oodeel 0.4.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- oodeel/__init__.py +28 -0
- oodeel/aggregator/__init__.py +26 -0
- oodeel/aggregator/base.py +70 -0
- oodeel/aggregator/fisher.py +259 -0
- oodeel/aggregator/mean.py +72 -0
- oodeel/aggregator/std.py +86 -0
- oodeel/datasets/__init__.py +24 -0
- oodeel/datasets/data_handler.py +334 -0
- oodeel/datasets/deprecated/DEPRECATED_data_handler.py +236 -0
- oodeel/datasets/deprecated/DEPRECATED_ooddataset.py +330 -0
- oodeel/datasets/deprecated/DEPRECATED_tf_data_handler.py +671 -0
- oodeel/datasets/deprecated/DEPRECATED_torch_data_handler.py +769 -0
- oodeel/datasets/deprecated/__init__.py +31 -0
- oodeel/datasets/tf_data_handler.py +600 -0
- oodeel/datasets/torch_data_handler.py +672 -0
- oodeel/eval/__init__.py +22 -0
- oodeel/eval/metrics.py +218 -0
- oodeel/eval/plots/__init__.py +27 -0
- oodeel/eval/plots/features.py +345 -0
- oodeel/eval/plots/metrics.py +118 -0
- oodeel/eval/plots/plotly.py +162 -0
- oodeel/extractor/__init__.py +35 -0
- oodeel/extractor/feature_extractor.py +187 -0
- oodeel/extractor/hf_torch_feature_extractor.py +184 -0
- oodeel/extractor/keras_feature_extractor.py +409 -0
- oodeel/extractor/torch_feature_extractor.py +506 -0
- oodeel/methods/__init__.py +47 -0
- oodeel/methods/base.py +570 -0
- oodeel/methods/dknn.py +185 -0
- oodeel/methods/energy.py +119 -0
- oodeel/methods/entropy.py +113 -0
- oodeel/methods/gen.py +113 -0
- oodeel/methods/gram.py +274 -0
- oodeel/methods/mahalanobis.py +209 -0
- oodeel/methods/mls.py +113 -0
- oodeel/methods/odin.py +109 -0
- oodeel/methods/rmds.py +172 -0
- oodeel/methods/she.py +159 -0
- oodeel/methods/vim.py +273 -0
- oodeel/preprocess/__init__.py +31 -0
- oodeel/preprocess/tf_preprocess.py +95 -0
- oodeel/preprocess/torch_preprocess.py +97 -0
- oodeel/types/__init__.py +75 -0
- oodeel/utils/__init__.py +38 -0
- oodeel/utils/general_utils.py +97 -0
- oodeel/utils/operator.py +253 -0
- oodeel/utils/tf_operator.py +269 -0
- oodeel/utils/tf_training_tools.py +219 -0
- oodeel/utils/torch_operator.py +292 -0
- oodeel/utils/torch_training_tools.py +303 -0
- oodeel-0.4.0.dist-info/METADATA +409 -0
- oodeel-0.4.0.dist-info/RECORD +63 -0
- oodeel-0.4.0.dist-info/WHEEL +5 -0
- oodeel-0.4.0.dist-info/licenses/LICENSE +21 -0
- oodeel-0.4.0.dist-info/top_level.txt +2 -0
- tests/__init__.py +22 -0
- tests/tests_tensorflow/__init__.py +37 -0
- tests/tests_tensorflow/tf_methods_utils.py +140 -0
- tests/tests_tensorflow/tools_tf.py +86 -0
- tests/tests_torch/__init__.py +38 -0
- tests/tests_torch/tools_torch.py +151 -0
- tests/tests_torch/torch_methods_utils.py +148 -0
- tests/tools_operator.py +153 -0
tests/tools_operator.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
# Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All
|
|
3
|
+
# rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry,
|
|
4
|
+
# CRIAQ and ANITI - https://www.deel.ai/
|
|
5
|
+
#
|
|
6
|
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
7
|
+
# of this software and associated documentation files (the "Software"), to deal
|
|
8
|
+
# in the Software without restriction, including without limitation the rights
|
|
9
|
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
10
|
+
# copies of the Software, and to permit persons to whom the Software is
|
|
11
|
+
# furnished to do so, subject to the following conditions:
|
|
12
|
+
#
|
|
13
|
+
# The above copyright notice and this permission notice shall be included in all
|
|
14
|
+
# copies or substantial portions of the Software.
|
|
15
|
+
#
|
|
16
|
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
17
|
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
18
|
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
19
|
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
20
|
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
21
|
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
22
|
+
# SOFTWARE.
|
|
23
|
+
import numpy as np
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
def _get_operator(backend):
|
|
27
|
+
if backend == "torch":
|
|
28
|
+
from oodeel.utils.torch_operator import TorchOperator
|
|
29
|
+
|
|
30
|
+
return TorchOperator()
|
|
31
|
+
elif backend == "tensorflow":
|
|
32
|
+
from oodeel.utils.tf_operator import TFOperator
|
|
33
|
+
|
|
34
|
+
return TFOperator()
|
|
35
|
+
else:
|
|
36
|
+
raise ValueError(f"backend '{backend}' not supported")
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
def _generate_random_tensor(shape, backend):
|
|
40
|
+
if backend == "torch":
|
|
41
|
+
import torch
|
|
42
|
+
|
|
43
|
+
return torch.rand(*shape)
|
|
44
|
+
elif backend == "tensorflow":
|
|
45
|
+
import tensorflow as tf
|
|
46
|
+
|
|
47
|
+
return tf.random.uniform(shape)
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
def _generate_tensor_deterministic(shape, dtype, backend):
|
|
51
|
+
if backend == "torch":
|
|
52
|
+
import torch
|
|
53
|
+
|
|
54
|
+
dict_types = {"float32": torch.float32, "int64": torch.int64}
|
|
55
|
+
return torch.arange(np.prod(shape), dtype=dict_types[dtype]).view(*shape)
|
|
56
|
+
elif backend == "tensorflow":
|
|
57
|
+
import tensorflow as tf
|
|
58
|
+
|
|
59
|
+
return tf.reshape(tf.range(tf.reduce_prod(shape), dtype=dtype), shape)
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
def check_common_operators(backend):
|
|
63
|
+
operator = _get_operator(backend)
|
|
64
|
+
|
|
65
|
+
input_shape = (25, 12, 6)
|
|
66
|
+
x = _generate_random_tensor(input_shape, backend)
|
|
67
|
+
z = _generate_tensor_deterministic((2, 2, 2), dtype="float32", backend=backend)
|
|
68
|
+
to_one_hot = (
|
|
69
|
+
_generate_tensor_deterministic((3, 2), dtype="int64", backend=backend) % 3
|
|
70
|
+
)
|
|
71
|
+
|
|
72
|
+
# Softmax
|
|
73
|
+
softmax_z = operator.softmax(z)
|
|
74
|
+
assert softmax_z.shape == (2, 2, 2)
|
|
75
|
+
np.testing.assert_almost_equal(softmax_z[0, 0, 0], 0.26894143)
|
|
76
|
+
np.testing.assert_almost_equal(softmax_z[0, 0, 1], 0.73105854)
|
|
77
|
+
|
|
78
|
+
# Argmax
|
|
79
|
+
assert operator.argmax(z) == 7
|
|
80
|
+
assert operator.argmax(z, dim=1).shape == (2, 2)
|
|
81
|
+
np.testing.assert_array_equal(operator.argmax(z, dim=2), [[1, 1], [1, 1]])
|
|
82
|
+
|
|
83
|
+
# Max
|
|
84
|
+
assert operator.max(2 * z) == 14
|
|
85
|
+
assert operator.max(z, dim=1).shape == (2, 2)
|
|
86
|
+
np.testing.assert_array_equal(operator.max(z, dim=2), [[1, 3], [5, 7]])
|
|
87
|
+
|
|
88
|
+
# One-hot
|
|
89
|
+
num_classes = 5
|
|
90
|
+
one_hot_tensor = operator.one_hot(to_one_hot, num_classes)
|
|
91
|
+
assert one_hot_tensor.shape == (3, 2, 5)
|
|
92
|
+
assert one_hot_tensor[1, 0, 2] == 1
|
|
93
|
+
np.testing.assert_array_equal(one_hot_tensor[..., 3], 0)
|
|
94
|
+
|
|
95
|
+
# Sign
|
|
96
|
+
sign_x = operator.sign(x + 0.01) # To ensure that all elements are positive
|
|
97
|
+
assert sign_x.shape == input_shape
|
|
98
|
+
np.testing.assert_array_equal(sign_x, 1)
|
|
99
|
+
np.testing.assert_array_equal(operator.sign(x - x), 0)
|
|
100
|
+
|
|
101
|
+
# Norm
|
|
102
|
+
assert operator.norm(x, dim=1).shape == (25, 6)
|
|
103
|
+
np.testing.assert_almost_equal(operator.norm(z), 11.832159, decimal=4)
|
|
104
|
+
np.testing.assert_array_almost_equal(
|
|
105
|
+
operator.norm(z, dim=1), [[2.0, 3.1622], [7.2111, 8.6023]], decimal=4
|
|
106
|
+
)
|
|
107
|
+
|
|
108
|
+
# Matmul
|
|
109
|
+
x1 = _generate_random_tensor((10, 16), backend)
|
|
110
|
+
x2 = _generate_random_tensor((16, 3), backend)
|
|
111
|
+
assert operator.matmul(x1, x2).shape == (10, 3)
|
|
112
|
+
|
|
113
|
+
# Stack
|
|
114
|
+
assert operator.stack([x, x], dim=0).shape == (2, 25, 12, 6)
|
|
115
|
+
assert operator.stack([x, x], dim=1).shape == (25, 2, 12, 6)
|
|
116
|
+
|
|
117
|
+
# Cat
|
|
118
|
+
assert operator.cat([x, x], dim=0).shape == (50, 12, 6)
|
|
119
|
+
assert operator.cat([x, x], dim=1).shape == (25, 24, 6)
|
|
120
|
+
|
|
121
|
+
# Mean
|
|
122
|
+
assert operator.mean(z, dim=None) == 3.5
|
|
123
|
+
assert operator.mean(x, dim=0).shape == (12, 6)
|
|
124
|
+
assert operator.mean(x, dim=1).shape == (25, 6)
|
|
125
|
+
|
|
126
|
+
# Flatten (to 2D tensor)
|
|
127
|
+
assert operator.flatten(x).shape == (25, 12 * 6)
|
|
128
|
+
|
|
129
|
+
# Transpose
|
|
130
|
+
assert operator.t(x[0]).shape == (6, 12)
|
|
131
|
+
|
|
132
|
+
# Diag
|
|
133
|
+
assert operator.diag(x[0]).shape == (6,)
|
|
134
|
+
|
|
135
|
+
# Reshape
|
|
136
|
+
assert operator.reshape(x, (30, 2, 30)).shape == (30, 2, 30)
|
|
137
|
+
|
|
138
|
+
# Equal
|
|
139
|
+
ind = operator.equal(z, 0)
|
|
140
|
+
assert ind.shape == (2, 2, 2)
|
|
141
|
+
assert z[ind].shape == (1,)
|
|
142
|
+
|
|
143
|
+
# Pinv
|
|
144
|
+
assert operator.pinv(x[0]).shape == (6, 12)
|
|
145
|
+
|
|
146
|
+
# einsum
|
|
147
|
+
ein = operator.einsum("bij,jk->bik", x, operator.t(x[0]))
|
|
148
|
+
assert ein.shape == (25, 12, 12)
|
|
149
|
+
|
|
150
|
+
# tril
|
|
151
|
+
triangle = operator.tril(ein, diagonal=-1)
|
|
152
|
+
assert triangle.shape == (25, 12, 12)
|
|
153
|
+
assert np.sum([m[0, 0] + m[11, 11] + m[0, 11] for m in triangle]) == 0
|