage: phi_d.as_polynomial_map()
|
|
266
|
+
Scheme morphism:
|
|
267
|
+
From: 3-d affine toric variety
|
|
268
|
+
To: 2-d toric variety covered by 3 affine patches
|
|
269
|
+
Defn: Defined on coordinates by sending [z0 : z1 : z2] to
|
|
270
|
+
[1 : z1*z2 : z0^2*z1*z2^3]
|
|
271
|
+
sage: phi_d.codomain().fan().rays()
|
|
272
|
+
N(-1, -1, 0),
|
|
273
|
+
N( 0, 1, 0),
|
|
274
|
+
N( 1, 0, 0)
|
|
275
|
+
in Sublattice <N(1, 0, 0), N(0, 1, 0)>
|
|
276
|
+
sage: for c in phi_d.codomain().fan():
|
|
277
|
+
....: c.ambient_ray_indices()
|
|
278
|
+
(0, 1)
|
|
279
|
+
(0, 2)
|
|
280
|
+
(1, 2)
|
|
281
|
+
|
|
282
|
+
We see that codomain fan of this morphism is a projective plane, which can be
|
|
283
|
+
verified by ::
|
|
284
|
+
|
|
285
|
+
sage: phi_d.codomain().fan().is_isomorphic(toric_varieties.P2().fan()) # known bug
|
|
286
|
+
True
|
|
287
|
+
|
|
288
|
+
(Unfortunately it cannot be verified correctly until :issue:`16012` is fixed.)
|
|
289
|
+
|
|
290
|
+
We now have access to fiber methods::
|
|
291
|
+
|
|
292
|
+
sage: fiber = phi_d.fiber_generic()
|
|
293
|
+
sage: fiber
|
|
294
|
+
(1-d affine toric variety, 2)
|
|
295
|
+
sage: fiber[0].embedding_morphism()
|
|
296
|
+
Scheme morphism:
|
|
297
|
+
From: 1-d affine toric variety
|
|
298
|
+
To: 3-d affine toric variety
|
|
299
|
+
Defn: Defined by sending
|
|
300
|
+
Rational polyhedral fan in Sublattice <N(1, 1, -1)> to
|
|
301
|
+
Rational polyhedral fan in 3-d lattice N.
|
|
302
|
+
sage: fiber[0].embedding_morphism().as_polynomial_map()
|
|
303
|
+
Traceback (most recent call last):
|
|
304
|
+
...
|
|
305
|
+
NotImplementedError: polynomial representations for
|
|
306
|
+
fans with virtual rays are not implemented yet
|
|
307
|
+
sage: fiber[0].fan().rays()
|
|
308
|
+
Empty collection
|
|
309
|
+
in Sublattice <N(1, 1, -1)>
|
|
310
|
+
|
|
311
|
+
We see that generic fibers of this morphism consist of 2 one-dimensional tori
|
|
312
|
+
each. To see what happens over boundary points we can look at fiber components
|
|
313
|
+
corresponding to the cones of the domain fan::
|
|
314
|
+
|
|
315
|
+
sage: fm = phi_d.fan_morphism()
|
|
316
|
+
sage: for c in flatten(phi_d.domain().fan().cones()):
|
|
317
|
+
....: fc, m = phi_d.fiber_component(c, multiplicity=True)
|
|
318
|
+
....: print("{} |-> {} ({} rays, multiplicity {}) over {}".format(
|
|
319
|
+
....: c.ambient_ray_indices(), fc, fc.fan().nrays(),
|
|
320
|
+
....: m, fm.image_cone(c).ambient_ray_indices()))
|
|
321
|
+
() |-> 1-d affine toric variety (0 rays, multiplicity 2) over ()
|
|
322
|
+
(0,) |-> 1-d affine toric variety (0 rays, multiplicity 1) over (2,)
|
|
323
|
+
(1,) |-> 2-d affine toric variety (2 rays, multiplicity 1) over (1, 2)
|
|
324
|
+
(2,) |-> 2-d affine toric variety (2 rays, multiplicity 1) over (1, 2)
|
|
325
|
+
(0, 1) |-> 1-d affine toric variety (1 rays, multiplicity 1) over (1, 2)
|
|
326
|
+
(1, 2) |-> 1-d affine toric variety (1 rays, multiplicity 1) over (1, 2)
|
|
327
|
+
(0, 2) |-> 1-d affine toric variety (1 rays, multiplicity 1) over (1, 2)
|
|
328
|
+
(0, 1, 2) |-> 0-d affine toric variety (0 rays, multiplicity 1) over (1, 2)
|
|
329
|
+
|
|
330
|
+
Now we see that over one of the coordinate lines of the projective plane we also
|
|
331
|
+
have one-dimensional tori (but only one in each fiber), while over one of the
|
|
332
|
+
points fixed by torus action we have two affine planes intersecting along an
|
|
333
|
+
affine line. An alternative perspective is provided by cones of the codomain
|
|
334
|
+
fan::
|
|
335
|
+
|
|
336
|
+
sage: for c in flatten(phi_d.codomain().fan().cones()):
|
|
337
|
+
....: print("{} connected components over {}, each with {} irreducible components.".format(
|
|
338
|
+
....: fm.index(c), c.ambient_ray_indices(),
|
|
339
|
+
....: len(fm.primitive_preimage_cones(c))))
|
|
340
|
+
2 connected components over (), each with 1 irreducible components.
|
|
341
|
+
None connected components over (0,), each with 0 irreducible components.
|
|
342
|
+
None connected components over (1,), each with 0 irreducible components.
|
|
343
|
+
1 connected components over (2,), each with 1 irreducible components.
|
|
344
|
+
None connected components over (0, 1), each with 0 irreducible components.
|
|
345
|
+
None connected components over (0, 2), each with 0 irreducible components.
|
|
346
|
+
1 connected components over (1, 2), each with 2 irreducible components.
|
|
347
|
+
"""
|
|
348
|
+
|
|
349
|
+
# ****************************************************************************
|
|
350
|
+
# Copyright (C) 2011 Volker Braun <vbraun.name@gmail.com>
|
|
351
|
+
# Copyright (C) 2010 Andrey Novoseltsev <novoselt@gmail.com>
|
|
352
|
+
# Copyright (C) 2006 William Stein <wstein@gmail.com>
|
|
353
|
+
#
|
|
354
|
+
# This program is free software: you can redistribute it and/or modify
|
|
355
|
+
# it under the terms of the GNU General Public License as published by
|
|
356
|
+
# the Free Software Foundation, either version 2 of the License, or
|
|
357
|
+
# (at your option) any later version.
|
|
358
|
+
# https://www.gnu.org/licenses/
|
|
359
|
+
# ****************************************************************************
|
|
360
|
+
|
|
361
|
+
# For now, the scheme morphism base class cannot derive from Morphism
|
|
362
|
+
# since this would clash with elliptic curves. So we derive only on
|
|
363
|
+
# the toric varieties level from Morphism. See
|
|
364
|
+
# https://groups.google.com/d/msg/sage-devel/qF4yU6Vdmao/wQlNrneSmWAJ
|
|
365
|
+
from sage.categories.morphism import Morphism
|
|
366
|
+
from sage.structure.richcmp import richcmp_not_equal, richcmp
|
|
367
|
+
from sage.structure.sequence import Sequence
|
|
368
|
+
from sage.rings.integer_ring import ZZ
|
|
369
|
+
from sage.arith.misc import GCD as gcd
|
|
370
|
+
from sage.misc.cachefunc import cached_method
|
|
371
|
+
from sage.matrix.constructor import matrix, identity_matrix
|
|
372
|
+
from sage.modules.free_module_element import vector
|
|
373
|
+
from sage.geometry.cone import Cone
|
|
374
|
+
from sage.geometry.fan import Fan
|
|
375
|
+
|
|
376
|
+
from sage.schemes.generic.scheme import Scheme
|
|
377
|
+
from sage.schemes.generic.morphism import (
|
|
378
|
+
SchemeMorphism, SchemeMorphism_point, SchemeMorphism_polynomial
|
|
379
|
+
)
|
|
380
|
+
|
|
381
|
+
|
|
382
|
+
############################################################################
|
|
383
|
+
# A points on a toric variety determined by homogeneous coordinates.
|
|
384
|
+
class SchemeMorphism_point_toric_field(SchemeMorphism_point, Morphism):
|
|
385
|
+
"""
|
|
386
|
+
A point of a toric variety determined by homogeneous coordinates
|
|
387
|
+
in a field.
|
|
388
|
+
|
|
389
|
+
.. WARNING::
|
|
390
|
+
|
|
391
|
+
You should not create objects of this class directly. Use the
|
|
392
|
+
:meth:`~sage.schemes.generic.scheme.hom` method of
|
|
393
|
+
:class:`toric varieties
|
|
394
|
+
<sage.schemes.toric.variety.ToricVariety_field>`
|
|
395
|
+
instead.
|
|
396
|
+
|
|
397
|
+
INPUT:
|
|
398
|
+
|
|
399
|
+
- ``X`` -- toric variety or subscheme of a toric variety
|
|
400
|
+
|
|
401
|
+
- ``coordinates`` -- list of coordinates in the base field of ``X``
|
|
402
|
+
|
|
403
|
+
- ``check`` -- if ``True`` (default), the input will be checked for
|
|
404
|
+
correctness
|
|
405
|
+
|
|
406
|
+
OUTPUT: a :class:`SchemeMorphism_point_toric_field`
|
|
407
|
+
|
|
408
|
+
TESTS::
|
|
409
|
+
|
|
410
|
+
sage: P1xP1 = toric_varieties.P1xP1()
|
|
411
|
+
sage: P1xP1(1,2,3,4)
|
|
412
|
+
[1 : 2 : 3 : 4]
|
|
413
|
+
"""
|
|
414
|
+
# Mimicking affine/projective classes
|
|
415
|
+
def __init__(self, X, coordinates, check=True):
|
|
416
|
+
r"""
|
|
417
|
+
See :class:`SchemeMorphism_point_toric_field` for documentation.
|
|
418
|
+
|
|
419
|
+
TESTS::
|
|
420
|
+
|
|
421
|
+
sage: P1xP1 = toric_varieties.P1xP1()
|
|
422
|
+
sage: P1xP1(1,2,3,4)
|
|
423
|
+
[1 : 2 : 3 : 4]
|
|
424
|
+
"""
|
|
425
|
+
# Convert scheme to its set of points over the base ring
|
|
426
|
+
if isinstance(X, Scheme):
|
|
427
|
+
X = X(X.base_ring())
|
|
428
|
+
super().__init__(X)
|
|
429
|
+
if check:
|
|
430
|
+
# Verify that there are the right number of coords
|
|
431
|
+
# Why is it not done in the parent?
|
|
432
|
+
if isinstance(coordinates, SchemeMorphism):
|
|
433
|
+
coordinates = list(coordinates)
|
|
434
|
+
if not isinstance(coordinates, (list, tuple)):
|
|
435
|
+
raise TypeError("coordinates must be a scheme point, list, "
|
|
436
|
+
"or tuple; got %s" % coordinates)
|
|
437
|
+
d = X.codomain().ambient_space().ngens()
|
|
438
|
+
if len(coordinates) != d:
|
|
439
|
+
raise ValueError("there must be %d coordinates; got only %d: "
|
|
440
|
+
"%s" % (d, len(coordinates), coordinates))
|
|
441
|
+
# Make sure the coordinates all lie in the appropriate ring
|
|
442
|
+
coordinates = Sequence(coordinates, X.value_ring())
|
|
443
|
+
# Verify that the point satisfies the equations of X.
|
|
444
|
+
X.codomain()._check_satisfies_equations(coordinates)
|
|
445
|
+
self._coords = coordinates
|
|
446
|
+
|
|
447
|
+
|
|
448
|
+
############################################################################
|
|
449
|
+
# A morphism of toric varieties determined by homogeneous polynomials.
|
|
450
|
+
class SchemeMorphism_polynomial_toric_variety(SchemeMorphism_polynomial, Morphism):
|
|
451
|
+
"""
|
|
452
|
+
A morphism determined by homogeneous polynomials.
|
|
453
|
+
|
|
454
|
+
.. WARNING::
|
|
455
|
+
|
|
456
|
+
You should not create objects of this class directly. Use the
|
|
457
|
+
:meth:`~sage.schemes.generic.scheme.hom` method of
|
|
458
|
+
:class:`toric varieties
|
|
459
|
+
<sage.schemes.toric.variety.ToricVariety_field>`
|
|
460
|
+
instead.
|
|
461
|
+
|
|
462
|
+
INPUT:
|
|
463
|
+
|
|
464
|
+
Same as for
|
|
465
|
+
:class:`~sage.schemes.toric.morphism.SchemeMorphism_polynomial`.
|
|
466
|
+
|
|
467
|
+
OUTPUT: a :class:`~sage.schemes.toric.morphism.SchemeMorphism_polynomial_toric_variety`
|
|
468
|
+
|
|
469
|
+
TESTS::
|
|
470
|
+
|
|
471
|
+
sage: P1xP1 = toric_varieties.P1xP1()
|
|
472
|
+
sage: P1xP1.inject_variables()
|
|
473
|
+
Defining s, t, x, y
|
|
474
|
+
sage: P1 = P1xP1.subscheme(s - t)
|
|
475
|
+
sage: H = P1xP1.Hom(P1)
|
|
476
|
+
sage: import sage.schemes.toric.morphism as MOR
|
|
477
|
+
sage: MOR.SchemeMorphism_polynomial_toric_variety(H, [s, s, x, y])
|
|
478
|
+
Scheme morphism:
|
|
479
|
+
From: 2-d CPR-Fano toric variety covered by 4 affine patches
|
|
480
|
+
To: Closed subscheme of 2-d CPR-Fano toric variety
|
|
481
|
+
covered by 4 affine patches defined by:
|
|
482
|
+
s - t
|
|
483
|
+
Defn: Defined on coordinates by sending [s : t : x : y] to
|
|
484
|
+
[s : s : x : y]
|
|
485
|
+
"""
|
|
486
|
+
|
|
487
|
+
def __init__(self, parent, polynomials, check=True):
|
|
488
|
+
r"""
|
|
489
|
+
See :class:`SchemeMorphism_polynomial_toric_variety` for documentation.
|
|
490
|
+
|
|
491
|
+
TESTS::
|
|
492
|
+
|
|
493
|
+
sage: P1xP1 = toric_varieties.P1xP1()
|
|
494
|
+
sage: P1xP1.inject_variables()
|
|
495
|
+
Defining s, t, x, y
|
|
496
|
+
sage: P1 = P1xP1.subscheme(s - t)
|
|
497
|
+
sage: H = P1xP1.Hom(P1)
|
|
498
|
+
sage: import sage.schemes.toric.morphism as MOR
|
|
499
|
+
sage: MOR.SchemeMorphism_polynomial_toric_variety(H, [s, s, x, y])
|
|
500
|
+
Scheme morphism:
|
|
501
|
+
From: 2-d CPR-Fano toric variety covered by 4 affine patches
|
|
502
|
+
To: Closed subscheme of 2-d CPR-Fano toric variety
|
|
503
|
+
covered by 4 affine patches defined by:
|
|
504
|
+
s - t
|
|
505
|
+
Defn: Defined on coordinates by sending [s : t : x : y] to
|
|
506
|
+
[s : s : x : y]
|
|
507
|
+
"""
|
|
508
|
+
SchemeMorphism_polynomial.__init__(self, parent, polynomials, check)
|
|
509
|
+
if check:
|
|
510
|
+
# Check that defining polynomials are homogeneous (degrees can be
|
|
511
|
+
# different if the target uses weighted coordinates)
|
|
512
|
+
for p in self.defining_polynomials():
|
|
513
|
+
if not self.domain().ambient_space().is_homogeneous(p):
|
|
514
|
+
raise ValueError("%s is not homogeneous" % p)
|
|
515
|
+
|
|
516
|
+
def as_fan_morphism(self):
|
|
517
|
+
"""
|
|
518
|
+
Express the morphism as a map defined by a fan morphism.
|
|
519
|
+
|
|
520
|
+
OUTPUT: a :class:`SchemeMorphism_polynomial_toric_variety`
|
|
521
|
+
|
|
522
|
+
This raises a :exc:`TypeError` if the morphism cannot be written
|
|
523
|
+
in such a way.
|
|
524
|
+
|
|
525
|
+
EXAMPLES::
|
|
526
|
+
|
|
527
|
+
sage: A1.<z> = toric_varieties.A1()
|
|
528
|
+
sage: P1 = toric_varieties.P1()
|
|
529
|
+
sage: patch = A1.hom([1,z], P1)
|
|
530
|
+
sage: patch.as_fan_morphism()
|
|
531
|
+
Traceback (most recent call last):
|
|
532
|
+
...
|
|
533
|
+
NotImplementedError: expressing toric morphisms as fan morphisms is
|
|
534
|
+
not implemented yet
|
|
535
|
+
"""
|
|
536
|
+
raise NotImplementedError("expressing toric morphisms as fan "
|
|
537
|
+
"morphisms is not implemented yet")
|
|
538
|
+
|
|
539
|
+
|
|
540
|
+
############################################################################
|
|
541
|
+
# The embedding morphism of an orbit closure
|
|
542
|
+
class SchemeMorphism_orbit_closure_toric_variety(SchemeMorphism, Morphism):
|
|
543
|
+
"""
|
|
544
|
+
The embedding of an orbit closure.
|
|
545
|
+
|
|
546
|
+
INPUT:
|
|
547
|
+
|
|
548
|
+
- ``parent`` -- the parent homset
|
|
549
|
+
|
|
550
|
+
- ``defining_cone`` -- the defining cone
|
|
551
|
+
|
|
552
|
+
- ``ray_map`` -- dictionary ``{ambient ray generator: orbit ray
|
|
553
|
+
generator}``. Note that the image of the ambient ray generator
|
|
554
|
+
is not necessarily primitive.
|
|
555
|
+
|
|
556
|
+
.. WARNING::
|
|
557
|
+
|
|
558
|
+
You should not create objects of this class directly. Use the
|
|
559
|
+
:meth:`~sage.schemes.toric.variety.ToricVariety_field.orbit_closure`
|
|
560
|
+
method of :class:`toric varieties
|
|
561
|
+
<sage.schemes.toric.variety.ToricVariety_field>`
|
|
562
|
+
instead.
|
|
563
|
+
|
|
564
|
+
EXAMPLES::
|
|
565
|
+
|
|
566
|
+
sage: P1xP1 = toric_varieties.P1xP1()
|
|
567
|
+
sage: H = P1xP1.fan(1)[0]
|
|
568
|
+
sage: V = P1xP1.orbit_closure(H)
|
|
569
|
+
sage: V.embedding_morphism()
|
|
570
|
+
Scheme morphism:
|
|
571
|
+
From: 1-d toric variety covered by 2 affine patches
|
|
572
|
+
To: 2-d CPR-Fano toric variety covered by 4 affine patches
|
|
573
|
+
Defn: Defined by embedding the torus closure associated to the 1-d
|
|
574
|
+
cone of Rational polyhedral fan in 2-d lattice N.
|
|
575
|
+
|
|
576
|
+
TESTS::
|
|
577
|
+
|
|
578
|
+
sage: V.embedding_morphism()._reverse_ray_map()
|
|
579
|
+
{N(-1): 3, N(1): 2}
|
|
580
|
+
sage: V.embedding_morphism()._defining_cone
|
|
581
|
+
1-d cone of Rational polyhedral fan in 2-d lattice N
|
|
582
|
+
"""
|
|
583
|
+
def __init__(self, parent, defining_cone, ray_map):
|
|
584
|
+
"""
|
|
585
|
+
The Python constructor.
|
|
586
|
+
|
|
587
|
+
EXAMPLES::
|
|
588
|
+
|
|
589
|
+
sage: P2 = toric_varieties.P2()
|
|
590
|
+
sage: P1 = P2.orbit_closure(P2.fan(1)[0])
|
|
591
|
+
sage: P1.embedding_morphism()
|
|
592
|
+
Scheme morphism:
|
|
593
|
+
From: 1-d toric variety covered by 2 affine patches
|
|
594
|
+
To: 2-d CPR-Fano toric variety covered by 3 affine patches
|
|
595
|
+
Defn: Defined by embedding the torus closure associated to the 1-d cone
|
|
596
|
+
of Rational polyhedral fan in 2-d lattice N.
|
|
597
|
+
"""
|
|
598
|
+
SchemeMorphism.__init__(self, parent)
|
|
599
|
+
self._defining_cone = defining_cone
|
|
600
|
+
self._ray_map = ray_map
|
|
601
|
+
|
|
602
|
+
def defining_cone(self):
|
|
603
|
+
r"""
|
|
604
|
+
Return the cone corresponding to the torus orbit.
|
|
605
|
+
|
|
606
|
+
OUTPUT: a cone of the fan of the ambient toric variety
|
|
607
|
+
|
|
608
|
+
EXAMPLES::
|
|
609
|
+
|
|
610
|
+
sage: P2 = toric_varieties.P2()
|
|
611
|
+
sage: cone = P2.fan(1)[0]
|
|
612
|
+
sage: P1 = P2.orbit_closure(cone)
|
|
613
|
+
sage: P1.embedding_morphism().defining_cone()
|
|
614
|
+
1-d cone of Rational polyhedral fan in 2-d lattice N
|
|
615
|
+
sage: _ is cone
|
|
616
|
+
True
|
|
617
|
+
"""
|
|
618
|
+
return self._defining_cone
|
|
619
|
+
|
|
620
|
+
@cached_method
|
|
621
|
+
def _reverse_ray_map(self):
|
|
622
|
+
"""
|
|
623
|
+
Reverse ``self._ray_map``.
|
|
624
|
+
|
|
625
|
+
OUTPUT:
|
|
626
|
+
|
|
627
|
+
A dictionary ``{orbit ray generator: preimage ray
|
|
628
|
+
index}``. Note that the orbit ray generator need not be
|
|
629
|
+
primitive. Also, the preimage ray is not necessarily unique.
|
|
630
|
+
|
|
631
|
+
EXAMPLES::
|
|
632
|
+
|
|
633
|
+
sage: P2_112 = toric_varieties.P2_112()
|
|
634
|
+
sage: P1 = P2_112.orbit_closure(Cone([(1,0)]))
|
|
635
|
+
sage: f = P1.embedding_morphism()
|
|
636
|
+
sage: f._ray_map
|
|
637
|
+
{N(-1, -2): (-2), N(0, 1): (1), N(1, 0): (0)}
|
|
638
|
+
sage: f._reverse_ray_map()
|
|
639
|
+
{N(-2): 2, N(1): 1}
|
|
640
|
+
"""
|
|
641
|
+
orbit = self.parent().domain()
|
|
642
|
+
codomain_fan = self.parent().codomain().fan()
|
|
643
|
+
reverse_ray_dict = {}
|
|
644
|
+
for n1, n2 in self._ray_map.items():
|
|
645
|
+
ray_index = codomain_fan.rays().index(n1)
|
|
646
|
+
if n2.is_zero():
|
|
647
|
+
assert ray_index in self._defining_cone.ambient_ray_indices()
|
|
648
|
+
continue
|
|
649
|
+
n2 = orbit.fan().lattice()(n2)
|
|
650
|
+
n2.set_immutable()
|
|
651
|
+
reverse_ray_dict[n2] = ray_index
|
|
652
|
+
return reverse_ray_dict
|
|
653
|
+
|
|
654
|
+
def _repr_defn(self):
|
|
655
|
+
"""
|
|
656
|
+
Return a string representation of the definition of ``self``.
|
|
657
|
+
|
|
658
|
+
OUTPUT: string
|
|
659
|
+
|
|
660
|
+
EXAMPLES::
|
|
661
|
+
|
|
662
|
+
sage: P2 = toric_varieties.P2()
|
|
663
|
+
sage: V = P2.orbit_closure(P2.fan(1)[0]); V
|
|
664
|
+
1-d toric variety covered by 2 affine patches
|
|
665
|
+
sage: V.embedding_morphism()._repr_defn()
|
|
666
|
+
'Defined by embedding the torus closure associated to the 1-d cone of
|
|
667
|
+
Rational polyhedral fan in 2-d lattice N.'
|
|
668
|
+
"""
|
|
669
|
+
s = 'Defined by embedding the torus closure associated to the '
|
|
670
|
+
s += str(self._defining_cone)
|
|
671
|
+
s += '.'
|
|
672
|
+
return s
|
|
673
|
+
|
|
674
|
+
def as_polynomial_map(self):
|
|
675
|
+
"""
|
|
676
|
+
Express the morphism via homogeneous polynomials.
|
|
677
|
+
|
|
678
|
+
OUTPUT: a :class:`SchemeMorphism_polynomial_toric_variety`
|
|
679
|
+
|
|
680
|
+
This raises a :exc:`TypeError` if the morphism cannot be
|
|
681
|
+
written in terms of homogeneous polynomials.
|
|
682
|
+
|
|
683
|
+
The defining polynomials are not necessarily unique. There are
|
|
684
|
+
choices if multiple ambient space ray generators project to
|
|
685
|
+
the same orbit ray generator, and one such choice is made
|
|
686
|
+
implicitly. The orbit embedding can be written as a polynomial
|
|
687
|
+
map if and only if each primitive orbit ray generator is the
|
|
688
|
+
image of at least one primitive ray generator of the ambient
|
|
689
|
+
toric variety.
|
|
690
|
+
|
|
691
|
+
EXAMPLES::
|
|
692
|
+
|
|
693
|
+
sage: P2 = toric_varieties.P2()
|
|
694
|
+
sage: V = P2.orbit_closure(P2.fan(1)[0]); V
|
|
695
|
+
1-d toric variety covered by 2 affine patches
|
|
696
|
+
sage: V.embedding_morphism().as_polynomial_map()
|
|
697
|
+
Scheme morphism:
|
|
698
|
+
From: 1-d toric variety covered by 2 affine patches
|
|
699
|
+
To: 2-d CPR-Fano toric variety covered by 3 affine patches
|
|
700
|
+
Defn: Defined on coordinates by sending [z0 : z1] to [0 : z1 : z0]
|
|
701
|
+
|
|
702
|
+
If the toric variety is singular, then some orbit closure
|
|
703
|
+
embeddings cannot be written with homogeneous polynomials::
|
|
704
|
+
|
|
705
|
+
sage: P2_112 = toric_varieties.P2_112()
|
|
706
|
+
sage: P1 = P2_112.orbit_closure(Cone([(1,0)]))
|
|
707
|
+
sage: P1.embedding_morphism().as_polynomial_map()
|
|
708
|
+
Traceback (most recent call last):
|
|
709
|
+
...
|
|
710
|
+
TypeError: the embedding cannot be written with homogeneous polynomials
|
|
711
|
+
"""
|
|
712
|
+
orbit = self.domain()
|
|
713
|
+
codomain_fan = self.codomain().fan()
|
|
714
|
+
R = orbit.coordinate_ring()
|
|
715
|
+
polys = [R.one()] * codomain_fan.nrays()
|
|
716
|
+
for i in self._defining_cone.ambient_ray_indices():
|
|
717
|
+
polys[i] = R.zero()
|
|
718
|
+
ray_index_map = self._reverse_ray_map()
|
|
719
|
+
for i, ray in enumerate(orbit.fan().rays()):
|
|
720
|
+
try:
|
|
721
|
+
ray_index = ray_index_map[ray]
|
|
722
|
+
except KeyError:
|
|
723
|
+
raise TypeError('the embedding cannot be written with homogeneous polynomials')
|
|
724
|
+
polys[ray_index] = R.gen(i)
|
|
725
|
+
return SchemeMorphism_polynomial_toric_variety(self.parent(), polys)
|
|
726
|
+
|
|
727
|
+
def pullback_divisor(self, divisor):
|
|
728
|
+
r"""
|
|
729
|
+
Pull back a toric divisor.
|
|
730
|
+
|
|
731
|
+
INPUT:
|
|
732
|
+
|
|
733
|
+
- ``divisor`` -- a torus-invariant `\QQ`-Cartier divisor on the
|
|
734
|
+
codomain of the embedding map
|
|
735
|
+
|
|
736
|
+
OUTPUT:
|
|
737
|
+
|
|
738
|
+
A divisor on the domain of the embedding map (the orbit
|
|
739
|
+
closure) that is isomorphic to the pull-back divisor `f^*(D)`
|
|
740
|
+
but with possibly different linearization.
|
|
741
|
+
|
|
742
|
+
EXAMPLES::
|
|
743
|
+
|
|
744
|
+
sage: P2 = toric_varieties.P2()
|
|
745
|
+
sage: P1 = P2.orbit_closure(P2.fan(1)[0])
|
|
746
|
+
sage: f = P1.embedding_morphism()
|
|
747
|
+
sage: D = P2.divisor([1,2,3]); D
|
|
748
|
+
V(x) + 2*V(y) + 3*V(z)
|
|
749
|
+
sage: f.pullback_divisor(D)
|
|
750
|
+
4*V(z0) + 2*V(z1)
|
|
751
|
+
"""
|
|
752
|
+
from sage.schemes.toric.divisor import ToricDivisor_generic
|
|
753
|
+
if not (isinstance(divisor, ToricDivisor_generic) and divisor.is_QQ_Cartier()):
|
|
754
|
+
raise ValueError('the divisor must be torus-invariant and QQ-Cartier')
|
|
755
|
+
m = divisor.m(self._defining_cone)
|
|
756
|
+
values = []
|
|
757
|
+
codomain_rays = self.codomain().fan().rays()
|
|
758
|
+
for ray in self.domain().fan().rays():
|
|
759
|
+
ray = codomain_rays[self._reverse_ray_map()[ray]]
|
|
760
|
+
value = divisor.function_value(ray) - m * ray
|
|
761
|
+
values.append(value)
|
|
762
|
+
return self.domain().divisor(values)
|
|
763
|
+
|
|
764
|
+
|
|
765
|
+
############################################################################
|
|
766
|
+
# A morphism of toric varieties determined by a fan morphism
|
|
767
|
+
class SchemeMorphism_fan_toric_variety(SchemeMorphism, Morphism):
|
|
768
|
+
"""
|
|
769
|
+
Construct a morphism determined by a fan morphism.
|
|
770
|
+
|
|
771
|
+
.. WARNING::
|
|
772
|
+
|
|
773
|
+
You should not create objects of this class directly. Use the
|
|
774
|
+
:meth:`~sage.schemes.generic.scheme.hom` method of
|
|
775
|
+
:class:`toric varieties
|
|
776
|
+
<sage.schemes.toric.variety.ToricVariety_field>`
|
|
777
|
+
instead.
|
|
778
|
+
|
|
779
|
+
INPUT:
|
|
780
|
+
|
|
781
|
+
- ``parent`` -- Hom-set whose domain and codomain are toric varieties
|
|
782
|
+
|
|
783
|
+
- ``fan_morphism`` -- a morphism of fans whose domain and codomain
|
|
784
|
+
fans equal the fans of the domain and codomain in the ``parent``
|
|
785
|
+
Hom-set.
|
|
786
|
+
|
|
787
|
+
- ``check`` -- boolean (default: ``True``); whether to
|
|
788
|
+
check the input for consistency
|
|
789
|
+
|
|
790
|
+
.. WARNING::
|
|
791
|
+
|
|
792
|
+
A fibration is a dominant morphism; if you are interested in
|
|
793
|
+
these then you have to make sure that your fan morphism is
|
|
794
|
+
dominant. For example, this can be achieved by
|
|
795
|
+
:meth:`factoring the morphism
|
|
796
|
+
<sage.schemes.toric.morphism.SchemeMorphism_fan_toric_variety.factor>`. See
|
|
797
|
+
:class:`SchemeMorphism_fan_toric_variety_dominant` for
|
|
798
|
+
additional functionality for fibrations.
|
|
799
|
+
|
|
800
|
+
OUTPUT: a :class:`~sage.schemes.toric.morphism.SchemeMorphism_fan_toric_variety`
|
|
801
|
+
|
|
802
|
+
EXAMPLES::
|
|
803
|
+
|
|
804
|
+
sage: P1xP1 = toric_varieties.P1xP1()
|
|
805
|
+
sage: P1 = toric_varieties.P1()
|
|
806
|
+
sage: f = P1.hom(matrix([[1,0]]), P1xP1); f
|
|
807
|
+
Scheme morphism:
|
|
808
|
+
From: 1-d CPR-Fano toric variety covered by 2 affine patches
|
|
809
|
+
To: 2-d CPR-Fano toric variety covered by 4 affine patches
|
|
810
|
+
Defn: Defined by sending Rational polyhedral fan in 1-d lattice N
|
|
811
|
+
to Rational polyhedral fan in 2-d lattice N.
|
|
812
|
+
sage: type(f)
|
|
813
|
+
<class 'sage.schemes.toric.morphism.SchemeMorphism_fan_toric_variety'>
|
|
814
|
+
|
|
815
|
+
Slightly more explicit construction::
|
|
816
|
+
|
|
817
|
+
sage: P1xP1 = toric_varieties.P1xP1()
|
|
818
|
+
sage: P1 = toric_varieties.P1()
|
|
819
|
+
sage: hom_set = P1xP1.Hom(P1)
|
|
820
|
+
sage: fm = FanMorphism(matrix(ZZ, [[1],[0]]), P1xP1.fan(), P1.fan())
|
|
821
|
+
sage: hom_set(fm)
|
|
822
|
+
Scheme morphism:
|
|
823
|
+
From: 2-d CPR-Fano toric variety covered by 4 affine patches
|
|
824
|
+
To: 1-d CPR-Fano toric variety covered by 2 affine patches
|
|
825
|
+
Defn: Defined by sending Rational polyhedral fan in 2-d lattice N
|
|
826
|
+
to Rational polyhedral fan in 1-d lattice N.
|
|
827
|
+
|
|
828
|
+
sage: P1xP1.hom(fm, P1)
|
|
829
|
+
Scheme morphism:
|
|
830
|
+
From: 2-d CPR-Fano toric variety covered by 4 affine patches
|
|
831
|
+
To: 1-d CPR-Fano toric variety covered by 2 affine patches
|
|
832
|
+
Defn: Defined by sending Rational polyhedral fan in 2-d lattice N
|
|
833
|
+
to Rational polyhedral fan in 1-d lattice N.
|
|
834
|
+
"""
|
|
835
|
+
|
|
836
|
+
def __init__(self, parent, fan_morphism, check=True):
|
|
837
|
+
r"""
|
|
838
|
+
See :class:`SchemeMorphism_polynomial_toric_variety` for documentation.
|
|
839
|
+
|
|
840
|
+
TESTS::
|
|
841
|
+
|
|
842
|
+
sage: P1xP1 = toric_varieties.P1xP1()
|
|
843
|
+
sage: P1 = toric_varieties.P1()
|
|
844
|
+
sage: hom_set = P1xP1.Hom(P1)
|
|
845
|
+
sage: fan_morphism = FanMorphism(matrix(ZZ, [[1],[0]]), P1xP1.fan(), P1.fan())
|
|
846
|
+
sage: from sage.schemes.toric.morphism import SchemeMorphism_fan_toric_variety
|
|
847
|
+
sage: SchemeMorphism_fan_toric_variety(hom_set, fan_morphism)
|
|
848
|
+
Scheme morphism:
|
|
849
|
+
From: 2-d CPR-Fano toric variety covered by 4 affine patches
|
|
850
|
+
To: 1-d CPR-Fano toric variety covered by 2 affine patches
|
|
851
|
+
Defn: Defined by sending Rational polyhedral fan in 2-d lattice N
|
|
852
|
+
to Rational polyhedral fan in 1-d lattice N.
|
|
853
|
+
"""
|
|
854
|
+
SchemeMorphism.__init__(self, parent)
|
|
855
|
+
if check and self.domain().fan() != fan_morphism.domain_fan():
|
|
856
|
+
raise ValueError('the fan morphism domain must be the fan of the domain')
|
|
857
|
+
if check and self.codomain().fan() != fan_morphism.codomain_fan():
|
|
858
|
+
raise ValueError('the fan morphism codomain must be the fan of the codomain')
|
|
859
|
+
self._fan_morphism = fan_morphism
|
|
860
|
+
|
|
861
|
+
def _richcmp_(self, right, op):
|
|
862
|
+
r"""
|
|
863
|
+
Compare ``self`` and ``right``.
|
|
864
|
+
|
|
865
|
+
INPUT:
|
|
866
|
+
|
|
867
|
+
- ``right`` -- another toric morphism
|
|
868
|
+
|
|
869
|
+
OUTPUT: boolean
|
|
870
|
+
|
|
871
|
+
Comparison is done first by domain, then by codomain, then by
|
|
872
|
+
fan morphism.
|
|
873
|
+
|
|
874
|
+
TESTS::
|
|
875
|
+
|
|
876
|
+
sage: A2 = toric_varieties.A2()
|
|
877
|
+
sage: P3 = toric_varieties.P(3)
|
|
878
|
+
sage: m = matrix([(2,0,0), (1,1,0)])
|
|
879
|
+
sage: phi = A2.hom(m, P3)
|
|
880
|
+
sage: phi == phi
|
|
881
|
+
True
|
|
882
|
+
sage: phi == prod(phi.factor())
|
|
883
|
+
True
|
|
884
|
+
sage: phi == phi.factor()[0]
|
|
885
|
+
False
|
|
886
|
+
"""
|
|
887
|
+
if not isinstance(right, SchemeMorphism_fan_toric_variety):
|
|
888
|
+
return NotImplemented
|
|
889
|
+
|
|
890
|
+
lx = self.domain()
|
|
891
|
+
rx = right.domain()
|
|
892
|
+
if lx != rx:
|
|
893
|
+
return richcmp_not_equal(lx, rx, op)
|
|
894
|
+
|
|
895
|
+
lx = self.codomain()
|
|
896
|
+
rx = right.codomain()
|
|
897
|
+
if lx != rx:
|
|
898
|
+
return richcmp_not_equal(lx, rx, op)
|
|
899
|
+
|
|
900
|
+
return richcmp(self.fan_morphism(), right.fan_morphism(), op)
|
|
901
|
+
|
|
902
|
+
def _composition_(self, right, homset):
|
|
903
|
+
"""
|
|
904
|
+
Return the composition of ``self`` and ``right``.
|
|
905
|
+
|
|
906
|
+
INPUT:
|
|
907
|
+
|
|
908
|
+
- ``right`` -- a toric morphism defined by a fan morphism
|
|
909
|
+
|
|
910
|
+
OUTPUT: a toric morphism
|
|
911
|
+
|
|
912
|
+
EXAMPLES::
|
|
913
|
+
|
|
914
|
+
sage: A2 = toric_varieties.A2()
|
|
915
|
+
sage: P3 = toric_varieties.P(3)
|
|
916
|
+
sage: m = matrix([(2,0,0), (1,1,0)])
|
|
917
|
+
sage: phi = A2.hom(m, P3)
|
|
918
|
+
sage: phi1, phi2, phi3 = phi.factor()
|
|
919
|
+
sage: phi1 * phi2
|
|
920
|
+
Scheme morphism:
|
|
921
|
+
From: 2-d affine toric variety
|
|
922
|
+
To: 3-d CPR-Fano toric variety covered by 4 affine patches
|
|
923
|
+
Defn: Defined by sending Rational polyhedral fan in Sublattice
|
|
924
|
+
<N(1, 0, 0), N(0, 1, 0)> to Rational polyhedral fan in 3-d lattice N.
|
|
925
|
+
sage: phi1 * phi2 * phi3 == phi
|
|
926
|
+
True
|
|
927
|
+
"""
|
|
928
|
+
f = self.fan_morphism() * right.fan_morphism()
|
|
929
|
+
return homset(f, self.codomain())
|
|
930
|
+
|
|
931
|
+
def _repr_defn(self):
|
|
932
|
+
"""
|
|
933
|
+
Return a string representation of the definition of ``self``.
|
|
934
|
+
|
|
935
|
+
OUTPUT: string
|
|
936
|
+
|
|
937
|
+
EXAMPLES::
|
|
938
|
+
|
|
939
|
+
sage: P1xP1 = toric_varieties.P1xP1()
|
|
940
|
+
sage: P1 = toric_varieties.P1()
|
|
941
|
+
sage: f = P1xP1.hom(matrix([[1],[0]]), P1)
|
|
942
|
+
sage: f._repr_defn()
|
|
943
|
+
'Defined by sending Rational polyhedral fan in 2-d lattice N to Rational polyhedral fan in 1-d lattice N.'
|
|
944
|
+
"""
|
|
945
|
+
s = 'Defined by sending '
|
|
946
|
+
s += str(self.domain().fan())
|
|
947
|
+
s += ' to '
|
|
948
|
+
s += str(self.codomain().fan())
|
|
949
|
+
s += '.'
|
|
950
|
+
return s
|
|
951
|
+
|
|
952
|
+
def factor(self):
|
|
953
|
+
r"""
|
|
954
|
+
Factor ``self`` into injective * birational * surjective morphisms.
|
|
955
|
+
|
|
956
|
+
OUTPUT:
|
|
957
|
+
|
|
958
|
+
- a triple of toric morphisms `(\phi_i, \phi_b, \phi_s)`, such that
|
|
959
|
+
`\phi_s` is surjective, `\phi_b` is birational, `\phi_i` is injective,
|
|
960
|
+
and ``self`` is equal to `\phi_i \circ \phi_b \circ \phi_s`.
|
|
961
|
+
|
|
962
|
+
The intermediate varieties are universal in the following sense. Let
|
|
963
|
+
``self`` map `X` to `X'` and let `X_s`, `X_i` sit in between, that is,
|
|
964
|
+
|
|
965
|
+
.. MATH::
|
|
966
|
+
|
|
967
|
+
X
|
|
968
|
+
\twoheadrightarrow
|
|
969
|
+
X_s
|
|
970
|
+
\to
|
|
971
|
+
X_i
|
|
972
|
+
\hookrightarrow
|
|
973
|
+
X'.
|
|
974
|
+
|
|
975
|
+
Then any toric morphism from `X` coinciding with ``self`` on the maximal
|
|
976
|
+
torus factors through `X_s` and any toric morphism into `X'` coinciding
|
|
977
|
+
with ``self`` on the maximal torus factors through `X_i`. In particular,
|
|
978
|
+
`X_i` is the closure of the image of ``self`` in `X'`.
|
|
979
|
+
|
|
980
|
+
See
|
|
981
|
+
:meth:`~sage.geometry.fan_morphism.FanMorphism.factor`
|
|
982
|
+
for a description of the toric algorithm.
|
|
983
|
+
|
|
984
|
+
EXAMPLES:
|
|
985
|
+
|
|
986
|
+
We map an affine plane into a projective 3-space in such a way, that it
|
|
987
|
+
becomes "a double cover of a chart of the blow up of one of the
|
|
988
|
+
coordinate planes"::
|
|
989
|
+
|
|
990
|
+
sage: A2 = toric_varieties.A2()
|
|
991
|
+
sage: P3 = toric_varieties.P(3)
|
|
992
|
+
sage: m = matrix([(2,0,0), (1,1,0)])
|
|
993
|
+
sage: phi = A2.hom(m, P3)
|
|
994
|
+
sage: phi.as_polynomial_map()
|
|
995
|
+
Scheme morphism:
|
|
996
|
+
From: 2-d affine toric variety
|
|
997
|
+
To: 3-d CPR-Fano toric variety covered by 4 affine patches
|
|
998
|
+
Defn: Defined on coordinates by sending [x : y] to
|
|
999
|
+
[x^2*y : y : 1 : 1]
|
|
1000
|
+
|
|
1001
|
+
sage: phi.is_surjective(), phi.is_birational(), phi.is_injective()
|
|
1002
|
+
(False, False, False)
|
|
1003
|
+
sage: phi_i, phi_b, phi_s = phi.factor()
|
|
1004
|
+
sage: phi_s.is_surjective(), phi_b.is_birational(), phi_i.is_injective()
|
|
1005
|
+
(True, True, True)
|
|
1006
|
+
sage: prod(phi.factor()) == phi
|
|
1007
|
+
True
|
|
1008
|
+
|
|
1009
|
+
Double cover (surjective)::
|
|
1010
|
+
|
|
1011
|
+
sage: phi_s.as_polynomial_map()
|
|
1012
|
+
Scheme morphism:
|
|
1013
|
+
From: 2-d affine toric variety
|
|
1014
|
+
To: 2-d affine toric variety
|
|
1015
|
+
Defn: Defined on coordinates by sending [x : y] to [x^2 : y]
|
|
1016
|
+
|
|
1017
|
+
Blowup chart (birational)::
|
|
1018
|
+
|
|
1019
|
+
sage: phi_b.as_polynomial_map()
|
|
1020
|
+
Scheme morphism:
|
|
1021
|
+
From: 2-d affine toric variety
|
|
1022
|
+
To: 2-d toric variety covered by 3 affine patches
|
|
1023
|
+
Defn: Defined on coordinates by sending [z0 : z1] to [1 : z1 : z0*z1]
|
|
1024
|
+
|
|
1025
|
+
Coordinate plane inclusion (injective)::
|
|
1026
|
+
|
|
1027
|
+
sage: phi_i.as_polynomial_map()
|
|
1028
|
+
Scheme morphism:
|
|
1029
|
+
From: 2-d toric variety covered by 3 affine patches
|
|
1030
|
+
To: 3-d CPR-Fano toric variety covered by 4 affine patches
|
|
1031
|
+
Defn: Defined on coordinates by sending [z0 : z1 : z2] to [z2 : z1 : z0 : z0]
|
|
1032
|
+
"""
|
|
1033
|
+
phi_i, phi_b, phi_s = self.fan_morphism().factor()
|
|
1034
|
+
from sage.schemes.toric.variety import ToricVariety
|
|
1035
|
+
X = self.domain()
|
|
1036
|
+
X_s = ToricVariety(phi_s.codomain_fan())
|
|
1037
|
+
X_i = ToricVariety(phi_i.domain_fan())
|
|
1038
|
+
X_prime = self.codomain()
|
|
1039
|
+
return X_i.hom(phi_i, X_prime), X_s.hom(phi_b, X_i), X.hom(phi_s, X_s)
|
|
1040
|
+
|
|
1041
|
+
def fan_morphism(self):
|
|
1042
|
+
"""
|
|
1043
|
+
Return the defining fan morphism.
|
|
1044
|
+
|
|
1045
|
+
OUTPUT: a :class:`~sage.geometry.fan_morphism.FanMorphism`
|
|
1046
|
+
|
|
1047
|
+
EXAMPLES::
|
|
1048
|
+
|
|
1049
|
+
sage: P1xP1 = toric_varieties.P1xP1()
|
|
1050
|
+
sage: P1 = toric_varieties.P1()
|
|
1051
|
+
sage: f = P1xP1.hom(matrix([[1],[0]]), P1)
|
|
1052
|
+
sage: f.fan_morphism()
|
|
1053
|
+
Fan morphism defined by the matrix
|
|
1054
|
+
[1]
|
|
1055
|
+
[0]
|
|
1056
|
+
Domain fan: Rational polyhedral fan in 2-d lattice N
|
|
1057
|
+
Codomain fan: Rational polyhedral fan in 1-d lattice N
|
|
1058
|
+
"""
|
|
1059
|
+
return self._fan_morphism
|
|
1060
|
+
|
|
1061
|
+
def as_polynomial_map(self):
|
|
1062
|
+
"""
|
|
1063
|
+
Express the morphism via homogeneous polynomials.
|
|
1064
|
+
|
|
1065
|
+
OUTPUT: a :class:`SchemeMorphism_polynomial_toric_variety`
|
|
1066
|
+
|
|
1067
|
+
This raises a :exc:`TypeError` if the morphism cannot be written
|
|
1068
|
+
in terms of homogeneous polynomials.
|
|
1069
|
+
|
|
1070
|
+
EXAMPLES::
|
|
1071
|
+
|
|
1072
|
+
sage: A1 = toric_varieties.A1()
|
|
1073
|
+
sage: square = A1.hom(matrix([[2]]), A1)
|
|
1074
|
+
sage: square.as_polynomial_map()
|
|
1075
|
+
Scheme endomorphism of 1-d affine toric variety
|
|
1076
|
+
Defn: Defined on coordinates by sending [z] to [z^2]
|
|
1077
|
+
|
|
1078
|
+
sage: P1 = toric_varieties.P1()
|
|
1079
|
+
sage: patch = A1.hom(matrix([[1]]), P1)
|
|
1080
|
+
sage: patch.as_polynomial_map()
|
|
1081
|
+
Scheme morphism:
|
|
1082
|
+
From: 1-d affine toric variety
|
|
1083
|
+
To: 1-d CPR-Fano toric variety covered by 2 affine patches
|
|
1084
|
+
Defn: Defined on coordinates by sending [z] to [z : 1]
|
|
1085
|
+
"""
|
|
1086
|
+
R = self.domain().coordinate_ring()
|
|
1087
|
+
phi = self.fan_morphism()
|
|
1088
|
+
polys = [R.one()] * self.codomain().ngens()
|
|
1089
|
+
for rho, x in zip(phi.domain_fan(1), R.gens()):
|
|
1090
|
+
ray = rho.ray(0)
|
|
1091
|
+
sigma = phi.image_cone(rho)
|
|
1092
|
+
degrees = sigma.rays().matrix().solve_left(phi(ray))
|
|
1093
|
+
for i, d in zip(sigma.ambient_ray_indices(), degrees):
|
|
1094
|
+
try:
|
|
1095
|
+
d = ZZ(d)
|
|
1096
|
+
except TypeError:
|
|
1097
|
+
raise TypeError('the fan morphism cannot be written in '
|
|
1098
|
+
'homogeneous polynomials')
|
|
1099
|
+
polys[i] *= x**d
|
|
1100
|
+
if phi.domain_fan().virtual_rays():
|
|
1101
|
+
raise NotImplementedError("polynomial representations for fans with"
|
|
1102
|
+
" virtual rays are not implemented yet")
|
|
1103
|
+
return SchemeMorphism_polynomial_toric_variety(self.parent(), polys)
|
|
1104
|
+
|
|
1105
|
+
def is_bundle(self):
|
|
1106
|
+
r"""
|
|
1107
|
+
Check if ``self`` is a bundle.
|
|
1108
|
+
|
|
1109
|
+
See :meth:`~sage.geometry.fan_morphism.FanMorphism.is_bundle`
|
|
1110
|
+
for fan morphisms for details.
|
|
1111
|
+
|
|
1112
|
+
OUTPUT: ``True`` if ``self`` is a bundle, ``False`` otherwise
|
|
1113
|
+
|
|
1114
|
+
EXAMPLES::
|
|
1115
|
+
|
|
1116
|
+
sage: P1xP1 = toric_varieties.P1xP1()
|
|
1117
|
+
sage: P1 = toric_varieties.P1()
|
|
1118
|
+
sage: P1xP1.hom(matrix([[1],[0]]), P1).is_bundle()
|
|
1119
|
+
True
|
|
1120
|
+
"""
|
|
1121
|
+
return self.fan_morphism().is_bundle()
|
|
1122
|
+
|
|
1123
|
+
def is_fibration(self):
|
|
1124
|
+
r"""
|
|
1125
|
+
Check if ``self`` is a fibration.
|
|
1126
|
+
|
|
1127
|
+
See
|
|
1128
|
+
:meth:`~sage.geometry.fan_morphism.FanMorphism.is_fibration`
|
|
1129
|
+
for fan morphisms for details.
|
|
1130
|
+
|
|
1131
|
+
OUTPUT: ``True`` if ``self`` is a fibration, ``False`` otherwise
|
|
1132
|
+
|
|
1133
|
+
EXAMPLES::
|
|
1134
|
+
|
|
1135
|
+
sage: P1xP1 = toric_varieties.P1xP1()
|
|
1136
|
+
sage: P1 = toric_varieties.P1()
|
|
1137
|
+
sage: P1xP1.hom(matrix([[1],[0]]), P1).is_fibration()
|
|
1138
|
+
True
|
|
1139
|
+
"""
|
|
1140
|
+
return self.fan_morphism().is_fibration()
|
|
1141
|
+
|
|
1142
|
+
def is_injective(self):
|
|
1143
|
+
r"""
|
|
1144
|
+
Check if ``self`` is injective.
|
|
1145
|
+
|
|
1146
|
+
See
|
|
1147
|
+
:meth:`~sage.geometry.fan_morphism.FanMorphism.is_injective`
|
|
1148
|
+
for fan morphisms for a description of the toric algorithm.
|
|
1149
|
+
|
|
1150
|
+
OUTPUT: boolean; whether ``self`` is injective
|
|
1151
|
+
|
|
1152
|
+
EXAMPLES::
|
|
1153
|
+
|
|
1154
|
+
sage: P1xP1 = toric_varieties.P1xP1()
|
|
1155
|
+
sage: P1 = toric_varieties.P1()
|
|
1156
|
+
sage: P1xP1.hom(matrix([[1],[0]]), P1).is_injective()
|
|
1157
|
+
False
|
|
1158
|
+
|
|
1159
|
+
sage: X = toric_varieties.A(2)
|
|
1160
|
+
sage: m = identity_matrix(2)
|
|
1161
|
+
sage: f = X.hom(m, X)
|
|
1162
|
+
sage: f.is_injective()
|
|
1163
|
+
True
|
|
1164
|
+
|
|
1165
|
+
sage: Y = ToricVariety(Fan([Cone([(1,0), (1,1)])]))
|
|
1166
|
+
sage: f = Y.hom(m, X)
|
|
1167
|
+
sage: f.is_injective()
|
|
1168
|
+
False
|
|
1169
|
+
"""
|
|
1170
|
+
return self.fan_morphism().is_injective()
|
|
1171
|
+
|
|
1172
|
+
def is_surjective(self):
|
|
1173
|
+
r"""
|
|
1174
|
+
Check if ``self`` is surjective.
|
|
1175
|
+
|
|
1176
|
+
See
|
|
1177
|
+
:meth:`~sage.geometry.fan_morphism.FanMorphism.is_surjective`
|
|
1178
|
+
for fan morphisms for a description of the toric algorithm.
|
|
1179
|
+
|
|
1180
|
+
OUTPUT: boolean; whether ``self`` is surjective
|
|
1181
|
+
|
|
1182
|
+
EXAMPLES::
|
|
1183
|
+
|
|
1184
|
+
sage: P1xP1 = toric_varieties.P1xP1()
|
|
1185
|
+
sage: P1 = toric_varieties.P1()
|
|
1186
|
+
sage: P1xP1.hom(matrix([[1],[0]]), P1).is_surjective()
|
|
1187
|
+
True
|
|
1188
|
+
|
|
1189
|
+
sage: X = toric_varieties.A(2)
|
|
1190
|
+
sage: m = identity_matrix(2)
|
|
1191
|
+
sage: f = X.hom(m, X)
|
|
1192
|
+
sage: f.is_surjective()
|
|
1193
|
+
True
|
|
1194
|
+
|
|
1195
|
+
sage: Y = ToricVariety(Fan([Cone([(1,0), (1,1)])]))
|
|
1196
|
+
sage: f = Y.hom(m, X)
|
|
1197
|
+
sage: f.is_surjective()
|
|
1198
|
+
False
|
|
1199
|
+
"""
|
|
1200
|
+
return self.fan_morphism().is_surjective()
|
|
1201
|
+
|
|
1202
|
+
def is_birational(self):
|
|
1203
|
+
r"""
|
|
1204
|
+
Check if ``self`` is birational.
|
|
1205
|
+
|
|
1206
|
+
See
|
|
1207
|
+
:meth:`~sage.geometry.fan_morphism.FanMorphism.is_birational`
|
|
1208
|
+
for fan morphisms for a description of the toric algorithm.
|
|
1209
|
+
|
|
1210
|
+
OUTPUT: boolean; whether ``self`` is birational
|
|
1211
|
+
|
|
1212
|
+
EXAMPLES::
|
|
1213
|
+
|
|
1214
|
+
sage: dP8 = toric_varieties.dP8()
|
|
1215
|
+
sage: P2 = toric_varieties.P2()
|
|
1216
|
+
sage: dP8.hom(identity_matrix(2), P2).is_birational()
|
|
1217
|
+
True
|
|
1218
|
+
|
|
1219
|
+
sage: X = toric_varieties.A(2)
|
|
1220
|
+
sage: Y = ToricVariety(Fan([Cone([(1,0), (1,1)])]))
|
|
1221
|
+
sage: m = identity_matrix(2)
|
|
1222
|
+
sage: f = Y.hom(m, X)
|
|
1223
|
+
sage: f.is_birational()
|
|
1224
|
+
True
|
|
1225
|
+
"""
|
|
1226
|
+
return self.fan_morphism().is_birational()
|
|
1227
|
+
|
|
1228
|
+
def is_dominant(self):
|
|
1229
|
+
r"""
|
|
1230
|
+
Return whether ``self`` is dominant.
|
|
1231
|
+
|
|
1232
|
+
See
|
|
1233
|
+
:meth:`~sage.geometry.fan_morphism.FanMorphism.is_dominant`
|
|
1234
|
+
for fan morphisms for a description of the toric algorithm.
|
|
1235
|
+
|
|
1236
|
+
OUTPUT: boolean; whether ``self`` is a dominant scheme morphism
|
|
1237
|
+
|
|
1238
|
+
EXAMPLES::
|
|
1239
|
+
|
|
1240
|
+
sage: P1 = toric_varieties.P1()
|
|
1241
|
+
sage: A1 = toric_varieties.A1()
|
|
1242
|
+
sage: phi = A1.hom(identity_matrix(1), P1); phi
|
|
1243
|
+
Scheme morphism:
|
|
1244
|
+
From: 1-d affine toric variety
|
|
1245
|
+
To: 1-d CPR-Fano toric variety covered by 2 affine patches
|
|
1246
|
+
Defn: Defined by sending Rational polyhedral fan in 1-d lattice N
|
|
1247
|
+
to Rational polyhedral fan in 1-d lattice N.
|
|
1248
|
+
sage: phi.is_dominant()
|
|
1249
|
+
True
|
|
1250
|
+
sage: phi.is_surjective()
|
|
1251
|
+
False
|
|
1252
|
+
"""
|
|
1253
|
+
return self.fan_morphism().is_dominant()
|
|
1254
|
+
|
|
1255
|
+
def pullback_divisor(self, divisor):
|
|
1256
|
+
r"""
|
|
1257
|
+
Pull back a toric divisor.
|
|
1258
|
+
|
|
1259
|
+
INPUT:
|
|
1260
|
+
|
|
1261
|
+
- ``divisor`` -- a torus-invariant `\QQ`-Cartier divisor on the
|
|
1262
|
+
codomain of ``self``
|
|
1263
|
+
|
|
1264
|
+
OUTPUT: the pull-back divisor `f^*(D)`
|
|
1265
|
+
|
|
1266
|
+
EXAMPLES::
|
|
1267
|
+
|
|
1268
|
+
sage: A2_Z2 = toric_varieties.A2_Z2()
|
|
1269
|
+
sage: A2 = toric_varieties.A2()
|
|
1270
|
+
sage: f = A2.hom(matrix([[1,0], [1,2]]), A2_Z2)
|
|
1271
|
+
sage: f.pullback_divisor(A2_Z2.divisor(0))
|
|
1272
|
+
V(x)
|
|
1273
|
+
|
|
1274
|
+
sage: A1 = toric_varieties.A1()
|
|
1275
|
+
sage: square = A1.hom(matrix([[2]]), A1)
|
|
1276
|
+
sage: D = A1.divisor(0); D
|
|
1277
|
+
V(z)
|
|
1278
|
+
sage: square.pullback_divisor(D)
|
|
1279
|
+
2*V(z)
|
|
1280
|
+
"""
|
|
1281
|
+
from sage.schemes.toric.divisor import ToricDivisor_generic
|
|
1282
|
+
if not (isinstance(divisor, ToricDivisor_generic) and divisor.is_QQ_Cartier()):
|
|
1283
|
+
raise ValueError('the divisor must be torus-invariant and QQ-Cartier')
|
|
1284
|
+
fm = self.fan_morphism()
|
|
1285
|
+
values = []
|
|
1286
|
+
for ray in self.domain().fan().rays():
|
|
1287
|
+
value = divisor.function_value(fm(ray))
|
|
1288
|
+
values.append(value)
|
|
1289
|
+
return self.domain().divisor(values)
|
|
1290
|
+
|
|
1291
|
+
|
|
1292
|
+
############################################################################
|
|
1293
|
+
# A morphism of toric varieties determined by a dominant fan morphism
|
|
1294
|
+
class SchemeMorphism_fan_toric_variety_dominant(SchemeMorphism_fan_toric_variety):
|
|
1295
|
+
"""
|
|
1296
|
+
Construct a morphism determined by a dominant fan morphism.
|
|
1297
|
+
|
|
1298
|
+
A dominant morphism is one that is surjective onto a dense
|
|
1299
|
+
subset. In the context of toric morphisms, this means that it is
|
|
1300
|
+
onto the big torus orbit.
|
|
1301
|
+
|
|
1302
|
+
.. WARNING::
|
|
1303
|
+
|
|
1304
|
+
You should not create objects of this class directly. Use the
|
|
1305
|
+
:meth:`~sage.schemes.generic.scheme.hom` method of
|
|
1306
|
+
:class:`toric varieties
|
|
1307
|
+
<sage.schemes.toric.variety.ToricVariety_field>`
|
|
1308
|
+
instead.
|
|
1309
|
+
|
|
1310
|
+
INPUT:
|
|
1311
|
+
|
|
1312
|
+
See :class:`SchemeMorphism_fan_toric_variety`. The given fan
|
|
1313
|
+
morphism :meth:`must be dominant
|
|
1314
|
+
<sage.geometry.fan_morphism.FanMorphism.is_dominant>`.
|
|
1315
|
+
|
|
1316
|
+
OUTPUT: a :class:`~sage.schemes.toric.morphism.SchemeMorphism_fan_toric_variety_dominant`
|
|
1317
|
+
|
|
1318
|
+
EXAMPLES::
|
|
1319
|
+
|
|
1320
|
+
sage: P2 = toric_varieties.P2()
|
|
1321
|
+
sage: dP8 = toric_varieties.dP8()
|
|
1322
|
+
sage: f = dP8.hom(identity_matrix(2), P2); f
|
|
1323
|
+
Scheme morphism:
|
|
1324
|
+
From: 2-d CPR-Fano toric variety covered by 4 affine patches
|
|
1325
|
+
To: 2-d CPR-Fano toric variety covered by 3 affine patches
|
|
1326
|
+
Defn: Defined by sending Rational polyhedral fan in 2-d lattice N
|
|
1327
|
+
to Rational polyhedral fan in 2-d lattice N.
|
|
1328
|
+
sage: type(f)
|
|
1329
|
+
<class 'sage.schemes.toric.morphism.SchemeMorphism_fan_toric_variety_dominant'>
|
|
1330
|
+
"""
|
|
1331
|
+
|
|
1332
|
+
@cached_method
|
|
1333
|
+
def fiber_generic(self):
|
|
1334
|
+
r"""
|
|
1335
|
+
Return the generic fiber.
|
|
1336
|
+
|
|
1337
|
+
OUTPUT:
|
|
1338
|
+
|
|
1339
|
+
- a tuple `(X, n)`, where `X` is a :class:`toric variety
|
|
1340
|
+
<sage.schemes.toric.variety.ToricVariety_field>` with the
|
|
1341
|
+
embedding morphism into domain of ``self`` and `n` is an integer.
|
|
1342
|
+
|
|
1343
|
+
The fiber over the base point with homogeneous coordinates
|
|
1344
|
+
`[1:1:\cdots:1]` consists of `n` disjoint toric varieties isomorphic to
|
|
1345
|
+
`X`. Note that fibers of a dominant toric morphism are isomorphic over
|
|
1346
|
+
all points of a fixed torus orbit of its codomain, in particular over
|
|
1347
|
+
all points of the maximal torus, so it makes sense to talk about "the
|
|
1348
|
+
generic" fiber.
|
|
1349
|
+
|
|
1350
|
+
The embedding of `X` is a toric morphism with
|
|
1351
|
+
the :meth:`~sage.geometry.fan_morphism.FanMorphism.domain_fan`
|
|
1352
|
+
being the
|
|
1353
|
+
:meth:`~sage.geometry.fan_morphism.FanMorphism.kernel_fan` of
|
|
1354
|
+
the defining fan morphism. By contrast, embeddings of fiber components
|
|
1355
|
+
over lower-dimensional torus orbits of the image are not toric
|
|
1356
|
+
morphisms. Use :meth:`fiber_component` for the latter
|
|
1357
|
+
(non-generic) fibers.
|
|
1358
|
+
|
|
1359
|
+
EXAMPLES::
|
|
1360
|
+
|
|
1361
|
+
sage: P1xP1 = toric_varieties.P1xP1()
|
|
1362
|
+
sage: P1 = toric_varieties.P1()
|
|
1363
|
+
sage: fiber = P1xP1.hom(matrix([[1],[0]]), P1).fiber_generic()
|
|
1364
|
+
sage: fiber
|
|
1365
|
+
(1-d toric variety covered by 2 affine patches, 1)
|
|
1366
|
+
sage: f = fiber[0].embedding_morphism(); f
|
|
1367
|
+
Scheme morphism:
|
|
1368
|
+
From: 1-d toric variety covered by 2 affine patches
|
|
1369
|
+
To: 2-d CPR-Fano toric variety covered by 4 affine patches
|
|
1370
|
+
Defn: Defined by sending Rational polyhedral fan in Sublattice <N(0, 1)> to
|
|
1371
|
+
Rational polyhedral fan in 2-d lattice N.
|
|
1372
|
+
sage: f.as_polynomial_map()
|
|
1373
|
+
Scheme morphism:
|
|
1374
|
+
From: 1-d toric variety covered by 2 affine patches
|
|
1375
|
+
To: 2-d CPR-Fano toric variety covered by 4 affine patches
|
|
1376
|
+
Defn: Defined on coordinates by sending [z0 : z1] to [1 : 1 : z0 : z1]
|
|
1377
|
+
|
|
1378
|
+
sage: A1 = toric_varieties.A1()
|
|
1379
|
+
sage: fan = Fan([(0,1,2)], [(1,1,0), (1,0,1), (1,-1,-1)])
|
|
1380
|
+
sage: fan = fan.subdivide(new_rays=[(1,0,0)])
|
|
1381
|
+
sage: f = ToricVariety(fan).hom(matrix([[1],[0],[0]]), A1)
|
|
1382
|
+
sage: f.fiber_generic()
|
|
1383
|
+
(2-d affine toric variety, 1)
|
|
1384
|
+
sage: _[0].fan().generating_cones()
|
|
1385
|
+
(0-d cone of Rational polyhedral fan in Sublattice <N(0, 1, 0), N(0, 0, 1)>,)
|
|
1386
|
+
"""
|
|
1387
|
+
from sage.schemes.toric.variety import ToricVariety
|
|
1388
|
+
fm = self.fan_morphism()
|
|
1389
|
+
X = ToricVariety(fm.kernel_fan())
|
|
1390
|
+
m = X.fan().lattice().echelonized_basis_matrix()
|
|
1391
|
+
N = fm.domain() # May be a sublattice as well
|
|
1392
|
+
m *= N.basis_matrix().solve_right(identity_matrix(N.dimension()))
|
|
1393
|
+
X._embedding_morphism = X.hom(m, self.domain())
|
|
1394
|
+
return X, fm.index()
|
|
1395
|
+
|
|
1396
|
+
def fiber_component(self, domain_cone, multiplicity=False):
|
|
1397
|
+
r"""
|
|
1398
|
+
Return a fiber component corresponding to ``domain_cone``.
|
|
1399
|
+
|
|
1400
|
+
INPUT:
|
|
1401
|
+
|
|
1402
|
+
- ``domain_cone`` -- a cone of the domain fan of ``self``
|
|
1403
|
+
|
|
1404
|
+
- ``multiplicity`` -- boolean (default: ``False``); whether to return
|
|
1405
|
+
the number of fiber components corresponding to ``domain_cone`` as well
|
|
1406
|
+
|
|
1407
|
+
OUTPUT:
|
|
1408
|
+
|
|
1409
|
+
- either `X` or a tuple `(X, n)`, where `X` is a :class:`toric variety
|
|
1410
|
+
<sage.schemes.toric.variety.ToricVariety_field>` with the
|
|
1411
|
+
embedding morphism into domain of ``self`` and `n` is an integer.
|
|
1412
|
+
|
|
1413
|
+
Let `\phi: \Sigma \to \Sigma'` be the :class:`fan morphism
|
|
1414
|
+
<sage.geometry.fan_morphism.FanMorphism>` corresponding to
|
|
1415
|
+
``self``. Let `\sigma \in \Sigma` and `\sigma' \in \Sigma'` be
|
|
1416
|
+
the :meth:`~sage.geometry.fan_morphism.FanMorphism.image_cone`
|
|
1417
|
+
of `\sigma`. The fiber over any point of the torus orbit corresponding
|
|
1418
|
+
to `\sigma'` consists of `n` isomorphic connected components with each
|
|
1419
|
+
component being a union of toric varieties intersecting along
|
|
1420
|
+
their torus invariant subvarieties. The latter correspond to
|
|
1421
|
+
:meth:`~sage.geometry.fan_morphism.FanMorphism.preimage_cones` of
|
|
1422
|
+
`\sigma'` and `X` is one of the `n` components corresponding to
|
|
1423
|
+
`\sigma`. The irreducible components correspond to
|
|
1424
|
+
:meth:`~sage.geometry.fan_morphism.FanMorphism.primitive_preimage_cones`.
|
|
1425
|
+
|
|
1426
|
+
EXAMPLES::
|
|
1427
|
+
|
|
1428
|
+
sage: polytope = LatticePolytope(
|
|
1429
|
+
....: [(-3,0,-1,-1),(-1,2,-1,-1),(0,-1,0,0),(0,0,0,1),(0,0,1,0),
|
|
1430
|
+
....: (0,1,0,0),(0,2,-1,-1),(1,0,0,0),(2,0,-1,-1)])
|
|
1431
|
+
sage: coarse_fan = FaceFan(polytope)
|
|
1432
|
+
sage: P2 = toric_varieties.P2()
|
|
1433
|
+
sage: proj24 = matrix([[0,0], [1,0], [0,0], [0,1]])
|
|
1434
|
+
sage: fm = FanMorphism(proj24, coarse_fan, P2.fan(), subdivide=True)
|
|
1435
|
+
sage: fibration = ToricVariety(fm.domain_fan()).hom(fm, P2)
|
|
1436
|
+
sage: ffm = fibration.fan_morphism()
|
|
1437
|
+
sage: primitive_cones = ffm.primitive_preimage_cones(P2.fan(1)[0])
|
|
1438
|
+
sage: primitive_cone = primitive_cones[0]
|
|
1439
|
+
sage: fibration.fiber_component(primitive_cone)
|
|
1440
|
+
2-d toric variety covered by 4 affine patches
|
|
1441
|
+
sage: fibration.fiber_component(primitive_cone, True)
|
|
1442
|
+
(2-d toric variety covered by 4 affine patches, 1)
|
|
1443
|
+
|
|
1444
|
+
sage: for primitive_cone in primitive_cones:
|
|
1445
|
+
....: print(fibration.fiber_component(primitive_cone))
|
|
1446
|
+
2-d toric variety covered by 4 affine patches
|
|
1447
|
+
2-d toric variety covered by 3 affine patches
|
|
1448
|
+
2-d toric variety covered by 3 affine patches
|
|
1449
|
+
"""
|
|
1450
|
+
domain_cone = self.domain().fan().embed(domain_cone)
|
|
1451
|
+
if domain_cone.is_trivial():
|
|
1452
|
+
if multiplicity:
|
|
1453
|
+
return self.fiber_generic()
|
|
1454
|
+
else:
|
|
1455
|
+
return self.fiber_generic()[0]
|
|
1456
|
+
embedding = SchemeMorphism_fan_fiber_component_toric_variety(self, domain_cone)
|
|
1457
|
+
if multiplicity:
|
|
1458
|
+
return embedding.domain(), \
|
|
1459
|
+
self.fan_morphism().index(embedding.base_cone())
|
|
1460
|
+
else:
|
|
1461
|
+
return embedding.domain()
|
|
1462
|
+
|
|
1463
|
+
@cached_method
|
|
1464
|
+
def fiber_dimension(self, codomain_cone):
|
|
1465
|
+
r"""
|
|
1466
|
+
Return the dimension of the fiber over a particular torus
|
|
1467
|
+
orbit in the base.
|
|
1468
|
+
|
|
1469
|
+
INPUT:
|
|
1470
|
+
|
|
1471
|
+
- ``codomain_cone`` -- a cone `\sigma` of the codomain,
|
|
1472
|
+
specifying a torus orbit `O(\sigma)`
|
|
1473
|
+
|
|
1474
|
+
OUTPUT:
|
|
1475
|
+
|
|
1476
|
+
An integer. The dimension of the fiber over the torus orbit
|
|
1477
|
+
corresponding to ``codomain_cone``. If the fiber is the empty
|
|
1478
|
+
set, ``-1`` is returned. Note that all fibers over this torus
|
|
1479
|
+
orbit are isomorphic, and therefore have the same dimension.
|
|
1480
|
+
|
|
1481
|
+
EXAMPLES::
|
|
1482
|
+
|
|
1483
|
+
sage: P1xP1 = toric_varieties.P1xP1()
|
|
1484
|
+
sage: P1 = toric_varieties.P1()
|
|
1485
|
+
sage: f = P1xP1.hom(matrix([[1],[0]]), P1)
|
|
1486
|
+
sage: f.fiber_dimension(P1.fan(0)[0])
|
|
1487
|
+
1
|
|
1488
|
+
sage: f.fiber_dimension(P1.fan(1)[0])
|
|
1489
|
+
1
|
|
1490
|
+
sage: f.fiber_dimension(P1.fan(1)[1])
|
|
1491
|
+
1
|
|
1492
|
+
|
|
1493
|
+
Here is a more complicated example that is not a flat fibration::
|
|
1494
|
+
|
|
1495
|
+
sage: A2_Z2 = toric_varieties.A2_Z2()
|
|
1496
|
+
sage: O2_P1 = A2_Z2.resolve(new_rays=[(1,1)])
|
|
1497
|
+
sage: blowup = O2_P1.hom(identity_matrix(2), A2_Z2)
|
|
1498
|
+
sage: blowup.fiber_dimension(A2_Z2.fan(0)[0])
|
|
1499
|
+
0
|
|
1500
|
+
sage: blowup.fiber_dimension(A2_Z2.fan(1)[0])
|
|
1501
|
+
0
|
|
1502
|
+
sage: blowup.fiber_dimension(A2_Z2.fan(2)[0])
|
|
1503
|
+
1
|
|
1504
|
+
|
|
1505
|
+
This corresponds to the three different fibers::
|
|
1506
|
+
|
|
1507
|
+
sage: blowup.fiber_generic()
|
|
1508
|
+
(0-d affine toric variety, 1)
|
|
1509
|
+
sage: blowup.fiber_component(Cone([(1,0)]))
|
|
1510
|
+
0-d affine toric variety
|
|
1511
|
+
sage: blowup.fiber_component(Cone([(1,1)]))
|
|
1512
|
+
1-d toric variety covered by 2 affine patches
|
|
1513
|
+
"""
|
|
1514
|
+
dim = []
|
|
1515
|
+
fm = self.fan_morphism()
|
|
1516
|
+
base_dim = codomain_cone.dim()
|
|
1517
|
+
dim.extend(base_dim - c.dim()
|
|
1518
|
+
for c in fm.primitive_preimage_cones(codomain_cone))
|
|
1519
|
+
if dim:
|
|
1520
|
+
return max(dim) + self.domain().dimension() - self.codomain().dimension()
|
|
1521
|
+
return ZZ(-1)
|
|
1522
|
+
|
|
1523
|
+
def fiber_graph(self, codomain_cone):
|
|
1524
|
+
r"""
|
|
1525
|
+
Return the fiber over a given torus orbit in the codomain.
|
|
1526
|
+
|
|
1527
|
+
INPUT:
|
|
1528
|
+
|
|
1529
|
+
- ``codomain_cone`` -- a cone `\sigma` of the codomain,
|
|
1530
|
+
specifying a torus orbit `O(\sigma)`
|
|
1531
|
+
|
|
1532
|
+
OUTPUT:
|
|
1533
|
+
|
|
1534
|
+
A graph whose nodes are the irreducible components of a connected
|
|
1535
|
+
component of the fiber over a point of `O(\sigma)`. If two irreducible
|
|
1536
|
+
components intersect, the
|
|
1537
|
+
corresponding nodes of the graph are joined by an edge. Note that
|
|
1538
|
+
irreducible components do not have to be of the same dimension.
|
|
1539
|
+
|
|
1540
|
+
.. SEEALSO::
|
|
1541
|
+
|
|
1542
|
+
:meth:`~SchemeMorphism_fan_toric_variety_dominant.fiber_component`.
|
|
1543
|
+
|
|
1544
|
+
EXAMPLES::
|
|
1545
|
+
|
|
1546
|
+
sage: polytope = Polyhedron(
|
|
1547
|
+
....: [(-3,0,-1,-1),(-1,2,-1,-1),(0,-1,0,0),(0,0,0,1),(0,0,1,0),
|
|
1548
|
+
....: (0,1,0,0),(0,2,-1,-1),(1,0,0,0),(2,0,-1,-1)])
|
|
1549
|
+
sage: coarse_fan = FaceFan(polytope, lattice=ToricLattice(4))
|
|
1550
|
+
|
|
1551
|
+
sage: P2 = toric_varieties.P2()
|
|
1552
|
+
sage: proj34 = block_matrix(2, 1, [zero_matrix(2,2),
|
|
1553
|
+
....: identity_matrix(2)])
|
|
1554
|
+
sage: fm = FanMorphism(proj34, coarse_fan, P2.fan(), subdivide=True)
|
|
1555
|
+
sage: fibration = ToricVariety(fm.domain_fan()).hom(fm, P2)
|
|
1556
|
+
|
|
1557
|
+
sage: fibration.fiber_graph(P2.fan(0)[0])
|
|
1558
|
+
Graph on 1 vertex
|
|
1559
|
+
sage: for c1 in P2.fan(1):
|
|
1560
|
+
....: fibration.fiber_graph(c1)
|
|
1561
|
+
Graph on 1 vertex
|
|
1562
|
+
Graph on 1 vertex
|
|
1563
|
+
Graph on 4 vertices
|
|
1564
|
+
|
|
1565
|
+
sage: fibration.fiber_graph(P2.fan(1)[2]).get_vertices()
|
|
1566
|
+
{0: 2-d toric variety covered by 4 affine patches,
|
|
1567
|
+
1: 2-d toric variety covered by 3 affine patches,
|
|
1568
|
+
2: 2-d toric variety covered by 3 affine patches,
|
|
1569
|
+
3: 2-d toric variety covered by 4 affine patches}
|
|
1570
|
+
|
|
1571
|
+
sage: fibration
|
|
1572
|
+
Scheme morphism:
|
|
1573
|
+
From: 4-d toric variety covered by 18 affine patches
|
|
1574
|
+
To: 2-d CPR-Fano toric variety covered by 3 affine patches
|
|
1575
|
+
Defn: Defined by sending Rational polyhedral fan in 4-d lattice N
|
|
1576
|
+
to Rational polyhedral fan in 2-d lattice N.
|
|
1577
|
+
"""
|
|
1578
|
+
fm = self.fan_morphism()
|
|
1579
|
+
prim = fm.primitive_preimage_cones(codomain_cone)
|
|
1580
|
+
n = len(prim)
|
|
1581
|
+
|
|
1582
|
+
def is_union_in_fan(self, c0, c1):
|
|
1583
|
+
indices = c0.ambient_ray_indices() + c1.ambient_ray_indices()
|
|
1584
|
+
try:
|
|
1585
|
+
fm.domain_fan().cone_containing(*indices)
|
|
1586
|
+
return True
|
|
1587
|
+
except ValueError:
|
|
1588
|
+
return False
|
|
1589
|
+
|
|
1590
|
+
m = matrix(ZZ, n, n, lambda i, j: is_union_in_fan(self, prim[i], prim[j]))
|
|
1591
|
+
|
|
1592
|
+
for i in range(n):
|
|
1593
|
+
m[i, i] = 0
|
|
1594
|
+
from sage.graphs.graph import Graph
|
|
1595
|
+
graph = Graph(m, loops=False, multiedges=False)
|
|
1596
|
+
for i in range(n):
|
|
1597
|
+
graph.set_vertex(i, self.fiber_component(prim[i]))
|
|
1598
|
+
return graph
|
|
1599
|
+
|
|
1600
|
+
|
|
1601
|
+
############################################################################
|
|
1602
|
+
# The embedding morphism of a fiber component
|
|
1603
|
+
class SchemeMorphism_fan_fiber_component_toric_variety(SchemeMorphism):
|
|
1604
|
+
"""
|
|
1605
|
+
The embedding of a fiber component of a toric morphism.
|
|
1606
|
+
|
|
1607
|
+
Note that the embedding map of a fiber component of a toric morphism is
|
|
1608
|
+
itself not a toric morphism!
|
|
1609
|
+
|
|
1610
|
+
INPUT:
|
|
1611
|
+
|
|
1612
|
+
- ``toric_morphism`` -- a toric morphism; the toric morphism whose
|
|
1613
|
+
fiber component we are describing
|
|
1614
|
+
|
|
1615
|
+
- ``defining_cone`` -- a cone of the fan of the domain of
|
|
1616
|
+
``toric_morphism``; see
|
|
1617
|
+
:meth:`~SchemeMorphism_fan_toric_variety_dominant.fiber_component` for
|
|
1618
|
+
details
|
|
1619
|
+
|
|
1620
|
+
EXAMPLES::
|
|
1621
|
+
|
|
1622
|
+
sage: polytope = Polyhedron(
|
|
1623
|
+
....: [(-3,0,-1,-1),(-1,2,-1,-1),(0,-1,0,0),(0,0,0,1),(0,0,1,0),
|
|
1624
|
+
....: (0,1,0,0),(0,2,-1,-1),(1,0,0,0),(2,0,-1,-1)])
|
|
1625
|
+
sage: coarse_fan = FaceFan(polytope, lattice=ToricLattice(4))
|
|
1626
|
+
sage: P2 = toric_varieties.P2()
|
|
1627
|
+
sage: proj24 = matrix([[0,0],[1,0],[0,0],[0,1]])
|
|
1628
|
+
sage: fm = FanMorphism(proj24, coarse_fan, P2.fan(), subdivide=True)
|
|
1629
|
+
sage: fibration = ToricVariety(fm.domain_fan()).hom(fm, P2)
|
|
1630
|
+
sage: ffm = fibration.fan_morphism()
|
|
1631
|
+
sage: primitive_cones = ffm.primitive_preimage_cones(P2.fan(1)[0])
|
|
1632
|
+
sage: primitive_cone = primitive_cones[0]
|
|
1633
|
+
sage: fiber_component = fibration.fiber_component(primitive_cone)
|
|
1634
|
+
sage: fiber_component
|
|
1635
|
+
2-d toric variety covered by 4 affine patches
|
|
1636
|
+
sage: fiber_component.embedding_morphism()
|
|
1637
|
+
Scheme morphism:
|
|
1638
|
+
From: 2-d toric variety covered by 4 affine patches
|
|
1639
|
+
To: 4-d toric variety covered by 23 affine patches
|
|
1640
|
+
Defn: Defined by embedding a fiber component corresponding to
|
|
1641
|
+
1-d cone of Rational polyhedral fan in 4-d lattice N.
|
|
1642
|
+
sage: fiber_component.embedding_morphism().as_polynomial_map()
|
|
1643
|
+
Scheme morphism:
|
|
1644
|
+
From: 2-d toric variety covered by 4 affine patches
|
|
1645
|
+
To: 4-d toric variety covered by 23 affine patches
|
|
1646
|
+
Defn: Defined on coordinates by sending [z0 : z1 : z2 : z3] to
|
|
1647
|
+
[1 : 1 : 1 : 1 : z2 : 0 : 1 : z3 : 1 : 1 : 1 : z1 : z0 : 1 : 1]
|
|
1648
|
+
sage: type(fiber_component.embedding_morphism())
|
|
1649
|
+
<class 'sage.schemes.toric.morphism.SchemeMorphism_fan_fiber_component_toric_variety'>
|
|
1650
|
+
"""
|
|
1651
|
+
|
|
1652
|
+
def __init__(self, toric_morphism, defining_cone):
|
|
1653
|
+
"""
|
|
1654
|
+
The Python constructor.
|
|
1655
|
+
|
|
1656
|
+
TESTS::
|
|
1657
|
+
|
|
1658
|
+
sage: polytope = Polyhedron(
|
|
1659
|
+
....: [(-3,0,-1,-1),(-1,2,-1,-1),(0,-1,0,0),(0,0,0,1),(0,0,1,0),
|
|
1660
|
+
....: (0,1,0,0),(0,2,-1,-1),(1,0,0,0),(2,0,-1,-1)])
|
|
1661
|
+
sage: coarse_fan = FaceFan(polytope, lattice=ToricLattice(4))
|
|
1662
|
+
sage: P2 = toric_varieties.P2()
|
|
1663
|
+
sage: proj24 = matrix([[0,0], [1,0], [0,0], [0,1]])
|
|
1664
|
+
sage: fm = FanMorphism(proj24, coarse_fan, P2.fan(), subdivide=True)
|
|
1665
|
+
sage: fibration = ToricVariety(fm.domain_fan()).hom(fm, P2)
|
|
1666
|
+
sage: primitive_cone = Cone([(-1, 2, -1, 0)])
|
|
1667
|
+
sage: fibration.fiber_component(primitive_cone).embedding_morphism()
|
|
1668
|
+
Scheme morphism:
|
|
1669
|
+
From: 2-d toric variety covered by 3 affine patches
|
|
1670
|
+
To: 4-d toric variety covered by 23 affine patches
|
|
1671
|
+
Defn: Defined by embedding a fiber component corresponding to
|
|
1672
|
+
1-d cone of Rational polyhedral fan in 4-d lattice N.
|
|
1673
|
+
"""
|
|
1674
|
+
fm = toric_morphism.fan_morphism()
|
|
1675
|
+
self._fan_morphism = fm
|
|
1676
|
+
defining_cone = fm.domain_fan().embed(defining_cone)
|
|
1677
|
+
self._defining_cone = defining_cone
|
|
1678
|
+
self._base_cone = fm.image_cone(defining_cone)
|
|
1679
|
+
fc = self._make_fiber_component()
|
|
1680
|
+
fc._embedding_morphism = self
|
|
1681
|
+
parent = fc.Hom(toric_morphism.domain())
|
|
1682
|
+
SchemeMorphism.__init__(self, parent)
|
|
1683
|
+
|
|
1684
|
+
def _repr_defn(self):
|
|
1685
|
+
"""
|
|
1686
|
+
Return a string representation of the definition of ``self``.
|
|
1687
|
+
|
|
1688
|
+
OUTPUT: string
|
|
1689
|
+
|
|
1690
|
+
EXAMPLES::
|
|
1691
|
+
|
|
1692
|
+
sage: P1xP1 = toric_varieties.P1xP1()
|
|
1693
|
+
sage: P1 = toric_varieties.P1()
|
|
1694
|
+
sage: fc = P1xP1.hom(matrix([[1],[0]]), P1).fiber_component(Cone([(1,0)]))
|
|
1695
|
+
sage: fc.embedding_morphism()._repr_defn()
|
|
1696
|
+
'Defined by embedding a fiber component corresponding to 1-d cone of Rational polyhedral fan in 2-d lattice N.'
|
|
1697
|
+
"""
|
|
1698
|
+
return 'Defined by embedding a fiber component corresponding to {}.'.format(self.defining_cone())
|
|
1699
|
+
|
|
1700
|
+
def as_polynomial_map(self):
|
|
1701
|
+
"""
|
|
1702
|
+
Express the embedding morphism via homogeneous polynomials.
|
|
1703
|
+
|
|
1704
|
+
OUTPUT: a :class:`SchemeMorphism_polynomial_toric_variety`
|
|
1705
|
+
|
|
1706
|
+
This raises a :exc:`ValueError` if the morphism cannot be
|
|
1707
|
+
written in terms of homogeneous polynomials.
|
|
1708
|
+
|
|
1709
|
+
EXAMPLES::
|
|
1710
|
+
|
|
1711
|
+
sage: polytope = Polyhedron(
|
|
1712
|
+
....: [(-3,0,-1,-1),(-1,2,-1,-1),(0,-1,0,0),(0,0,0,1),(0,0,1,0),
|
|
1713
|
+
....: (0,1,0,0),(0,2,-1,-1),(1,0,0,0),(2,0,-1,-1)])
|
|
1714
|
+
sage: coarse_fan = FaceFan(polytope, lattice=ToricLattice(4))
|
|
1715
|
+
sage: P2 = toric_varieties.P2()
|
|
1716
|
+
sage: proj24 = matrix([[0,0], [1,0], [0,0], [0,1]])
|
|
1717
|
+
sage: fm = FanMorphism(proj24, coarse_fan, P2.fan(), subdivide=True)
|
|
1718
|
+
sage: fibration = ToricVariety(fm.domain_fan()).hom(fm, P2)
|
|
1719
|
+
|
|
1720
|
+
sage: primitive_cone = Cone([(0, 1, 0, 0)])
|
|
1721
|
+
sage: f = fibration.fiber_component(primitive_cone).embedding_morphism()
|
|
1722
|
+
sage: f.as_polynomial_map()
|
|
1723
|
+
Scheme morphism:
|
|
1724
|
+
From: 2-d toric variety covered by 4 affine patches
|
|
1725
|
+
To: 4-d toric variety covered by 23 affine patches
|
|
1726
|
+
Defn: Defined on coordinates by sending [z0 : z1 : z2 : z3] to
|
|
1727
|
+
[1 : 1 : 1 : 1 : z2 : 0 : 1 : z3 : 1 : 1 : 1 : z1 : z0 : 1 : 1]
|
|
1728
|
+
|
|
1729
|
+
sage: primitive_cone = Cone([(-1, 2, -1, 0)])
|
|
1730
|
+
sage: f = fibration.fiber_component(primitive_cone).embedding_morphism()
|
|
1731
|
+
sage: f.as_polynomial_map()
|
|
1732
|
+
Traceback (most recent call last):
|
|
1733
|
+
...
|
|
1734
|
+
ValueError: the morphism cannot be written using homogeneous polynomials
|
|
1735
|
+
"""
|
|
1736
|
+
fc = self.domain()
|
|
1737
|
+
toric_variety = self.codomain()
|
|
1738
|
+
R = fc.coordinate_ring()
|
|
1739
|
+
polys = [R.one()] * toric_variety.fan().nrays()
|
|
1740
|
+
for i in self.defining_cone().ambient_ray_indices():
|
|
1741
|
+
polys[i] = R.zero()
|
|
1742
|
+
for ray, x in zip(fc.fan().rays(), R.gens()):
|
|
1743
|
+
try:
|
|
1744
|
+
ray_index = self._ray_index_map[ray]
|
|
1745
|
+
except KeyError:
|
|
1746
|
+
raise ValueError('the morphism cannot be written using homogeneous polynomials')
|
|
1747
|
+
polys[ray_index] = x
|
|
1748
|
+
return SchemeMorphism_polynomial_toric_variety(self.parent(), polys)
|
|
1749
|
+
|
|
1750
|
+
def _make_fiber_component(self):
|
|
1751
|
+
"""
|
|
1752
|
+
Construct the fiber component as a toric variety.
|
|
1753
|
+
|
|
1754
|
+
OUTPUT: the fiber component as a toric variety
|
|
1755
|
+
|
|
1756
|
+
EXAMPLES::
|
|
1757
|
+
|
|
1758
|
+
sage: P1xP1 = toric_varieties.P1xP1()
|
|
1759
|
+
sage: P1 = toric_varieties.P1()
|
|
1760
|
+
sage: fc = P1xP1.hom(matrix([[1],[0]]), P1).fiber_component(Cone([(1,0)]))
|
|
1761
|
+
sage: f = fc.embedding_morphism()
|
|
1762
|
+
sage: f._ray_index_map # indirect doctest
|
|
1763
|
+
{N(-1): 3, N(1): 2}
|
|
1764
|
+
|
|
1765
|
+
TESTS::
|
|
1766
|
+
|
|
1767
|
+
sage: A2_Z2 = toric_varieties.A2_Z2()
|
|
1768
|
+
sage: O2_P1 = A2_Z2.resolve(new_rays=[(1,1)])
|
|
1769
|
+
sage: blowup = O2_P1.hom(identity_matrix(2), A2_Z2)
|
|
1770
|
+
sage: blowup.fiber_generic()
|
|
1771
|
+
(0-d affine toric variety, 1)
|
|
1772
|
+
sage: blowup.fiber_component(Cone([(1,0)]))
|
|
1773
|
+
0-d affine toric variety
|
|
1774
|
+
sage: blowup.fiber_component(Cone([(1,1)]))
|
|
1775
|
+
1-d toric variety covered by 2 affine patches
|
|
1776
|
+
|
|
1777
|
+
sage: P1 = toric_varieties.P1()
|
|
1778
|
+
sage: f = P1.hom(matrix([2]), P1)
|
|
1779
|
+
sage: f.fiber_component(P1.fan(1)[0])
|
|
1780
|
+
0-d affine toric variety
|
|
1781
|
+
sage: f.fan_morphism().index(P1.fan(1)[0])
|
|
1782
|
+
1
|
|
1783
|
+
sage: f.fiber_generic()
|
|
1784
|
+
(0-d affine toric variety, 2)
|
|
1785
|
+
"""
|
|
1786
|
+
fm = self._fan_morphism
|
|
1787
|
+
defining_cone = self._defining_cone
|
|
1788
|
+
base_cone = self._base_cone
|
|
1789
|
+
|
|
1790
|
+
ker = fm.kernel().basis()
|
|
1791
|
+
m = fm.matrix() * base_cone.lattice().basis_matrix()
|
|
1792
|
+
base_cone_preimg = [m.solve_left(r) for r in base_cone.rays()]
|
|
1793
|
+
L = fm.domain_fan().lattice().span(ker + base_cone_preimg).saturation()
|
|
1794
|
+
|
|
1795
|
+
cone_L = Cone([L.coordinates(r) for r in defining_cone.rays()])
|
|
1796
|
+
L_quotient = cone_L.sublattice_quotient()
|
|
1797
|
+
|
|
1798
|
+
def projection(ray):
|
|
1799
|
+
ray_L = L.coordinates(ray)
|
|
1800
|
+
return vector(ZZ, L_quotient(ray_L))
|
|
1801
|
+
|
|
1802
|
+
cones = []
|
|
1803
|
+
star_rays = set()
|
|
1804
|
+
for cone in fm.relative_star_generators(defining_cone):
|
|
1805
|
+
star_rays.update(cone.rays())
|
|
1806
|
+
projected_rays = [projection(r) for r in cone.rays()]
|
|
1807
|
+
cones.append(Cone(projected_rays))
|
|
1808
|
+
fiber_fan = Fan(cones)
|
|
1809
|
+
|
|
1810
|
+
ray_index_map = {}
|
|
1811
|
+
for ray in star_rays:
|
|
1812
|
+
ray_index = fm.domain_fan().rays().index(ray)
|
|
1813
|
+
projected_ray = fiber_fan.lattice()(projection(ray))
|
|
1814
|
+
if projected_ray.is_zero():
|
|
1815
|
+
assert ray in defining_cone.rays()
|
|
1816
|
+
continue
|
|
1817
|
+
projected_ray.set_immutable()
|
|
1818
|
+
ray_index_map[projected_ray] = ray_index
|
|
1819
|
+
self._ray_index_map = ray_index_map
|
|
1820
|
+
|
|
1821
|
+
from sage.schemes.toric.variety import ToricVariety
|
|
1822
|
+
return ToricVariety(fiber_fan)
|
|
1823
|
+
|
|
1824
|
+
def defining_cone(self):
|
|
1825
|
+
r"""
|
|
1826
|
+
Return the cone corresponding to the fiber torus orbit.
|
|
1827
|
+
|
|
1828
|
+
OUTPUT: a cone of the fan of the total space of the toric fibration
|
|
1829
|
+
|
|
1830
|
+
EXAMPLES::
|
|
1831
|
+
|
|
1832
|
+
sage: P1xP1 = toric_varieties.P1xP1()
|
|
1833
|
+
sage: P1 = toric_varieties.P1()
|
|
1834
|
+
sage: fc = P1xP1.hom(matrix([[1],[0]]), P1).fiber_component(Cone([(1,0)]))
|
|
1835
|
+
sage: f = fc.embedding_morphism()
|
|
1836
|
+
sage: f.defining_cone().rays()
|
|
1837
|
+
N(1, 0)
|
|
1838
|
+
in 2-d lattice N
|
|
1839
|
+
sage: f.base_cone().rays()
|
|
1840
|
+
N(1)
|
|
1841
|
+
in 1-d lattice N
|
|
1842
|
+
"""
|
|
1843
|
+
return self._defining_cone
|
|
1844
|
+
|
|
1845
|
+
def base_cone(self):
|
|
1846
|
+
r"""
|
|
1847
|
+
Return the base cone `\sigma`.
|
|
1848
|
+
|
|
1849
|
+
The fiber is constant over the base orbit closure `V(\sigma)`.
|
|
1850
|
+
|
|
1851
|
+
OUTPUT: a cone of the base of the toric fibration
|
|
1852
|
+
|
|
1853
|
+
EXAMPLES::
|
|
1854
|
+
|
|
1855
|
+
sage: P1xP1 = toric_varieties.P1xP1()
|
|
1856
|
+
sage: P1 = toric_varieties.P1()
|
|
1857
|
+
sage: fc = P1xP1.hom(matrix([[1],[0]]), P1).fiber_component(Cone([(1,0)]))
|
|
1858
|
+
sage: f = fc.embedding_morphism()
|
|
1859
|
+
sage: f.defining_cone().rays()
|
|
1860
|
+
N(1, 0)
|
|
1861
|
+
in 2-d lattice N
|
|
1862
|
+
sage: f.base_cone().rays()
|
|
1863
|
+
N(1)
|
|
1864
|
+
in 1-d lattice N
|
|
1865
|
+
"""
|
|
1866
|
+
return self._base_cone
|
|
1867
|
+
|
|
1868
|
+
def _image_ray_multiplicity(self, fiber_ray):
|
|
1869
|
+
"""
|
|
1870
|
+
Find the image ray of ``fiber_ray`` with multiplicity in the relative star.
|
|
1871
|
+
|
|
1872
|
+
INPUT:
|
|
1873
|
+
|
|
1874
|
+
- ``fiber_ray`` -- a ray of the domain fan (the fiber component)
|
|
1875
|
+
|
|
1876
|
+
OUTPUT: a pair ``(codomain ray index, multiplicity)``
|
|
1877
|
+
|
|
1878
|
+
EXAMPLES::
|
|
1879
|
+
|
|
1880
|
+
sage: polytope = Polyhedron(
|
|
1881
|
+
....: [(-3,0,-1,-1),(-1,2,-1,-1),(0,-1,0,0),(0,0,0,1),(0,0,1,0),
|
|
1882
|
+
....: (0,1,0,0),(0,2,-1,-1),(1,0,0,0),(2,0,-1,-1)])
|
|
1883
|
+
sage: coarse_fan = FaceFan(polytope, lattice=ToricLattice(4))
|
|
1884
|
+
sage: P2 = toric_varieties.P2()
|
|
1885
|
+
sage: proj24 = matrix([[0,0], [1,0], [0,0], [0,1]])
|
|
1886
|
+
sage: fm = FanMorphism(proj24, coarse_fan, P2.fan(), subdivide=True)
|
|
1887
|
+
sage: fibration = ToricVariety(fm.domain_fan()).hom(fm, P2)
|
|
1888
|
+
sage: primitive_cone = Cone([(-1, 2, -1, 0)])
|
|
1889
|
+
sage: fc = fibration.fiber_component(primitive_cone)
|
|
1890
|
+
sage: f = fc.embedding_morphism()
|
|
1891
|
+
sage: for r in fc.fan().rays():
|
|
1892
|
+
....: print("{} {}".format(r, f._image_ray_multiplicity(r)))
|
|
1893
|
+
N(-1, -1) (9, 2)
|
|
1894
|
+
N(0, 1) (5, 1)
|
|
1895
|
+
N(1, 0) (11, 1)
|
|
1896
|
+
sage: f._ray_index_map
|
|
1897
|
+
{N(-2, -2): 9, N(-1, 2): 4, N(0, 1): 5, N(1, 0): 11, N(3, -2): 10}
|
|
1898
|
+
"""
|
|
1899
|
+
try:
|
|
1900
|
+
image_ray_index = self._ray_index_map[fiber_ray]
|
|
1901
|
+
return (image_ray_index, 1)
|
|
1902
|
+
except KeyError:
|
|
1903
|
+
pass
|
|
1904
|
+
multiplicity = None
|
|
1905
|
+
image_ray_index = None
|
|
1906
|
+
for ray, index in self._ray_index_map.items():
|
|
1907
|
+
d = gcd(ray)
|
|
1908
|
+
if d * fiber_ray != ray:
|
|
1909
|
+
continue
|
|
1910
|
+
if multiplicity is not None and d > multiplicity:
|
|
1911
|
+
continue
|
|
1912
|
+
multiplicity = d
|
|
1913
|
+
image_ray_index = index
|
|
1914
|
+
return (image_ray_index, multiplicity)
|
|
1915
|
+
|
|
1916
|
+
def pullback_divisor(self, divisor):
|
|
1917
|
+
r"""
|
|
1918
|
+
Pull back a toric divisor.
|
|
1919
|
+
|
|
1920
|
+
INPUT:
|
|
1921
|
+
|
|
1922
|
+
- ``divisor`` -- a torus-invariant `\QQ`-Cartier divisor on the
|
|
1923
|
+
codomain of the embedding map
|
|
1924
|
+
|
|
1925
|
+
OUTPUT:
|
|
1926
|
+
|
|
1927
|
+
A divisor on the domain of the embedding map (irreducible
|
|
1928
|
+
component of a fiber of a toric morphism) that is isomorphic
|
|
1929
|
+
to the pull-back divisor `f^*(D)` but with possibly different
|
|
1930
|
+
linearization.
|
|
1931
|
+
|
|
1932
|
+
EXAMPLES::
|
|
1933
|
+
|
|
1934
|
+
sage: A1 = toric_varieties.A1()
|
|
1935
|
+
sage: fan = Fan([(0,1,2)], [(1,1,0),(1,0,1),(1,-1,-1)]).subdivide(new_rays=[(1,0,0)])
|
|
1936
|
+
sage: f = ToricVariety(fan).hom(matrix([[1],[0],[0]]), A1)
|
|
1937
|
+
sage: D = f.domain().divisor([1,1,3,4]); D
|
|
1938
|
+
V(z0) + V(z1) + 3*V(z2) + 4*V(z3)
|
|
1939
|
+
sage: fc = f.fiber_component(Cone([(1,1,0)]))
|
|
1940
|
+
sage: fc.embedding_morphism().pullback_divisor(D)
|
|
1941
|
+
4*V(z0) + V(z1) + 4*V(z2)
|
|
1942
|
+
sage: fc = f.fiber_component(Cone([(1,0,0)]))
|
|
1943
|
+
sage: fc.embedding_morphism().pullback_divisor(D)
|
|
1944
|
+
-V(z0) - 3*V(z1) - 3*V(z2)
|
|
1945
|
+
"""
|
|
1946
|
+
from sage.schemes.toric.divisor import ToricDivisor_generic
|
|
1947
|
+
if not (isinstance(divisor, ToricDivisor_generic) and divisor.is_QQ_Cartier()):
|
|
1948
|
+
raise ValueError('the divisor must be torus-invariant and QQ-Cartier')
|
|
1949
|
+
m = divisor.m(self.defining_cone())
|
|
1950
|
+
values = []
|
|
1951
|
+
codomain_rays = self.codomain().fan().rays()
|
|
1952
|
+
for ray in self.domain().fan().rays():
|
|
1953
|
+
image_ray_index, multiplicity = self._image_ray_multiplicity(ray)
|
|
1954
|
+
image_ray = codomain_rays[image_ray_index]
|
|
1955
|
+
value = divisor.function_value(image_ray) - m * image_ray
|
|
1956
|
+
value /= multiplicity
|
|
1957
|
+
values.append(value)
|
|
1958
|
+
return self.domain().divisor(values)
|