oodeel 0.4.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (63) hide show
  1. oodeel/__init__.py +28 -0
  2. oodeel/aggregator/__init__.py +26 -0
  3. oodeel/aggregator/base.py +70 -0
  4. oodeel/aggregator/fisher.py +259 -0
  5. oodeel/aggregator/mean.py +72 -0
  6. oodeel/aggregator/std.py +86 -0
  7. oodeel/datasets/__init__.py +24 -0
  8. oodeel/datasets/data_handler.py +334 -0
  9. oodeel/datasets/deprecated/DEPRECATED_data_handler.py +236 -0
  10. oodeel/datasets/deprecated/DEPRECATED_ooddataset.py +330 -0
  11. oodeel/datasets/deprecated/DEPRECATED_tf_data_handler.py +671 -0
  12. oodeel/datasets/deprecated/DEPRECATED_torch_data_handler.py +769 -0
  13. oodeel/datasets/deprecated/__init__.py +31 -0
  14. oodeel/datasets/tf_data_handler.py +600 -0
  15. oodeel/datasets/torch_data_handler.py +672 -0
  16. oodeel/eval/__init__.py +22 -0
  17. oodeel/eval/metrics.py +218 -0
  18. oodeel/eval/plots/__init__.py +27 -0
  19. oodeel/eval/plots/features.py +345 -0
  20. oodeel/eval/plots/metrics.py +118 -0
  21. oodeel/eval/plots/plotly.py +162 -0
  22. oodeel/extractor/__init__.py +35 -0
  23. oodeel/extractor/feature_extractor.py +187 -0
  24. oodeel/extractor/hf_torch_feature_extractor.py +184 -0
  25. oodeel/extractor/keras_feature_extractor.py +409 -0
  26. oodeel/extractor/torch_feature_extractor.py +506 -0
  27. oodeel/methods/__init__.py +47 -0
  28. oodeel/methods/base.py +570 -0
  29. oodeel/methods/dknn.py +185 -0
  30. oodeel/methods/energy.py +119 -0
  31. oodeel/methods/entropy.py +113 -0
  32. oodeel/methods/gen.py +113 -0
  33. oodeel/methods/gram.py +274 -0
  34. oodeel/methods/mahalanobis.py +209 -0
  35. oodeel/methods/mls.py +113 -0
  36. oodeel/methods/odin.py +109 -0
  37. oodeel/methods/rmds.py +172 -0
  38. oodeel/methods/she.py +159 -0
  39. oodeel/methods/vim.py +273 -0
  40. oodeel/preprocess/__init__.py +31 -0
  41. oodeel/preprocess/tf_preprocess.py +95 -0
  42. oodeel/preprocess/torch_preprocess.py +97 -0
  43. oodeel/types/__init__.py +75 -0
  44. oodeel/utils/__init__.py +38 -0
  45. oodeel/utils/general_utils.py +97 -0
  46. oodeel/utils/operator.py +253 -0
  47. oodeel/utils/tf_operator.py +269 -0
  48. oodeel/utils/tf_training_tools.py +219 -0
  49. oodeel/utils/torch_operator.py +292 -0
  50. oodeel/utils/torch_training_tools.py +303 -0
  51. oodeel-0.4.0.dist-info/METADATA +409 -0
  52. oodeel-0.4.0.dist-info/RECORD +63 -0
  53. oodeel-0.4.0.dist-info/WHEEL +5 -0
  54. oodeel-0.4.0.dist-info/licenses/LICENSE +21 -0
  55. oodeel-0.4.0.dist-info/top_level.txt +2 -0
  56. tests/__init__.py +22 -0
  57. tests/tests_tensorflow/__init__.py +37 -0
  58. tests/tests_tensorflow/tf_methods_utils.py +140 -0
  59. tests/tests_tensorflow/tools_tf.py +86 -0
  60. tests/tests_torch/__init__.py +38 -0
  61. tests/tests_torch/tools_torch.py +151 -0
  62. tests/tests_torch/torch_methods_utils.py +148 -0
  63. tests/tools_operator.py +153 -0
oodeel/methods/gram.py ADDED
@@ -0,0 +1,274 @@
1
+ # -*- coding: utf-8 -*-
2
+ # Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All
3
+ # rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry,
4
+ # CRIAQ and ANITI - https://www.deel.ai/
5
+ #
6
+ # Permission is hereby granted, free of charge, to any person obtaining a copy
7
+ # of this software and associated documentation files (the "Software"), to deal
8
+ # in the Software without restriction, including without limitation the rights
9
+ # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
+ # copies of the Software, and to permit persons to whom the Software is
11
+ # furnished to do so, subject to the following conditions:
12
+ #
13
+ # The above copyright notice and this permission notice shall be included in all
14
+ # copies or substantial portions of the Software.
15
+ #
16
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
+ # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19
+ # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
+ # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
+ # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
+ # SOFTWARE.
23
+ from typing import Dict
24
+ from typing import List
25
+ from typing import Optional
26
+ from typing import Union
27
+
28
+ import numpy as np
29
+ from sklearn.model_selection import train_test_split
30
+
31
+ from ..aggregator import BaseAggregator
32
+ from ..types import DatasetType
33
+ from ..types import TensorType
34
+ from .base import FeatureBasedDetector
35
+
36
+ EPSILON = 1e-6 # Numerical stability constant
37
+
38
+
39
+ class Gram(FeatureBasedDetector):
40
+ r"""
41
+ "Detecting Out-of-Distribution Examples with Gram Matrices"
42
+ [link](https://proceedings.mlr.press/v119/sastry20a.html)
43
+
44
+ **Important Disclaimer**: Taking the statistics of min/max deviation, as in the
45
+ paper, raises some problems. The method may yield a score of zero for some tasks
46
+ because the sample extreme values become more extreme with larger sample sizes.
47
+ To mitigate this, we replace the min/max with the q / (1-q) quantile threshold,
48
+ where q is a parameter that controls the discriminative ability of the method.
49
+
50
+ This approach improved baseline performance in our experiments.
51
+
52
+ Args:
53
+ orders (Union[List[int], int]): Power orders to consider for the correlation
54
+ matrix. If an int is provided, it is converted to a list.
55
+ quantile (float): Quantile to consider for the correlations to build the
56
+ deviation threshold.
57
+ aggregator (Optional[BaseAggregator]): Aggregator to combine multi-layer scores.
58
+ If multiple layers are used and no aggregator is provided,
59
+ StdNormalizedAggregator is used by default. Defaults to None.
60
+ """
61
+
62
+ def __init__(
63
+ self,
64
+ orders: Union[List[int], int] = list(range(1, 6)),
65
+ quantile: float = 0.01,
66
+ aggregator: Optional[BaseAggregator] = None,
67
+ **kwargs,
68
+ ):
69
+ super().__init__(aggregator=aggregator, **kwargs)
70
+ if isinstance(orders, int):
71
+ orders = [orders]
72
+ self.orders: List[int] = orders
73
+ self.quantile = quantile
74
+
75
+ self.postproc_fns = None # Will be set during fit
76
+ # Mapping class -> list (per-layer) of thresholds [lower, upper]
77
+ self.min_maxs: Dict[int, List[TensorType]] = {}
78
+
79
+ # === Public API (override of _fit_to_dataset) ===
80
+ def _fit_to_dataset(
81
+ self,
82
+ fit_dataset: DatasetType,
83
+ verbose: bool = False,
84
+ **kwargs,
85
+ ) -> None:
86
+ """Fit thresholds on Gram statistics from a dataset.
87
+
88
+ This method sets :attr:`postproc_fns` to compute Gram matrices for all
89
+ selected feature layers and then delegates the actual fitting to the
90
+ generic implementation in :class:`OODBaseDetector`.
91
+
92
+ Args:
93
+ fit_dataset: Dataset containing in-distribution samples.
94
+ verbose: Whether to display a progress bar during feature extraction.
95
+ **kwargs: Additional keyword arguments forwarded to :func:`_fit_layer`.
96
+
97
+ Returns:
98
+ None
99
+ """
100
+ n_layers = len(self.feature_extractor.feature_layers_id)
101
+ if self.postproc_fns is None:
102
+ self.postproc_fns = [self._stat] * n_layers
103
+
104
+ super()._fit_to_dataset(fit_dataset, verbose=verbose, **kwargs)
105
+
106
+ # === Per-layer logic ===
107
+ def _fit_layer(
108
+ self,
109
+ layer_id: int,
110
+ layer_stats: np.ndarray,
111
+ info: dict,
112
+ val_split: float = None,
113
+ **kwargs,
114
+ ) -> None:
115
+ """Fit thresholds for one layer and store validation data.
116
+
117
+ Args:
118
+ layer_id: Index of the processed layer.
119
+ layer_stats: Gram statistics for this layer.
120
+ info: Dictionary containing the logits of the training data.
121
+ val_split: Ratio of samples used for aggregator fitting.
122
+ """
123
+
124
+ preds_all = np.argmax(info["logits"], axis=1)
125
+
126
+ # initialize min_maxs if not already done.
127
+ if not self.min_maxs:
128
+ n_layers = len(self.feature_extractor.feature_layers_id)
129
+ self._classes = np.sort(np.unique(preds_all)).tolist()
130
+ self.min_maxs = {cls: [None] * n_layers for cls in self._classes}
131
+
132
+ # split the dataset into training and validation sets (as in original paper).
133
+ idx_all = np.arange(preds_all.shape[0])
134
+ train_idx, val_idx = (
135
+ train_test_split(idx_all, test_size=val_split, random_state=42)
136
+ if val_split is not None
137
+ else (idx_all, idx_all)
138
+ )
139
+
140
+ train_stats = layer_stats[train_idx]
141
+ val_stats = layer_stats[val_idx]
142
+ train_preds = preds_all[train_idx]
143
+ val_preds = preds_all[val_idx]
144
+
145
+ # compute min/max thresholds for each class
146
+ for cls in self._classes:
147
+ cls_mask = train_preds == cls
148
+ stats_cls_np = train_stats[cls_mask]
149
+ stats_cls_t = self.op.from_numpy(stats_cls_np)
150
+ lower = self.op.quantile(stats_cls_t, self.quantile, dim=0)
151
+ upper = self.op.quantile(stats_cls_t, 1 - self.quantile, dim=0)
152
+ self.min_maxs[cls][layer_id] = self.op.cat(
153
+ [self.op.unsqueeze(lower, -1), self.op.unsqueeze(upper, -1)],
154
+ dim=-1,
155
+ )
156
+
157
+ if getattr(self, "aggregator", None) is not None:
158
+ # Store validation data for the aggregator.
159
+ if not hasattr(self, "_val_stats"):
160
+ self._val_stats = []
161
+ self._val_preds = []
162
+ while len(self._val_stats) <= layer_id:
163
+ self._val_stats.append(None)
164
+ self._val_preds.append(None)
165
+ self._val_stats[layer_id] = val_stats
166
+ self._val_preds[layer_id] = val_preds
167
+
168
+ def _score_layer(
169
+ self,
170
+ layer_id: int,
171
+ layer_stats: TensorType,
172
+ info: dict,
173
+ fit: bool = False,
174
+ **kwargs,
175
+ ) -> np.ndarray:
176
+ """Score inputs for a single layer.
177
+
178
+ Args:
179
+ layer_id (int): Layer index.
180
+ layer_stats (TensorType): Gram stats.
181
+ info (dict): Dictionary containing auxiliary data, such as logits.
182
+ fit (bool): Whether scoring is performed during fitting. If `True`
183
+ the validation subset stored by :func:`_fit_layer` is used.
184
+
185
+ Returns:
186
+ np.ndarray: Deviation-based OOD scores.
187
+ """
188
+ if fit and hasattr(self, "_val_stats"):
189
+ layer_stats = self.op.from_numpy(self._val_stats[layer_id])
190
+ preds = self._val_preds[layer_id]
191
+ else:
192
+ preds = np.argmax(self.op.convert_to_numpy(info["logits"]), axis=1)
193
+
194
+ thr_batch = self.op.stack([self.min_maxs[int(lbl)][layer_id] for lbl in preds])
195
+ dev = self._deviation(layer_stats, thr_batch)
196
+ return self.op.convert_to_numpy(dev)
197
+
198
+ # === Internal utilities ===
199
+ def _stat(self, feature_map: TensorType) -> TensorType:
200
+ """Compute Gram statistics for a single layer.
201
+
202
+ Args:
203
+ feature_map (TensorType): Feature map of shape `[B, ...]`.
204
+
205
+ Returns:
206
+ TensorType: Statistics of shape `[B, n_orders, C]`.
207
+ """
208
+ fm_shape = feature_map.shape
209
+ stats = []
210
+ for p in self.orders:
211
+ # Raise the feature map to the specified order.
212
+ fm_p = feature_map**p
213
+ if len(fm_shape) == 2:
214
+ # Dense layers: compute outer product.
215
+ fm_p = self.op.einsum("bi,bj->bij", fm_p, fm_p)
216
+ else:
217
+ # Convolutional feature maps: flatten spatial dimensions.
218
+ if self.backend == "tensorflow":
219
+ fm_p = self.op.reshape(
220
+ self.op.einsum("i...j->ij...", fm_p),
221
+ (fm_shape[0], fm_shape[-1], -1),
222
+ )
223
+ else:
224
+ fm_p = self.op.reshape(fm_p, (fm_shape[0], fm_shape[1], -1))
225
+ fm_p = self.op.matmul(fm_p, self.op.permute(fm_p, (0, 2, 1)))
226
+ # Normalize and recover the original power.
227
+ fm_p = self.op.sign(fm_p) * (self.op.abs(fm_p) ** (1 / p))
228
+ # Use only the lower triangular part.
229
+ fm_p = self.op.tril(fm_p)
230
+ # Aggregate row-wise.
231
+ fm_p = self.op.sum(fm_p, dim=2)
232
+ stats.append(fm_p)
233
+ return self.op.stack(stats, dim=1)
234
+
235
+ def _deviation(self, stats: TensorType, thresholds: TensorType) -> TensorType:
236
+ """Compute deviation of `stats` outside `thresholds`.
237
+
238
+ Args:
239
+ stats (TensorType): Gram stats, shape `[B, *, C]`.
240
+ thresholds (TensorType): Lower & upper bounds, shape `[B, *, C, 2]`.
241
+
242
+ Returns:
243
+ TensorType: Deviation values, shape `[B]`.
244
+ """
245
+ below = self.op.where(stats < thresholds[..., 0], 1.0, 0.0)
246
+ above = self.op.where(stats > thresholds[..., 1], 1.0, 0.0)
247
+ dev_low = (
248
+ (thresholds[..., 0] - stats) / (self.op.abs(thresholds[..., 0]) + EPSILON)
249
+ ) * below
250
+ dev_high = (
251
+ (stats - thresholds[..., 1]) / (self.op.abs(thresholds[..., 1]) + EPSILON)
252
+ ) * above
253
+ return self.op.sum(dev_low + dev_high, dim=(1, 2))
254
+
255
+ # === Properties ===
256
+ @property
257
+ def requires_to_fit_dataset(self) -> bool:
258
+ """
259
+ Indicates whether this OOD detector requires in-distribution data for fitting.
260
+
261
+ Returns:
262
+ bool: True, since fitting requires computing class-conditional statistics.
263
+ """
264
+ return True
265
+
266
+ @property
267
+ def requires_internal_features(self) -> bool:
268
+ """
269
+ Indicates whether this OOD detector utilizes internal model features.
270
+
271
+ Returns:
272
+ bool: True, as it operates on intermediate feature representations.
273
+ """
274
+ return True
@@ -0,0 +1,209 @@
1
+ # -*- coding: utf-8 -*-
2
+ # Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All
3
+ # rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry,
4
+ # CRIAQ and ANITI - https://www.deel.ai/
5
+ #
6
+ # Permission is hereby granted, free of charge, to any person obtaining a copy
7
+ # of this software and associated documentation files (the "Software"), to deal
8
+ # in the Software without restriction, including without limitation the rights
9
+ # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
+ # copies of the Software, and to permit persons to whom the Software is
11
+ # furnished to do so, subject to the following conditions:
12
+ #
13
+ # The above copyright notice and this permission notice shall be included in all
14
+ # copies or substantial portions of the Software.
15
+ #
16
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
+ # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19
+ # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
+ # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
+ # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
+ # SOFTWARE.
23
+ from typing import Dict
24
+ from typing import List
25
+ from typing import Optional
26
+ from typing import Tuple
27
+
28
+ import numpy as np
29
+
30
+ from ..aggregator import BaseAggregator
31
+ from ..types import TensorType
32
+ from .base import FeatureBasedDetector
33
+
34
+
35
+ class Mahalanobis(FeatureBasedDetector):
36
+ """
37
+ "A Simple Unified Framework for Detecting Out-of-Distribution Samples and
38
+ Adversarial Attacks"
39
+ https://arxiv.org/abs/1807.03888
40
+
41
+ This detector computes the Mahalanobis distance between the feature representations
42
+ of input samples and class-conditional Gaussian distributions estimated from
43
+ in-distribution data. It supports multiple feature layers by computing statistics
44
+ (class means and a covariance matrix) for each layer. During inference, scores
45
+ computed for each layer are aggregated using a provided aggregator.
46
+
47
+ Args:
48
+ eps (float): Magnitude for gradient-based input perturbation. Defaults to
49
+ 0.0014.
50
+ temperature (float, optional): Temperature parameter. Defaults to 1000.
51
+ aggregator (Optional[BaseAggregator]): Aggregator to combine scores from
52
+ multiple feature layers. If `None` and more than one layer is
53
+ used, a `StdNormalizedAggregator` is instantiated automatically.
54
+ """
55
+
56
+ def __init__(
57
+ self,
58
+ eps: float = 0.0014,
59
+ temperature: float = 1000,
60
+ aggregator: Optional[BaseAggregator] = None,
61
+ **kwargs,
62
+ ):
63
+ super().__init__(
64
+ eps=eps, temperature=temperature, aggregator=aggregator, **kwargs
65
+ )
66
+ self._layer_stats: List[Tuple[Dict, np.ndarray]] = []
67
+ self._classes: Optional[np.ndarray] = None
68
+
69
+ # === Per-layer logic ===
70
+ def _fit_layer(
71
+ self,
72
+ layer_id: int,
73
+ layer_features: np.ndarray,
74
+ info: dict,
75
+ **kwargs,
76
+ ) -> None:
77
+ """Compute class statistics for one feature layer.
78
+
79
+ Args:
80
+ layer_id: Index of the processed layer.
81
+ layer_features: In-distribution features for this layer.
82
+ info: Dictionary containing the training labels.
83
+ """
84
+ labels = info["labels"]
85
+
86
+ if isinstance(layer_features, np.ndarray):
87
+ layer_features = self.op.from_numpy(layer_features)
88
+
89
+ mus, pinv_cov = self._compute_layer_stats(layer_features, labels)
90
+
91
+ self._layer_stats.append((mus, pinv_cov))
92
+
93
+ def _score_layer(
94
+ self,
95
+ layer_id: int,
96
+ layer_features: TensorType,
97
+ info: dict,
98
+ fit: bool = False,
99
+ **kwargs,
100
+ ) -> np.ndarray:
101
+ """Compute Mahalanobis confidence for one feature layer.
102
+
103
+ Args:
104
+ layer_id: Index of the processed layer.
105
+ layer_features: Feature tensor for the current batch.
106
+ info: Unused dictionary of auxiliary data.
107
+ fit: Whether scoring is performed during fitting. Unused here.
108
+
109
+ Returns:
110
+ np.ndarray: Negative Mahalanobis confidence scores.
111
+ """
112
+ mus, pinv_cov = self._layer_stats[layer_id]
113
+ feats = self.op.flatten(layer_features)
114
+ g_scores = self._gaussian_log_probs(feats, mus, pinv_cov)
115
+ max_score = self.op.max(g_scores, dim=1)
116
+ return -self.op.convert_to_numpy(max_score)
117
+
118
+ # === Internal utilities ===
119
+ def _compute_layer_stats(
120
+ self, layer_features: TensorType, labels: np.ndarray
121
+ ) -> Tuple[Dict[int, TensorType], np.ndarray]:
122
+ """
123
+ Compute class-conditional statistics for a given feature layer.
124
+
125
+ For each class present in the labels, this method computes the mean feature
126
+ vector. It also computes a weighted average covariance matrix (across all
127
+ classes) and its pseudo-inverse, which will later be used for computing
128
+ Mahalanobis distances.
129
+
130
+ Args:
131
+ layer_features (TensorType): Feature tensor for a specific layer extracted
132
+ from in-distribution data.
133
+ labels (np.ndarray): Corresponding labels for the in-distribution data.
134
+
135
+ Returns:
136
+ Tuple[Dict, TensorType]:
137
+ - A dictionary mapping each class label to its mean feature vector.
138
+ - The pseudo-inverse of the weighted average covariance matrix.
139
+ """
140
+ classes = np.sort(np.unique(labels))
141
+ labels = self.op.from_numpy(labels) # convert to tensor
142
+
143
+ feats = self.op.flatten(layer_features)
144
+ n_total = feats.shape[0]
145
+
146
+ mus: Dict[int, TensorType] = {}
147
+ mean_cov: TensorType = None
148
+
149
+ for cls in classes:
150
+ idx = self.op.equal(labels, cls)
151
+ feats_cls = self.op.flatten(layer_features[idx])
152
+ mu = self.op.mean(feats_cls, dim=0)
153
+ mus[cls] = mu
154
+
155
+ zero_f = feats_cls - mu
156
+ cov_cls = self.op.matmul(self.op.t(zero_f), zero_f) / zero_f.shape[0]
157
+ weight = feats_cls.shape[0] / n_total
158
+ mean_cov = (
159
+ cov_cls * weight if mean_cov is None else mean_cov + cov_cls * weight
160
+ )
161
+
162
+ pinv_cov = self.op.pinv(mean_cov) # type: ignore[arg-type]
163
+ if self._classes is None:
164
+ self._classes = classes
165
+ return mus, pinv_cov
166
+
167
+ def _gaussian_log_probs(
168
+ self, out_features: TensorType, mus: Dict[int, TensorType], pinv_cov: TensorType
169
+ ) -> TensorType:
170
+ """Compute unnormalised Gaussian log-probabilities for all classes.
171
+
172
+ Args:
173
+ out_features (TensorType): Features of shape [B, D].
174
+ mus (Dict[int, TensorType]): Class mean vectors.
175
+ pinv_cov (TensorType): Pseudo-inverse covariance matrix.
176
+
177
+ Returns:
178
+ TensorType: Log-probabilities with shape [B, n_classes].
179
+ """
180
+ scores = []
181
+ for cls in self._classes: # type: ignore[assignment]
182
+ mu = mus[cls]
183
+ zero_f = out_features - mu
184
+ log_prob = -0.5 * self.op.diag(
185
+ self.op.matmul(self.op.matmul(zero_f, pinv_cov), self.op.t(zero_f))
186
+ )
187
+ scores.append(self.op.reshape(log_prob, (-1, 1)))
188
+ return self.op.cat(scores, dim=1)
189
+
190
+ # ===
191
+ @property
192
+ def requires_to_fit_dataset(self) -> bool:
193
+ """
194
+ Indicates whether this OOD detector requires in-distribution data for fitting.
195
+
196
+ Returns:
197
+ bool: True, since fitting requires computing class-conditional statistics.
198
+ """
199
+ return True
200
+
201
+ @property
202
+ def requires_internal_features(self) -> bool:
203
+ """
204
+ Indicates whether this OOD detector utilizes internal model features.
205
+
206
+ Returns:
207
+ bool: True, as it operates on intermediate feature representations.
208
+ """
209
+ return True
oodeel/methods/mls.py ADDED
@@ -0,0 +1,113 @@
1
+ # -*- coding: utf-8 -*-
2
+ # Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All
3
+ # rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry,
4
+ # CRIAQ and ANITI - https://www.deel.ai/
5
+ #
6
+ # Permission is hereby granted, free of charge, to any person obtaining a copy
7
+ # of this software and associated documentation files (the "Software"), to deal
8
+ # in the Software without restriction, including without limitation the rights
9
+ # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
+ # copies of the Software, and to permit persons to whom the Software is
11
+ # furnished to do so, subject to the following conditions:
12
+ #
13
+ # The above copyright notice and this permission notice shall be included in all
14
+ # copies or substantial portions of the Software.
15
+ #
16
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
+ # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19
+ # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
+ # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
+ # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
+ # SOFTWARE.
23
+ import numpy as np
24
+
25
+ from ..types import TensorType
26
+ from ..types import Tuple
27
+ from .base import OODBaseDetector
28
+
29
+
30
+ class MLS(OODBaseDetector):
31
+ """
32
+ Maximum Logit Scores method for OOD detection.
33
+ "Open-Set Recognition: a Good Closed-Set Classifier is All You Need?"
34
+ https://arxiv.org/abs/2110.06207,
35
+ and Maximum Softmax Score
36
+ "A Baseline for Detecting Misclassified and Out-of-Distribution Examples
37
+ in Neural Networks"
38
+ http://arxiv.org/abs/1610.02136
39
+
40
+ Args:
41
+ output_activation (str): activation function for the last layer. If "linear",
42
+ the method is MLS and if "softmax", the method is MSS.
43
+ Defaults to "linear".
44
+ use_react (bool): if true, apply ReAct method by clipping penultimate
45
+ activations under a threshold value.
46
+ react_quantile (Optional[float]): q value in the range [0, 1] used to compute
47
+ the react clipping threshold defined as the q-th quantile penultimate layer
48
+ activations. Defaults to 0.8.
49
+ """
50
+
51
+ def __init__(
52
+ self,
53
+ output_activation: str = "linear",
54
+ use_react: bool = False,
55
+ use_scale: bool = False,
56
+ use_ash: bool = False,
57
+ react_quantile: float = 0.8,
58
+ scale_percentile: float = 0.85,
59
+ ash_percentile: float = 0.90,
60
+ **kwargs,
61
+ ):
62
+ super().__init__(
63
+ use_react=use_react,
64
+ use_scale=use_scale,
65
+ use_ash=use_ash,
66
+ react_quantile=react_quantile,
67
+ scale_percentile=scale_percentile,
68
+ ash_percentile=ash_percentile,
69
+ )
70
+ self.output_activation = output_activation
71
+
72
+ def _score_tensor(self, inputs: TensorType) -> Tuple[np.ndarray]:
73
+ """
74
+ Computes an OOD score for input samples "inputs" based on
75
+ the distance to nearest neighbors in the feature space of self.model
76
+
77
+ Args:
78
+ inputs: input samples to score
79
+
80
+ Returns:
81
+ Tuple[np.ndarray]: scores, logits
82
+ """
83
+ # optional: apply input perturbation
84
+ if self.eps > 0:
85
+ inputs = self._input_perturbation(inputs, self.eps, self.temperature)
86
+
87
+ _, logits = self.feature_extractor.predict_tensor(inputs)
88
+ if self.output_activation == "softmax":
89
+ logits = self.op.softmax(logits)
90
+ logits = self.op.convert_to_numpy(logits)
91
+ scores = -np.max(logits, axis=1)
92
+ return scores
93
+
94
+ @property
95
+ def requires_to_fit_dataset(self) -> bool:
96
+ """
97
+ Whether an OOD detector needs a `fit_dataset` argument in the fit function.
98
+
99
+ Returns:
100
+ bool: True if `fit_dataset` is required else False.
101
+ """
102
+ return False
103
+
104
+ @property
105
+ def requires_internal_features(self) -> bool:
106
+ """
107
+ Whether an OOD detector acts on internal model features.
108
+
109
+ Returns:
110
+ bool: True if the detector perform computations on an intermediate layer
111
+ else False.
112
+ """
113
+ return False